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This paper deals with maximum entropy completion of partially
specified block-circulant matrices. Since positive definite symmet-
ric circulants happen to be covariance matrices of stationary peri-
odic processes, in particular of stationary reciprocal processes, this
problem has applications in signal processing, in particular to im-
age modeling. In fact it is strictly related to maximum likelihood
estimation of bilateral AR-type representations of acausal signals
subject to certain conditional independence constraints. The maxi-
mum entropy completion problem for block-circulant matrices has
recently been solved by the authors, although leaving open the
problem of an efficient computation of the solution. In this pa-
per, we provide an efficient algorithm for computing its solution
which compares very favorably with existing algorithms designed
for positive definite matrix extension problems. The proposed al-
gorithm benefits from the analysis of the relationship between our
problem and the band-extension problem for block-Toeplitz matri-
ces also developed in this paper.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

We consider the problem of completing a partially specified block-circulant matrix under the con-
straint that the completed matrix should be positive definite and block-circulant with an inverse of
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banded structure. As shown in [1], a block-circulant completion problem of this kind is a crucial tool
for the identification of a class of reciprocal processes. These processes [2–4] are a generalization of
Markov processes which are particularly useful for modeling random signals which live in a finite
region of time or of the space line, for example images. In this paper we consider stationary recip-
rocal processes for which we refer the reader to [5,6] and references therein. In particular, stationary
reciprocal processes of the autoregressive type can be described by linear models involving a banded
block-circulant concentration matrix1 whose non-zero blocks are the (matrix-valued) parameters of
the model.

This problem fits in the general framework of covariance extension problems introduced by
A.P. Dempster [7] and studied by many authors (see [8–25] and references therein). A key discovery
by Dempster is that the inverse of the maximum entropy completion of a partially assigned covari-
ance matrix has zeros exactly in the positions corresponding to the unspecified entries in the given
matrix, a property which, from now on, will be referred to as the Dempster property (an alternative,
concise proof of this statement can for example be found in [26]).

A relevant fact is that, even when the constraint of a circulant structure is imposed, the inverse of
the maximum entropy completion maintains the Dempster property. This fact has been first noticed
in [1] for a banded structure and then proved in complete generality, i.e. for arbitrarily given ele-
ments within a block-circulant structure, in [26]. Otherwise stated, this means that the solution of
the Maximum Entropy Block-Circulant Extension Problem (CME) and of the Dempster Maximum En-
tropy Extension Problem (DME) with data consistent with a block-circulant structure, coincide. Note
that this property does not hold, for example, for arbitrarily missing elements in a block-Toeplitz
structure: if we ask the completion to be Toeplitz, the maximum entropy extension fails to satisfy
the Dempster property unless the given data lie on consecutive bands centered along the main diag-
onal (see [9] and [14] for a general formulation of matrix extension problems in terms of so-called
banded-algebra techniques and for a thorough discussion of the so-called band-extension problem for
block-Toeplitz matrices). Moreover, the block-Toeplitz band extension problem can be solved by fac-
torization techniques and is essentially a linear problem. This is unfortunately no longer true when a
block-circulant structure is imposed to the extension [27].

The main contribution of this paper is to propose a new algorithm for solving the CME problem.
A straightforward application of standard optimization algorithms would be too expensive for large
sized problems like those we have in mind for, say, applications to image processing. Here we propose
a new procedure which rests on duality theory and exploits information on the structure of the
problem as well as the circulant structure for computing the solution of the CME.

Since the solutions of the CME and of the DME with circulant-compatible data coincide, methods
available in the literature for the DME can, in principle, be employed to compute the solution of
CME. In this respect, it has been shown that if the graph associated with the specified entries is
chordal [28], the solution of the DME can be expressed in closed form in terms of the principal minors
of the covariance matrix, see [16,29,30]. In our problem however the sparsity pattern associated with
the given entries is not chordal and the maximum entropy completion has to be computed iteratively.
A number of specialized algorithms have been proposed in the graphical models literature; see [7,12,
31,32]. These algorithms deal with the general unstructured setting of Dempster and are not especially
tailored to the circulant structure. A detailed comparison of our procedure with the best algorithms
available so far is presented in Section 5. We show that the proposed algorithm outperforms the
algorithms proposed in the graphical models literature for the solution of the DME, being especially
suitable to deal with very large sized instances of the problem.

We shall first relate our work to the solution of the band extension problem for block-Toeplitz
matrices and show that the maximum entropy circulant extension approximates arbitrarily closely
the block-Toeplitz band extension with the same starting data, when the dimension of the circu-
lant extension becomes large. This result is in the spirit of the relation between stationary Markov
and reciprocal processes on an infinite interval established by Levy in [33] and will be useful to
provide an efficient initialization for the proposed algorithm. In this context, we shall briefly touch

1 I.e. the inverse covariance matrix, also known as the precision matrix.
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upon feasibility of the CME problem. The feasibility problem for generic blocks size and bandwidth
has been addressed in [1] and [26], where a sufficient condition on the data for a positive definite
block-circulant completion to exist has been derived. Here we shall derive a necessary and sufficient
condition for feasibility of the CME problem valid for the scalar case with unitary bandwidth.

The outline of the paper is as follows. In Section 2 we introduce some notation and state the
entropy maximization problem. In Section 3 the relation between the maximum entropy extension for
banded Toeplitz and banded circulant matrices is investigated. A necessary and sufficient condition
for feasibility is also derived in this section. In Section 4 we describe the proposed procedure for
the solution of the CME problem. Section 5 contains a brief review and discussion of some of the
most popular methods for the solution of the DME. A comparison of the proposed algorithm and the
methods available in the literature is presented in Section 6. Section 7 concludes the paper.

2. Notation and preliminaries

All random variables in this paper, denoted by boldface characters, have zero mean and finite sec-
ond order moments. It is shown in [1] that a wide-sense stationary Rm-valued process y is stationary
on {0,1, . . . , N} if and only if its covariance matrix, say ΣN , has a block-circulant symmetric structure,
i.e. ΣN is of the form

ΣN =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Σ0 Σ�
1 . . . Σ�

τ . . . Στ . . . Σ1

Σ1 Σ0 Σ�
1

. . . Σ�
τ . . .

. . .
...

...
. . .

. . .
. . . Στ

Στ . . . Σ1 Σ0 Σ�
1 . . .

. . .

... Στ . . . Σ0 . . . Σ�
τ

Σ�
τ

. . .
...

...
. . .

. . .
. . .

. . . Σ�
1

Σ�
1 . . . Σ�

τ . . . Στ Σ1 Σ0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where the k-th block, Σk , is given by Σk = Ey(t +k)y(t)� . We refer the reader to [34] for an introduc-
tion to circulants; an extension of some relevant results for the block-case can be found, for example,
in [26]. Here we just recall that the class of block-circulants is closed under sum, product, inverse and
transpose. Moreover, all block-circulants are simultaneously diagonalized by the Fourier block-matrix
of suitable size (see (9)–(11) below).

The differential entropy H(p) of a probability density function p on Rn is defined by

H(p) = −
∫
Rn

log
(

p(x)
)

p(x)dx. (1)

In the case of a zero-mean Gaussian distribution p with covariance matrix ΣN , it results

H(p) = 1

2
log(det ΣN) + 1

2
n
(
1 + log(2π)

)
. (2)

Let SN denote the vector space of real symmetric matrices with N × N square blocks of dimension
m × m. Moreover, let UN denote the block-circulant shift matrix with N × N blocks,

UN =

⎡
⎢⎢⎢⎢⎣

0 Im 0 . . . 0
0 0 Im . . . 0
...

...
. . .

...

0 0 0 . . . Im

Im 0 0 . . . 0

⎤
⎥⎥⎥⎥⎦ ,
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En the N × (n + 1) block matrix

En =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Im 0 . . . 0
0 Im 0
...

. . .
...

0 . . . . . . Im

0 . . . 0
...

. . .
...

0 . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and Tn ∈ Sn+1 the block-Toeplitz matrix made of the first n + 1, m × m covariance lags {Σ0,Σ1,

. . . ,Σn},

Tn :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Σ0 Σ�
1 . . . . . . Σ�

n

Σ1 Σ0 Σ�
1

...

...
. . .

. . .
. . .

...
...

. . .
. . . Σ�

1
Σn . . . . . . Σ1 Σ0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (3)

The symmetric block-Toeplitz matrix Tn is completely specified by its first block-row, so, with obvious
notation, it will be also denoted as

Tn = Toepl
(
Σ0,Σ

�
1 , . . . ,Σ�

n

)
.

Given positive integers N and n such that 2n < N − 1 and a positive definite block-Toeplitz data
matrix Tn , the maximum entropy covariance extension problem for block-circulant matrices (CME)
can be stated as follows:

max{log det ΣN | ΣN ∈ SN , ΣN > 0} (4a)

subject to:

E�
n ΣN En = Tn, (4b)

U�
N ΣN UN = ΣN , (4c)

where we have exploited the fact that a matrix CN with N × N blocks is block-circulant if and only if it
commutes with UN , namely if and only if CN = U�

N CN UN . Problem (4) is a convex optimization problem
since we are minimizing a strictly convex function on the intersection of a convex cone (minus the
zero matrix) with a linear manifold. Existence and uniqueness of the solution of the CME have been
proved in [1]. If we do not impose the completion to be block-circulant, we obtain the covariance
selection problem studied by A.P. Dempster (DME) in [7].

Notice that, although in problem (4) we are maximizing the entropy functional over zero-mean
Gaussian densities, we are not actually restricting ourselves to the case of Gaussian distributions.
Indeed, the Gaussian distribution with (zero mean and) covariance matrix solving (4) maximizes the
entropy functional (1) over the larger family of (zero mean) probability densities whose covariance
matrix satisfies the boundary conditions (4b), (4c), see [1, Theorem 7.2].

3. Relation with the block-Toeplitz covariance extension problem

In this section, we shall point out a relation between the solutions of the maximum entropy band
extension problem for block-circulant and block-Toeplitz matrices.



Author's personal copy

F.P. Carli et al. / Linear Algebra and its Applications 439 (2013) 2309–2329 2313

Let N and n be positive integers such that n < N , and let Tn and En be the block matrices defined
in Section 2. Moreover denote by AN−1 and BN−1 the (N − 1) × N block shift matrices given by

AN−1 =

⎡
⎢⎢⎢⎢⎣

Im 0 0 . . . 0 0
0 Im 0 0 0
0 0 Im 0 0
...

. . .
...

...

0 0 0 . . . Im 0

⎤
⎥⎥⎥⎥⎦ , BN−1 =

⎡
⎢⎢⎢⎢⎣

0 Im 0 0 . . . 0
0 0 Im 0 0
0 0 0 Im . . . 0
...

. . .
...

0 0 0 0 . . . Im

⎤
⎥⎥⎥⎥⎦ .

The maximum entropy band extension problem for block-Toeplitz matrices (TME) can be stated as
follows:

max{log detΣN | ΣN ∈ SN , ΣN > 0} (5a)

subject to:

E�
n ΣN En = Tn, (5b)

AN−1ΣN A�
N−1 = BN−1ΣN B�

N−1, (5c)

where (5c) constrains ΣN to be block-Toeplitz by imposing the block-entries on the diagonals to be
pairwise equal, and hence constant. This problem has a long history, and was probably the first matrix
completion problem studied in the literature [9,14]. The TME problem admits a unique solution. As
mentioned in the Introduction, it can be solved by factorization techniques, in fact, by the celebrated
Levinson–Whittle algorithm [35] and is essentially a linear problem. Below we shall show that for
N → ∞, the solution of the CME problem can be approximated arbitrarily closely in terms of the
solution of the Toeplitz band extension problem. The theorem reads as follows.

Theorem 3.1. Let Tn be positive definite and let {Σ̂k, k = n + 1,n + 2, . . .} be the maximum entropy block-
Toeplitz extension of {Σ0,Σ1, . . . ,Σn}, that is, the solution of the TME problem (5). Then, for N large enough,
the symmetric block-circulant matrix Σ

(c)
N given by

Toepl
(
Σ0,Σ

�
1 , . . . ,Σ�

n , Σ̂�
n+1, . . . , Σ̂

�
N
2 −1

, Σ̂�
N
2

+ Σ̂ N
2
, Σ̂ N

2 −1, . . . , Σ̂n+1,Σn, . . . ,Σ1
)
, (6)

for N even, and

Toepl
(
Σ0,Σ

�
1 , . . . ,Σ�

n , Σ̂�
n+1, . . . , Σ̂

�
N−1

2
, Σ̂ N−1

2
, . . . , Σ̂n+1,Σn, . . . ,Σ1

)
, (7)

for N odd, is a covariance matrix which for N → ∞ is arbitrarily close to the mN × mN maximum entropy
block-circulant extension of Tn, i.e. to the solution of the CME problem (4).

Proof. That Σ
(c)
N is a valid covariance matrix for N large enough follows from [1, Theorem 5.1]. It

remains to show that Σ
(c)
N given by (6), (7) tends to the maximum entropy block-circulant extension

of Tn , say Σo
N , i.e. that

lim
N→∞

∥∥Σ
(c)
N − Σo

N

∥∥ = 0. (8)

To this aim, we recall that the maximum entropy completion Σo
N is the unique completion of the

given data whose inverse has the property to be zero in the complementary positions of those as-
signed [1,26,7]. Thus, (8) holds if and only if for N → ∞ the inverse of Σ

(c)
N tends to be banded

block-circulant

lim
N→∞

∥∥(
Σ

(c)
N

)−1 − (
Σo

N

)−1∥∥ = 0,

i.e. if the off-band blocks of (Σ
(c)
N )−1 tend uniformly to zero faster than 1/N .
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To show this, recall that Σ
(c)
N can be block-diagonalized as

Σ
(c)
N = VΨ N V∗ (9)

where V is the Fourier block-matrix whose (k, l)-th block is

Vkl := 1/
√

N exp
[−j2π(k − 1)(l − 1)/N

]
Im (10)

and Ψ N is the block-diagonal matrix

Ψ N := diag(Ψ0,Ψ1, . . . ,ΨN−1), (11)

whose diagonal blocks Ψ� are the coefficients of the finite Fourier transform of the first block row
of Σ

(c)
N

Ψ� = Σ̂0 + ejϑ�Σ̂�
1 + (

ejϑ�
)2

Σ̂�
2 + · · · + (

ejϑ�
)N−2

Σ̂2 + (
ejϑ�

)N−1
Σ̂1, (12)

with ϑ� := −2π�/N . Thus in particular(
Σ

(c)
N

)−1 = VΨ −1
N V∗

where

Ψ −1
N := diag

(
Ψ −1

0 ,Ψ −1
1 , . . . ,Ψ −1

N−1

)
.

Now, let us consider the block-Toeplitz band extension of the given data Tn , {Σ̂k, k = 0,1,2, . . .}, and
the associated spectral density matrix

Φ(z) := Σ̂0 +
∞∑

i=1

Σ̂i z
−i +

( ∞∑
i=1

Σ̂i z
−i

)∗
. (13)

It is well-known [35] that Φ(z) can be expressed in factored form as

Φ(z) = [
Ln

(
z−1)]−1

Λn
[
Ln

(
z−1)]−∗

(14)

where Ln(z−1) is the n-th Levinson–Whittle matrix polynomial associated with the block-Toeplitz
matrix Tn

Ln
(
z−1) =

n∑
k=0

An(k)z−k (15)

with the An(k)’s and Λn = Λ�
n > 0 being the solutions of the Yule–Walker type equation

[ An(0) An(1) . . . An(n) ] T�
n = [Λn 0 . . . 0 ] . (16)

Note that Φ(z)−1 = Ln(z−1)∗Λ−1
n Ln(z) is a Laurent polynomial, that can be written as

Φ(z)−1 = M0 + (
M1z + M2z2 + · · · + Mnzn) + (

M1z + M2z2 + · · · + Mnzn)∗
.

Moreover, the Ψ� ’s in (12) can be written as2

Ψ� = Σ̂0 + ejϑ�Σ̂�
1 + · · · + (

ejϑ�
)h

Σ̂�
h + e−jϑ�Σ̂1 + · · · + (

e−jϑ�
)h

Σ̂h (17)

where

h :=
{ N−1

2 , for N odd,

N/2, for N even.

2 For N even ejϑ�h = e−jϑ�h = −1, so that (ejϑ� )hΣ̂�
h + (e−jϑ� )hΣ̂h = −(Σ̂h + Σ̂�

h ).
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Now, comparing expression (17) with (13), we can write

Ψ� = Φ
(
ejϑ�

) − [

ΦN

(
ejϑ�

) + 
Φ∗
N

(
ejϑ�

)]
(18)

where


ΦN(z) :=
∞∑

i=h+1

Σ̂i z
−i .

Since the causal part of Φ(z) is a rational function with poles inside the unit circle,

sup
l=0,...,N−1

∥∥
ΦN
(
ejϑ�

) + 
Φ∗
N

(
ejϑ�

)∥∥ → 0

exponentially fast for N → ∞. It follows that, for N → ∞, Ψ −1
� tends to (Φ(e jϑ� ))−1, which is given

by (
Φ

(
e jϑ�

))−1 = M0 + M1ejϑ� + · · · + Mn
(
ejϑ�

)n + M�
1

(
ejϑ�

)N−1 + · · · + M�
n

(
ejϑ�

)N−n
, (19)

for every � = 0,1, . . . , N − 1. In other words, Ψ −1
� tends to the finite Fourier transform of a sequence

of the form

M0, M�
1 , M�

2 , . . . , M�
n ,0, . . . ,0, Mn, . . . , M1,

i.e. (Σ
(c)
N )−1 tends to be banded block-circulant, as claimed. �

This result is very much in the spirit of the findings by Levy [33], which establish a relation be-
tween stationary Markov and reciprocal processes on an infinite interval and will be used in Section 4
to provide an efficient initialization for the proposed algorithm.

Feasibility of the CME problem has been addressed in [1], where a sufficient condition on the data
for a positive definite block-circulant completion to exist has been derived. There is a simple, yet, to
the best of our knowledge, still unnoticed, necessary and sufficient condition for the existence of a
positive definite circulant completion for scalar (blocks of size 1 × 1) entries and bandwidth n = 1
which can be derived by combining the results in [17,7,26]. It reads as follows.

Proposition 3.1. Let N � 4. The partially specified circulant matrix⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ0 σ1 ? . . . . . . ? σ1
σ1 σ0 σ1 ? . . . . . . ?
? σ1 σ0 σ1 ? . . . ?
...

. . .
...

. . . ?
? . . . . . . ? σ1 σ0 σ1
σ1 ? . . . . . . ? σ1 σ0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(20)

admits a positive definite circulant completion if and only if |σ1| < σ0 , for N even, and cos
( N−1

N π
)
σ0 < σ1 <

σ0 , for N odd.

Proof. In [17, Corollary 5] it is shown that the partially specified circulant matrix (20) admits a
positive definite (but not necessarily circulant) completion if and only if |σ1| < σ0, for N even, and
cos

( N−1
N π

)
σ0 < σ1 < σ0, for N odd. On the other hand, Dempster [7] shows that if there is any

positive definite symmetric matrix which agrees with the partially specified one in the given positions,
then there exists exactly one such a matrix with the additional property that its inverse has zeros in
the complementary positions of those specified and this same matrix is the one which maximizes the
entropy functional among all the normal models whose covariance matrix agrees with the given data.
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But, accordingly to the findings in [26], if the given data are consistent with a circulant structure, the
maximum entropy completion is necessarily circulant, which concludes the proof. �

Proposition 3.1 provides an explicit condition on the off-diagonal entries for the CME to be feasible.
Moreover, for given σ0 and σ1, it states that feasibility depends on the size N of the asked completion.
This confirms, by a completely independent argument, the findings in [1, Theorem 5.1], where the
dependency of feasibility on the completion size N has been first noticed (and proved for a generic
block-size and bandwidth). A clarifying example, which also makes use of the characterization of the
set of the positive definite completions in [26], is presented in Appendix A.

4. A new algorithm for the solution of the CME problem

In this section we shall derive our new algorithm to solve the CME problem. The derivation rests
upon duality theory for the CME problem developed in [1, Section VI] and profits by the structure of
our CME along with the properties of block-circulant matrices to devise a computationally advanta-
geous procedure for the computation of its solution.

Consider the CME as defined in (4) and define the linear map

A : Sn+1 × SN → SN

(Λ,Θ) �→ EnΛE�
n + UNΘU�

N − Θ (21)

and the set

L+ := {
(Λ,Θ) ∈ (Sn+1 × SN)

∣∣ (Λ,Θ) ∈ (
ker(A)

)⊥
,

(
EnΛE�

n + UNΘU�
N − Θ

)
> 0

}
. (22)

L+ is an open, convex subset of (ker(A))⊥ . Letting 〈A, B〉 := tr AB� , the Lagrangian function is given
by

L(ΣN ,Λ,Θ) := − tr logΣN + 〈
Λ,

(
E�

n ΣN En − Tn
)〉
,+〈

Θ,
(
U�

N ΣN UN − ΣN
)〉

= − tr logΣN + tr
(

EnΛE�
n ΣN

) − tr(ΛTn) + tr
(
UNΘU�

N ΣN
) − tr(ΘΣN)

and its first variation (at ΣN in direction δΣN ∈ SN ) is

δL(ΣN ,Λ,Θ; δΣN) = − tr
(
Σ−1

N δΣN
) + tr

(
EnΛE�

n δΣN
) + tr

((
UNΘU�

N − Θ
)
δΣN

)
.

Thus δL(ΣN ,Λ,Θ; δΣN ) = 0, ∀δΣN ∈ SN if and only if

Σ−1
N = EnΛE�

n + UNΘU�
N − Θ.

It follows that, for each fixed pair (Λ,Θ) ∈ L+ , the unique Σo
N minimizing the Lagrangian over

SN,+ := {ΣN ∈ SN , ΣN > 0} is

Σo
N = (

EnΛE�
n + UNΘU�

N − Θ
)−1

. (23)

Moreover, computing the Lagrangian at ΣN = Σo
N results in

L
(
Σo

N ,Λ,Θ
) = − tr log

((
EnΛE�

n + UNΘU�
N − Θ

)−1)
+ tr

[(
EnΛE�

n + UNΘU�
N − Θ

)(
EnΛE�

n + UNΘU�
N − Θ

)−1] − tr(ΛTn)

= tr log
(

EnΛE�
n + UNΘU�

N − Θ
) + tr ImN − tr(ΛTn).

This is a strictly concave function on L+ whose maximization is the dual problem of (CME). We can
equivalently consider the convex problem

min
{

J (Λ,Θ), (Λ,Θ) ∈ L+
}
, (24)
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where J is given by

J (Λ,Θ) = tr(ΛTn) − tr log
(

EnΛE�
n + UNΘU�

N − Θ
)
. (25)

It can be shown [1, Theorem 6.1] that the function J admits a unique minimum point (Λ̄, Θ̄) in L+ .
The gradient of J with respect to Λ is

∇Λ J (Λ,Θ) = −E�
n

(
EnΛE�

n + UNΘU�
N − Θ

)−1
En + Tn, (26)

Thus the application of whatever first-order iterative method for the minimization of J would involve
repeated inversions of the mN × mN block matrix (EnΛE�

n + UNΘU�
N − Θ), which could be a pro-

hibitive task for N large. Nevertheless, by exploiting our knowledge of the problem, we can devise
the following alternative. Let (Λ̄, Θ̄) be the unique minimum point of the functional J on L+ . We
know that (Λ̄, Θ̄) are such that Σo

N = (EnΛ̄E�
n + U NΘ̄U�

N − Θ̄)−1 is circulant. Thus, one can think of
restricting the search for the solution of the optimization problem to the set

{
(Λ,Θ)

∣∣ (
EnΛE�

n + UNΘU�
N − Θ

)
is circulant

}
. (27)

If we denote by CN the linear subspace of symmetric, block-circulant matrices, by C⊥
N its orthogonal

complement, and by ΠCN and ΠC⊥
N

the orthogonal projection on CN and C⊥
N , respectively, set (27)

can be written as

{
(Λ,Θ)

∣∣ ΠC⊥
N

(
EnΛE�

n + UNΘU�
N − Θ

) = 0
}
. (28)

We can now exploit the characterization of the matrices belonging to the orthogonal complement of
CN in [1, Lemma 6.1], which states that a symmetric matrix M belongs to the orthogonal complement
of CN , if and only if, for some N ∈ SN , it can be expressed as M = UN NU�

N − N . Thus (UNΘU�
N −

Θ) ∈ C⊥
N and set (28) can be written as

{
(Λ,Θ)

∣∣ ΠC⊥
N

(
EnΛE�

n

) = −(
UNΘU�

N − Θ
)}

. (29)

If we compute the dual function J on the set (29), we obtain

J (Λ,Θ)|{(Λ,Θ)|Π
C⊥

N
(EnΛE�

n )=−(UNΘU�
N −Θ)}

= tr(ΛTn) − tr log
(

EnΛE�
n + UNΘU�

N − Θ�)
= tr(ΛTn) − tr log

(
EnΛE�

n − ΠC⊥
N

(
EnΛE�

n

))
= tr(ΛTn) − tr log

(
ΠCN

(
EnΛE�

n

))
(30)

where an explicit formula for the orthogonal projection of EnΛE�
n on the subspace of symmetric,

block-circulant matrices is given by Theorem 7.1 in [1]. In fact, if we denote

Λ =

⎡
⎢⎢⎣

Λ00 Λ01 . . . Λ0n

Λ�
01 Λ11 . . . Λ1n

...
. . .

...

Λ�
0n Λ�

1n . . . Λnn

⎤
⎥⎥⎦ ,

it can be shown that the orthogonal projection of EnΛE�
n onto CN , say ΠΛ , is the banded block-

circulant matrix given by
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ΠΛ := ΠCN

(
EnΛE�

n

) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Π0 Π�
1 . . . Π�

n 0 . . . 0 Πn . . . Π1

Π1 Π0 Π�
1 . . . Π�

n 0 . . . 0
. . .

...

...
. . .

. . .
. . .

. . .
. . .

. . . Πn

Πn
. . .

. . .
. . .

. . .
. . . 0

0
. . .

. . .
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . .

. . . 0

0
. . .

. . .
. . .

. . .
. . . Π�

n

Π�
n

. . .
. . .

. . .
. . .

. . .
. . .

...

. . . Π�
n 0 . . . 0 Πn . . . Π1 Π0 Π�

1
Π�

1 . . . Π�
n 0 . . . 0 Πn . . . Π1 Π0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

with

Π0 = 1

N
(Λ00 + Λ11 + · · · + Λnn), (31a)

Π1 = 1

N
(Λ01 + Λ12 + · · · + Λn−1,n)

�, (31b)

...

Πn = 1

N
Λ�

0n, (31c)

and Πi = 0, for all i in the interval n + 1 � i � N − n − 1. Let us denote with J̄ the restriction of J
on (29)

J̄ (Λ) := tr(ΛTn) − tr log
{
ΠCN

(
EnΛE�

n

)}
. (32)

We consider the gradient

∇Λ J̄ (Λ) = −E�
n Π−1

Λ En + Tn. (33)

Again, the computation of the gradient matrix involves the inversion of an mN × mN matrix, namely
the projection on the subspace of symmetric block-circulant matrices of EnΛE�

n , ΠΛ . Nevertheless,
notice that this time the mN × mN matrix to be inverted is block-circulant, which implies that its
inverse can be efficiently computed by exploiting the block-diagonalization

ΠΛ = VΩN V∗, (34)

where V is the block-Fourier matrix (10) and ΩN is the block-diagonal matrix whose diagonal blocks
are the coefficients of the finite Fourier transform of the first block row of ΠΛ . In fact, (34) yields

Π−1
Λ = VΩ−1

N V∗,

so that the cost of computing Π−1
Λ reduces to the cost of singularly inverting the m × m diagonal

blocks of ΩN and indeed, by exploiting the Hermitian symmetry of the diagonal blocks of ΩN , to the
cost of inverting only the first

⌈ N+1
2

⌉
m × m blocks of ΩN . As a final improvement, notice that due

to the final left and right multiplication by E�
n and En , only the first n + 1 blocks of Π−1

Λ are needed
to compute the gradient.

To recap, the proposed procedure reduces the computational cost of each iteration of a generic
first-order descent method to O (m3) flops, in place of the O (N3) operations per iteration which
would have been required by a straightforward application of duality theory.
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In the following, we apply a gradient descent method to the optimization of the modified func-
tional J̄ . The overall proposed procedure is as follows.

Algorithm 1 Matricial gradient descent algorithm
Given a starting point Λ ∈ dom J̄ , α ∈ (0,0.5), β ∈ (0,1)

while ‖∇Λ J̄ (Λ)‖2 > η do

Λ := −∇Λ J̄ (Λ), t := 1
while J̄ (Λ + t
Λ) > J̄ (Λ) + αt tr{∇ J̄ (Λ)�
Λ} do

t := βt
end while
Λ := Λ + t
Λ

end while

In the next subsection we provide an efficient initialization for Algorithm 1.
A comparison of the proposed procedure with state of the art algorithms for DME from the litera-

ture will be presented in Section 6.

4.1. Algorithm initialization

In the following, we exploit the asymptotic result in Theorem 3.1 to provide a good starting point
for the iterative procedure of Algorithm 1. To this aim, recall that the maximum entropy completion
of a partially specified block-Toeplitz matrix can be computed via the formula

Φ(z) = (
G∗(z)T−1

n B̃
(

B̃∗T−1
n B̃

)−1
B̃∗T−1

n G(z)
)−1

(35)

(see [36] for details), where

G(z) = (zI − Ã)−1 B̃ (36)

with

B̃ =

⎡
⎢⎢⎢⎢⎣

0
0
...

0
I

⎤
⎥⎥⎥⎥⎦ , Ã =

⎡
⎢⎢⎢⎢⎣

0 I 0 . . . 0
0 0 I . . . 0
...

. . .

0 I
0 . . . . . . . . . 0

⎤
⎥⎥⎥⎥⎦ . (37)

It follows that the spectral factor W (z) := [Ln(z−1)]−1Λ
1
2
n has a realization

W (z) = C(zI − A)−1 B + D

with D = Λ
1
2
n , C = − [ An(n) An(n − 1) . . . . . . An(1) ] and

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 Im 0 0 . . . 0
0 0 Im 0 . . . 0
...

. . .
...

...
. . . 0

0 . . . . . . . . . 0 Im

−An(n) −An(n − 1) . . . . . . . . . −An(1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, B =

⎡
⎢⎢⎢⎢⎣

0
0
...

0

Λ
1
2
n

⎤
⎥⎥⎥⎥⎦ .

The positive real part of the maximum entropy spectrum is given by

Φ+(z) = C(zI − A)−1C̄� + 1

2
Σ0 (38)
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Fig. 1. CPU time (in seconds) for the matricial gradient descent algorithm with different initializations: identity (dashed line)
and via the solution of the associated matrix extension problem for Toeplitz matrices (solid line). The reported times have been
computed for N = [10,20,30,40,50], m = 5 and bandwidth n = 3.

Table 1
CPU time (in seconds) for the matricial gradient descent algorithm with different initializations: iden-
tity (on the left) and via the solution of the associated matrix extension problem for Toeplitz matrices
(on the right). The reported times have been computed for N = [10,20,30,40,50], m = 5 and band-
width n = 3.

N m Identity Toeplitz

# of itz. CPU time # of itz. CPU time

10 5 99 0.1455 61 0.0767
20 5 212 0.4143 65 0.1270
30 5 322 0.8355 97 0.2504
40 5 432 1.4233 130 0.4285
50 5 541 2.1937 163 0.6603

where C̄� = A P C� + B D� , with P = A P A� + B B� and the maximum entropy covariance extension
results

Σ̂k = C Ak−1C̄�, k > n.

With this extension at hand, we can compute an approximation for the maximum entropy block-
circulant extension as suggested by Theorem 3.1. A good starting point for our algorithm can then be
obtained from (31) assuming for Λ a Toeplitz structure.

As an example, we have compared the execution time of the proposed algorithm initialized with
the identity matrix and initialized with the solution of the associated matrix extension problem for
Toeplitz matrices as described above for blocks of size m = 5, bandwidth n = 3 and N varying between
10 and 50. The computational times are reported in Fig. 1 along with Table 1. The simulation results
confirm that the proposed initialization acts effectively to reduce the number of iterations (and thus
the computational time) required to reach the minimum.

5. Algorithms for the unstructured covariance selection problem

In this section we introduce and discuss some of the main algorithms in the literature for the
positive definite matrix completion problem with the aim of comparison with our newly proposed
algorithm.
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Fig. 2. Banded pattern of the given entries for the TME problem with N = 8, n = 2, m = 1 (a) and associated graph (b).

Fig. 3. Banded pattern of the given entries for the CME with N = 12, n = 3, m = 1 (a) and associated graph (b). The graph is not
chordal since, for example, the cycle {1,4,7,10} does not have a chord.

In the literature concerning matrix completion problems, it is common practice to describe the
pattern of the specified entries of an mN × mN partial symmetric matrix M = (mij) by an undirected
graph of mN vertices which has an edge joining vertex i and vertex j if and only if the entry mij
is specified. Since the diagonal entries are all assumed to be specified, we ignore loops at the ver-
tices.

As anticipated in the Introduction, if the graph of the specified entries is chordal (i.e., a graph
in which every cycle of length greater than three has an edge connecting nonconsecutive nodes,
see e.g. [28]), the maximum determinant matrix completion problem admits a closed form solution
in terms of the principal minors of the sample covariance matrix (see [16,29,30]). An example of
chordal sparsity pattern along with the associated graph is shown in Fig. 2. However, the graph as-
sociated with a banded circulant sparsity patterns is not chordal, as it is apparent from the example
of Fig. 3(b). Therefore we have to resort to iterative algorithms. For the applications we have in mind,
we are dealing with vector-valued processes possibly defined on a quite large interval. A straight-
forward application of standard optimization algorithms is too expensive for problems of such a
size, and a number of specialized algorithms have been proposed in the graphical models literature
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[7,12,31,32]. In his early work [7], Dempster himself proposed two iterative algorithms which however
are very demanding from a computational point of view. Two popular methods are those proposed
by T.P. Speed and H.T. Kiiveri in [12], that we now briefly discuss.

Speed and Kiiveri’s algorithms. We will denote an undirected graph by G = (V , E), where V is the
vertex set and E the edge set which consists of unordered pairs of distinct vertices. In any undirected
graph we say that 2 vertices u, v ∈ V are adjacent if (u, v) ∈ E . For any vertex set S ⊆ V , consider the
edge set E(S) ⊆ E given by

E(S) := {
(u, v) ∈ E

∣∣ u, v ∈ S
}
.

The graph G(S) = (S, E(S)) is called subgraph of G induced by S . An induced subgraph G(S) is
complete if the vertices in S are pairwise adjacent in G . A clique is a complete subgraph that is
not contained within another complete subgraph. Finally, we define the complementary graph of
G = (V , E) as the graph G̃ with vertex set V and edge set Ẽ with the property that (u, v) ∈ Ẽ if
and only if u �= v and (u, v) /∈ E .

Let Ib be the set of pairs of indices consistent with a banded, symmetric block-circulant structure
of bandwidth n, i.e. the set of the (i, j)’s which satisfies the following rules set

for i ∈ {1, . . . ,m}, j ∈ {i, . . . ,mN}, if |i − j| � m(n + 1) − i ⇒ (i, j) ∈ Ib,

if (i, j) ∈ Ib ⇒ (
(i + m)mod mN , ( j + m)mod mN

) ∈ Ib,

if (i, j) ∈ Ib ⇒ ( j, i) ∈ Ib

(an example of this structure is shown in Fig. 3(a)). Moreover, we will denote by IC
b the complement

of Ib with respect to {1, . . . ,mN} × {1, . . . ,mN} and by G = ({1, . . . ,mN},Ib) the graph associated
with the given entries.

As mentioned in the Introduction, for the class of problems studied by Dempster, the inverse of
the unique completion which maximizes the entropy functional has the property to be zero in the
complementary positions of those fixed in ΣN . Thus, a rather natural procedure to compute the solu-
tion of the covariance selection problem for block-circulant matrices seems to be the following: iterate
maintaining the elements of ΣN indexed by Ib at the desired value (i.e. equal to the corresponding
elements in the sample covariance matrix) while forcing the elements of Σ−1

N in IC
b to zero. To this

aim, the following procedure can be devised.

Algorithm 2 First algorithm (Speed and Kiiveri [12])

Compute all the cliques c̃t in the complementary graph G̃ , say {c̃t , t = 1, . . . ,nc̃t
};

Initialize Σ
(0)
N = RN ;

while some stopping criterion is satisfied do
for all the cliques c̃t in G̃ do

Σ
(t)
N = Σ

(t−1)
N + φ

(
Σ

(t−1)
N

)
end for

end while

Here φ(Σ
(t−1)
N ) is the mN × mN zero matrix which equals

{
diag

[((
Σ

(t−1)
N

)−1)
c̃t

]−1}−1 − [((
Σ

(t−1)
N

)−1)
c̃t

]−1

in the positions corresponding to the current clique c̃t (given an mN × mN matrix M and a set a ⊂
{1, . . . , Nm}, Ma denotes the submatrix with entries {mij: i, j ∈ a}). Every cycle consists of as many
steps as the cliques in the complementary graph G̃ (the graph associated to the elements indexed
by IC

b ). At each step, only the elements in ΣN corresponding to the current clique c̃t (i.e. only a
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subset of the entries indexed by IC
b ) are modified in such a way to set the elements of Σ−1

N in the
corresponding positions to the desired zero-value. Throughout the iterations, the elements in ΣN are
fixed over Ib , while the elements of (ΣN )−1 vary over IC

b .

The role of ΣN and Σ−1
N can also be swapped, yielding an alternative procedure, which is the

analog of iterative proportional scaling (IPS) for contingency tables [37]. Let ϕ(Σ
(t−1)
N ) be the mN ×

mN zero matrix which equals(
(RN)ct

)−1 − ((
Σ

(t−1)
N

)
ct

)−1
(39)

in the positions corresponding to the current clique ct in G (the graph associated with the given
entries). The second algorithm reads as follows.

Algorithm 3 Second algorithm (Speed and Kiiveri [12])
Compute all the cliques ct in G , say {ct , t = 1, . . . ,nct };

Initialize Σ
(0)
N = ImN ;

while some stopping criterion is satisfied do
for all the cliques ct in G do(

Σ
(t)
N

)−1 = (
Σ

(t−1)
N

)−1 + ϕ
(
Σ

(t−1)
N

)
(40)

end for
end while

Every cycle consists of as many steps as the cliques in the graph of the specified entries G . At each
step, only the elements in Σ−1

N corresponding to the current clique ct (i.e. only a subset of the entries
indexed by Ib) are modified in such a way to set the elements of ΣN in the corresponding positions
to the desired value, namely equal to the sample covariance RN . Through the iterations the elements
in (ΣN)−1 are fixed over IC

b while the elements of ΣN vary over Ib .
The choice of which algorithm is to be preferred depends on the application and is very much

dependent on the number and size of the cliques in G and G̃ . In our setting, the complexity of the
graph associated with the given entries depends on the bandwidth n. In particular, for a bandwidth
n not too large with respect to the completion size (which is the case we are interested in) the
complexity of the graph associated with the given data G is far lower than the complexity of its
complementary (which, for small n, is almost complete), see Fig. 4. The execution time of the two
algorithms has been compared for a completion size N = 30 and a bandwidth n varying between 2
and 8. The results are shown in Fig. 5 and Table 2. It turns out that for n small the second algo-
rithm (which, from now on, will be referred to as IPS) runs faster than the first, and thus has to be
preferred.

Covariance selection via chordal embedding. Recently, Dahl, Vanderberghe and Roychowdhury [24] have
proposed a new technique to improve the efficiency of the Newton method for the covariance selec-
tion problem based on chordal embedding: the given sparsity pattern is embedded in a chordal one
for which they provide efficient techniques for computing the gradient and the Hessian. The com-
plexity of the method is dominated by the cost of forming and solving a system of linear equations
in which the number of unknowns depends on the number of nonzero entries added in the chordal
embedding. For a circulant sparsity pattern, it is easy to check that the number of nonzero elements
added in the chordal embedding is quite large. Hence, their method does not seem to be effective for
our problem.

6. Comparison of the proposed algorithm and the IPS algorithm

The proposed gradient descent algorithm (GD) applied to the modified dual functional J̄ has been
compared to the iterative proportional scaling procedure (IPS) by Speed and Kiiveri. Both algorithms
are implemented in Matlab. The Bron–Kerbosch algorithm [38] has been employed for finding the
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Fig. 4. Graph G associated with the given data (on the left) and its complementary G̃ (on the right) for N = 20 and bandwidth
n = 2,5,8.

cliques in the graph for IPS. We recall (see Section 4) that the number of operations per iteration
required by our modified gradient descent algorithm is cubic in the block-size m, as opposed to the
O ([m(N − (n + 1))]3) operations per iteration of the IPS algorithm (see Eqs. (39) and (40)). It follows
that for large instances of the CME our newly proposed algorithm is expected to run considerably
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Fig. 5. Comparison between the execution time (in seconds) of the first and second algorithm for N = 30, m = 1, n = {2, . . . ,8}.

Table 2
Execution time of the first and second algorithm for N = 30, m = 1, bandwidth n = {2, . . . ,8}.

n First algorithm Second algorithm

# of cl. (max. cl. size) CPU time [s] # of cl. (max. cl. size) CPU time [s]

2 4608(10) 9.7877 30(3) 0.4109
3 2406(7) 4.1515 30(4) 0.1783
4 1241(6) 1.9419 30(5) 0.3153
5 706(5) 1.0525 30(6) 0.5535
6 445(4) 0.6258 30(7) 0.9854
7 295(3) 0.4145 30(8) 1.7477
8 175(3) 0.2480 30(9) 3.0665

faster than the IPS algorithm. The execution times for different completion size N and block size m
are plotted in Figs. 6 and 7. The simulation study confirms that our gradient descent algorithm applied
to the modified dual functional J̄ outperforms the iterative proportional scaling and the gap between
the two increases as N increases. Moreover, the gap becomes much more evident as m grows, making
the gradient descent algorithm more attractive for applications where the process under observation
is vector-valued (m > 1).

7. Conclusions

The main contribution of the present paper is an efficient algorithm to solve the maximum en-
tropy band extension problem for block-circulant matrices. This problem has many applications in
signal processing since it arises in connection with maximum likelihood estimation of periodic, and
in particular quasi-Markov (or reciprocal), processes. Even if matrix completion problems have gained
considerable attention in the past (think for example to the covariance extension problem for station-
ary processes on the integer line, i.e. for Toeplitz matrices), the maximum entropy band extension
problem for block-circulant matrices has been addressed for the first time in [1]. The proposed al-
gorithm exploits the circulant structure and relies on the variational analysis brought forth in [1].
An efficient initialization for the proposed algorithm is provided thanks to the established relation-
ship between the solutions of the maximum entropy problem for block-circulant and block-Toeplitz
matrices. Further light is also shed on the feasibility issue for the CME problem.
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Fig. 6. Matricial gradient descent algorithm vs. iterative proportional scaling: CPU time (in seconds) for N = [10,20,30,40,50],
m = 5, bandwidth n = 3.

Fig. 7. Matricial gradient descent algorithm vs. iterative proportional scaling: CPU time (in seconds) for N = [10,20,30,40,50],
m = 10, bandwidth n = 3.

Appendix A. Feasibility of the CME: an example

In Section 3 we have shown that, for given σ0 and σ1, feasibility of the CME depends on the
completion size N . The following example, aims at clarifying the interplay between feasibility and
completion size N in the simple case of unitary bandwidth and block-size using the characterization
of the set of all positive definite completions derived in [26].

Example A.1. Let σ0 = 1, σ1 = −0.91. We want to investigate the feasibility of problem (4) for N = 7
and N = 9, i.e. we want to determine if, for N = 7 and N = 9, there exist a positive definite circulant
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Fig. A.8. Half-plane Ψ (w2) > 0 and intersection of the half-planes Ψ (w0) > 0 and Ψ (w1) > 0. The intersection of the two
regions is empty.

completion for the partially specified matrices

Σ7 = Circ(σ0,σ1, x, y, y, x,σ1), Σ9 = Circ(σ0,σ1, x, y, z, z, y, x,σ1),

where Circ(a) denotes the circulant symmetric matrix specified by its first row a, and x, y and z
denote the unspecified entries. Since

cos

{
(N − 1)

N
π

}
=

{−0.9010 for N = 7,

−0.9397 for N = 9,

by Theorem 3.1, we expect that for N = 7 the problem is unfeasible while for N � 9 it is expected to
become feasible. For N = 7 the set of all positive definite completions is delimited by the intersection
of the half-planes identified by the eigenvalues Ψ (wk), k = 0, . . . ,6, of Σ7

Ψ
(

w0) = −0.82 + 2x + 2y,

Ψ
(

w1) = Ψ
(

w6) = −0.134751 − 0.445042x − 1.80194y,

Ψ
(

w2) = Ψ
(

w5) = 1.40499 − 1.80194x + 1.24698y,

Ψ
(

w3) = Ψ
(

w4) = 2.63976 + 1.24698x − 0.445042y

(see [26] for details). In Fig. A.8 the intersection Γ of the half-planes Ψ (w0) > 0 and Ψ (w1) > 0
is shown, together with the half-plane Ψ (w2) > 0. The intersection of these two regions is empty. It
follows that the intersection of the four half-planes Ψ (wk) > 0, k = 0, . . . ,3, is also empty, as claimed.
On the other hand, if N = 9, the eigenvalues of Σ9 are

Ψ
(

w0) = −0.82 + 2x + 2y + 2z,

Ψ
(

w1) = Ψ
(

w8) = −0.394201 + 0.347296x − y − 1.87939z,

Ψ
(

w2) = Ψ
(

w7) = 0.68396 − 1.87939x − y + 1.53209z,

Ψ
(

w3) = Ψ
(

w6) = 1.91 − x + 2y − z,

Ψ
(

w4) = Ψ
(

w5) = 2.71024 + 1.53209x − y + 0.347296z

and the feasible set is the nonempty region shown in Fig. A.9.
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Fig. A.9. Feasible region {(x, y, z) | ΣN > 0} for ΣN = Circ{1,−0.91, x, y, z, z, y, x,−0.91}.
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