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Abstract

We study statistical consistency of two recently proposed subspace identification algorithms for closed-loop systems. These algorithms
may be seen as implementations of an abstract state-space construction procedure described by the authors in previous work on stochastic
realization of closed-loop systems. A detailed error analysis is undertaken which shows that both algorithms are biased due to an unavoidable
mishandling of initial conditions which occurs in closed-loop identification. Instability of the open loop system may also be a cause of
trouble.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

It seems fair to say that current state-of-the-art sub-
space identification methods provide reliable results only
when applied to plants operating in open loop. However,
feedback is present in a variety of practical situations
(even though often one cannot directly recognize phys-
ical controllers which “close the loop”) and there is a
need of reliable identification methods and algorithms
which could be used with multivariable systems in the
presence of feedback. Various attempts to extend existing
subspace identification algorithms to work in the presence
of feedback have been made in the last decades. Among
early references, we quoteVan der Klauw, Verhaegen,
and Van den Bosch (1991), Verhaegen (1993), Ljung
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and McKelvey (1996), Chou and Verhaegen (1999), andVan
Overschee and De Moor (1997), while more recent work
is presented inQin and Ljung (2003), Jansson (2003). Yet,
as discussed inChiuso and Picci (2002), Chiuso and Picci
(2003) there are fundamental issues related to stochastic
realization theory in the presence of feedback which remain
unclear. In particular stochastic realization with feedback is
still not fully understood when unstable open-loop transfer
functions are involved, which of course is a very interesting
situation in the applications. On the other hand, even some of
the best recently proposed methods seem to run occasionally
into troubles with unstable open-loop transfer functions.

Unfortunately, even when restricting to stable open loop
plants (a rather stringent restriction to be sure), the existing
algorithms turn out to provide biased estimates. We shall
argue that this is so mainly because one has to neglect the
effect of initial conditions. This is in contrast to the classical
open-loop subspace methods (N4SID, MOESP, CCA) from
the literature, which instead provide consistent estimates by
taking properly into account the “transient” effects due to
initial conditions. Of course the usual way to reduce the bias
due to neglecting initial conditions is to regress on enough
past data (i.e. to keep the past data horizon of the algorithm
suitably large). Provided the zeros of the system are not too
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close to the unit circle, the bias error can generally be made
negligible. However, as we shall argue in this paper, when
feedback is present, there may be situations in which, even
when the past horizon of the algorithm is chosen very large,
the bias is still unacceptable.

In this paper we shall analyze the bias in subspace identi-
fication with feedback. We shall in particular point out that
mishandling of the initial conditions is an intrinsic difficulty
related to feedback, which pops up whenever we restrict to
identification of the system in the forward loop only. The dif-
ficulty is visible from the structure of the (transient) Kalman
filter-like representation of the output process, which in gen-
eral does involve also the dynamics of the input processu
which wedon’t want to model. This phenomenon can be cir-
cumvented in the feedback-free case, seeChiuso and Picci
(2004b), but seems to be very hard to bypass when there
is feedback. We believe that a correct handling of the ini-
tial condition should be a main step towards a satisfactory
theory of subspace identification with feedback.

This paper has been partly inspired and motivated by
strong connections existing between the recent subspace al-
gorithms ofQin and Ljung (2003)andJansson (2003), and
some theoretical work that we have been carrying through
in the last years, dealing with stochastic state-space con-
struction in the presence of feedback. This work is prelimi-
narily exposed in the papersChiuso and Picci (2002, 2003).
We shall demonstrate that these new algorithms, which we
regard as a significant step forward in subspace identifi-
cation of feedback systems, can be interpreted as possible
numerical implementations of some stochastic realization
constructions described inChiuso and Picci (2002, 2003).
Consistency analysis of the algorithms, and an explicit com-
putation of the bias are then possible by using the framework
of stochastic systems and stochastic realization theory.

The structure of the paper is as follows:
Section 2 states the problem and sets up basic notations;

Section 3 recalls the basic notions of stochastic realization
with inputs. An alternative procedure to construct the state
space and to do subspace identification is also proposed.

In Section 4 the problem of modelingy (given u) on a
finite interval by Kalman filter like representations is dis-
cussed. It is shown that transient “open-loop” models are in
general of the same dimension as a minimal model for the
joint process[y� u�]�. In general these models are not pa-
rameterized by the stationary parameters (i.e. the “A,B,K”
matrices will be time varying, see (4.8)).

Section 5 discusses the finite data formulation of the ideal
state construction introduced in Section 3 implemented in
the algorithm by Qin and Ljung; also the effect of bias is
analyzed.

Section 6 does the same for the algorithm based on the
“whitening filter”. In Section 7 the effect of (open loop) un-
stable plants is studied. We show that the unstable dynamics
may amplify errors due to approximation of expectations
with finite sums, making one of the analyzed procedures
quite prone to errors.

In Section 8 some simulations are presented and Section
9 draws some conclusions.

2. Statement of the problem

Let {y(t)}, {u(t)} be jointly (weakly) stationary zero-mean
second-order ergodic1 stochastic processes of dimensionm
and p, respectively, which are representable as the output
and input signals of a linear stochastic system in innovation
form

x(t + 1)= Ax(t)+ Bu(t)+Ke(t),
y(t)= Cx(t)+Du(t)+ e(t),

t� t0. (2.1)

Without loss of generality we shall assume that the dimen-
sion n of the state vectorx(t) is as small as possible, i.e.
representation (2.1) is minimal.

In general there may be feedback from{y(t)} to {u(t)}
(Granger, 1963; Caines & Chan, 1976; Gevers & Anderson,
1982; Gevers & Anderson, 1981). We shall assume thatD=
0, i.e. there is no direct feedthrough fromu to y. Under
this assumption the feedback (if any) could be quite general.
In Section 4, to carry on the analysis, we shall restrict to
linear time-invariant finite-dimensional feedback channels;
however this assumption is not needed for the derivation of
the algorithms.

Assuming D equal to zero serves to guarantee well-
posedness and identifiability ofF(z)=C(zI −A)−1B +D

with an arbitrary feedback interconnection. Obviously this
is the same as imposing that the transfer functionF(z), of
the forward loop is strictly causal, i.e.F(∞) = 0. In case
of a linear feedback channel this is equivalent to a certain
block-triangular normalization at infinity of the spectral
factor of the joint spectrum, which can always be assumed
to hold. We refer the reader to the papersCaines and Chan
(1976), Gevers and Anderson (1982, 1981)for a thorough
discussion of this and related questions.

The white noise processe, the innovation ofy given the
joint past ofy,u, is defined as the one step ahead prediction
error of y(t) given the joint (strict) past ofu and y up to
time t. We shall not make any assumption on the correlation
structure ofu ande; it is well known thate(t) is uncorrelated
with the whole history2 of u if and only if there is no
feedback fromy to u.

We shall analyze the asymptotic behavior of certain
subspace algorithms which estimate a parametrization
(A,B,C) of the open-loop transfer functionF(z), starting
from input–output sample data{ys, us}, s ∈ [t0, T + N ],

1 Second-order ergodicity guarantees that sample second-order mo-
ments converge (a.s.) to the true variances/covariances as the sample size
tends to infinity. Various sufficient conditions for this property to hold are
found in the literature. It can for example be guaranteed by certain “low
level” assumptions, say on the innovation process of the rational model
considered in the paper. Conditions adapted to the setting we consider in
this paper (but which we shall not report here) can be found in the book
of Hannan and Deistler (1988), see Theorem 4.1.1.

2 I.e. for t ∈ (−∞,∞).
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generated by system (2.1), without a priori excluding the
presence of a possible feedback channel fromy to u. No
model for the feedback channel is sought. This is in con-
trast with the so-called joint input–output identification,
where a full model of the joint input–output process is esti-
mated. Joint input–output identification is well-established
but needs an assumption of linearity (and time-invariance)
of the feedback channel and requires to work with more
complex (joint) models. Also, obtaining the parameters
(A,B,C) of the direct transfer function from the joint iden-
tified model requires in general to solve a nontrivial model
reduction problem.

Consistency is a well-known key asymptotic property of
estimators (i.e. estimation algorithms), according to which
the “true model parameters”3 should be obtained as a limit
of the parameter estimates when the data sequence becomes
“infinitely long”. In this paper, rather than working with no-
tationally cumbersome finite Hankel matrices and then tak-
ing limits for N → ∞ as is often done in the subspace
identification literature, we shall work entirely in a stochas-
tic setting. For the subspace estimators of linear state-space
models are generally expressible as certain simple functions
of the sample cross covariances of the state and of the in-
put/output processes and under the assumed second-order
ergodicity the transition between the two settings essentially
amounts to formally identify infinitely long sequences of
observed data with random variables.4 This permits to dis-
regard random fluctuations due to finite sample length al-
together (e.g. the error in approximating expectations with
finite time averages, etc.).

Still, in order to deal with realistic algorithms which can
only regress on a finite amount of data, we shall keepfinite
past and future horizons(the “i” parameter ofOverschee &
De Moor (1994)or thepandf parameters in most subsequent
subspace literature) in subspace identification. This setting
we shall describe as using data from afinite observation
interval later on. In fact, in this paper finite (and generally
fixed) past and future horizons will hold even when the
sample sizeN is let going to∞ for the purpose of asymptotic
analysis. Because of this intrinsic limitation, the effect of
initial conditions has to be taken into account and will play
an important role as we shall see.

3 Of course defined modulo coordinate changes.
4 This can be made precise by taking advantage of a natural iso-

morphism which can be established between the (L2 space of) random
variables of a second-order ergodic process and a certain Hilbert space of
semi-infinite sequences linearly generated by a (semi-infinite) observed
sample path of the same process, which is described e.g. inLindquist
and Picci(1996a,b). Using this isomorphism, taking limits forN → ∞
of quadratic functions of a finite sample of the observed processesy,u,
coincides with taking expectation of the products of random quantities
which correspond to the “abstract” random quantities which are being
“sampled” in the measurement experiment.

2.1. Notations

In this papert0 andT will denote fixed initial and terminal
times; for−∞� t0� t�T � + ∞ we define the Hilbert
spaces of scalar zero-mean random variables

U[t0,t) := span{uk(s); k = 1, . . . , p, t0�s < t},
Y[t0,t) := span{yk(s); k = 1, . . . , m, t0�s < t},
where the bar denotes closure in mean square, i.e. in the
metric defined by the inner product〈�, �〉 := E{��}, the
operatorE denoting mathematical expectation. These are the
past spacesat timet of the processesu andy. Similarly, let
U[t,T ],Y[t,T ] be the future input and output spaces up to
time T

U[t,T ] := span{uk(s); k = 1, . . . , p, t�s�T },
Y[t,T ] := span{yk(s); k = 1, . . . , m, t�s�T }.
The joint future, Z[t,T ] and joint pastZ[t0,t) spaces are
defined asU[t,T ]∨Y[t,T ] andU[t0,t)∨Y[t0,t) respectively, the
∨ denoting closed vector sum. By convention the past spaces
do not include the present. Whent0 = −∞ we shall use
the shorthandsU−t ,Y−t for U[−∞,t), Y[−∞,t), andZ−

t :=
U−t ∨Y−t . Subspaces spanned by random variables at just
one time instant (e.g.U[t,t], Y[t,t ], etc.) are simply denoted
Ut , Yt , etc. while for the spaces generated by the whole
time history ofu and y we shall use the symbolsU, Y,
respectively. In particular, the ambient Hilbert space for all
future computations will be the (closed) vector sumZ :=
U ∨Y.

All through this paper we shall assume that the input
process is “sufficiently rich”, in the sense thatU[t0,T ] admits
the direct sum decomposition

U[t0,T ] =U[t0,t) +U[t,T ], t0� t < T (2.2)

the+ sign denoting direct sum of subspaces. The symbol⊕
will be reserved fororthogonaldirect sum. Various condi-
tions ensuring sufficient richness are known. For example,
it is well known that for a full-rank purely nondeterministic
(p.n.d.) processu to be sufficiently rich it is necessary and
sufficient that the determinant of the spectral density ma-
trix �u should have no zeros on the unit circle (Hannan &
Poskitt, 1988).

Given two zero mean random vectorsa andbwe shall use
the notation�ab := E{ab�} to denote the covariance ma-
trix. The symbolE[� | X] denotes the vector of orthogonal
projections (conditional expectations in the Gaussian case)
of the components of� ∈ Z onto the subspaceX. In par-
ticular, if the subspace has a basis given by the components
of a vectorx, we have the well-known representation

E[� | X] := ��x�
−1
xx x.

Let the subspacesA and B of Z be in direct sum, i.e.
A∩B={0}, then the orthogonal projection of any element
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� ∈Z onto the direct sumA+B can be written uniquely
as a sum of elements ofA andB, namely

E{� |A+B} = E‖A{� | B} + E‖B{� |A},
whereE‖A{� | B} is called theoblique projection of�
onto B along A and E‖B{� | A} is called theoblique
projection of� onto A along B. If the subspacesA and
B are finite-dimensional, with bases the random vectorsa
andb, respectively, then the oblique projection of� ontoB
alongA can be computed by the formula

E‖A{� | B} = [��b ��a]
[
�bb �ba
�ab �aa

]−1 [
b
0

]
.

The notationA ⊥ B | C means that the two subspacesA
andB areconditionally orthogonal given a third subspace
C, namely, for any� ∈A and� ∈ B

〈�− E{� | C},�− E{� | C}〉 = 0.

If C = {0}, conditional orthogonality reduces to the usual
orthogonalityA ⊥ B.

3. Stochastic realization with feedback

Stochastic realization with inputs is discussed inPicci
(1997), Picci and Katayama (1996), andChiuso and Picci
(2002, 2003). In this section we shall just recall the basic
notions needed in the paper. A key concept is that of an
Oblique Markovian Splitting Subspace, introduced inPicci
(1997), and Chiuso and Picci (2002), which is the basic
coordinate-free object equivalent to state space recursions
as (2.1). We shall show that an oblique Markovian splitting
subspace can be constructed by an oblique projection once
a certain space generated by the future innovations has been
constructed. We shall first operate in an ideal infinite-data
setup, i.e. assuming that the random variablesu(t) andy(t),
are available for allt.

Definition 1. The subspaceXt is Oblique Markovian Split-
ting, if

E[Xt+1 ∨Yt |X−t+1 ∨Ut ∨Z−
t ]

= E[Xt+1 ∨Yt |Xt +Ut ], (3.1)

which is equivalent to theconditional orthogonalityprop-
erty:

(Xt+1 ∨Yt ) ⊥ (X−t ∨Z−
t ) | (Xt +Ut ). (3.2)

If Ut ∩Xt = {0} then (3.2) impliesE‖Ut
[Xt+1 | X−t ∨

U−t ]=E‖Ut
[Xt+1 |Xt ], which is a Markov property,condi-

tional also onUt . An oblique Markovian splitting subspace
is causalif Xt ⊆Z−

t andpurely non deterministic(p.n.d.) if
the family{X−t } has the p.n.d. property

⋂
t<0(X

−
t ∨Z−

t )=
{0}.

The Oblique Markovian splitting property is precisely
what is needed for the spaceX to qualify as a state space for
a stochastic model described by standard state space equa-
tions. The following result is taken fromChiuso and Picci
(2002).

Theorem 3.1. Let Xt be a p.n.d. oblique Markovian split-
ting subspace for(Y,U); then there exists a stationary fam-
ily of orthogonal subspacesWt such that

Xt+1 ⊆ (Xt +Ut )⊕Wt , (3.3)

Yt ⊆ (Xt +Ut )⊕Wt . (3.4)

Conversely, if these inclusions holdXt is an oblique Marko-
vian splitting subspace. LetXt be finite dimensional with
basis vectorx(t) andw(t) be a basis forWt ; w(t) is called
a generating process ofy(t) givenu(t). Thenx(t) satisfies

x(t + 1)= Ax(t)+ Bu(t)+Gw(t),

y(t)= Cx(t)+Du(t)+ Jw(t),
t� t0, (3.5)

for suitable constant matrices(A,B,C,D,G, J ).

An oblique Markovian splitting subspace of minimal di-
mensionn (equal to the dimension of the state space of the
data-generating model (2.1)), is called a minimal oblique
Markovian splitting subspace. Oblique Markovian splitting
subspaces are highly nonunique; in fact, even imposing min-
imality, there are in general infinitely many such subspaces.
However, in identification we are usually interested in the
special one which is attached to the (forward) innovation
model ofy given u, i.e. the one for whichw(t) is the one
step ahead prediction error ofy(t) givenZ−

t , i.e.

w(t)= e(t) := y(t)− E[y(t) |Z−
t ]. (3.6)

The space spanned bye(t) will be denoted asEt . A cen-
tral question in subspace identification is how to construct
the state space of the innovation model from the random
variables of the processesy, u, possibly in the presence of
feedback. The following construction gives an answer to the
above question in the context of infinite data. Introduce

Gt := Et ∨Ut

and accordingly defineG[t,T ], andG+t . We may think of
Gt as being an “extended input” space andG[t,T ] andG+t
as being, respectively, the finite and infinite extended future
space.

Theorem 3.2. Assume thatG[t,T ] ∩Z−
t ={0}. Then, for all

k�n,

E‖G[t,t+k−1] [Y[t,t+k−1] |Z−
t ]

= E‖G[t,t+k] [Y[t,t+k] |Z−
t ] (3.7)

holds, wheren is the dimension of the model(2.1) and

X
+/−
t := E‖G[t,T ] [Y[t,T ] |Z−

t ], T � t + n− 1 (3.8)
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is a minimal oblique Markovian splitting subspace, called
the (oblique) predictor space ofy which serves as a state
space of the innovation model(2.1).

Proof. We just need to verify thatX+/−
t defined in (3.8)

satisfies conditions (3.3) and (3.4) whereWt=Et . Note that
sinceYt ⊆Z−

t ⊕Et we haveE‖G[t,T ] [Yt |Z−
t ]=E‖Et

[Yt |
Z−

t ] = E[Yt | Z−
t ] which by construction is contained in

X
+/−
t . ThereforeYt ⊆ X

+/−
t ⊕ Et , which is (3.4). As far

as (3.3), note that for(T > t + n− 1)

X
+/−
t+1 = E‖G[t+1,T ] [Y[t+1,T ] |Z−

t+1]
=E‖G[t+1,T ] [Y[t+1,T ] |Z−

t + Gt ]
⊆E‖G[t,T ] [Y[t+1,T ] |Z−

t ] + Gt

⊆E‖G[t,T ] [Y[t,T ] |Z−
t ] + Gt

= (X
+/−
t +Ut )⊕ Et

which is condition (3.3). �

From (3.3) and (3.4) finding a representation of form (2.1)
is just a matter of choosing a basisx(t) in X

+/−
t .

The theorem above gives a precise recipe for constructing
the oblique predictor spaceX+/−

t in the stationaryinfinite
datacase. It can be implemented by the following conceptual
algorithm:

(a) Choose a suitably large5 k (or equivalently a suitably
largeT := t + k) and construct the future innovations
e(t+i) := y(t+i)−E[y(t+i) |Z−

t+i], i=0,1, . . . , k.
(b) Form the extended future spaceG[t,t+k].
(c) Compute the oblique projection (3.8) to getX

+/−
t .

(d) Repeat the construction shifting time tot + 1 to form
X
+/−
t+1 .

(e) Choose bases consistently inX
+/−
t andX+/−

t+1 and solve
a linear regression to estimateA,B,C by least squares.

This conceptual procedure is implemented by the follow-
ing algorithm, which has been introduced inQin and Ljung
(2003). The main steps of this algorithm are as follows (fur-
ther details will be given in Section 5).

Algorithm 1 (Qin and Ljung, 2003).

(a) Choose (the “past” and “future” horizons)t − t0 and
T − t and compute thetransient innovations (which
depend on the initial timet0)

ê(t + i) := y(t + i)− E[y(t + i) |Z[t0,t+i)]
for i = 0, . . . , T − t .

5 “Suitably large” means larger than the true system ordern, which
we shall assume is known. Of course in practicen must be estimated from
the data. However, we shall not discuss the order estimation problem in
this paper.

(b) Using the transient innovations form the subspace
Ĝ[t,T ), a “transient” version ofG[t,T ).

(c) Approximate the oblique projection (3.8) by comput-
ing E‖Ĝ[t,T )

[y[t,T ) | Z[t0,t)] and E‖Ĝ[t+1,T ] [y[t+1,T ] |
Z[t0,t+1)] at timet + 1.

(d) These projections should theoretically ben-dimensional,
but will be of full rank for real data. Using standard
procedures based on truncated SVD, find coherent
baseŝx(t) and x̂(t + 1) for the two subspaces.

(e) Usingx̂(t) andx̂(t +1) solve a linear regression to get
the parameters(A,B,C).

Unfortunately, there are two pitfalls in this procedure.

(a) In Theorem 3.2 we made the assumption thatG[t,T ] ∩
Z−

t = {0}. It can be shown that this condition indeed
holds true for any finite future horizonk, providedF(z)

is nonanticipative, i.e. it has no poles at infinity. How-
ever, if the transfer functionF(z) has unstable poles,
the condition fails asymptotically, i.e.G+t ∩Z−

t �= {0}
as shown inChiuso and Picci (2002).
This fact, which may seem marginal at a first glance, has
a significant impact if the unstable dynamics is “fast”,
i.e. there are unstable eigenvalues�i (A) which are far
from the unit circle (|�i (A)|?1). In this case the spaces
G[t,T ] and the finite pastZ[t0,t) may become close (or
nearly parallel, in the sense of subspace angles) also
for k finite and possibly small. It is well known that
the oblique projection along subspaces which are nearly
parallel may be ill-conditioned and hence the estimation
based on oblique projection may not be well-behaved.
Something similar has been observed and studied in
Chiuso and Picci(2004a,b)for subspace identification
in open loop.

(b) The second problem has to do with the fact that in
practice one can only regress on a finite amount of data
and some finite pastZ[t0,t) must be used in place ofZ−

t

to approximate the construction ofX+/−
t . This implies,

as we shall see later, that the estimates will be biased
for finite t − t0. One straightforward solution could be
to taket − t0 very large i.e.t0 → −∞. However, as it
is well known in open loop identification, this solution
does not provide consistent estimators when there are
zeros (of the stochastic subsystem) on the unit circle.
Even if this is not the case, the amount of bias will
anyway depend on how close to the unit circle are the
zeros.

There is an alternative procedure to construct the oblique
predictor spaceX+/−

t which does not suffer from the possi-
ble ill-conditioning mentioned in (a) above, occurring when
the open loop system is unstable. It is based on the observa-
tion thatX+/−

t is also the state space of the inverse system
generating the innovationse(t) from the joint processy and
u (the “whitening filter”) which is well known to be asymp-
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totically stable under mild conditions on the zeros of the sys-
tem. The following proposition states this well-known fact
in geometric terms.

Proposition 3.3. LetEt be the space generated by the sta-
tionary innovatione(t), defined in (3.6), and X

+/−
t the

oblique predictor space. Then the following holds:

X
+/−
t+1 ⊆ X

+/−
t +Ut +Yt , (3.9)

Yt ⊆ X
+/−
t ⊕ Et , (3.10)

Et ⊆ X
+/−
t +Yt . (3.11)

In factX+/−
t is also a minimal oblique Markovian splitting

subspace fore.

Proof. The proof is just based on rearranging the inclusions
in Theorem 3.1 and recalling that by definition of splitting,
e(t) := y(t)− E[y(t) |Z−

t ] = y(t)− E[y(t) | X+/−
t ]. �

Remark 3.1. Eqs. (3.9)–(3.11) show thatX+/−
t is in fact

the state space of the “inverse” system producing the in-
novation e(t) from past input and output measurements
{y(s),u(s), s� t}. It follows thatX+/−

t is the oblique pre-
dictor space ofE+t givenZ+

t , i.e.

X
+/−
t = E‖Z+

t
[E+t |Z−

t ]. (3.12)

This oblique projection of course make sense if and only
if Z+

t ∩ Z−
t = {0}, which is guaranteed if the spectrum

of the joint process is bounded away from zero (Hannan &
Poskitt, 1988). For finite-dimensional models this in partic-
ular requires that̄A := A−KC be strictly stable, i.e. should
have no zeros on the unit circle.6

One advantage of this construction is that one needs not
pre-compute the future innovation spaceE+t to obtainX+/−

t .

Theorem 3.4. Assume that the joint process satisfies

Z+
t ∩Z−

t = {0}
then the spaceX+/−

t is generated by the oblique projections
E‖Z[t,t+k)

[Yt+k |Z−
t ], for k = 0,1, . . . ,∞, i.e.

X
+/−
t =

∞∨
k=0

E‖Z[t,t+k)
[Yt+k |Z−

t ]. (3.13)

In the finite-dimensional case(i.e.F(z) andG(z) rational),
the closed vector sum can be stopped at anyk�n where n
is the system order, i.e. the dimension ofX+/−

t , in which
case it is only required thatZ[t,t+k) ∩Z−

t = {0}.

6 Recall that strict stability of the predictor is always required for
prediction error methods, and it is also postulated inJansson (2003).

Proof. From (3.10) and iterating (3.9), the output space at
time t + k, k�0 satisfies the following inclusion:

Yt+k ⊆ (X
+/−
t +Z[t,t+k))⊕ Et+k.

Furthermore, minimality ofX+/−
t (in fact, observability of

the inverse system) ensures that indeed

X
+/−
t =

∨
k>0

span{E‖Z+
t
[e(t + k) |Z−

t ]}

=
∨
k>0

span{E‖Z+
t
[E[y(t + k) |Z−

t+k] |Z−
t ]}

=
∨
k>0

span{E‖Z[t,t+k)
[y(t + k) |Z−

t ]},

where the second equality stems from the fact thate(t+k)=
y(t+k)−E[y(t+k) |Z−

t+k] andE‖Z+
t
[y(t+k) |Z−

t ]=0.
In the finite-dimensional case, using a minimal realization

E‖Z[t,t+k)
[y(t + k) |Z−

t ] = CAk−1x(t)

holds. Therefore, by Cayley–Hamilton theorem, the sum can
be stopped at the system orderk = n. �

We would like to stress that Eq. (3.13) just involves com-
puting oblique projections of future outputs (y(t+k)) along
the future input and output space (Z[t,t+k)) onto the past
data (Z−

t ). This yields an alternative procedure (based on
infinite past data) to estimate the system matrices(A,B,C):

(a) Compute the oblique projections

E‖Z[t,t+k)
[Yt+k |Z−

t ], k = 0, . . . , K

and findX+/−
t as a “best”n-dimensional7 approxima-

tion of the space generated by these oblique predictors.
Fix a suitable basis inX+/−

t .
(b) Repeat the same procedure shifting time tot+1, to get

a (coherent) basis inX+/−
t+1 .

(c) Solve by standard least squares for the system matrices
(A,B,C).

The only practical drawback of this procedure is that the
infinite past is not available and one has to work with its trun-
cated versionZ[t0,t). Again the conceptual procedure can
be approximately implemented by the following algorithm:

Algorithm 2 (“Whitening Filter” Algorithm).

(a) Choose “past” and “future” horizonst − t0 andT − t

and compute the oblique predictors

ŷ(t + i | t) := E‖Z[t,t+i)
[y(t + i) |Z[t0,t)]

7 Here the system ordern is also assumed to be known. Of course
any consistent order estimation procedure used in subspace identifica-
tion would serve to the purpose. Order estimation is performed in most
subspace identification algorithms by a (weighted) SVD truncation step
which we shall not discuss in this paper.
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for i = 0, . . . , T − 1 and

ŷ(t + i | t + 1) := E‖Z[t+1,t+i)
[y(t + i) |Z[t0,t+1)]

for i = 1, . . . , T .
(b) The projections{ŷ(t + i | t), i = 0, . . . , T − 1} and

{ŷ(t+i | t+1), i=1, . . . , T } generate the state spaces
at timet andt + 1, respectively (see (3.13)). With real
data the two families of generators will be of full rank
and one should use standard procedures based on SVD
truncation to find coherent basesx̂(t) and x̂(t + 1) of
dimensionn.

(c) Once x̂(t) and x̂(t + 1) are computed, one could
solve a linear regression (see (4.23) below) to estimate
A,B,C.

The use of finite past data will also introduce a bias which
we shall analyze in detail in Section 6.

The algorithm of the paper (Jansson, 2003) implements
a slight variation of this procedure. The oblique projection
step is replaced by a preliminary estimation of the Markov
parameters of the system by a “long” autoregression and by
an orthogonal projection after the effect of future inputs is
removed. In the experiments reported in this paper the im-
plementation introduced by Jansson and the oblique projec-
tion procedure proposed above show a very similar behav-
ior, which in both cases is quite close to that of standard
prediction error methods. However, the geometric flavor of
the procedure based on the oblique projection is more in the
spirit of subspace identification and geometric stochastic re-
alization and in the following we shall mostly deal with the
“geometric” version.

4. Joint vs. input–output modeling

To better understand how transients could be handled, in
this section we shall discuss state-space modeling of the
joint process[y�u�]� based on data from a finite inter-
val [t0, T ]. Stationary (infinite-interval) input–output models
with feedback have been thoroughly analyzed in the litera-
ture, seeGevers and Anderson (1981, 1982). In this section
we shall instead discuss nonstationary joint state space rep-
resentations; in particular, innovation representations which
turn out to be of the Kalman filter type.

Let (2.1) be a stationary innovation representation ofy
givenu and similarly let

s(t + 1)= Fs(t)+Gy(t)+ Lv(t),
u(t)=Hs(t)+ Jy(t)+ v(t),

t� t0, (4.1)

be a stationary innovation representation ofu given y with
the innovation process ofu based on the joint past as the
white noise input

v(t) := u(t)− E[u(t) |Z−
t ∨Yt ].

For future reference we definēF := F − LH .

Under mild assumptionsq(t) := [x�(t) s�(t)]� is a min-
imal state vector for the joint innovation model

q(t + 1)=Aq(t)+Kn(t),[
y(t)
u(t)

]
= Cq(t)+ n(t), (4.2)

where

A :=
[
A+ BJC BH

GC F

]
,

K :=
[
K + BJ B

G L

]
, C :=

[
C 0
JC H

]

and

n(t) :=
[
I 0
J I

] [
e(t)
v(t)

]

is the joint stationary innovation process. In practice one has
only a finite amount of data and the (stationary) innovations
e(t) andv(t) will have to be replaced by the transient ones

ê(t) := y(t)− E[y(t) |Z[t0,t)] (4.3)

and

v̂(t) := u(t)− E[u(t) |Z[t0,t) ∨Yt ]. (4.4)

We use the notation̂e(t) to remind that this random variable
is a function of the initial time instantt0 and should not be
confused with the stationary innovatione(t). For t − t0 →
∞, ê(t) tends toe(t) (in mean square).

A finite-interval state-space innovation model fory andu
is obtained by setting up a (transient) Kalman filter based
on the stationary model (4.2), which updates the projections
x̂(t) := E[x(t) |Z[t0,t)] and ŝ(t) := E[s(t) |Z[t0,t)] based
on the finite observation interval[t0, T ]. The projections
form the state of the transient model and are updated recur-
sively according to the decompositionZ[t0,t+1)= (Z[t0,t)⊕
Êt )⊕ V̂t where

Êt := span{ê(t)}, V̂t := span{v̂(t)}. (4.5)

Letting q̂(t) := [x̂�(t) ŝ�(t)]� and

K(t)=
[
K(t)+ B(t)J (t) B(t)

G(t) L(t)

]
(4.6)

leads to a representation of the following form:

q̂(t + 1)=Aq̂(t)+K(t)

[
ê(t)
v̂(t)

]
,

[
y(t)
u(t)

]
=Cq̂(t)+

[
I 0

J (t) I

] [
ê(t)
v̂(t)

]
, (4.7)

associated to zero initial conditionsq̂(t0)= 0. The matrices
K(t), B(t), G(t), J (t), L(t) are computed using standard
Riccati equations involving the joint model parameters in
(4.2). The upper left block of the transient Kalman gain
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has been written in a form which resembles the stationary
structureK+BJ for ease of comparison. It is clear that even
though we are interested in updating only the projection of
x, the recursion for̂x involvesŝandv̂, which in turn require
an explicit model ofu. This is the reason why it is not
possible to describe the evolution ofy given u on a finite
interval, without the current state ofu itself taking part in
this evolution.

Using the last equation in (4.7) to expressv̂(t) as a func-
tion if u(t), x̂(t), ŝ(t) and ê(t), and substituting back into
the state equation in (4.7) we obtain an exact transient state-
space representation ofy givenu,

q̂(t + 1)= AJ (t)q̂(t)+Ku(t)u(t)+Ke(t)ê(t),

y(t)= [C 0] q̂(t)+ ê(t) (4.8)

also started at zero initial condition. The various time-
varying parameters in this model are defined as follows.
Letting Ku(t) := [B(t)� L(t)�]� to be the second block-
column ofK(t) in (4.6) we have

AJ (t) :=A−Ku(t) [ JC H ]

=
[

A+ B̃(t)JC B̃(t)H

GC − L(t)JC F − L(t)H

]
, (4.9)

whereB̃(t) := B − B(t). The gain matrixKe(t) is instead
obtained by subtracting from the first block-column ofK(t)

the termKu(t)J (t), so that

Ke(t)=
[

K(t)

G(t)− L(t)J (t)

]
. (4.10)

Note that this representation is of the same dimension of the
joint model (4.2).

From standard Kalman filter theory, the two block com-
ponents of the“Kalman gain”Ku(t) tend, in the limit for
t − t0 →∞, to the constant gain matricesB andL, so that
the matrixB̃(t) converges to zero ast − t0 →∞. It is well
known (Anderson & Moore, 1979), that the rate of conver-
gence is governed by the (stable) zeros of the joint spectrum
of the stationary model, i.e. by the eigenvalues of

A−K

[
I 0
−J I

]
C=

[
Ā 0
0 F̄

]
.

In fact, it can be seen that asymptotically witht − t0 →∞,
B̃(t) is of the same order (i.e. tends to zero at the same
rate) of the product of the matrices̄At−t0 and F̄ t−t0. In
particular we have convergence to zero in a finte number of
steps ofB̃(t) if at least one of the two matrices̄A andF̄ is
nilpotent. Nilpotency ofF̄ , and/orĀ means of course that
the (conditional) models ofu giveny, and/or ofy givenu,
are of the ARX type. IfĀ is nilpotent, bothB(t) andK(t)

converge to the stationary values in at mostn steps. In any

case wheñB(t)=0 andK(t)=K, the model (4.8) reduces8

to[
x̂(t + 1)
ŝ(t + 1)

]
=

[
A 0

GC − L(t)JC F − L(t)H

] [
x̂(t)
ŝ(t)

]

+
[

B

L(t)

]
u(t)+

[
K

G(t)− L(t)J (t)

]
ê(t),

y(t)= [C 0]

[
x̂(t)
ŝ(t)

]
+ ê(t),

x̂(t0)= 0 ŝ(t0)= 0, (4.11)

which is obviously not observable as the stateŝ(t) is not
coupled to the measurement ofy and can be dropped yield-
ing back the originaln-dimensional stationary model (2.1).
Hence independence of the one-step predictor ofy from the
past dynamics ofu, which is well known to hold in the sta-
tionary setting9 holds in general only asymptotically (or at
most after a finite number of steps in the nilpotent case).

Remark 4.2. Note that in the absence of feedback the cou-
pling of x̂(t + 1) with the state of the input process can be
avoided using a “conditional” Kalman filter given the whole
input history (seeOverschee & De Moor, 1994; Chiuso &
Picci, 2004b, formula (2.12)). This can be done because in
the absence of feedback the dependence ofx(t) on future in-
putsU[t,T ] conditional onY[t0,t)∨U[t0,t) is all contained in
the initial conditionx̂(t0) := E[x(t0) | U[t0,T ]] (seeChiuso
& Picci, 2004b, Theorem 1 & formula (2.16)). Unfortunately
this is no longer true when feedback is present.

The transientwhitening filter realizationof ê is just the
inverse system of (4.7). Defining̃G(t) := G−G(t), J̃ (t) :=
J−J (t) and also the state transition matrix for the whitening
filter representation ofy givenu

ĀJ (t) :=
[
A−K(t)C + B̃(t)JC B̃(t)H

G̃(t)C − L(t)J̃ (t)C F − L(t)H

]
(4.12)

one gets,

q̂(t + 1)= ĀJ (t)q̂(t)+Ku(t)u(t)+Ke(t)y(t)

ê(t)=− [C 0] q̂(t)+ y(t) (4.13)

again with zero initial condition. All the models above have
time-varying parameters and is not clear how they could be
used for identification. Remarkably, the deviation from the
stationary model can be lumped into an additive error term,
as explained in the following proposition.

Proposition 4.1. Define

x̃(t) := E[x(t) |Z[t0,t+1)] − x̂(t). (4.14)

8 We remind the reader thatL(t) andJ (t) converge in a finite number
of steps only ifF̄ is also nilpotent.

9And is actually the key condition on which PEM methods with
feedback are based.



A. Chiuso, G. Picci / Automatica 41 (2005) 377–391 385

Then the following representation holds:

x̂(t + 1)= Ax̂(t)+ Bu(t)+Kê(t)+ Āx̃(t), (4.15)

y(t)= Cx̂(t)+ ê(t) (4.16)

which, letting K̂(t) := K(t)− B̃(t)J (t), can also be written
as

x̂(t + 1)= Ax̂(t)+ Bu(t)+ K̂(t)ê(t)− B̃(t)v̂(t), (4.17)

y(t)= Cx̂(t)+ ê(t), (4.18)

moreover we have the identity

Āx̃(t)=−(B̃(t)J (t)+ K̃(t))ê(t)− B̃(t)v̂(t). (4.19)

Proof. It follows from (4.14) thatE[x(t) | Z[t0,t+1)] =
x̂(t)+ x̃(t); thereforeE[e(t) |Z[t0,t+1)]=y(t)−CE[x(t) |
Z[t0,t+1)]= ê(t)−Cx̃(t); (4.15) hence follows by projecting
x(t+1) ontoZ[t0,t+1). Representation (4.17) follows instead
by rearranging terms in (4.7); it suffices to writeH ŝ(t) =
u(t)−JCx̂(t)−J (t)ê(t)−v̂(t) from the output equation and
substitute into the state update for thex component. Finally,
letting K̃(t) := K−K(t), it is immediate to recognize from
(4.15) and (4.17) that̃x(t) satisfies (4.19). �

These representations will be used to compute various
bias terms in the next section. In the rest of this section we
shall derive some explicit formulas describing how fast the
error x̃(t) and the transient gains̃B(t) andK̃(t) tend to zero
with t − t0. The proofs may be found in the appendix.

Lemma 4.2. The projection error̃x(t) can be expressed as

x̃(t)= Āt−t0(E[x(t0) | Êt ] + E[x(t0) | V̂t ]). (4.20)

Letting 	e(t) := Var {ê(t)}, 	v(t) := Var {v̂(t)}, the two
last terms can in turn be written as:

E[x(t0) | Êt ] = Var {x(t0) |Z[t0,t)}(Ā�)t−t0C�

× 	−1
e (t)ê(t) (4.21)

and

E[x(t0) | V̂t ] = Cov{x(t0), s(t0) |Z[t0,t) ∨Yt }
× (F̄�)t−t0H�	−1

v (t)v̂(t). (4.22)

Remark 4.3. These last two equations, together with (4.19),
show that̃x(t), similarly to what happens tõB(t), converges
to zero at a rate determined by bothĀ andF̄ , whileK(t)→
K at a rate basically depending only uponĀ. As we shall
see later, one important consequence of this fact is that some
bias term will disappear when subsystem (4.1) generating
the feedback signal is of the ARX type.

There is one last technical result of the same kind which
will be needed in the next sections. Observe that, defining

Ā(t) := A − K̂(t)C, the whitening filter ofy given u can
be written in a “perturbed” form similar to (4.17),

x̂(t + 1)= Ā(t)x̂(t)+ Bu(t)+ K̂(t)y(t)− B̃(t)v̂(t),

ê(t)=−Cx̂(t)+ y(t). (4.23)

Lemma 4.3. Let v̂(t) be the transient innovation process of
the inputu. The following formulas hold:

E‖Ĝ[t,T ] [v̂(t + k) |Z[t0,t)]

= [−JC −H ]
t+k−1∏
h=t

AJ (h)

[
x̂(t)
ŝ(t)

]
(4.24)

for 0�k�T − t and

E‖Z[t,t+i)
[v̂(t + k) |Z[t0,t)]

= [−J̃ (t + k)C −H ]
t+k−1∏
h=t

ĀJ (h)

[
x̂(t)
ŝ(t)

]
(4.25)

for 0�k < i.

The proof will also be postponed to the appendix.

5. Analysis of the innovation estimation algorithm by
Qin and Ljung

In this section we shall do some error analysis of the algo-
rithm proposed byQin and Ljung (2003)which is named by
the authors “innovation estimation” as it is based on a pre-
liminary step in which the future innovations are estimated
from the observed data. Instead of using data Hankel ma-
trices we shall work with stochastic column vectors, as this
allows to simplify notations. We shall also disregard most
computational details. Introduce the notations

y[t,T ] :=




y(t)
y(t + 1)

...

y(T )


 , u[t,T ] :=




u(t)
u(t + 1)

...

u(T )


 ,

ê[t,T ] :=




ê(t)
ê(t + 1)

...

ê(T )


 , v̂[t,T ] :=




v̂(t)
v̂(t + 1)

...

v̂(T )


 .

As pointed out in Section 3 the algorithm can be seen as an
implementation with finite data of the state-space construc-
tion formula of Theorem 3.2. The starting point is to con-
struct the future transient innovationsê(t + i), i = 0, . . . , k
using formula (4.3). One then forms the “extended future
space” at timet, using data from timet0 on, as

Ĝ[t,t+k] := span{ê(t + i),u(t + i), i = 0, . . . , k} (5.1)
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and decomposes the vectory[t,T ] as a sum of two pieces
belonging toĜ[t,T ] andZ[t0,t]

y[t,T ] = E‖Ĝ[t,T ] [y[t,T ] |Z[t0,t]]
+ E‖Z[t0,t] [y[t,T ] | Ĝ[t,T ]]. (5.2)

Let 
 be the observability matrix of the pair(A,C). In Qin
and Ljung (2003)the first term on the right-hand side of
(5.2) is used to implement the following approximation:

E‖Ĝ[t,T ] [y[t,T ] |Z[t0,t)] � 
E‖Ĝ[t,T ] [x(t)|Z[t0,t)]
�
E[x(t) |Z[t0,t)] = 
x̂(t)

(5.3)

from which an estimate of the observability matrix
 and
hence of(A,C), can be obtained by standard methods.

Next, from the regression equation obtained after com-
puting the second term

E‖Z[t0,t) [y[t,T ] | Ĝ[t,T ]] � Huu[t,T ] +Heê[t,T ] (5.4)

one could (approximately) estimate the block Toeplitz ma-
trices Hu, He, containing the Markov parameters ofF(z)

and of the noise model.
Alternatively, one could use regression (4.17), Proposition

4.1, to estimateA,B,C, K̂(t). Note that, unlikev̂(t), ê(t)
is correlated with the preceding terms in the regression and
cannot be treated as “additive noise”. Therefore one needs
to includeê(t) as a regressor to estimateA andB, and hence
estimate alsoK̂(t).

Remark 5.4. Note that this last step could also be imple-
mented in a different way. For instance, afterA,C have
been computed from the estimated observability matrix, then
B, K̂(t) could be estimated by linear regression from the
Toeplitz matricesHu, He of the Markov parameters of the
system obtained from regression (5.4). Incidentally, the esti-
mated Toeplitz matrices will then, by construction, be lower
triangular, i.e. “parsimonious” in the sense ofQin and Ljung
(2003). SinceHu, He are linear inB andK̂(t), using the es-
timates ofA,C, the estimation ofB, K̂(t) could be done by
solving a linear regression. However in this paper we shall
follow the strategy outlined above for it is also the one fol-
lowed by the second algorithm which will be analyzed in
the next section.

Unfortunately, as we shall show below, unlessĀ and/orF̄
are nilpotent, the algorithm yields biased estimates for finite
t − t0. In fact, from Eq. (4.8), one can see that the oblique
projectionE‖Ĝ[t,T ] [y[t,T ] | Z[t0,t)] is contained in the joint
(y andu) predictor space and not necessarily in the space
spanned bŷx(t). This fact is formalized in the following
lemma, whose proof is deferred to the appendix.

Lemma 5.1. Let � := T − t and

Hv(t, T ) :=




0 . . . 0
CB̃(t) . . . 0

...
. . .

...

CA�−2B̃(t) . . . CB̃(T − 1)


 .

Then the oblique projectionE‖Ĝ[t,T ] [y[t,T ] | Z[t0,t]] can be

split into two parts:

E‖Ĝ[t,T ] [y[t,T ] |Z[t0,t]]
= 
x̂(t)−Hv(t, T )E‖Ĝ[t,T ] [v̂[t,T−1] |Z[t0,t)] (5.5)

the second of which originates bias.

Remark 5.5. From Lemma 4.3 and in particular Eq. (4.24)
it is easy to see that the second term on the right-hand side
belongs to span{x̂(t), ŝ(t)}. Notice also that ift − t0 is large
enough,B̃(t + i)= 0 if at least one of the matrices̄A, F̄ is
nilpotent. In this caseHv(t, T )= 0 and the bias disappears.

6. Analysis of the “whitening filter”-based algorithm
and relation to Jansson’s method

In Section 3 we have introduced an algorithm based on
the whitening filter to construct the state space and identify
the system matrices(A,B,C).

The first step of the algorithm is to compute the oblique
projectionsE‖Z[t,t+i)

[y(t+i) |Z[t0,t)] and thereby construct
a basisx̂(t) for the state space. Unfortunately, also in this
case a bias term is present since initial conditions are not
properly handled. The bias is evaluated in the following
lemma.

Lemma 6.1. Let �(t, s) := ∏s−1
k=t Ā(k) where�(t, t) = I

and


̄(t, T )

:= [C� ��(t, t + 1)C� . . . ��(t, T − 1)C� ]�

be the “ time varying” observability matrix associated to
model(4.23).Define also

H̄v(t, T ) :=




0 . . . 0
CB̃(t) . . . 0

...
. . .

...

C�(t, T − 2)B̃(t) . . . CB̃(T − 1)


 .

Then the following equality holds:



E[yt |Z[t0,t)]
E‖Zt

[yt+1 |Z[t0,t)]
...

E‖Z[t,T−1] [yT |Z[t0,t)]




= 
̄(t, T )x̂(t)
− H̄v(t, T )E‖Z[t,T−1] [v̂[t,T−1] |Z[t0,t)]. (6.1)

The proof is deferred to the appendix.
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Remark 6.6. From Lemma 4.3 and in particular Eq. (4.25),
it is easy to see that the second term on the right-hand
side belongs to span{x̂(t), ŝ(t)}. Again, if t − t0 is large
enough andF̄ is nilpotent, B̃(t) is zero and the second
term on the right-hand side vanishes. Nevertheless, unless
Ā is also nilpotent,
̄(t, T ) is still time varying. This im-
plies that the state space can be estimated without bias
but there may be problems in constructing a basis at time
t + 1, x̂(t + 1), coherent with the one chosen at timet,
x̂(t). Equivalently the standard “shift-invariance” method
applied to the estimated time-varyinḡ
(t, T ) may lead to
errors.

As we have mentioned earlier, an algorithm based on sim-
ilar ideas has been proposed inJansson (2003), where the
oblique projection step is replaced by a preliminary estima-
tion of the Markov parameters (which should ideally remove
the contribution due to terms inZ[t,t+i)), followed by an
orthogonal projection. Whether this approach is to be pre-
ferred to our implementation is still an open question, even
though the simulations with simple systems that we report
in this paper does not show remarkable differences between
the two approaches; both the implementations have perfor-
mances very close to standard PEM in the examples consid-
ered. A thorough analysis of these aspects will however be
undertaken in future work.

7. Stable vs. unstable plants

The case of unstable plants deserves a particular atten-
tion since it brings into play the ill-conditioning of oblique
projections. As it has already been noticed, when theA
matrix has eigenvalues strictly outside of the unit circle,
the spacesZ−

t andG+t intersect, so that one may expect
that with moderately large past and future horizons,Z[t0,t)
andG[t,T ] will be almost collinear. The more so, the larger
the |�i (A)|’s.

How serious is this phenomenon? In order to simplify
the analysis we shall for a moment assume thatĜ[t,T ] �
G[t,T ], which is reasonable fort − t0 large enough. The
following lemma helps understanding why near parallelism
occurs.10

Lemma 7.1. Assume A has eigenvalues outside of the closed
unit disc. Letxa(t) = Tax(t) be a basis for the“unstable
manifold” of the state space11 and letAa , Ba , Ka be the
matrices A, B, K restricted to that subspace of the state
space. Thenxa(t) can be written in the following forward

10Actually one should work with the transient future spaceĜ[t,T ],
but for simplcity of presentation we approximate it with the stationary
version. A similar argument, but with more complicated notations holds
for Ĝ[t,T ].

11The subscripta stands for “acausal”.

and backward forms:

xa(t)= TaĀ
t−t0x(t0)+

t−t0−1∑
i=0

TaĀ
t−t0−i−1(Bu(t0 + i)

+Ky(t0 + i)), (7.1)

xa(t)= A−(T−t+1)
a xa(T + 1)

−
T−t∑
i=0

A−(T−t−i+1)
a (Bau(T − i)

+Kae(T − i)). (7.2)

Eq. (7.1) shows that fort−t0 large,xa(t) “nearly” belongs
to the past spaceZ[t0,t) since the eigenvalues of̄A in the
innovation model are stable, and the first term dies out for
t − t0 large. But at the same time, forT − t large,xa(t)
“nearly” belongs also to the extended future spaceG[t,T ].
This is so since the first component in (7.2) dies out as
T − t → ∞, and the second one lies inG[t,T ]. It is clear
that near parallelism shows up rather quickly (ast − t0 and
T − t grow) if the eigenvalues ofAa andĀ are far from the
unit circle.

Now, it is well known that for near parallel subspaces the
oblique projection may amplify errors in the data. In fact it
is known (and easy to show) that the norm of the oblique
projection is given by

‖E‖Ĝ[t,T ] [· |Z[t0,t)]‖ =
1√

1− cos2(�min(Ĝ[t,T ],Z[t0,t)))
,

where�min(Ĝ[t,T ],Z[t0,t)) is the smallest canonical angle
betweenĜ[t,T ] andZ[t0,t).

The situation may become dramatic when working with
real data. Finite-sample perturbations due to, e.g. approxi-
mations of inner products by finite sums, may get amplified
by oblique projections and lead to a large variance of the es-
timates. Experimental evidence shows that indeed the vari-
ance of the estimates using the algorithm of Qin and Ljung
with unstable plants is considerably larger as compared to
the other approaches.

There is another aspect which has to do with instability
and may be attributed to scaling problems. AsT −t becomes
large, matrix coefficients involving powers ofA (e.g. the
observability matrix) may show unstable components which
will grow very large while the stable components will instead
become small and eventually die out. This fact is also seen
when using the SVD in the truncation step, as some singular
values grow fast when enlargingT − t while some other
decrease, making it difficult to perform order selection. The
situation becomes serious if the system order is large and
hence one is forced to makeT − t large. These scaling
problems may become an issue working with finite-precision
arithmetic. For the reasons explained above, the approach
of Qin and Ljung (2003)is not to be recommended with
unstable plants. In any case, particular care must be exercised
in the choice of the “future horizon”T − t .
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Fig. 1. Joint model of the signalsy andu.

Fortunately, these issues do not affect the whitening fil-
ter approach and the state construction described in Theo-
rem 3.4. Oblique projections (3.13) play of course a central
role also here, but the space along which the projection if
performed is now different. The spacesZ[t0,t) andZ[t,T )

may in some unfortunate circumstances become close (de-
pending on the zeros of the joint spectrum getting close to
the unit circle) but generally do not intersect in the limit, as
Z[t0,t) andG[t,T ] instead do.
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Fig. 2. Mean squared error (rms) of estimated transfer functionF̂ (ej
) vs. normalized frequency(
 ∈ [0,�]). Crosses(+): Whitening filter method,
stars(∗): Qin–Ljung “innovation estimation” method, circles(◦): Jansson method, triangles( ): Matlab 6.5 PEM.

Table 1
Transfer functions for the examples considered

# F(z) H(z) G(z) K(z)

Ex. 1 0.3
z−0.7 −1 z+0.5

z 1

Ex. 2 2.5
z−3 −1 z+0.5

z 1

Ex. 3 2.5
z−3 −1 z+0.999

z
0.2(z+0.999)

z−0.99

Ex. 4 2.5
z−3 −1 z+0.999

z 1

8. Experiments

The simulation setup is as inFig. 1 wheree1 ande2 are
uncorrelated, zero mean and unit variance white gaussian
noises. The four examples are as inTable 1. The first is a sta-
ble plant, controlled by a proportional controller with white
reference signal and moving average observation noise. The
second is an unstable plant controlled by a proportional
controller with white reference signal and moving average
observation noise. The third and the fourth examples use the
same plant and controller as the second but different driving
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 ∈ [0,�]) Solid: True |F(ej
)|, crosses(+): Whitening filter
method, stars(∗): Qin–Ljung “innovation estimation” method, circles(◦): Jansson method, triangles( ): Matlab 6.5 PEM.

noises. Example 3 has colored reference signal and obser-
vation noise, where the zeros are placed close to the unit
circle while in Example 4 the reference is white. Note that
with a proportional controller a white reference signal im-
plies that the eigenvalues of̄F are in zero so that the matrix
is nilpotent. In all experiments the past and future horizons
have been chosen to be 10 and 100 Monte-Carlo runs have
been repeated with 1000 data points each.Fig. 2 andFig. 3

The behavior of these simple examples is quite in accor-
dance with the predictions one could have made, based on
the analysis of this paper. In Example 1, whereF(z) is sta-
ble, the reference signal is white and the eigenvalues ofĀ

are far from the unit circle, the bias is negligible. The algo-
rithm of Qin and Ljung behaves similarly to the one based
on the whitening filter. In Example 2, whereF(z) is unsta-
ble, F̄ = 0 and�i (Ā) far from the unit circle, bias is neg-
ligible for both Qin–Ljung and “whitening-filter”. As far as
variance, as predicted by our analysis, Qin–Ljung performs
worst for the reasons explained in Section 7. In Example 3,
where the closed loop zeros are very close to the unit circle,
the bias becomes large for all algorithms while the mean
squared error is much larger for the Qin–Ljung algorithm,
in line with Example 2 and the discussion in Section 7. In

Example 4 we have again̄F = 0. The bias is considerably
reduced and the mean squared error is significantly larger
for the Qin–Ljung approach, for the same reasons as above.

In all the examples the algorithm based on the whitening
filter is basically indistinguishable from the two step pro-
cedures proposed by Jansson and PEM has a very similar
behavior.

9. Discussion and conclusions

In this paper we have discussed some theoretical issues re-
lated to subspace identification in the presence of feedback.
We have shown that neglecting the effect of initial condition
results in bias in the estimates which can be significant in
case of (closed loop) zeros close to the unit circle.

We have analyzed two recent subspace algorithms, (Qin
& Ljung, 2003; Jansson, 2003), and proposed a slight vari-
ation on the last one. According to the general results of
this paper, all of these algorithms are generally biased. We
have argued that identification of high order systems with
unstable dynamics may become unfeasible due to numeri-
cal problems with the algorithm ofQin and Ljung (2003).
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Different considerations hold for the other approach pro-
posed inJansson (2003)which seems not to suffer the same
drawbacks.

The above conclusions are supported by experimental evi-
dence. Simulations reported in the last section show that with
unstable plants andT − t large the “innovation estimation”
approach fails, while the other methods provide fairly reli-
able estimates.

Although we have not been able to suggest procedures
leading to unbiased algorithms, we hope nevertheless that
the ideas and the system-theoretic background of this paper
will be of some help to gain more understanding and to
foster progress in this area.

Appendix A. Proofs

Proof of Lemma 4.2. SinceZ[t0,t+1)=(Z[t0,t)⊕Êt )⊕V̂t ,

x̃(t) := E[x(t) |Z[t0,t+1)] − E[x(t) |Z[t0,t)]
=E[x(t) | Êt ] + E[x(t) | V̂t ].

From (4.2)

x(t)= Āt−t0x(t0)+ “ terms inZ[t0,t)”

and sinceV̂t ⊥Z[t0,t), Êt ⊥Z[t0,t)

x̃(t)= Āt0−t [E[x(t0) | Êt ] + E[x(t0) | V̂t ]]
which is (4.20). Again, from (4.2) we get

ê(t)= y(t)− CE[x(t)|Z[t0,t)]
= y(t)− Cx(t)+ CE[x(t)|Z⊥

[t0,t)]
= e(t)+ CĀt−t0E[x(t0)|Z⊥

[t0,t)]. (A.1)

From the well-known formula

E[x(t0) | Êt ] = Cov{x(t0), ê(t)}[Var {ê(t)}]−1ê(t)

(4.21) follows noting that, from (A.1),

Cov{x(t0), ê(t)} = Var {x(t0) |Z[t0,t)}C�(Ā�)t−t0.

Observe that, using (A.1),	e(t) := Var {ê(t)} can be given
the following expression:

	e(t)= 	e + CĀt−t0Var {x(t0) |Z[t0,t)}C�(Ā�)t−t0,

where	e := Var {e(t)} Eq. (4.22) follows from a similar
argument involvinĝv(t). �

Proof of Lemma 4.3. It follows from (4.7) that

v̂(t)= u(t)− J̃ (t)Cx̂(t)−H ŝ(t)− J (t)y(t)

and from (4.13),

q̂(t + k)=
t+k−1∏
h=t

ĀJ (h)q̂(t)+ “ terms inZ[t,t+k)” .

Combining the two last equations (4.25) follows, i.e.

E‖Z[t,t+i)
[v̂(t + k) |Z[t0,t)]

= [−J̃ (t + k)C −H ]
t+k−1∏
h=t

ĀJ (h)

[
x̂(t)
ŝ(t)

]

for 0�k < i. Similarly (4.25) follows from (4.7) and
(4.8). �

Proof of Lemma 5.1. From (4.17) it follows that

y[t,T ] = 
x̂(t)−Hvv̂[t,T−1] + “ terms in Ĝ[t,T ]”

so that (5.5) follows. �

Proof of Lemma 6.1. Denoting byH̄v,i+1 the i-th block
row of H̄v the output can be written

E[y(t + i)|Z[t0,t+i)] = C�(t, t + i)x̂(t)− H̄v,i+1v̂[t,T−1]
+ “ terms inZ[t,t+i)” .

Recalling that, from (4.25),

E‖Z[t,t+k)
[v̂(t + k) |Z[t0,t)]

= E‖Z[t,t+i+1)[v̂(t + k) |Z[t0,t)]
for 0�k < i, (6.1) immediately follows. �

References

Anderson, B. D. O., & Moore, J. B. (1979).Optimal filtering. Englewood
cliffs, NJ: Prentice-Hall.

Caines, P. E., & Chan, C. W. (1976). Estimation, identification and
feedback. In: R. Mehra, & R. Lainiotis (Eds.),System identification:
Advances and case studies(pp. 349–405). New York: Academic.

Chiuso, A., & Picci, G. (2002).Geometry of oblique splitting, minimality
and hankel operators. Lecture notes in control and Information
Sciences, Vol. 286 (pp. 85–124). Berlin: Springer.

Chiuso, A., & Picci, G. (2003). Subspace identification random processes
with feedback. InProceedings of the IFAC international symposium
on system identification (SYSID), Rotterdam.

Chiuso, A., & Picci, G. (2004a). Numerical conditioning and asymptotic
variance of subspace estimates.Automatica, 40(4), 677–683.

Chiuso, A., & Picci, G. (2004b). On the ill-conditioning of subspace
identification with inputs.Automatica, 40(4), 575–589.

Chou, C. T., & Verhaegen, M. (1999). Closed-loop identification using
canonical correlation analysis. InProceedings of the European control
conference, Karlsruhe (pp. CD-ROM, F162).

Gevers, M. R., & Anderson, B. D. O. (1981). Representation of jointly
stationary feedback free processes.International Journal of Control,
33, 777–809.

Gevers, M. R., & Anderson, B. D. O. (1982). On jointly stationary
feedback-free stochastic processes.IEEE Transactions on Automatic
Control, 27, 431–436.

Granger, C. W. J. (1963). Economic processes involving feedback.
Information and Control, 6, 28–48.

Hannan, E. J., & Deistler, M. (1988).The statistical theory of linear
systems. New York: Wiley.

Hannan, E. J., & Poskitt, D. S. (1988). Unit canonical correlations between
future and past.The Annals of Statistics, 16, 784–790.

Jansson, M. (2003). Subspace identification and arx modelling. In
Proceedings of SYSID 2003, Rotterdam.



A. Chiuso, G. Picci / Automatica 41 (2005) 377–391 391

Lindquist, A., & Picci, G. (1996a). Canonical correlation analysis,
approximate covariance extension and identification of stationary time
series.Automatica, 32, 709–733.

Lindquist, A., & Picci, G. (1996b). Geometric methods for state-
space identification. In: S. Bittanti, & G. Picci (Eds.),Identification,
adaptation, learning(pp. 1–69). Springer Verlag.

Ljung, L., & McKelvey, T. (1996). Subspace identification from closed
loop data.Signal Processing, 52(2), 209–216.

Overschee, P. Van, & De Moor, B. (1994). N4SID: Subspace algorithms
for the identification of combined deterministic—stochastic systems.
Automatica, 30, 75–93.

Picci, G. (1997). Oblique splitting susbspaces and stochastic realization
with inputs. In: D. Prätzel-Wolters, U. Helmke, & E. Zerz (Eds.),
Operators, systems and linear algebra(pp. 157–174). Stuttgart:
Teubner.

Picci, G., & Katayama, T. (1996). Stochastic realization with exogenous
inputs and “subspace methods” identification.Signal Processing, 52,
145–160.

Qin, S. J., & Ljung, L. (2003). Closed-loop subspace identification with
innovation estimation. InProceedings of SYSID 2003. Rotterdam.

Van der Klauw, A. C., Verhaegen, M., & Van den Bosch, P. P. J. (1991).
State space identification of closed loop systems. InProceedings of
the 30th IEEE conference on decision & control, Brighton, UK (pp.
1327–1332).

Van Overschee, P., & De Moor, B. (1997). Closed loop subspace systems
identification. InProceedings of 36th IEEE conference on decision &
control, San Diego, CA (pp. 1848–1853).

Verhaegen, M. (1993). Application of a subspace model identification
technique to identify lti systems operating in closed-loop.Automatica,
29, 1027–1040.

Giorgio Picci Giorgio Picci holds a full
professorship with the University of Padova,
Italy, Department of Information Engineer-
ing, since 1980. He graduated (cum laude)
from the University of Padova in 1967 and
since then has held several long-term vis-
iting appointments with various american
and european universities among which
Brown University, M.I.T., the University
of Kentucky, Arizona State University, the

Center for Mathematics and Computer Sciences (C.W.I.) in Amsterdam,
the Royal Institute of Technology, Stockholm Sweden, Kyoto University
and Washington University in St. Louis, Mo.
He has been contributing to Systems and Control theory mostly in the
area of modeling, estimation and identification of stochastic systems and
published over 100 papers and edited three books in this area. Since 1992
he has been active also in the field of Dynamic Vision and scene and
motion reconstruction from monocular vision.
He has been involved in various joint research projects with industry and
state agencies. He is currently general coordinator of the italian national
projectNew techniques for identification and adaptive control of industrial
systems, funded by MIUR (the Italian minestery for higher education),
has been project manager of the italian team for the Commission of
the European Communities Network of ExcellenceSystem Identification
(ERNSI) and is currently general project manager of the Commission
of European Communities IST project RECSYS, in the fifth Framework
Program.
Giorgio Picci is a Fellow of the IEEE, past chairman of the IFAC Technical
Committee on Stochastic Systems and a member of the EUCA council.

Alessandro Chiusoreceived his D.Ing. de-
gree Cum Laude in 1996, and the Ph.D. de-
gree in Systems Engineering in 2000 both
from the University of Padova. In 1998/99
he was a Visiting Research Scholar with
the Electronic Signal and Systems Research
Laboaratory (ESSRL) at Washington Uni-
versity, St. Louis. From March 2000 to July
2000 he has been Visiting Post-Doctoral
(EU-TMR) fellow with the Division of Op-
timization and System Theory, Department
of Mathematics, KTH, Stockholm, Sweden.

Since March 2001 he is Research Faculty (”Ricercatore”) with the Depart-
ment of Information Engineering, University of Padova. In the summer
2001 he has been visiting researcher with the Department of Computer
Science, University of California Los Angeles. Alessandro Chiuso is a
member of the IEEE Control System Society Conference Editorial Board.
His research interests are mainly in Identification and Estimation Theory,
System Theory and Computer Vision.


	Consistency analysis of some closed-loop subspaceidentification methods62626262
	Introduction
	Statement of the problem
	Notations

	Stochastic realization with feedback
	Joint vs. input--output modeling
	Analysis of the innovation estimation algorithm by Qin and Ljung
	Analysis of the ``whitening filter''-based algorithm and relation to Jansson's method
	Stable vs. unstable plants
	Experiments
	Discussion and conclusions
	Appendix A. Proofs
	References


