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Abstract

New formulas for the asymptotic variance of the parameter estimates in subspace identi,cation, show that the accuracy of the parameter
estimates depends on certain indices of ‘near collinearity’ of the state and future input subspaces of the system to be identi,ed. This
complements the numerical conditioning analysis of subspace methods presented in the companion paper (On the ill-conditioning of
subspace identi,cation with inputs, Automatica, doi:10.1016/j.automatica.2003.11.009).
? 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The asymptotic properties of the parameter estimates in
subspace identi,cation with inputs have been studied re-
cently in a number of contributions, which include Bauer
and Jansson (2000), Bauer and Ljung (2001), Chiuso and
Picci (2004a) and Jansson (2000).
In this paper we shall discuss some new asymptotic vari-

ance formulas for the estimated parameters (A; B; C; D) of a
stationary linear system with observable exogenous inputs
u. The system is assumed in “innovation representation”{
x(t + 1) = Ax(t) + Bu(t) + Ke(t);

y(t) = Cx(t) + Du(t) + e(t);
(1.1)

where the white noise {e(t)} has the meaning of (station-
ary) one-step prediction error of {y(t)}, given the in,nite
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past history of {y(t)} {u(t)} up to time t − 1. The pa-
rameter estimates are computed by standard subspace meth-
ods (N4SID, MOESP, etc.) taken from the literature. Some
of these variance formulas have been introduced earlier
in Chiuso and Picci (2004a), but the relation of asymp-
totic variance to ill-conditioning of the identi,cation prob-
lem is discussed here for the ,rst time. It will be shown
that the asymptotic variances depend on (the inverse of)
certain conditional cross-covariance matrices, �x̂x̂|u+ , and
�u+u+|x̂ of the state, given the future inputs, and of the fu-
ture inputs given the current state. After suitable normal-
ization, the singular values of these matrices describe the
numerical conditioning of the system parameter estimation
problem in a wide variety of subspace identi,cation meth-
ods. In Chiuso and Picci (2004b) we have also discussed
certain indices which can be extracted from these covari-
ance matrices, which may be used to assess the degree of
collinearity of the regressors. Collinearity is de,ned as a
geometric condition of near-parallelism of the regressors
which entails ill-conditioning of the subspace identi,cation
problem.
Loose observations relating ill-conditioning to the accu-

racy or “performance” of identi,cation methods have been
circulating for a while in the identi,cation community but,
to our best knowledge, a precise relation between the two
concepts seems to have never been pinpointed in an explicit
way. Here the numerical conditioning of the subspace iden-
ti,cation problem is related quite explicitly to the asymp-
totic variance of the estimates.
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1.1. Notations

Boldface symbols will denote random quantities. For
−∞6 t06 t6T6 + ∞ de,ne the Hilbert spaces of
zero-mean (square integrable) random variables

U[t0 ;t) := span{uk(s); k = 1; : : : ; p; t06 s¡ t};

Y[t0 ;t) := span{yk(s); k = 1; : : : ; m; t06 s¡ t}
where the bar denotes closure in mean square, i.e. in the
metric de,ned by the inner product

〈�; �〉 := E{�; �} (1.2)

the operator E denoting mathematical expectation. Simi-
larly, let U[t;T ];Y[t;T ] be the respective future spaces up to
time T

U[t;T ] := span {uk(s); k = 1; : : : ; p; t6 s6T};

Y[t;T ] := span{yk(s); k = 1; : : : ; m; t6 s6T}:
By convention the past spaces do not include the present.
When t0 =−∞ we shall use the shorthands U−

t ;Y
−
t to de-

note the Hilbert spaces U[−∞; t);Y[−∞; t). of random vari-
ables spanned by the in,nite past of u and y up to time t
while for the spaces generated by the whole time history
of u and y we shall use the symbols U, Y. The joint past
space of the input and output processes is denoted P[t0 ;t) :=
U[t0 ;t)∨Y[t0 ;t), the ∨ denoting closed vector sum. The whole
ofH := U∨Y will be taken as the ambient space, where all
random quantities considered hereafter are assumed to live.
All through this paper we shall assume that there is no

feedback from y to u which implies that u and e are uncor-
related, and that the input process is “suPciently rich”, in
the sense that U[t0 ;T ] admits the direct sum decomposition

U[t0 ;T ] =U[t0 ;t) +U[t;T ]; t06 t ¡T; (1.3)

the + sign denoting direct sum of subspaces. The symbol ⊕
will be reserved for orthogonal direct sum. Condition (1.3)
can be found expressed in various equivalent forms in the
literature (see e.g. Hannan & Poskitt, 1988; Verhaegen &
Dewilde, 1992, formula (10)).
The symbol E[ · |A] will denote (wide sense) condi-

tional expectation, i.e. orthogonal projection onto the sub-
spaceA ⊆ H, orthogonality being with respect to the inner
product (1.2).
Concerning system (1.1), it is well-known that the vec-

tor y+t , of future stacked outputs from time t to T can be
represented by

y+t = �x(t) + Hdu+t + Hse+t ; (1.4)

where � denotes the observability matrix and by Hd and
Hs the lower triangular block-Toeplitz matrices made with
the Markov parameters of the deterministic subsystem
(A; B; C; D) and of the stochastic subsystem (A; B; K; I). A
bar over the various symbols will denote the same vector or
matrix “augmented” so as to correspond to a vector Sy+t with
one extra block (namely y(T +1)) appended at the bottom.

Although we shall try to make this paper reasonably
self-contained, a thorough understanding of the concepts
involved will require the background material exposed in
Chiuso and Picci (2004b). We shall have to refer the reader
to this paper also for a detailed explanation of some nota-
tions which will be used in the following.

2. Conditioning and asymptotic variances of the A; C
estimates

In Chiuso and Picci (2004b) various subspace algorithms
have been recasted into a common framework using ideas
from stochastic realization theory, a useful result of this
eTort being that, at least for the estimation of the (A; C)
parameters, the N4SID method, the “Robust” N4SID and
PO-MOESP methods (and also CCA) can be dealt with
in a uni,ed manner. What distinguishes these methods is
essentially the state construction step. Assuming the order
estimation step is statistically consistent (i.e. the true order is
eventually obtained when the sample size tends to in,nity),
the identi,cation procedure is de,ned (asymptotically) by
assigning a so-called complementary state vector obtained
by projecting the transient Kalman ,lter state x̂(t) onto the
orthogonal complement of the future input space

x̂c(t) := E[x̂(t)|U⊥
[t;T ]] = (x̂(t)− E[x̂(t)|U[t;T )]) (2.1)

whose covariance matrix is

�x̂cx̂c := E{x̂c(t)x̂c(t)�}= �x̂x̂|u+ : (2.2)

Introduce the Cholesky factors, Lx̂ of �x̂ x̂ and Lu+ of �u+u+ .
Using a well-known formula for the conditional covariances,
we have

�x̂x̂|u+ = Lx̂[I −�x̂u+��
x̂u+]L

�
x̂

�u+u+|x̂ = Lu+[I −�u+x̂��
u+x̂]L

�
u+ ; (2.3)

where �x̂u+ is the normalized cross-covariance

�x̂u+ := L−1
x �xu+L

−�
u+ =��

u+x̂

whose singular values (bounded by one in magnitude) are
the well-known canonical correlation coe5cients of the
present state space, spanned by the random vector x̂(t), and
future input space U[t;T ]. The index of collinearity of the
identi,cation problem is the maximal singular value of�x̂u+ .
Clearly �Max(�x̂u+) � 1 ⇔ �x̂cx̂c is nearly singular. In fact,
if the covariance matrix of the state at time t is normalized
to the identity i.e. we choose a basis in the model in such a
way that �x̂x̂ = I , we have exactly

�x̂cx̂c = I −�x̂u+��
x̂u+ : (2.4)

The Gaussian distribution with mean � and covariance ma-
trix � is denoted N(�; �). If a sequence of random vec-
tors {zN} converges almost surely to a constant z0 and

is asymptotically normal, i.e.
√
N (zN − z0) d→N(0; �),

where d→ denotes convergence in distribution, one says that
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� is the asymptotic variance of {√N zN}. Notation: � =
AsVar(

√
N zN ). The asymptotic covariance of two, asymp-

totically jointly Gaussian, sequences is de,ned in a similar
way.
In order to guarantee the existence of the asymptotic vari-

ances, we shall assume that in model (1.1) of the true sys-
tem generating the data, the innovation process {e(t)} is
a martingale diTerence with respect to the �-algebra Et ∨
U generated by the random variables {e(s); s¡ t} and
{u(t); t ∈Z}, more precisely, assume for j; k¿ 0, that

E{e(t + k) |Et ∨U}= 0; k¿ 0; (2.5a)

E{e(t + j)e(t + k)� |Et ∨U}= E{e(t + j)e(t + k)�}
=��jk (2.5b)

for a positive de,nite matrix �. We shall also need bound-
edness of the fourth moment of {e(t)} and {u(t)}. These
“noise conditions” are often found in the statistical literature
(see e.g. Hannan & Deistler, 1988); they hold, for example,
if {e(t)} is a i.i.d. process (strict sense white noise) with ,-
nite fourth-order moments, independent of u, or if {e(t)} is
Gaussian, independent of u. In the ,rst situation we shall also
assume that the observed joint input–output process [y; u]
is ergodic. For Gaussian processes, second-order ergodicity
suPces since it is the same as ergodicity.

Theorem 1. Assume that the stationary innovation pro-
cess, {e(t)}, in model (1.1) of the true system generating the
data, satis�es the noise conditions described above. Then
the vectorized parameter estimates with a sample consist-
ing of N data, [vec(ÂN )�vec(ĈN )�]�, form an asymptot-
ically Gaussian sequence with

AsVar(
√
Nvec(ÂN ))

= SF



∑

|�|6�+1

�x̂cx̂c (�)⊗ �Se+ Se+(�)


 SF�; (2.6)

AsVar(
√
Nvec(ĈN ))

=F



∑
|�|6�

�x̂cx̂c (�)⊗ �e+e+(�)

F�; (2.7)

AsCov(
√
Nvec(ÂN );

√
Nvec(ĈN ))

= SF

{
�=�∑

�=−�−1

�x̂cx̂c (�)⊗ �Se+e+(�)

}
F�; (2.8)

where, setting

M := [(K �†)− A(�† 0n×m)];

R := [(Im 0m×m(�−1))− C�†]; (2.9)

�† ∈Rn×m(�+1) being a left-inverse 1 of the observability
matrix � of the system, the matrices F; SF are de�ned by

F := �−1
x̂cx̂c ⊗ [RHs]; SF := �−1

x̂cx̂c ⊗ [M SH s]: (2.10)

Further,

�x̂cx̂c (�) := E{x̂c�(t)x̂c(t)�};
�e+e+(�) = E{e+t+�(e+t )�} (2.11)

x̂c�(t) being the �-steps ahead stationary shift of the pro-
cesses x̂c(t), namely

x̂c�(t) := E[x(t + �)|U⊥
[t+�;T+�+1]]; (2.12)

U⊥
[t+�;T+�+1] being the orthogonal complement of

U[t+�;T+�+1] in (P[t0+�; t+� ) ∨U[t+�;T+�+1]).

Comments on the proof of Theorem 1. The statement is
essentially the same as Theorem 4.1 in Chiuso and Picci,
2004a). We have only introduced a slight modi,cation in
the de,nition of the time-updated estimate, x̂c(t + 1) (and
of Sx(t+1)), which we both de,ne using a future horizon of
� := T − t data points. 2 To get the formulas right, we just
need to assume that our reference future interval is [t; T +1]
and use the extra data point to this purpose, substituting
T + 1 in place of T wherever needed.

Formulas (2.6)–(2.8) are valid for a variety of estimation
methods, including also CCA, provided the complementary
state x̂c is properly de,ned.

From (2.6), (2.7) one can see that the inverse of the con-
ditional covariance, �−1

x̂x̂|u+ , determines the magnitude of the
variance of the estimation errors. This is even more visi-
ble if we “normalize” the system parameters by ,xing an
orthonormal basis x̂(t). In this case, by (2.4), we see that
the asymptotic covariances are roughly “proportional” to the
inverse of the matrix I − �x̂u+��

x̂u+ . In particular, in the
presence of near collinearity of the regressors (see, Chiuso
& Picci, 2004b), �min(�x̂x̂|u+) = �min( I − �̂�̂�) � 0, and
the variance of the estimation errors will explode.

2.1. Asymptotic variance of the N4SID estimator of B;D

There exist a plethora of methods in the literature for
estimation of the (B;D) parameters and no uni,ed analy-
sis seems to be possible. We have chosen to analyze one,
approximately linear, estimation scheme of (B;D), due
to Van Overschee and De Moor (1994). The asymptotic
(conditional) variance of this estimate can be written down
explicitly and could therefore make a natural term of com-
parison to study the inUuence of ill conditioning on the
statistical accuracy of estimation of (B;D).
A diTerent estimator which slightly generalizes the “linear

regression” estimator of Verhaegen and Dewilde (1992),

1 See Chiuso and Picci (2004a), formula (4.19).
2 The reason for introducing this modi,cation is explained in Chiuso

and Picci (2004a), Remark 4.1.
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which also seems to be one of the most widely used, is
analyzed in the paper by Chiuso and Picci (2004a).
We shall now quickly review the estimation of (B;D) as

proposed in the paper Van Overschee and De Moor (1994).
The ,rst step is to estimate, by ordinary least squares, the
matrices K1;K2 from a linear regression of the form[

SX t+1

Yt

]
=

[
A

C

]
SX t;+

[
K1

K2

]
U[t;T+1] + (Error);

where the ,nite-sample size “pseudostates” SX t; SX t+1 are de-
,ned in Appendix A, cf. (A.4). The estimate of the observ-
ability matrix, �̂ used to form SX t may be taken either as pro-
posed in the classical N4SID procedure or as in the “robust”
version recalled in Section 4 of Chiuso and Picci (2004b).
The asymptotic variance of these estimates can be com-

puted explicitly and are given in the following Theorem.
The proof is very similar to that of Theorem 1; details can
be found in the appendix.

Theorem 2. Assume that the stationary innovation pro-
cess, {e(t)}, in model (1.1) of the true system generating
the data, satis�es the noise conditions. Then the vectorized
parameter estimates vec(K̂1;N ) and vec(K2;N ) form an
asymptotically Gaussian sequence with

AsVar(
√
Nvec(K̂1;N ))

= SG



∑

|�|6�+1

� Su+ Su+| Sx(�)⊗ �Se+ Se+(�)


 SG�; (2.13)

AsVar(
√
Nvec(K̂2;N ))

=G



∑
|�|6�

� Su+ Su+| Sx(�)⊗ �e+e+(�)

G�; (2.14)

AsCov(
√
Nvec(K̂1;N );

√
Nvec(K̂2;N ))

= SG

{
�=�∑

�=−�−1

� Su+ Su+| Sx(�)⊗ �Se+e+(�)

}
G�; (2.15)

where Su+ stands for the random vector made of �+2 stacked
input values u(s) with t6 s6T + 1, and

G := �−1
Su+ Su+ | Sx ⊗ [RHs]; SG := �−1

Su+ Su+| Sx ⊗ [M SH s]

R and M being as in (2.9), and,

� Su+ Su+| Sx(�) := E{ S̃u+t+�( S̃u+t )�};
�e+e+(�) = E{e+t+�(e+t )�}; (2.16)

S̃u+t+� being the �-steps ahead stationary shift of the random
vector S̃u+t := Su+t − E[Su+t | Sx(t)].

Since (K1; K2) are known functions of the parame-
ters of the stationary system (Van Overschee & De Moor,
1994, formula (44)), in particular are linear functions of the

parameters B;D, one may write in vectorized form

vec(K1) = L1(A; C)vec

(
B

D

)
;

vec(K2) = L2(A; C)vec

(
B

D

)
; (2.17)

where L := [L1(A; C); L2(A; C)] is a known matrix func-
tion of A; C. The estimator of (B;D) is based on expressions
similar to the above and is normally implemented by “linear
regression” after A and C have been estimated in a preced-
ing step. Of course, to compute the variance of the estimates
in principle one should treat these A and C as sample values
of random variables. For the scope of this paper however
we shall just consider the estimates and the relative vari-
ance expressions which will reported below as conditional,
given the observed value of Â; Ĉ. The full asymptotic co-
variances, taking care of the randomness of A and C can be
computed, at the price of some complications (cf. Chiuso &
Picci, 2004a; Jansson, 2000).

Denote by �K the joint asymptotic covariance matrix of
(K1;K2). Then by a standard formula the (conditional)
variance of the estimates of the B;D parameters follows:

AsVar

{√
Nvec

(
B̂N

D̂N

)}

=(L�L)−1L��KL(L�L)−1 (2.18)

(the inverses must exist if the parametrization is
identi,able).
The asymptotic variance is then seen to be roughly “pro-

portional” to �K , and hence, looking at the expressions
(2.13)–(2.15), the important role in the analysis is now
played by the smallest singular value of the conditional co-
variance matrix � Su+ Su+ | Sx. This of course is inUuenced both
by the collinearity of the subspaces generated by the pseu-
dostate Sx(t) and the future Su+t , and by the possible near sin-
gularity of the matrix � Su+ Su+ which in turn has to do with
persistence of excitation and with the canonical correlation
structure of the input process. One can see here that the sit-
uation could get worse than for the estimates of A and C.

3. Some experimental results and conclusions

To give an idea of possible consequences of collinearity
we present some simulations made on a very simple system.
The system and input spectra (frequency-domain data) are
shown in Fig. 1 below.
The input is a colored ARMA process with roughly

the same bandwidth of the deterministic transfer function
to be identi,ed. The deterministic transfer function and
the stochastic shaping ,lter have disjoint dynamics. The
(power) signal-to-noise ratio is of the order of 10. The data
length for this experiment is 500.
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Fig. 1. True model. Solid: square root of stochastic component spectrum;
dotted: square root of input spectrum; dashed: absolute value of deter-
ministic transfer function.
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Fig. 2. Asymptotic variance (Monte Carlo estimate) of estimated transfer
function versus normalized frequency. Solid : Matlab 5 N4SID (with
re,nement for B and D), dotted: MOESP, dashed: robust N4SID; solid
with crosses: Cramer–Rao bound.

In Figs. 2 and 3 we compare the results of subspace iden-
ti,cation of the (deterministic) transfer function of a simple
third order scalar system. The details of the simulations are
reported in Table 1.
The plots shown in Fig. 2 reports the results of the es-

timated mean squared error using 100 Monte-Carlo runs,
compared with CramWer–Rao lower bound.

• the standard N4SID method (Matlab 5.3 implementation
with re,nement of the B;D estimates, solid line),
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Fig. 3. Typical estimates of the deterministic transfer function versus
normalized frequency. Solid : Matlab 5 N4SID (with re,nement for B
and D), dotted: PO-MOESP, dashed: robust N4SID; solid with crosses:
Cramer–Rao bound.

Table 1
Poles, Zeros and Gains for the stochastic, deterministic subsystems and
input

Poles Zeros K

Stoch. system
−0:2 + j0:6

−0:2− j0:6

0:5

0:7
1

Det. system

0:75 + j0:55

0:75− j0:55

0:9

−0:1 + j0:8

−0:1− j0:8

0:5

0.2

Input

0:7 + j0:4

0:7− j0:4

0:85

0:2 + j0:7

0:2− j0:7

−0:6 + j0:6

−0:6− j0:6

0:7

−0:1 + j0:8

−0:1− j0:8

0.1

• the MOESP algorithm (dashed),
• the robust N4SID method (dotted).

It is evident that all the algorithms tend to identify a
non-existing frequency response with a rather high reso-
nance in the frequency band of the stochastic disturbance in-
put. This is a structural feature of the problem which shows
also in the CramWer–Rao bound. The Monte Carlo estimates
of the asymptotic variance remain however quite far from
the CramWer–Rao bound, with a relative standard error of the
frequency response estimate (in the frequency band of the
stochastic disturbance) of about 100%. It will be shown in
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a forthcoming paper (Chiuso & Picci, 2003), how and why
this kind of problems can be avoided using an “orthogonal
decomposition” based algorithm.

3.1. Conclusions

In this paper explicit expressions have been provided
pinpointing the sensitive dependence of the asymptotic
variances of the estimates on the index of collinearity
�min(I − �̂�̂�). The accuracy of the B;D-parameter esti-
mation has been discussed for the N4SID algorithm but a
similar analysis to the one reported in this paper also ap-
plies to the “linear regression method” of Verhaegen and
Dewilde (1992).

Appendix A.

Proof of Theorem 2. Assuming we have data up to time
T + 1, we now de,ne Z[t;T ] := EN [Y[t;T ] |P[t0 ;t) ∨ U[t;T+1]]
and let SX t := �̂†Z[t;T ] so that by the ,nite-sample version
of (1.4)

SX t = �̂†�X̂ t + �̂†HdU[t;T ] + �̂†HsẼ[t;T ]; (A.1)

where Ẽ[t;T ] := EN [E[t;T ] |P[t0 ;t)∨U[t;T+1]] and the ,nite-data
approximate Kalman ,lter state X̂ t := EN [Xt |P[t0 ;t) ∨
U[t;T+1]] satis,es the linear recursion[
X̂ t+1

Yt

]
=

[
A

C

]
X̂ t +

[
B

D

]
Ut +

[
K

I

]
Ẽt +

[
K(t)

I

]
Êt :

(A.2)

Here Êt := Yt − EN [Yt |P[t0 ;t) ∨ U[t;T+1]] is the ,nite data
innovation tail matrix, and K(t) comes from the usual de,-
nition of Kalman gain, K(t)Êt := EN [Yt |Êt].

The updated pseudostate SX t+1, is now de,ned using
Z[t+1;T+1] so that

SX t+1 = �̂†�X̂ t+1 + �̂†HdU[t+1;T+1] + �̂†HsẼ[t+1;T+1]:

Now introduce the change of basis matrix TN := �̂†� (non-
singular for N large enough) and let

AN := TNAT−1
N ; CN := CT−1

N ; BN := TNB (A.3)

and substitute (A.2) into (A.1) written for time t + 1, to
obtain[

SX t+1

Yt

]
=

[
AN

CN

]
SX t;+

[
K1;N

K2;N

]
U[t;T+1]

+

[
KN (t)

I

]
Êt +

[
MN SH sẼ[t;T+1]

RNHsẼ[t;T ]

]
; (A.4)

where KN (t) := TNK(t); KN := TNK and

K1;N := ([BN �̂†]− [AN �̂† 0]) SH d ; (A.5)

K2;N := ([D 0]− CN �̂†)Hd ; (A.6)

MN := ([KN �̂†]− [AN �̂† 0]); (A.7)

RN := ([I 0]− CN �̂†): (A.8)

In these expressions SH d ; SH s are the Toeplitz matrices Hd ; Hs

bordered as de,ned in Section 1. Since �̂ is assumed to be a
consistent estimate of �, for N → ∞ TN → I , and we shall
have

K1;N → K1 := ([B �†]− [A�† 0]) SH d ; (A.9)

K2;N → K2 := ([D 0]− C�†)Hd ; (A.10)

MN → M := ([K �†]− [A�† 0]); (A.11)

RN → R := ([I 0]− C�†); (A.12)

where (K1;K2) are known functions of the parameters
of the stationary system, as de,ned in Van Overschee and
De Moor (1994).
From (A.4), using again the oblique projection Lemma,

we can now write down the least-squares estimates of
K1;N ;K2;N as

K̂1;N = EN [ SX t+1U�
[t;T+1] | SX t]�̂−1

SU+ SU+ | SX
; (A.13)

K̂2;N = EN [YtU�
[t;T+1] | SX t]�̂−1

SU+ SU+ | SX
; (A.14)

where the symbol SU+ designates the bordered tail ma-
trix corresponding to Su+, so that �̂ SU+ SU+ | SX := EN [U[t;T+1]

U�
[t;T+1] | SX t]. All the conditional (sample) covariances in-

volve projections onto the orthogonal complement of the
rowspace of SX t in P[t0 ;t) ∨ U[t;T+1]. Letting SX⊥

t span this
orthogonal complement, we have EN [Êt | SX⊥

t ] = 0 and

EN (EN [Ẽ[t;T+1] | SX⊥
t ]EN [U[t;T+1] | SX⊥

t ]
�)

=EN (E[t;T+1]EN [U[t;T+1] | SX⊥
t ]

�) := �̂ SE+ SU+ | SX

whereby (A.13) and (A.14) can be rewritten as

K̂1;N =K1;N +MN SH s�̂ SE+ SU+ | SX �̂
−1
SU+ SU+ | SX

;

K̂2;N =K2;N + RNHs�̂E+ SU+ | SX �̂
−1
SU+ SU+ | SX

; (A.15)

where SE+ stands for the augmented matrix E[t;T+1]. These
provide exact expressions for the ,nite sample estimation
errors, from which, following exactly the same arguments
in the proof of Theorem 4.1 in Chiuso and Picci (2004a),
one gets the asymptotic variance expressions (2.13)–(2.15).
The rest is nearly obvious.
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