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Abstract

It has been observed that identi"cation of state-space models with inputs may lead to unreliable results in certain experimental conditions
even when the input signal excites well within the bandwidth of the system. This may be due to ill-conditioning of the identi"cation
problem, which occurs when the state space and the future input space are nearly parallel.

We have in particular shown in the companion papers (Automatica 40(4) (2004) 575; Automatica 40(4) (2004) 677) that, under these
circumstances, subspace methods operating on input–output data may be ill-conditioned, quite independently of the particular algorithm
which is used. In this paper, we indicate that the cause of ill-conditioning can sometimes be cured by using orthogonalized data and
by recasting the model into a certain natural block-decoupled form consisting of a “deterministic” and a “stochastic” subsystem. The
natural subspace algorithm for the identi"cation of the deterministic subsystem is then a weighted version of the PI-MOESP method of
Verhaegen and Dewilde (Int. J. Control 56 (1993) 1187–1211). The analysis shows that, under certain conditions, methods based on the
block-decoupled parametrization and orthogonal decomposition of the input–output data, perform better than traditional joint-model-based
methods in the circumstance of nearly parallel regressors.
? 2004 Elsevier Ltd. All rights reserved.

Keywords: Subspace identi"cation; Exogenous inputs; Stochastic realization; Statistical analysis; Stochastic state-space identi"cation

1. Introduction

As observed in (Chiuso & Picci, 1999; Kawauchi,
Chiuso, Katayama, & Picci, 1999) the standard subspace
methods for identi"cation with inputs (e.g. the N4SID
and MOESP-type methods) may lead to unreliable re-
sults in certain experimental conditions. As discussed
in a previous paper (Chiuso & Picci, 2004d), this be-
havior can be explained in terms of ill-conditioning of
the underlying multiple regression problem which oc-
curs when the future input space and the state space of
the system are nearly parallel (i.e. some canonical an-
gle is near zero). It is well-known in regression analysis
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that the ill-conditioning due to “almost parallel” regressors
can be cured by orthogonalizing the data in an appropriate
way. In this paper, it is also argued that ill-conditioning
can be cured (at least in certain cases) by reformulating
the problem using orthogonalized data. Scope of this paper
is to demonstrate that the use of a preliminary orthogonal
decomposition of the data, together with appropriate sub-
space algorithms adapted to this decomposition, in the spirit
of Verhaegen and Dewilde (1993), Picci and Katayama
(1996a), may, in certain circumstances, lead to more ro-
bust and accurate estimates. As discussed in Picci and
Katayama (1996a), the orthogonal decomposition of the
data induces a “canonical” decomposition of the model into
a “stochastic” and a “deterministic” subsystem. It turns out
that the PI-MOESP method introduced by Verhaegen and
Dewilde (1993) in the framework of instrumental variable
identi"cation, is in fact a (MOESP-type) subspace identi-
"cation method of the deterministic subsystem correspond-
ing to the orthogonal decomposition philosophy mentioned
above.
The conditioning analysis of Chiuso and Picci (2004d)

considers linear models describing jointly the dynamics of
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the deterministic and stochastic components of the output
process. These models allow for common poles in the de-
terministic transfer function and in the shaping "lter which
models the stochastic error/disturbance process. In practice,
however modeling a common dynamics in the two subsys-
tems is seldom needed and in the frequent case where the
true deterministic and stochastic output components are dy-
namically decoupled, the “joint” models turn out to be badly
overparametrized. Models with decoupled deterministic and
stochastic dynamics admit instead a natural block-diagonal
canonical form which involves less parameters and "ts in
a natural way the preliminary data orthogonalization men-
tioned before. In this spirit, we shall discuss the numerical
conditioning of subspace identi"cation of decoupled mod-
els (assuming disjoint dynamics) and compare with that of
joint models.
Since ill-conditioning depends on the input signal, in or-

der to assess and compare the performance of competing
identi"cation methods, some standard “worst case” input
classes should be de"ned, and the performance of candidate
methods should be compared relative to this class of input
signals. In this paper, we propose a de"nition of worst-case
input signals which may be called probing inputs. As antic-
ipated in Chiuso and Picci (2000), the probing inputs can
be de"ned and designed, in such a way as to lead to the
largest state-to-input correlation coeLcients, and hence to
the worst possible conditioning of the identi"cation prob-
lem, for a "xed input power/bandwidth. Numerical exper-
iments are included demonstrating how these input signals
may lead to a substantial deterioration of performance in the
algorithms using joint model parametrization with respect
to those using decoupled models.
Concerning this and previous papers dealing with

ill-conditioning of subspace methods, one general remark is
in order: we do not want to give the reader the impression
that the possible loss of accuracy which may be incurred in
presence of ill-conditioning is due to the use of subspace
algorithms. Quite the contrary, the CramNer Rao bounds
in the simulations show that also (theoretically) optimal
methods, like prediction error methods, will behave, under
the same conditions, approximately the same as subspace
methods. A point which should be made is that subspace
methods are based on well understood system theoretic
principles (stochastic realization) and hence are amenable
of rather in-depth analysis. Consequently for subspace
methods these phenomena can be thoroughly analyzed and,
in certain cases, an appropriate cure may be found. Much
less of this analysis seems to be possible for prediction error
methods.
The structure of the paper is as follows:

• In Section 2, we review the basic background of subspace
identi"cation and discuss the orthogonal decomposition
of linear stochastic models into a block-diagonal struc-
ture where the stochastic and deterministic subsystems
are completely decoupled.

• In Section 3, we discuss the "nite-interval stochastic
realization problem of the deterministic subsystem and
describe a "nite-time subspace identi"cation algorithm
which is a weighted version of the PI-MOESP algorithm
of Verhaegen and Dewilde (1993). We also do some
elementary numerical conditioning analysis of subspace
identi"cation for the deterministic subsystem.

• In Section 4 a class of input signals, called probing in-
puts is introduced which lead to the largest state-input
correlation coeLcients and hence enhance the possible
ill-conditioning of the identi"cation problem.

• Section 6 contains a discussion of the simulation results
and some conclusions.

The comparison of the two methods should ultimately be
based on asymptotic error variance formulas for the esti-
mates. These formulas are derived in a companion paper
(Chiuso & Picci, 2004b) and we shall defer "nal comments
on this issue to tis paper.

2. State-space models for subspace identi�cation

Assume that the observed input–output data of the un-
known system, which we want to identify

{ut0 ; : : : ; ut ; : : :}; {yt0 ; : : : ; yt ; : : :}; ut ∈Rp; yt ∈Rm;
(2.1)

are sample paths of a pair of zero-mean second-order sta-
tionary random processes y = {y(t)}; u = {u(t)} having a
rational spectral density or, equivalently, assume that (2.1)
is generated by a linear stochastic system of the form
x(t + 1) = Ax(t) + Bu(t) + Gw(t);

y(t) = Cx(t) + Du(t) + Jw(t);
t¿ t0; (2.2)

where A; B; G; C; D; J are constant matrices, {x(t)} is the
state process of dimensions n, and {w(t)} is a normalized
white noise process. We shall always make the assumption
that there is no feedback from y to u. This implies that the
processes {u(t)} and {w(t)} are completely uncorrelated.
See e.g. Caines and Chan (1976), Gevers and Anderson
(1981), Picci and Katayama (1996a) for a discussion of this
concept.
System (2.2) is called a stationary stochastic realiza-

tion of the output process y with input u. There are always
in"nitely many such linear representations of y, which are
equivalent up to (conditional) second-order statistics. A real-
ization which is unique up to change of basis, is the so-called
“innovation representation”

x(t + 1) = Ax(t) + Bu(t) + Ke(t);

y(t) = Cx(t) + Du(t) + e(t); (2.3)

where the white noise {e(t)} has the meaning of (stationary)
one step prediction error of {y(t)}, given the in"nite past
history of {y(t)} {u(t)} up to time t − 1.
For obvious reasons, in identi"cation one wants to use

realizations which are (stochastically)minimal, in the sense
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that the state dimension, n, is the smallest possible. This
implies in particular (but is not equivalent to) that the triplet
{C; A; [BG]} is minimal in the usual system-theoretic sense.
In order to discuss our approach to the problem, we need

to introduce some background concepts and notations. Since
this paper is in a sense a continuation of the articles (Chiuso
& Picci, 2004c, d), we shall just quickly review the notations
in the next subsection and refer the reader to Chiuso and
Picci (2004c, d) for a thorough discussion of the background
material.

2.1. Notations

As before, boldface symbols will denote random quanti-
ties. For −∞6 t06 t6T 6+∞ de"ne the Hilbert spaces
of scalar zero-mean square integrable random variables

U[t0 ;t) := span{uk(s); k = 1; : : : ; p; t06 s¡ t};
Y[t0 ;t) := span{yk(s); k = 1; : : : ; m; t06 s¡ t};
where the bar denotes closure in mean square, i.e. in the
metric de"ned by the inner product 〈�; � 〉 := E{�; �}, the
operator E denoting mathematical expectation. We shall let
P[t0 ;t) := U[t0 ;t) ∨ Y[t0 ;t) denote the joint past space of the
input and output processes at time t (the ∨ denotes closed
vector sum). Similarly, let U[t;T ];Y[t;T ] be the respective fu-
ture spaces up to time T

U[t;T ] := span{uk(s); k = 1; : : : ; p; t6 s6T};
Y[t;T ] := span{yk(s); k = 1; : : : ; m; t6 s6T}:
By convention the past spaces do not include the present.
When t0 = −∞ we shall use the shorthands U−

t ;Y−
t for

U[−∞; t);Y[−∞; t), the closed vector sum U−
t ∨ Y−

t being
denoted by P−

t (the in"nite joint past at time t). These
are the Hilbert spaces of random variables spanned by the
in"nite past of u and y up to time t.
Subspaces spanned by random variables at just one time

instant (e.g. U[t; t];Y[t; t], etc) are simply denoted Ut ;Yt , etc.
while for the spaces generated by the whole time history of
u and y we shall use the symbols U, Y, respectively.
All through this paper we shall assume that the input

process is “suLciently rich”, in the sense that U[t0 ;T ] admits
the direct sum decomposition

U[t0 ;T ] =U[t0 ;t) +U[t;T ]; t06 t ¡T; (2.4)

the + sign denoting direct sum of subspaces. The symbol ⊕
will be reserved for orthogonal direct sum. Condition (2.4)
can be found expressed in various equivalent forms in the
literature, see e.g. Verhaegen and Dewilde (1992, formula
(10)). Also various conditions ensuring suLcient richness
are known. For example, it is well-known that for a full-rank
purely non-deterministic process u to be suLciently rich, it is
necessary and suLcient that the determinant of the spectral
density matrix �u should have no zeros on the unit circle
(Hannan & Poskitt, 1988).

We shall use indexed capitals, e.g. Xt; Yt ; Ut , to denote
"nite “tail” matrices, constructed at each time t from sample
sequences of x; y; u, by letting

Yt := [yt yt+1 : : : yt+N−1];

Ut := [ut ut+1 : : : ut+N−1];

Xt := [xt xt+1 : : : xt+N−1]: (2.5)

Symbols like Y[t;T ] will denote a Hankel matrix, e.g.

Y[t;T ] := [Y�
t : : : Y�

T ]�

and YN
[t;T ] the corresponding ("nite-dimensional) rowspace.

We shall assume second-order ergodicity of all random
processes involved. Introducing the notation

ENXtY�
t :=

1
N

XtY�
t =

1
N

N−1∑
k=0

xt+ky�
t+k

second-order ergodicity means that, ENYt+�Y�
t → Ey(t +

�)y(t)� for N → ∞. For this reason ENXtY�
t is a con-

sistent estimate of the covariance �x(t)y(t) and will also be
denoted by the symbol �̂x(t)y(t). In a sense (which can be
made precise), “"nite expectations” (EN{·}) operations on
tail sequences like Yt; Xt , etc. behave, for N → ∞, like or-
dinary expectations on the corresponding random variable
y(t); x(t), etc. This we shall sometimes express by saying
that Yt → y(t) as N → ∞. In the same spirit, Y[t;T ] “tends
to” the m(T − t + 1)-dimensional column random vector
y[t;T ], as N → ∞, and one can say that YN

[t;T ] → Y[t;T ]

for N → ∞. “Approximating” spaces of random variables
by vector spaces spanned by the rows of tail matrices is a
standard device in subspace identi"cation. Finally, we shall
write

EN [X |Y ] := EN [XY T](EN [YY T])−1Y

for the well-known linear regression formula solving the
(deterministic) least-squares problem minA∈Rn×m‖Y −AX ‖.
Let x and y be random vectors, linear functions of some
jointly second-order ergodic, stationary processes, whose
shifted sample values form the "nite tail sequences X and Y
of length N . It may be seen that the limit (in a suitable sense)
for N → ∞, of EN [X |Y ] is the wide-sense conditional
expectation

E[x | y] := E[xyT](E[yyT])−1y:

2.2. A decoupled canonical form

Let U⊥ be the orthogonal complement of U in U ∨ Y.
The stochastic processes yd and ys, called the deterministic
and the stochastic component of y, de"ned by the comple-
mentary projections

yd(t) := E[y(t) |U]; ys(t) := y(t) − E[y(t)|U] (2.6)

are obviously uncorrelated at all times. It follows that
y admits an orthogonal decomposition as the sum of its
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deterministic and stochastic components

y(t) = yd(t) + ys(t) Eys(t)yd(�)� = 0 for all t; �:

It is easy to see that, under absence of feedback, yd is actually
a causal linear functional of the input process, i.e.

yd(t) = E[y(t) |U−
t+1]; t ∈Z

see Picci and Katayama (1996a), and is hence representable
as the output of a causal linear time-invariant "lter driven
only by the input signal u. Consequently, ys(t) is also the
“causal estimation error” of y(t) based on the past and
present inputs up to time t, i.e.

ys(t) := y(t) − E[y(t) |U−
t+1]: (2.7)

Since, under absence of feedback, u and w are uncorrelated,
the deterministic and stochastic components of a process
represented by a state-space realization of type (2.2) are rep-
resented by (generally non minimal) individual state-space
realizations, obtained by setting u = 0 and w = 0 in (2.2),
or, equivalently, e = 0 in (2.3).
Let us now restrict to the innovation model (2.3), here-

after assumed to be minimal. Its input–output relation has
the familiar form y = F(z)u + G(z)e with “stochastic” and
“deterministic” transfer functions F(z)=D+C(zI −A)−1B
and G(z) = I + C(zI − A)−1K . Note that in these formu-
las the transfer functions are parametrized by the same dy-
namic parameters A; C and therefore need not be repre-
sented minimally. This is essentially the well-known AR-
MAX parametrization, most often considered in the identi-
"cation literature. In most practical cases, however, unless
there are known “physical” disturbances entering the sys-
tem from the same input channels as u, the stochastic and
deterministic dynamics will be completely diUerent. In this
case F(z); G(z) are parametrized by non-minimal realiza-
tions and, even if the “true” model (2.3) had cancellations
leading to “true” subsystem transfer functions of individ-
ual degrees nd ; ns, smaller than the overall dimension n, in
the identi"ed model the stochastic and deterministic transfer
functions will invariably have the same dimension n of the
joint system. In other words, "tting a model which allows for
the same deterministic and stochastic dynamics, to generic
data, will almost surely lead to identi"ed transfer functions
F̂(z); Ĝ(z) both of maximum degree, with too many parame-
ters, near pole-zero cancellations and higher variance of the
estimates. For this reasons we may, in many situations, re-
gard the ARMAX modelling philosophy as being unnatural.
On the other hand, (still assuming absence of feedback)

the innovation representation of y can be obtained by
combining in parallel a “deterministic” state-space model
for yd

xd(t + 1) = Adxd(t) + Bdu(t); (2.8a)

yd(t) = Cdxd(t) + Du(t); (2.8b)

with the innovation representation of ys

xs(t + 1) = Asxs(t) + Kses(t); (2.9a)

ys(t) = Csxs(t) + es(t); (2.9b)

where es(t) is the one-step prediction error of the stochastic
component ys based on its own past, i.e. the innovation
process of ys. It is shown in Picci and Katayama (1996b)
that es actually coincides with the innovation process e of
(2.3). Hence, the innovation model of the process y with
inputs, can be described by a “canonical” block-diagonal
realization[
xd(t+1)

xs(t+1)

]
=

[
Ad 0

0 As

][
xd(t)

xs(t)

]
+

[
Bd 0

0 Ks

] [
u(t)

e(t)

]
;

y(t) = [Cd Cs]

[
xd(t)

xs(t)

]
+ Du(t) + e(t); (2.10)

where xd(t) and xs(t), are the deterministic and stochastic
components of the state, mutually uncorrelated at all times.
The deterministic and stochastic transfer functions of (2.10),
can then be parametrized as F(z)=D+Cd(zI−Ad)−1Bd and
G(z)=I+Cs(zI−As)−1Ks. In this case the deterministic and
stochastic models are parametrized independently and more
parsimoniously than in the ARMAX model. 1 In fact, since
nd(m+p)+mp+2nsm¡m(nd+ns)+(nd+ns)(p+m)+mp,
canonical forms for the decoupled model have always less
free parameters than the jointly parametrized model.
In general it may happen that, even if the realizations of

the stochastic and deterministic components of y are indi-
vidually minimal, the joint model is not, as there may be a
loss of observability due to the presence of common modes
in the dynamics of the two subsystems. Hence in general a
minimal realization takes the form

Vxd(t + 1)

x0(t + 1)

Vxs(t + 1)


=




VAd 0 0

0 A0 0

0 0 VAs






Vxd(t)

x0(t)

Vxs(t)




+




VBd 0

B0 K0

0 VK s




[
u(t)

e(t)

]
;

y(t) = [ VCd C0 VCs]



Vxd(t)

x0(t)

Vxs(t)


 + Du(t) + e(t); (2.11)

1 The so-called Box–Jenkins models in PEM identi"cation (Ljung,
1997), seem to serve a similar purpose.
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where x0, of dimension n0, describes the common dynam-
ics, dim Vxs = ns − n0 := Vns, and dim Vxd = nd − n0 := Vnd.
This brings down the dimension of the model (2.10) from
nd + ns = Vnd + 2n0 + Vns, to Vnd + n0 + Vns for the min-
imal description (2.11). The analysis of subspace algo-
rithms using minimal models of this general kind leads
to notational complications and will not be taken up
in this paper. Henceforth cases where there is common
dynamics will be regarded as “very unlikely” and ex-
cluded from our analysis, on the basis of the following
assumption.

Assumption 1. The deterministic and stochastic subsys-
tems (2.9) and (2.8) of the true model have no com-
mon dynamics, i.e. the sum of respective dimensions
nd + ns is equal to the dimension n, of the (minimal) joint
model (2.3).

Under Assumption 1 there is a non-singular change of
basis bringing (2.3) into a decoupled form of the type
(2.10). 2 Hence the deterministic transfer function of the
system is (minimally) described by the upper left block
of realization (2.10) of the “true” system. So, to esti-
mate the deterministic transfer function F(z), one could
in principle estimate just the “deterministic” parameters
(Ad ; Cd ; Bd ; D). Dually, to estimate G(z) one could in princi-
ple estimate just the “stochastic” parameters (As; Cs; Ks; ").
This simple idea is the rationale of the orthogonal de-
composition algorithm of Verhaegen and Dewilde (1993),
Picci and Katayama (1996a), Chiuso and Picci (1999),
Chiuso and Picci (2001).
Our main concern in this paper will be to compare the

performance of subspace algorithms for the identi"cation
of decoupled models of type (2.10), with the standard sub-
space algorithms applied to the identi"cation of the joint
model (2.3) which is usually considered in the literature.
We shall in fact only compare performances of the identi-
"cation of the deterministic subsystem. Most of the results
of this paper will actually hold without any assumption
of  nite dimensionality of the stochastic component ys,
which could be just any stationary, purely non deterministic
process.
Even if we shall not discuss the identi"cation of the

stochastic component, may we just mention that in case
ys is modeled by a "nite-dimensional realization, and
hence the data are to be described by a linear model
of overall dimension n, the block structure of (2.10)
gives a more parsimonious parametric description also of
the stochastic component of the output process and we
should expect better results also in the identi"cation of
ys. We shall however postpone this veri"cation to another
occasion.

2 Just consider any choice of basis in the state space, coherent with
the orthogonal direct sum decomposition X=Xd ⊕Xs, where Xd and Xs

are the reachable subspaces for u and e from t = −∞.

3. Identi�cation from data on a �nite interval

Model (2.10) is a stationary model describing the sta-
tionary signals (y; u) on an in"nite time interval. If the data
were available from the in"nite past, we could in principle
compute projections (2.6) exactly and split the identi"cation
problem into two distinct subproblems with orthogonal data.
In fact, from the two orthogonal components {yd ; u}, and
ys, we could estimate separately the deterministic and the
stochastic subsystem in (2.10). But in"nite data of course
never occur in practice and the problem of recovering in
a statistically consistent way, the stationary model (2.10)
from  nite input–output data is not completely trivial. Also
the advantages of this procedure in terms of accuracy of the
estimates are not apparent and some analysis is needed.
The "nite-data algorithm we consider is based on a

preliminary decomposition of the "nite (random) data
into "nite-interval “deterministic” and a “stochastic”
components:

ŷd(t) := E[y(t) |U[t0 ;T ]]; ŷs(t) := y(t) − ŷd(t):

the “hatted” variables being the best reconstruction of the
stationary components yd(t) and ys(t), based on data avail-
able on the  nite time interval [t0; T ].

It is easy to see that the deterministic component ŷd(t)
admits the "nite-interval realization:
x̂d(t + 1) = Adx̂d(t) + Bdu(t);

ŷd(t) = Cdx̂d(t) + Du(t);
t ∈ [t0; T ];

x̂d(t0) := E[xd(t0) |U[t0 ;T ]]; (3.1)

which can be obtained, for example, by projecting the tran-
sient Kalman "lter equations (2.16) of Chiuso and Picci
(2004d) onto U[t0 ;T ]. The model is non-causal, due to the
initial condition depending on the future input history. Of
course, when t0 → −∞; At−t0

d xd(t0) → 0 and we recover
the steady-state deterministic model which is instead causal.
Let X̂d

t := span{xd(t)} be the state space of the determin-
istic realization (3.1). A technical condition which will be
needed in the following is the (deterministic) “consistency
condition”:

X̂d
t ∩ U[t;T ] = {0}; (3.2)

which is similar (although a bit stronger) than the consis-
tency condition of Jansson and Wahlberg (1998). Compare
formula (3.2) in Chiuso and Picci (2004d). Note that (3.2)
holds trivially if t0 = −∞ since in this case X̂d

t ⊂ U−
t and

the past and future input spaces intersect at zero (the “suL-
cient richness” condition (2.4)). However if t is close to t0 it
may not be satis"ed; in particular it is certainly not satis"ed
for t = t0.
We would like to interpret (3.1) as a regression equation

with unknown parameters (Ad ; Bd ; Cd ; D). However, in anal-
ogy to what happens in the case of a joint model, see the
discussion in Chiuso and Picci (2004d), we "nd that x̂d(t)
is not directly constructible from "nite input–output data.
Therefore (3.1) is, again, only an “ideal” regression model.
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Wemay either resort to a “stationary” approximation assum-
ing t − t0 is large enough so that the eUect of the initial state
is negligible or, in analogy to what is done in N4SID-type
methods, construct a (deterministic) pseudo-state which sat-
is"es an exact (but more complicated) recursion involving
the stationary parameters Ad ; Cd. The stationary approxima-
tion leads to biased estimates and we shall follow this second
route. Actually, we shall refer to a more reliable procedure
which is essentially a weighted version of the PI-MOESP
method of Verhaegen and Dewilde (1992, 1993). For up to
date information on the inWuence of weighting matrices, the
reader may consult (Bauer, Deistler, & Schetter, 2000).
The method is based on computing the orthogonal pro-

jection, Ŷ c
[t;T−1], of the future output data Y[t;T−1] onto the

“complementary” data space spanned by the rows of the
matrix

U⊥
[t;T ] := U[t0 ;t−1] − EN [U[t0 ;t−1]|U[t;T ]]:

This subspace is called “complementary”, since it is the
orthogonal complement of UN

[t;T ] in the data space UN
[t0 ;T ].

The future data up to time T − 1 (instead that up to time
T ) are used in order to keep the same future time horizon
# := T − t in the construction of the complementary state
at time t + 1.
Introduce a non-singular weighting matrix Wd and con-

sider the (weighted) Singular Value Decomposition

WdŶ c
[t;T−1] = USV� = [Û Ũ ]

[
Ŝ 0

0 S̃

] [
V̂�

Ṽ�

]
: (3.3)

In this SVD we keep, say, the "rst n1 “most signi"cant”
singular values. Here Û is the matrix made with the "rst n1
columns of U; V̂ the "rst n1 rows of V , and Ŝ the upper-left
n1 by n1 corner of S. By neglecting the “small” singular
values, we obtain an approximate rank factorization

Ŷ c
[t;T−1] � Û ŜV̂� = '̂dX̂ c

t ; (3.4)

where

'̂d =W−1
d Û Ŝ1=2;

X̂ c
t = Ŝ1=2V̂� = Ŝ−1=2Û�WdŶ c

[t;T−1]; (3.5)

Consider the tail matrix of the "nite-interval deterministic
component ŷd(t), i.e. the linear regression, denoted Ŷ [t;T−1],
of the future output data Y[t;T−1] on the whole input history
U[t0 ;T ]. It follows from (3.1) that

Ŷ [t;T−1] := EN [Y[t;T−1] |U[t0 ;T ]]

= 'dX̂ t + HdU[t;T−1] + E⊥; (3.6)

where 'd is the observability matrix of the model (3.1), X̂ t

is the nd × N tail matrix of the state x̂d(t), and, letting # :=
T − t; Hd is the lower triangular block m# × m# Toeplitz

matrix

Hd : =




D 0 : : : 0 0

CdBd D : : : 0 0

...
. . .

...

CdA#−2
d Bd CdA#−3

d Bd : : : CdBd D




;

(3.7)

of the deterministic subsystem (Ad ; Bd ; Cd ; D). The last term,
E⊥, is a truncation error term which goes to zero as N → ∞.
Since as N → ∞, the last term in the expression

Ŷ c
[t;T−1] = EN [Ŷ [t;T−1] |U⊥

[t;T ]] = 'dEN [X̂ t |U⊥
[t;T ]]

+EN [E⊥ |U⊥
[t;T ]]

tends to zero, in force of the consistency condition (3.2),
the rank of the projected matrix EN [X̂ t |U⊥

[t;T ]] is equal to
nd (the true state dimension) for N large enough. Hence,
the term 'dX̂ t and the “complementary predictor” Ŷ c

[t;T−1],
will have, for N large enough, the same rank nd, and for
N → ∞, the same column spaces. If the rank determina-
tion step in the factorization (3.4) is statistically consistent
(i.e. asymptotically n1 = nd) the approximate factorization
in (3.4) will in the limit assume a special signi"cance, made
precise in the following Proposition.

Proposition 1. Assume that the rank determination step in
factorization (3.4) is statistically consistent (i.e. asymptot-
ically n1 = nd). Let U⊥

[t;T ] denote the orthogonal comple-
ment of U[t;T ] in U[t0 ;T ]. Then as N → ∞, the tail matrix
X̂ c

t tends to the deterministic complementary state vector

x̂c
d(t) := x̂d(t) − E[x̂d(t) |U[t;T ]] = E[x̂d(t) |U⊥

[t;T ]]; (3.8)

which satis es the state equation

x̂c
d(t + 1) = Adx̂c

d(t) + Bd(t) Yv(t);

ŷcd(t) = Cdx̂c
d(t); (3.9)

where ŷcd(t) := ŷd(t) − E[y(t)|U[t;T ]]; Yv(t) = u(t) −
E[u(t) |U[t;T ]] is the backward innovation process of
u(t); Bd(t) := AdKd(t) + Bd, with Kd(t) := E[x̂d(t) Yv(t)�]
([ Yv(t) Yv(t)�])−1 and the initial condition is x̂c

d(t0) = 0.
Let "d := E{ŷcd[t;T−1](ŷ

c
d[t;T−1])

�} and consider the re-
duced (full rank) factorization,

Wd"dW�
d = US2U�; S = diag{.1; : : : ; .nd}; (3.10)

whereU�U=I , and .nd is the smallest non-zero eigenvalue
of Wd"dW�

d . Then, for N → ∞; Ŝ a:s:→ S and

x̂c
d(t) = S−1=2U�Wdŷcd[t;T−1] = '−L

d ŷcd[t;T−1]; (3.11)

where 'd is the observability matrix of the complementary
realization (3.9) and '−L

d := S−1=2U�Wd.

Proof. The statement about convergence for N → ∞ and
expression (3.11), follow by the assumed consistency of
the rank determination step and by second-order ergodicity
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of the data. The recursion for x̂c
d(t) follows by project-

ing the "nite-interval deterministic equation (3.1) onto
U⊥

[t;T ]. In particular note that U⊥
[t+1;T ] = span{ Yv(t)} ⊕U⊥

[t;T ],
see e.g. Lemma 3.2 in Chiuso and Picci (2004a), which
yields directly the state equation. The output equation fol-
lows by computing ŷcd(t) = E[y(t) |U⊥

[t;T ]] = Cdx̂c
d(t) +

DE[u(t) |U⊥
[t;T ]] = Cdx̂c

d(t). Moreover

x̂c
d(t0) = E[x̂d(t0)|U⊥

[t0 ;T ]] = 0

since x̂d(t0)∈U[t0 ;T ].

By the consistency condition (3.2), the complementary
state covariance matrix E[x̂c

d(t)(x̂
c
d(t))

�] is non-singular,
so the matrices Ad and Cd are uniquely determined by the
complementary state by the formulas

Ad = E[x̂c
d(t + 1)(x̂c

d(t))
�](E[x̂c

d(t)(x̂
c
d(t))

�])−1 (3.12)

and

Cd = E[ŷcd(t)(x̂
c
d(t))

�](E[x̂c
d(t)(x̂

c
d(t))

�])−1

= E[y(t)(x̂c
d(t))

�](E[x̂c
d(t)(x̂

c
d(t))

�])−1: (3.13)

From Proposition 1 it follows that the tail matrix X̂ c
t de"ned

in (3.5), is an estimate of the complementary state x̂c
d(t)

which can be used to construct consistent sample-covariance
estimates of Ad and Cd by an obvious sample version of
formulas (3.12), (3.13).
Note that the covariance matrix of the complementary

state x̂c
d(t) coincides with the conditional covariance of x̂d(t)

given the future inputs U[t;T ], namely

E[x̂c
d(t)(x̂

c
d(t))

�] = �x̂d x̂d | u+ ;

E[x̂c
d(t + 1)(x̂c

d(t))
�] = �x̂d; 1x̂d | u+ ;

etc. so that the numerical conditioning of the computation
of (Ad ; Cd) by the weighted PI-MOESP procedure described
above, is actually governed by the condition number of the
conditional covariance matrix �x̂d x̂d|u+ , in line with the gen-
eral analysis of Chiuso and Picci (2004d).
It is now natural to compare the conditioning of the com-

putation of the (A; C) parameters of the decoupled model
(2.8) with the conditioning of the joint model identi"ca-
tion. Assume that we have chosen a basis in the state space
which transforms (2.3) into a block-diagonal structure of
type (2.10). We show in the appendix that in such a basis,
when all modes of the deterministic system have died out,
i.e. At−t0

d � 0, the conditional covariance matrix of the joint
state, �x̂x̂|u+ , becomes block-diagonal i.e.

�x̂x̂|u+ → diag{�x̂d x̂d|u+ ; �x̂s ;x̂s}; (3.14)

where �x̂s ;x̂s = E{x̂s(t)x̂s(t)�}. In this case a comparison
can be made rather easily. To simplify matters we shall
henceforth make the assumption that t − t0 is chosen large
enough, so that the above block diagonal structure holds.

Proposition 2. For t−t0 large enough in the sense described
above, the condition number 0(�x̂d x̂d|u+) for the compu-
tation of (Ad ; Cd) can be estimated as

0(�x̂d x̂d|u+)6 0(�x̂d x̂d )
1 − .2

min(1̂d)

1 − .2
max(1̂d)

; (3.15)

1̂d being the normalized cross-covariance

1̂d := L−1
u 1dL−�

xd ;

where 1d := E[u+t xd(t)�] and Lu; Lxd are square roots of
the covariance matrices of u+t and of xd(t). Bound (3.15)
is sharp.

Formula (3.15) is just a particular case of formula (3.4)
in Chiuso and Picci (2004d) so we shall refer the reader to
that paper for a proof.
Since we have, 2max(�x̂x̂|u+)¿ 2max(�x̂d x̂d|u+) and

2min(�x̂x̂|u+)6 2min(�x̂d x̂d|u+) and all matrices in (3.14) are
symmetric positive semide"nite, so that the singular values
coincide with the eigenvalues, it trivially follows that

0(�x̂x̂|u+)¿ 0(�x̂d x̂d|u+)

which says that the estimation of (Ad ; Cd) is better condi-
tioned than that of the joint parameters (A; C) (relative to the
block diagonalizing basis). In other words, joint estimation
is less reliable than separate estimation of the two blocks.
This is true especially when the eigenvalues of �x̂s ;x̂s diUer
by orders of magnitude from those of �x̂d x̂d|u+ .
An important aspect which is not captured by the ele-

mentary conditioning analysis reported in this section, is the
inWuence of the errors in the “oU-diagonal” blocks when a
non block-diagonal joint model is used. This will be taken
up in the statistical analysis of the companion paper (Chiuso
& Picci, 2004b).
We warn the reader that the analysis here is only rela-

tive to estimation of the (A; C) parameters. More noticeable
diUerences emerge when comparing the estimates of the
(B;D) parameters. This comparison will be also discussed
in Chiuso and Picci (2004b).

4. Probing inputs for identi�cation

As shown in Chiuso and Picci (2004d), the condition-
ing of joint subspace identi"cation methods depends on
the canonical correlations between the state space X̂

+=−
t ,

spanned by the state x̂(t), of the (transient) Kalman "lter
model (see Eq. (2.16) in the above reference), and the "nite
future spaceU[t;T ]. In this section, we shall investigate a class
of inputs which asymptotically leads to the largest canonical
correlation coeLcients between these two subspaces. This
will indicate a situation where the worst conditioning of the
(joint) subspace identi"cation problem occurs, at least for
estimating the (A; C) parameters of the model.
To simplify the canonical correlation analysis we shall

assume that t − t0 is large, so that the conditional covari-
ance matrix of the joint state, �x̂x̂|u+ , is block-diagonal, see
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(3.14), and that T − t is also large, so that the principal
angles (and principal directions) between X̂

+=−
t and U[t;T ]

are approximately the same as those between X̂
+=−
t and U+

t
(the in"nite future). Under these assumptions we can actu-
ally work with stationary models, so hereafter we shall "x
the present time to t = 0 and suppress the time subscript
from all symbols.
Let

X
+=−
d = E‖U+[Y+

d |U−] ⊂ U−

be the nd-dimensional oblique predictor space of the deter-
ministic component yd of the process y. Let also X

+=−
s =

span{xs(0)} be the state space of the “stochastic” compo-
nent (in innovation form). Under the absence of feedback
assumption, the two subspaces X+=−

s and X
+=−
d are orthog-

onal and still in force of Assumption 1, the state spaceX+=−

can be decomposed in orthogonal direct sum as 3

X+=− =X
+=−
d ⊕ X+=−

s :

Since by absence of feedback X
+=−
s is orthogonal to the

whole input historyU, the (non-zero) canonical correlation
coe=cents between X+=− and U+ are the same as those
between X

+=−
d and U+. In particular for t − t0 and T − t

large, the normalized cross covariance 1̂ := L−1
u 1L−�

x of
the future inputs and joint state, where 1 := E[u+t x(t)�],
will be

1̂ = [1̂d 0]

so that in particular the maximal singular values of the two
matrices will be the same. For this reason, in the following it
will be enough to consider only the deterministic subsystem.
Denote by .k(X

+=−
d ;U+) the kth canonical correlation

coeLcient of X
+=−
d and U+ and by .k(U−;U+) the kth

canonical correlation coeLcient of U− and U+, the canoni-
cal correlation coeLcients being ordered in decreasing mag-
nitude. Let X+=−

u := E[U+|U−] be the forward predictor
space (i.e. the state space of the innovation model) of the
process u. It is well-known that the canonical variables 4 of
U− for the pair of subspaces (U−;U+), belong to X

+=−
u

(Akaike, 1975; Desai, Pal, & Kikpatrick, 1985; Lindquist &
Picci, 1996).
For concreteness in what follows we shall assume that

the spectral density of u is rational of MacMillan degree 2r.
The following lemma, whose proof is immediate, will be
instrumental in the analysis.

Lemma 3. Let r¿ nd. The following inequalities hold:

.k(X
+=−
d ;U+)6 .k(U−;U+); k = 1; 2; : : : : (4.1)

3 Note that in general, i.e. if Assumption 1 is not satis"ed, onlyX+=− ⊆
X

+=−
d ⊕ X

+=−
s holds true.

4 Also called principal directions.

Moreover

.k(X
+=−
d ;U+) = .k(U−;U+) k = 1; 2; : : : ; nd (4.2)

if and only if the  rst nd canonical variables of U− for the
pair (U−;U+), belong to X

+=−
d (and hence span X

+=−
d ).

Let instead r ¡nd. Then inequalities (4.1) hold for k =
1; 2; : : : ; r. Moreover

.k(X
+=−
d ;U+) = .k(U−;U+) k = 1; 2; : : : ; r (4.3)

if and only if the  rst r canonical variables ofX+=−
d for the

pair (X+=−
d ;U+), belong to X

+=−
u (and hence span X

+=−
u ).

Consider the case r¿ nd. Let x1 be a subvector of the
state vector x spanning the predictor space X

+=−
u . Without

loss of generality we may assume that x is decomposed as

x =

[
x1

x2

]
;

where span{x1} := X ⊂ X
+=−
u and x2 ⊥ X.

Let[
x1(t + 1)

x2(t + 1)

]
= Au

[
x1(t)

x2(t)

]
+ Kueu(t); (4.4a)

u(t) = Cu

[
x1(t)

x2(t)

]
+ eu(t) (4.4b)

be the corresponding minimal realization of u with state
space X+=−

u . Expressing the innovation in function of u and
substituting in the state equation we obtain[
x1(t + 1)

x2(t + 1)

]
=

[
(Au − KuCu)11 (Au − KuCu)12

(Au − KuCu)21 (Au − KuCu)22

]

×
[
x1(t)

x2(t)

]
+

[
Ku1

Ku2

]
u(t): (4.5)

Now, for the subvector x1 to qualify also as a state variable
evolving in X (which then becomes an oblique Markovian
splitting subspace), it must hold that (Au − KuCu)12 = 0.
If this property holds, it clearly holds (modulo change of
basis) for any subvector of the type x̂1 = Tx1 with T a non
singular matrix, and hence is a property of the subspace X.
In this case we shall call X an invariant subspace of X+=−

u .
It is well known (Akaike, 1975; Desai et al., 1985;

Lindquist & Picci, 1996) that we can pick a basis x in
X

+=−
u made of random variables which are proportional

to the principal directions of U− for the pair (U−;U+).
In particular, we may pick a basis of ordered principal di-
rections. A basis of this kind (with proper weights) leads
to the so-called stochastically balanced form of the corre-
sponding realization. If X is an invariant subspace of X+=−

u

spanned by the "rst n1 principal components of U− for the
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pair (U−;U+), we shall say that X is a principal invariant
subspace of X+=−

u . In this case the eigenvalues of the upper
left diagonal block 2{(Au − KuCu)11}, will be called the
"rst n1 principal zeros of system (4.4). Principal zeros, like
principal eigenvalues to be introduced later, remain invariant
under principal truncation, i.e. extraction of the subsystem
with state vector x1, de"ned by the upper-left block entries
in (4.4) (Lindquist & Picci, 1996).
The following result then follows readily from the state-

ment of Lemma 3 and provides a geometric solution to our
problem.

Proposition 4. Let r¿ nd. The maximal canonical cor-
relation coe=cients (smallest canonical angles) between
X

+=−
d and U+ are obtained when, and only when, X+=−

d is
a principal invariant subspace of X+=−

u .

In the following theorem we shall give conditions on the
input process and on the input spectrum to insure that the
deterministic state space X

+=−
d is a principal invariant sub-

space of X+=−
u .

Theorem 5. Given an input process of rational spectral
density matrix �u of degree 2r; r¿ nd, the maximal
canonical correlation coe=cients .k(X

+=−
d ;U+) are ob-

tained when, and only when, there are nd principal zeros
of the (forward) innovation realization of u cancelling all
poles of the deterministic transfer function F(z) of the
system. Equivalently, the spectral density matrix �u has
nd stable principal zeros which cancel all the poles of F(z).

Proof. Let (4.4) be a stochastically balanced innovation
representation of u and let (Ad ; Bd ; Cd ; D) be a minimal re-
alization of the deterministic subsystem (with state space
X

+=−
d ). As we have just seen, X+=−

u admits a principal in-
variant subspace if and only if the matrix Au − KuCu, has
the block structure

(Au − KuCu) =

[
(Au − KuCu)11 0

(Au − KuCu)21 (Au − KuCu)22

]
;

where Ku = [K�
u1 K�

u2]
�. Moreover X+=−

d is spanned by the
"rst nd canonical vectors of X

+=−
u if and only if ((Au −

KuCu)11; Ku1) is similar to the pair (Ad ; Bd). In other words,
there exists a non-singular T ∈Rnd×nd such that Ad=T (Au−
KuCu)11T−1 and Bd = TKu1. In particular, X+=−

u and X
+=−
d

coincide if and only if (Au −KuCu; Ku) is similar to the pair
(Ad ; Bd).
The equivalence of the statement of Proposition 4 with the

cancellation of the zero dynamics of the innovation realiza-
tion (4.4) and the dynamics of the deterministic subsystem
can be seen from the state space description of the cascade
of (4.4) with the deterministic realization (Ad ; Bd ; Cd ; D),

namely

xd(t + 1)

x1(t + 1)

x2(t + 1)


=




Ad BdCu1 BdCu2

0 (Au)11 (Au)12

0 (Au)21 (Au)22






xd(t)

x1(t)

x2(t)




+




Bd

Ku1

Ku2


 eu(t)

yd(t) = Cdxd(t) + DdCux(t) + Deu(t)

fromwhich, subtracting the second state component from the
"rst, and recalling from the previous paragraph that, X+=−

d

is a principal invariant subspace of X+=−
u if and only if we

can substitute (Ad ; Bd) with ((Au −KuCu)11; Ku1), it follows
that

xd(t + 1) − x1(t + 1) = (Au − KuCu)11(xd(t) − x1(t))

so that xd(t) − x1(t) = 0 for all t, by asymptotic stability
of (Au − KuCu)11. Hence a minimal basis in the state space
of the cascade realization is x(t) and the dynamics of the
overall system reduces to[
x1(t + 1)

x2(t + 1)

]
=

[
(Au)11 (Au)12

(Au)21 (Au)22

] [
x1(t)

x2(t)

]

+

[
Ku1

Ku2

]
eu(t)

yd(t) = (Cd + DdCu1)x1(t) + DCu2x2(t) + Deu(t)

whose only eigenvalues are those of the innovation realiza-
tion (4.4). The dynamics of the deterministic system has
been cancelled completely.

Remark 6. If the (deterministic) system is given and we
are to design the spectrum of the “probing” input to get
maximum ill-conditioning, it is enough to choose a spectral
density of degree 2nd so that the innovation model of u has
dimension nd and all of its zeros are (trivially) principal.
In addition, we should choose the zero dynamics of the
innovation model, i.e. of �u, so as to cancel the dynamics
of the deterministic system.
There is then freedom to place the poles of �u. These

poles determine the “excitation properties” of the input pro-
cess (in fact, the conditioning of the Toeplitz matrix �u+u+).
It is possible to show (but we shall not do that here) that, by
placing the poles of�u arbitrarily close to the unit circle, one
can obtain canonical correlation coeLcients .k(U−;U+),
arbitrarily close to one. Hence we can make .k(U−;U+),
arbitrarily close to one by choosing the poles of the spec-
trum and make the .k(X

+=−
d ;U+)’s equal to their maximum

values .k(U−;U+), by choosing the zeros of the spectrum.
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We shall now take a quick look to the case r ¡nd. Let xd1
be a subvector of the state vector xd, spanning the predictor
spaceX+=−

u . Without loss of generality we may assume that
xd is decomposed as

xd =

[
xd1

xd2

]
;

where span{xd1} := X
+=−
u ⊂ X

+=−
d and xd2 ⊥ X

+=−
u .

Since xd1 is a state in the predictor space X
+=−
u , we can

write[
xd1(t + 1)

xd2(t + 1)

]
= Ad

[
xd1(t)

xd2(t)

]
+ Bdu(t); (4.6a)

u(t) = Huxd1(t) + eu(t) (4.6b)

for some matrix Hu. Expressing u in function of the inno-
vation in the state equation we obtain[
xd1(t + 1)

xd2(t + 1)

]
=

[
(Ad)11 + Bd1Hu (Ad)12

(Ad)21 + Bd2Hu (Ad)22

] [
xd1(t)

xd2(t)

]

+

[
Bd1

Bd2

]
eu(t): (4.7)

Now, for the subvector xd1 to qualify as a state variable
evolving in X

+=−
u (which has to be so since X

+=−
u is a

Markovian splitting subspace), it must hold that (Ad)12 = 0.
This property clearly holds (modulo change of basis) for
any subvector of the type x̂d1 = Txd1 with T a non-singular
matrix, and hence is a property of the subspace spanned by
xd1. Any subspace of this kind will be called an invariant
subspace of X+=−

d . This condition is clearly equivalent to
((Ad)11 + Bd1Hu; Bd1; Hu; I) being a minimal realization of
the innovation model of u. In other wordsX+=−

u is an invari-
ant subspace ofX+=−

d iU there exists a non-singular T ∈Rr×r

such that for any minimal realization (Cu; Au; Ku; I) of the in-
novation model of u, it holds that Au=T ((Ad)11+Bd1Hu)T−1

and Ku = TBd1. But this is the same as

T (Ad)11T−1 = Au − KuCu; Bd1 = T−1Ku; Cu := HuT−1:

Again, we can (and shall) pick a basis xd in X
+=−
d made

of ordered principal directions for the pair (X+=−
d ;U+). If

X
+=−
u is an invariant subspace of X+=−

d , then by (4.1) of
Lemma 3, it is necessarily spanned by the "rst r principal
components of X+=−

d and hence it is automatically a princi-
pal invariant subspace ofX+=−

d . In this case the eigenvalues
of the upper left diagonal block, 2{(Ad)11}, are the "rst r
principal eigenvalues of the deterministic system.

Proposition 7. Let r ¡nd. The  rst r canonical correlation
coe=cients between X+=−

d and U+ are maximal when, and
only when, X+=−

u is an invariant subspace of X+=−
d .

The following is the analog of Theorem 5 which applies
in the situation r6 nd.

Theorem 8. With an input process of rational spectral den-
sity matrix �u of degree 2r; r6 nd, the  rst r canoni-
cal correlation coe=cients .k(X

+=−
d ;U+) are maximized

when, and only when, the deterministic subsystem of trans-
fer function F(z), admits r eigenvalues 5 which are all can-
celled by the (stable) zeros of �u.

It may be worth to remark that “bad” inputs are not neces-
sarily a simple thing as inputs cancelling the poles of the
system to be identi"ed. In the next section we shall see some
examples which should help to clarify this point.

5. Some experimental results

We shall discuss the results of 100 Monte-Carlo runs
made on a simple scalar system described in Table 1 below.
The model is in the jointly parametrized form and the iden-
ti"cation algorithm is a “robusti"ed” version of the N4SID
algorithm, described in Overschee and DeMoor (1996). The
sample size is N = 500.
The simulations are performed with three diUerent input

spectra denoted �1; �2; �3. See Fig. 1.

(1) The (stable) zeros of �1 cancel exactly the poles of the
deterministic system. However �1 is nearly constant
with frequency and u1 is a nearly white process. In this
case the singular values .k(X

+=−
d ;U+) = .k(U−;U+)

are all nearly the same and rather small (since past and
future of a white noise form angles of 90◦). In particular
.2
max(1̂d) is small, so that the problem, in spite of the

cancellation, is well-conditioned. Input 1 gives the best
estimates even if the poles of the deterministic transfer
function are cancelled exactly.

(2) The zeros of �2 are far apart from the system poles
but the input process is ill-conditioned. In this exam-
ple 0(�u+u+) � 105. Note that the estimate of the sys-
tem poles does not worsen much with respect to input
1. However the identi"cation of the transfer function is
rather poor. This may be attributed to the following fact:
input 2 is ill conditioned (in the sense that the covari-
ance matrix �u+u+ is ill conditioned), and this makes
the estimation of (B;D) unreliable; on the other hand,
as there is no cancellation in the zero structure, the con-
ditional state covariance �xdxd|u+ is not ill-conditioned
and therefore the estimation of (A; C) is reliable.

(3) The (stable) zeros of�3 cancel exactly the system poles
and in addition the input process is ill-conditioned. In
this example 0(�u+u+) is nearly the same as in example
2. The identi"cation is very poor. Note that in this case
also the estimates of the eigenvalues (and of (A; C))

5 These eigenvalues are then necessarily principal.
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Table 1
Poles, zeros and gains for the stochastic, deterministic subsystems and
for the three inputs considered

Poles Zeros K

Stoch. system
−0:1 + j0:6

−0:1 − j0:6

0:5

0:7
1

Det. system

0:75 + j0:55

0:75 − j0:55

0:9

−0:1 + j0:8

−0:1 − j0:8

0:5

0.2

Input 1
0:8 + j0:55

0:8 − j0:55

0:75 + j0:55

0:75 − j0:55
0.7185

Input 2
−0:815 + j0:5

−0:815 − j0:5

0:35 + j0:95

0:35 − j0:95
1.8495

Input 3
−0:8 + j0:5

−0:8 − j0:5

0:75 + j0:55

0:75 − j0:55
2.2760
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Fig. 1. Input spectrum. Crosses (+): input 1, stars (∗): input 2, circles
(o): input 3.

become rather erratic. This fact agrees with the predic-
tion of Theorem 8 that under these conditions �xdxd|u+
is ill conditioned.

In all three experiments, the power (variance) of the deter-
ministic component of the output signal and of the stochas-
tic disturbance are about the same so as to keep the same
SNR ratio (SNR := .2

yd =.
2
ys = 2).

Comments: The standard deviation of the (deterministic)
transfer function estimates corresponding to the three diUer-
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Deterministic transfer function (N4SID Robust)

Fig. 2. Joint modeling estimates: Standard deviation of the transfer func-
tion estimates (solid) and CramNer–Rao lower bound (dotted) vs. fre-
quency. Crosses (+): input 1, stars (∗): input 2, circles (o): input 3.
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Fig. 3. Orthogonal decomposition (PI-MOESP) estimates: Standard de-
viation of the transfer function estimates (solid) and CramNer–Rao lower
bound (dotted) vs. frequency. Crosses (+): input 1, stars (∗): input 2,
circles (o): input 3.

ent input processes is shown in Fig. 2. Going from input 1
to 2 to 3, an increase of the standard deviation, roughly of
one order of magnitude (in the frequency band of interest),
is observed (Fig. 3). The estimated poles (Fig. 4) con"rm
that the estimates worsen in the order 1 → 2 → 3.
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Fig. 4. Estimated poles (N4SID robust).

5.1. Comparison with decoupled identi cation

The deterministic system poles estimated with the or-
thogonal decomposition method are shown in Fig. 5. As
expected, the accuracy of these estimates is roughly the
same as those obtained with the joint parametrization. In
particular, the conditioning of the estimation of A and C
does not depend on �u+u+ and hence on the condition-
ing of the input process. The asymptotic variance formulas
which will be derived in the companion paper (Chiuso &
Picci, 2004b) con"rm these qualitative conclusions.
The accuracy of transfer function estimation however de-

pends on the parametrization. In Figs. 6, and 7, we compare
the results of subspace identi"cation of the (deterministic)
transfer function a simple scalar system using the joint and
the “orthogonal decomposition” methods. The experiment
consists of 100 Monte-Carlo runs of a robust N4SID method
(joint model) and of the orthogonal decomposition-based
algorithm (PI-MOESP), with t − t0 = T − t = 10. The sys-
tem and input spectra (frequency-domain data) are the same
considered in the paper (Chiuso & Picci, 2004c). The input
process is a colored ARMA process. The deterministic and
stochastic components have completely disjoint dynamics.
In (Chiuso & Picci, 2004c), Table 1 reports the details of the
simulations and Fig. 1 shows the system and input spectra
(frequency-domain data).
It is evident that the orthogonal decomposition-based

algorithm performs better. Here, the simulations show that
the performance of jointly parametrized methods is much
worse than that of decoupled model-methods especially
in the frequency range of the stochastic noise spectrum,
where the oU-diagonal error terms, Ãsd ; B̃s, (see the com-
panion papers (Chiuso & Picci, 2004b for details) aUecting
the joint-parametrization methods have a large inWuence
on the transfer function estimate. This is essentially what
is predicted by Eqs. (3.30) and (3.32) of Chiuso and Picci
(2004b).
The last simulation shows that the diUerence in perfor-

mance is quite evident even for white inputs.

6. Conclusions

In this paper we have presented a comparison between
two classes of subspace identi"cation methods. The "rst is
based on an orthogonal decomposition of the input-output
data, combined with a block-decoupled parametrization of
the model while the other methods are subspace methods
based on the usual “joint model parametrization”. An ele-
mentary error analysis has been provided and a comparison
of the numerical conditioning of the identi"cation problem
has been made. In particular, we have shown that for in-
puts whose power spectral density has zeros cancelling the
poles of the system to be identi"ed, the ill-conditioning may
be worsened at will. Expressions for the asymptotic error
covariances of the (A; B; C; D) parameters and also of the
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Fig. 5. Estimated poles (PI-MOESP), only deterministic poles shown.
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Fig. 6. Error variance (Monte-Carlo estimate) of estimated transfer func-
tion for coloured input. Dotted line (: : :): orthogonal decomposition algo-
rithm (PI-MOESP); dotted line with crosses (::::+): Cramer–Rao Bound
for block parametrized models. Solid line (—): jointly parametrized Ro-
bust N4SID; solid line with stars (—∗): Cramer–Rao bound for joint
parametrized models.
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Fig. 7. Error variance (Monte-Carlo estimate) of estimated transfer func-
tion for white noise input. Dotted line (....): orthogonal decomposi-
tion algorithm (PI-MOESP); Dotted line with crosses (: : :+): Cramer
–Rao Bound for block parametrized models. Solid line (—): jointly
parametrized Robust N4SID; solid line with stars (—∗): Cramer–Rao
bound for jointly parametrized models.

transfer function estimates, will be given, for both classes
of subspace methods, in the companion paper (Chiuso &
Picci, 2004b). In certain cases, the formulas show that the
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errors for the joint parametrization are larger than for the de-
coupled parametrization. When models with decoupled de-
terministic–stochastic dynamics are adequate, there seems
to be enough evidence to conclude that subspace estimation
based on a block-diagonal model parametrization provides
in most cases, better estimates of the system transfer func-
tion than the standard “joint” input–output methods.

Appendix

Convergence of conditional state covariances

Consider a “decoupled” basis as in formula (2.10)

x(t) =

[
xd(t)

xs(t)

]

and let x̂(t) be the transient Kalman state, de"ned as
in Theorem 1 of Chiuso and Picci (2004d), i.e. x̂(t) :=
E[x(t) |P[t0 ;t) ∨U[t;T ]] so that x̂c(t) := x̂(t)−E[x̂(t)|U[t;T ]].
Let us denote by ˆ̂xd(t) := E[xd(t) |P[t0 ;t) ∨ U[t;T ]] and
by ˆ̂xs(t) := E[xs(t)|P[t0 ;t) ∨ U[t;T ]] the two subvectors of
the Kalman "lter state x̂(t). Note that for "nite t − t0 in
general x̂d(t) �= ˆ̂xd(t). In fact, using the decomposition
xd(t)=At−t0

d xd(t0)+“terms in {U[t0 ;t)}” the two projections
satisfy

xd(t) − ˆ̂xd(t) = At−t0
d (E[xd(t0)|U[t0 ;t) ∨ U[t;T ]]

−E[xd(t0)|P[t0 ;t) ∨ U[t;T ]]):

Similarly, if we de"ne ˆ̂xc
d(t) := ˆ̂xd(t) − E[ ˆ̂xd(t)|U[t;T ]], we

have

x̂c
d(t) − ˆ̂xc

d(t) = At−t0
d (E[xd(t0)|U⊥

[t;T ]] − E[xd(t0)|P̃[t0 ;t)]);

where P̃[t0 ;t) is the orthogonal complement of U[t;T ] in
P[t0 ;t) ∨ U[t;T ]. This last equality guarantees that the covari-
ance matrix of ˆ̂xc

d(t), i.e. the upper left corner of �x̂x̂|u+
diUers from �x̂d x̂d|u+ for terms of the order of At−t0

d .
Using a similar argument we can also show that

E[ ˆ̂xc
s(t)( ˆ̂x

c
d(t))

�] tends to zero at least as At−t0
d for t − t0 →

∞. In fact

E[ ˆ̂xc
d(t)( ˆ̂x

c
s(t))

�] = E[ ˆ̂xc
d(t)x

�
s (t)]

= At−t0
d E[ ˆ̂xc

d(t0)x
�
s (t)]; (A.1)

where the last equality follows from the fact that the terms
which live in U[t;T ] are orthogonal to the stochastic state.
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