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a b s t r a c t

It is sometimes claimed in the literature that subspace methods provide consistent estimates, also when
the underlying observed signal has purely oscillatorymodes (or the generating system has uncontrollable
eigenvalues on the unit circle) but a formal proof of this assertion does not seem to exist. In this
paper, we prove consistency of subspacemethods with purely oscillatory modes. A well-known subspace
identification procedure based on canonical correlation analysis and approximate partial realization is
shown to be consistent under certain conditions on the purely deterministic part of the generating system.
The algorithm uses a fixed finite regression horizon and the proof of consistency does not require that the
regression horizon goes to infinity at a certain rate with the sample size N .

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

This paper deals with subspace identification of stationary
processes with oscillatory components. At a first sight this
problem may look like a minor generalization of a standard
identification problem which has been exhaustively treated in
the literature since the early 1990s. In reality, on one hand the
problem encompasses harmonic retrieval; that is, estimation of
the harmonic components of a stationary signal in additive noise,
a problem of paramount importance in signal processing which,
in the multichannel case, cannot be approached by the standard
methods like Pisarenko, MUSIC, ESPRIT etc. It seems fair to say that
the specialized literature onharmonic retrieval in the case of vector
signals, when the additive noise is colored, is still far from offering
satisfactory solutions. For this class of signals, on the other hand,
subspace system identification appears as a natural choice.

However it is well-known that stationary random processes
with periodic components are not ergodic. Non-ergodicity means
in particular that the limit when the sample size goes to infinity of
the process sample covariance is sample dependent. In particular,
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the limit sample covariance depends on the random amplitudes
of its elementary oscillatory components; see, e.g. Söderström and
Stoica (1989, pp. 105–109). On the other hand, the asymptotic
statistical properties of subspace methods (and, more generally,
of correlation-based methods) depend essentially on the limit
sample covariances, which in the presence of oscillatory or quasi-
periodic components are not equal to the ensemble averages;
i.e., do not coincide with the true covariances. Since parameter
estimation procedures based on correlation methods require
solving linear relations involving estimated sample covariances, a
natural question to ask is if the parameter estimates obtained by
solving these linear equations are consistent. This is generally true
for signalswhich are second-order ergodic but sample dependence
casts doubts on the validity of standard asymptotic statistical
properties, like consistency, of subspace methods in this setting.
In particular legitimate doubts arise on the validity of the standard
proofs of consistency of subspace methods for signals of this type.

Sections 4 and 5 deal with the question of asymptotically
recovering the system parameters (modulo similarity) starting
from finite data by a standard subspace algorithm, formulated as
an approximate partial realization problem. This setting permits to
prove almost sure consistency of the algorithm without having to
estimate the transient estimation errors inherent in the truncated
least-squares regression approach of Peternell (1995), Peternell,
Deistler, and Scherrer (1995); Peternell, Scherrer, and Deistler
(1996).

Consistency of subspace methods for purely non-deterministic
signals (time series) has been proved earlier in the just cited
references. However, to the best of the authors’ knowledge, a proof
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of consistency when there are quasi-periodic components due
to uncontrollable eigenvalues on the unit circle, does not exist.
The only paper which comes close in spirit to what concerns us
here is Bissacco, Chiuso, and Soatto (2007). In this paper however
consistency analysis had to be left out as being ‘‘beyond the
scope of the paper’’. Finally, note that processes described by
systems whose eigenvalues of modulus one are reachable for the
driving process noise, do not concern us here as these processes
are actually non-stationary and do not contain almost-periodic
oscillations.

2. Stationary processes with an almost-periodic component

All random variables/vectors, denoted by lowercase boldface
characters, will have zero mean and finite second order moments.
The symbol E denotes mathematical expectation. All random
processes will be discrete time. It is a well-known fact that
every vector-valued, say m-dimensional, second-order stationary
process admits an orthogonal decomposition

y(t) = yd(t) + ys(t), t ∈ Z (2.1)

where yd and ys are the purely deterministic (p.d.) and the purely
non-deterministic (p.n.d.) components, the latterwith an absolutely
continuous spectrum and a log-integrable spectral density; see e.g.
Rozanov (1967). If y admits finite-dimensional realizations it can
be described by a minimal state space model of the form,
x(t + 1)
z(t + 1)


=


Ad 0
0 As

 
x(t)
z(t)


+


0
K


e(t) (2.2a)

y(t) =

Cd Cs

 x(t)
z(t)


+ e(t) (2.2b)

where the undriven subsystem with p.d. output yd(t) := Cdx(t),
described by an observable pair (Ad, Cd) has a positive definite
initial state covariance matrix Pd = E x(0)x(0)⊤. The minimal
triplet (Cs, As, K) describing the p.n.d. component ys(t) = Csz(t)+
e(t) originates a stableminimumphase transfer function I+Cs(zI−
As)

−1K . Here ewill be taken to be the innovation process of ys (and
hence of y as well), having a positive definite covariance matrix
∆ := E e(t)e(t)⊤ which we shall write in factorized form as ∆ =

DD⊤ with a nonsingular factor D. In the following we shall need
a.s. convergence of the sample second order moments of the p.n.d.
output component. To ensure this (second order ergodicity) we
may assume that e is a stationary martingale difference with finite
fourth ordermoments. SeeHannan andDeistler (1988) or Peternell
et al. (1995, Section 3).

By stationarity and minimality the two block-vector compo-
nents of the initial state [ x(0)⊤ z(0)⊤ ]

⊤ of (2.2) must be uncor-
related. Each has a positive definite covariance matrix, satisfying
the Lyapunov equations

Pd = APdA⊤, Ps = AsPsA⊤

s + KK⊤. (2.3)

We shall denote by d the dimension of the p.d. subsystem and by p
the dimension of the p.n.d. subsystem in (2.2) and let n := d + p.
Occasionally we shall use the more compact notations

C =

Cd Cs


, P := diag {Pd, Ps},

A := diag {Ad, As}.
(2.4)

A special class of signals (2.1) is obtained when the p.n.d. compo-
nent is white noise; i.e. y(t) = yd(t) + e(t). Due to their impor-
tance in diverse applications, especially frequency estimation, a
huge literature has been devoted to the identification of these sig-
nals; see e.g. the book (Stoica & Moses, 2005) and the references
therein.

Since yd and ys are completely uncorrelated, the covariance
function of the output process y splits into its p.d and p.n.d.
components

Λ(τ ) := Ey(t + τ)y(t)⊤ = Λd(τ ) + Λs(τ )

with the p.n.d. part having the well-known representation, see e.g.
Anderson (1969),

Λs(τ ) = CsAτ−1
s C̄⊤

s for τ = 1, 2, . . .
Λs(0) = CsPsC⊤

s + DD⊤ for τ = 0
(2.5)

where C̄⊤
s = AsPsC⊤

s + KD⊤. The structure of Λd will emerge from
the analysis which follows.

We can choose an orthonormal basis in which Pd = I , and Ad
is an orthogonal (and hence diagonalizable) matrix with complex
eigenvalues e±iθk , k = 1, . . . , ν and possibly real eigenvalues at
θ0 = 0 and θν+1 = π . Hence Ad is similar to a block-diagonal real
matrix

Ad = diag


In0 ,


cos θ1In1 − sin θ1In1
sin θ1In1 cos θ1In1


,

· · ·


cos θν Inν − sin θν Inν

sin θν Inν cos θν Inν


, −Inν+1


θk ≠ θj (2.6)

where n1, . . . , nν are themultiplicities of the complex eigenvalues
eiθk appearing in conjugate pairs and n0 and nν+1 are the
multiplicities of the real eigenvalues λ = 1 and λ = −1, some
or both of which may possibly be absent. Observability implies
that the output dimension m must be an upper bound for the
multiplicity of the eigenvalues. Hence for a scalar process n0 and
nν+1 are≤ 1 and there are just ν elementary 2×2 oscillatory blocks
each corresponding to one of the ν distinct angular frequencies
θk, k = 1, . . . , ν, which are strictly between θ = 0 and θ = π .

The m × d (where d = 2


nk + n0 + nν+1) matrix Cd splits
into blocks


C0 C1 · · · Cν Cν+1


where C0 and Cν+1 arem ×

n0 and m × nν+1 and the Ck, = 1, 2, . . . , ν are m × 2nk. The
diagonal block elements in Ad are denoted by Ak. Starting from
the complex representation where the matrix Ad is diagonal, each
corresponding matrix Ck is (complex and) of full row rank. Thus
there exists a collection of rows such that the corresponding
submatrix is nonsingular. Using this matrix to transform the basis
one can achieve a unity matrix in these rows. Converting back to
real matrices then achieves the specific form

Ck = Πk


Ink 0
Hk,1 Hk,2


, k = 1, . . . , ν

where Πk is a permutation matrix and the row-block [Hk,1 Hk,2] is
(m − nk) × 2nk. In the scalar case ck = [ 1, 0 ] for k = 1, 2, . . . , ν
and 1 otherwise. Returning to the (complex) basis in which Ad
is diagonal, it is easy to see that stationarity implies that all the
nk-dimensional complex state subvectors zk(t) := x1,k(t)+ix̄2,k(t)
and z̄k(t) := x1,k(t) − ix̄2,k(t), k = 1, 2, . . . , ν and the random
vectors xk(t), k = 1, ν + 1 must be mutually uncorrelated. This
implies in particular that

E {zk(0) z̄k(0)⊤} = E {x1,k(0)x1,k(0)⊤} − E {x2,k(0)x2,k(0)⊤}

+ i

E {x1,k(0)x2,k(0)⊤}

+ E {x2,k(0)x1,k(0)⊤}


= 0

so that the covariance ofxk(0) =

x1,k(0)⊤ x2,k(0)⊤

⊤ must have
the following structure

Pk = E xk(0)xk(0)⊤ =


Σk Mk

M⊤

k Σk


Mk = −M⊤

k
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for k = 1, 2, . . . , ν. Moreover the overall state covariance matrix
Pd := E {x(t)x(t)⊤} must be block-diagonal

Pd = diag {P0, P1, . . . , Pν, Pν+1} (2.7)

where, for k = 1, . . . , ν, Pk is 2nk × 2nk while P0 and Pν+1 are n0
and nν+1 dimensional. Clearly, if nk = 1, Mk = 0. Naturally each
Pk satisfies a Lyapunov-like equation Pk = AkPkA⊤

k and since Ad is
orthogonal, Pd and Ad commute (in the chosen basis).

The covariance function of a vector p.d. process can be
represented in the form,

Λd(τ ) := E yd(t + τ)yd(t)⊤ = CdAτ−1
d C̄⊤

d , τ ≥ 0, (2.8)

where C̄⊤

d := AdPdC⊤

d with Pd := E x(0)x(0)⊤ positive definite.
Note that, since in the canonical basis Ad and Pd commute
and Pd is positive definite, the observability of (Ad, Cd) implies
the reachability of the pair (Ad, C̄⊤

d ). This property is obviously
independent of the choice of basis so that the factors in (2.8) define
a minimal realization. These structural properties, except perhaps
the block-diagonal structure of Pd, are preserved under a change of
basis.

Later we shall need a formula for the limits of sample covari-
ances of signals containing p.d. components. Here, hatted symbols
will stand for sample estimates. The proof of the following propo-
sition is suppressed for reasons of space limitations.

Proposition 1. Let {v(t); t ∈ Z} be a sample path of a second order
p.n.d. process of zero mean with a rational spectrum, then

lim
N→∞

1
N

N
t=1

yd(t + τ) v(t)⊤ = 0 (2.9)

with probability one for every τ . Hence the limit sample covariance of
the process (2.1) is the sum,

Λ̂(τ ) = lim
N→∞

1
N

N
t=1

y(t + τ) y(t)⊤ = Λ̂d(τ ) + Λs(τ ) (2.10)

where Λ̂d is the limit sample covariance of yd.

Limits of purely deterministic sample state covariances are
described in the next proposition.

Proposition 2. Let {xk(t), xj(t); t ∈ Z} be sample paths of two sub-
vectors of the p.d. state process x expressed in the basis of (2.6),
corresponding to frequencies θk ≠ θj. Then

lim
N→∞

1
N

N
t=1

xk(t + τ)xj(t)⊤ = 0. (2.11)

Moreover limN→∞
1
N

N
t=1 xk(t + τ)xk(t)⊤ = Aτ

k P̂kC
⊤

k where, for
k = 1, 2, . . . , ν ,

P̂k =
1
2


x1,k(0) −x2,k(0)
x2,k(0) x1,k(0)

 
x1,k(0) −x2,k(0)
x2,k(0) x1,k(0)

⊤


(2.12)

while for θk = 0 or π , P̂k = xk(0)xk(0)⊤.

A proof of the first statement follows from the arguments of,
e.g. Söderström and Stoica (1989, p. 108). The second statement
follows by simple calculations and is omitted. Proposition 2 leads
to the expression

Λ̂d(τ ) = Cd Aτ
d P̂dC

⊤

d , (2.13)

where P̂d := diag {P̂0, P̂1, . . . , P̂ν, P̂ν+1}. P̂d may be called the
‘‘limit sample state covariance’’ of the p.d. subsystem. It should

be regarded as a random quantity depending on the (initial
conditions; i.e., on the) particular trajectory of the signal.

Lemma 3. The sample state covariance matrix satisfies the Lyapunov
equation P̂d = AdP̂dA⊤

d . In the special basis of (2.6) P̂d and Ad
commute.

The proof is a simple calculation and is omitted.
It follows from (2.12) that each 2nk × 2nk block matrix P̂k has

almost surely rank equal to two so thematrix P̂d will be nonsingular
(with probability one) if and only if Ad has simple eigenvalues.

Comparing (2.13) with the expression (2.8), of the true
covariance of a p.d. process, we note that the only difference lies
in the fact that the true state covariance Pd is now substituted by
the sample covariance P̂d. Note that, even if (Ad, Cd) is observable,
the factorization (2.13) will be minimal only if Ad has simple
eigenvalues.

3. Asymptotic covariance matching

Assume that we are in an ideal situation of observing an
infinitely long sample trajectory y1, y2, . . . , yt , . . . of the output
process y of a true system of the form (2.2). From these data we
form a string of limit sample covariances, Λ̂k

:= {Λ̂(τ ); τ = 0,
1, 2, . . . , 2k+ 1} where the Cesàro limits Λ̂(τ ) exist almost surely
and are described in Proposition 1. We assume that the integer k is
chosen large enough so that k ≥ n.

Our goal will be to show that notwithstanding the limit p.d.
covariance Λ̂d(τ ) is sample dependent, from the asymptotic
covariances Λ̂k we can recover the true parameters of the system,
(Cd, Ad, Cs, As, K ,D) modulo a change of basis.

Lemma 4. Assume that Ad has simple eigenvalues. Then the limit
sample covariance function Λ̂ constructed from a sample trajectory of

the system (2.2) admits a minimal realization Λ̂(τ ) = CAτ−1 ˆ̄C
⊤

τ =

1, 2, . . . , with a sample dependent matrix ˆ̄C given by

ˆ̄C
⊤

:= diag {P̂dP−1
d , I} C̄⊤

:= T̂ C̄⊤ (3.1)

where P̂d denotes the asymptotic sample covariance of the p.d. state
component, x, of system (2.2) and the n × n matrix T̂ is nonsingular
and commutes with A.

Proof. From formula (2.10),

Λ̂(τ ) = Λ̂d(τ ) + Λs(τ ) = CdAτ−1
d AdP̂dC⊤

d + CsAτ−1
s C̄⊤

s ,

where C̄⊤
s = AsPsC⊤

s + KD⊤. The expression (3.1) follows from

ˆ̄C
⊤

=


Ad 0
0 As

 
P̂d 0
0 Ps

 
C⊤

d
C⊤

s


+


0
K


D⊤

=


P̂dP−1

d 0
0 I


Ad 0
0 As

 
Pd 0
0 Ps

 
C⊤

d
C⊤

s


+


0
K


D⊤



=


P̂dP−1

d 0
0 I


C̄⊤

and is valid in the special canonical basis of the p.d. subsystem
discussed in Section 2. Since in this basis both P−1

d and P̂d commute
with Ad, we have AdP̂d = P̂dP−1

d AdPd and hence T̂ commutes
with A. �
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It follows from this lemma that Aτ ˆ̄C
⊤

= Aτ T̂ C̄⊤
= T̂ Aτ C̄⊤ for

all τ ≥ 1 and there exist a rank n factorization of the asymptotic
sample Hankel matrix

Ĥ(k + 1) :=


Λ̂(1) Λ̂(2) · · · Λ̂(k + 1)
Λ̂(2) Λ̂(3) · · · Λ̂(k + 2)
Λ̂(3) · · · · · ·

... · · ·
...

Λ̂(k + 1) Λ̂(k + 2) . . . Λ̂(2k + 1)

 (3.2)

of the form

Ĥ(k + 1) = Ω(k + 1) T̂ Ω̄(k + 1)⊤ (3.3)

where Ω(k + 1) and Ω̄(k + 1) are the extended observability
and reconstructability matrices of the system generating the data.
Hence by chopping off the last blocks of m rows from Ω(k + 1)
and ˆ̄Ω(k + 1) one obtains corresponding factorizations of the
m(k + 1) × mk, mk × mk and mk × m(k + 1) asymptotic Hankel
sub-matrices denoted as follows:

Ĥ(k + 1, k) = Ω(k + 1) ˆ̄Ω
⊤

(k) (3.4a)

Ĥ(k) = Ω(k) ˆ̄Ω
⊤

(k) (3.4b)

ˆ̄H(k, k + 1) = Ω(k) ˆ̄Ω
⊤

(k + 1) (3.4c)

where the factors ˆ̄Ω include the sample dependent term T̂ . If k ≥ n
all these factorizations are of rank n, Kalman’s equal rank condition

(Kalman, 1971) is satisfied, and hence (C, A, ˆ̄C
⊤

) is the unique
(modulo similarity) partial realization of the finite sequence Λ̂k.
This leads to the following.

Theorem 5. Assume that k ≥ n. Then, if and only if Ad has simple
eigenvalues, from the asymptotic sample covariances Λ̂k one can
uniquely recover the true parameters (Cd, Ad, Cs, As, K ,D) of the
system (2.2)modulo a change of basis.

Proof. In fact, assume that Ad has simple eigenvalues; then by

partial realization we canmap Λ̂k into a minimal triplet (C, A, ˆ̄C
⊤

)

of dimension n with ˆ̄C =
ˆ̄C(ω) depending on the sample data.

Decompose A in block diagonal form A = Ad ⊕ As as in (2.2) with
Ad oscillatory and As with eigenvalues strictly inside the unit circle
and partition C =


Cd Cs


conformably. Now, because of (3.1), in

any such basis we have

ˆ̄C
⊤

=


ˆ̄C
⊤

d
C̄⊤

s


=


AdP̂dC⊤

d
AsPsC⊤

s + KD⊤


modulo similarity. Since P̂d and Ad commute, we have

ˆ̄C
⊤

d A⊤

d
ˆ̄C
⊤

d · · · (Ad−1
d )⊤ ˆ̄C

⊤

d


= P̂dAd


C⊤

d A⊤

d C
⊤

d . . . (Ad−1
d )⊤C⊤

d


(3.5)

and we can recover the sample state covariance matrix P̂d from

(Cd, Ad,
ˆ̄C
⊤

d ). Next, the true covariance, Λs(0), of the purely non-
deterministic component of the output process can be obtained by
subtracting the first summand in Λ̂(0) = CdP̂dC⊤

d + Λs(0). Finally
from Cs, As, C̄s, Λs(0), the parameters K and D can be computed
by solving an algebraic Riccati equation. Hence we can recover the
system parameters uniquely modulo similarity.

Conversely, if Ad has multiple eigenvalues we have rankP̂d < n
so the factorizations (3.4) have rank strictly smaller than n and a
minimal realization of Λ̂k cannot have order equal to n. �

4. Subspace identification as partial realization

In this section, we shall recall the basic steps of a subspace
identification algorithm for time series which will be generi-
cally referred to as CCA (Canonical Correlation Analysis) algo-
rithm. CCA is actually a first step common to many subspace
algorithms to obtain a factorization of the sample Hankel ma-
trix and simultaneously accomplish order estimation. From this
factorization some procedures compute estimates of the matri-
ces (C, A, C̄) by (approximate) partial realization by solving cer-
tain ‘‘shift-invariance’’ equations. This procedure is based on a
long series of well-known early contributions (Akaike, 1976; Aoki,
1990; Larimore, 1983; Zeiger & McEwan, 1972). Others (Larimore,
1990; van Overschee & De Moor, 1993) compute instead an es-
timate of the state using the canonical variables and mimic the
steps of stochastic realization (the ‘‘state approach’’). See Bauer
(2005) for a historical account and Lindquist and Picci (1996),
Lindquist and Picci (1996) for a detailed explanation of the theo-
retical background on which this procedure is based. It is a little
known fact that both procedures lead to the same estimates. The
equivalence of the stochastic realization procedure with partial
realization is implicit in Lindquist and Picci (1996, Theorem 7.1),
Lindquist and Picci (1996), and explicitly proven in Chiuso and Picci
(2004, Section 4.2) although in amore general contextwhere input
signals are also present. For the purpose of this paper it will be con-
venient to refer to the partial realization version of the algorithm.

The first step of the CCAprocedure is to regroup the output data,
say y0, y1, y1, . . . , yt , . . . , yN ′ (after subtracting off the sample
mean) into truncated tail matrices with N + 1 columns

YN(t) := [yt , yt+1, . . . , yt+N ] t = 0, 1, . . . .

By Propositions 1 and 2, the sample covariances

Λ̂N(i, j) = E N{YN(i)YN( j)⊤} :=
1

N + 1
YN(i)YN( j)⊤ (4.1)

converge for N → ∞ to the limit

lim
N→∞

E N{YN(i)YN( j)⊤} = Λ̂d(i − j) + Λs(i − j)

for all i, j ≥ 0. Hence, for a stationary signal containing almost-
periodic components the limit on the right is not the expectation
but just the (sample dependent) asymptotic covariance Λ̂(i − j).

Fixing a present time t = k, the tails may be stacked into ‘‘past’’
and ‘‘future’’ data matrices at time k, of dimension m(k + 1) ×

(N + 1),

Y[0,k] =


YN(k)

...
YN(1)
YN(0)

 , Y[k+1,2k+1] =


YN(k + 1)
YN(k + 2)

...
YN(2k + 1)

 . (4.2)

In the identification literature the lengths of the past and future
horizons are often taken to be different ‘‘design parameters’’.
Although this could easily be accommodated, there is no real loss
of generality in keeping horizons of equal length k + 1 as defined
above.

From the past and future data matrices Y[0,k], Y[k+1,2k+1], one
forms the sample Hankel matrix

ĤN(k + 1) := E N

Y[k+1,2k+1] Y⊤

[0,k]


(4.3)

of which we shall consider the submatrices

ĤN(k + 1, k) := E N

Y[k+1,2k+1] Y⊤

[1,k]


, (4.4a)

ĤN(k) := E N

Y[k+1,2k) Y⊤

[1,k]


, (4.4b)

ĤN(k, k + 1) := E N

Y[k+1,2k] Y⊤

[0,k]


, (4.4c)



Author's personal copy

518 M. Favaro, G. Picci / Automatica 48 (2012) 514–520

of dimensionm(k+ 1) ×mk,mk×mk andmk×m(k+ 1), which,
for N → ∞ tend to matrices with a Hankel structure. Even if for N
finite do not have aHankel structure, they are usually called sample
Hankel matrices anyway.

As a first step, ĤN(k+1) and (4.4a) are normalized by computing
the Cholesky factors, L−

k+1 and L+

k+1, of the sample covariances
T−

k+1 := E N{Y[0,k]Y⊤

[0,k]} and T+

k+1 := E N{Y[k+1,2k+1]Y⊤

[k+1,2k+1]}, and
defining ĤN(k+1) := (L+

k+1)
−1ĤN(k+1)(L−

k+1)
−⊤, ĤN(k+1, k) :=

(L+

k+1)
−1ĤN(k + 1, k)(L−

k )−⊤, ĤN(k) := (L+

k )−1ĤN(k)(L−

k )−⊤ and
ĤN(k, k + 1) := (L+

k )−1ĤN(k, k + 1)(L−

k+1)
−⊤ where L−

k and L+

k are
submatrices of L−

k+1 and L+

k+1 defined coherently with the ordering
in (4.2).

Next, factorizations of these matrices are obtained by a
truncated SVD technique on the normalized sample Hankel matrix
ĤN(k + 1),

ĤN(k + 1) =

ÛN ŨN

 Σ̂N 0
0 Σ̃N

 
V̂⊤

N
Ṽ⊤

N


(4.5)

by keeping the first n̂ ‘‘significant’’ singular values in Σ̂N while
discarding Σ̃N so as to form the best approximant of rank n̂,

ĤN(k + 1) := ÛNΣ̂N V̂⊤

N = Ω̂N(k + 1) ˆ̄ΩN(k + 1)⊤ (4.6)

where Ω̂N(k + 1) := ÛNΣ̂
1/2
N and ˆ̄ΩN(k + 1) := V̂NΣ̂

1/2
N are

m(k + 1) × n̂ both of full column rank.

Let Ω̂N(k) and ˆ̄Ω
⊤

N (k) be the factors Ω̂N(k + 1), ˆ̄ΩN(k + 1) in
(4.6) with the last block ofm rows deleted. If k is large enough both

Ω̂N(k) and ˆ̄Ω
⊤

N (k) will generically still have rank n̂. In this case, all
submatrices in the factorizations

ĤN(k) := Ω̂N(k) ˆ̄Ω
⊤

N (k), (4.7a)

ĤN(k + 1, k) := Ω̂N(k + 1) ˆ̄Ω
⊤

N (k), (4.7b)

ĤN(k, k + 1) := Ω̂N(k) ˆ̄Ω
⊤

N (k + 1), (4.7c)

have rank n̂.
Next, form the unnormalized factors

Ω̂N(k) := L+

k Ω̂N(k) ˆ̄ΩN(k) := L−

k
ˆ̄ΩN(k), (4.8a)

Ω̂N(k + 1) := L+

k+1Ω̂N(k + 1), (4.8b)

ˆ̄ΩN(k + 1) := L−

k+1
ˆ̄ΩN(k + 1) (4.8c)

and solve the shift-invariance equations

Ω̂N(k + 1) =


C

Ω̂N(k)A


(4.9a)

ˆ̄ΩN(k + 1) =


C̄

ˆ̄ΩN(k)Ā⊤


(4.9b)

to get estimates, denoted by ĈN , ÂN , ˆ̄CN , of (C, A, C̄). The estimates
ĈN and ˆ̄CN are simply the first block-rows of Ω̂N(k+1) and ˆ̄ΩN(k+

1) while an estimate of A can be obtained by solving in the least-
squares sense the overdetermined system

↓ Ω̂N(k + 1) = Ω̂N(k)A (4.10)

where ↓:= multiplication by

0mk×m Imk


, is the ‘‘chop off’’

operator which acts on matrices by deleting the first block of m
rows.

When rank Ω̂N(k) = n̂, we shall convene to choose

ÂN := [Ω̂N(k)⊤Ω̂N(k)]−1Ω̂N(k)⊤

↓ Ω̂N(k + 1)


(4.11)

otherwise the least square estimate can be defined in terms of the
Moore–Penrose pseudoinverse. A similar formula can be given for
the estimate of Ā.

5. Proof of consistency

Since the covariance functionΛ can be parametrized by awhole
family of minimal matrix triplets (C, A, C̄⊤) mutually equivalent
modulo similarity, a sequence of minimal estimates (ĈN , ÂN , ˆ̄CN)

is called consistent if there is a sequence of nonsingular matrices

{TN} such that (ĈNTN , T−1
N ÂNTN , T−1

N
ˆ̄C
⊤

N ) converges forN → ∞ to a
triplet realizing the true covariance of the systemwhich generates
the data. We shall call this convergence modulo similarity for short.
An equivalent definition can be given in terms of canonical forms
representing the equivalence classes modulo similarity.

Unfortunately even this relaxed notion of consistency does in
general not apply to the parametric structure of the covariance
function of a p.d. model. Any covariance function of this
kind depends on three matrix parameters, say (Cd, Ad, C̄d), or
equivalently (Cd, Ad, Pd); see (2.8) where either C̄d or the initial
state covariance matrix Pd are parameters which cannot be
consistently estimated from the data. In particular Pd is an
ensemble average of different state sample amplitudes which we
cannot have any information about from a single sample path,
even if infinite data length was available. For this reason we shall
use a weaker notion of consistency for p.d. models, identifying
a p.d. model with its state-output equations, parametrized by
an observable pair (Cd, Ad). We shall henceforth just say that a
sequence of p.d. system estimates (Ĉd,N , Âd,N) is consistent if it
converges modulo similarity to (Cd, Ad). This can be equivalently
stated by saying that the limit of the pair (Ĉd,N , Âd,N) expressed
in a suitable observability canonical form, is equal to the ‘‘true’’
observable pair (Cd, Ad) expressed in the same canonical form. This
is for example enough to guarantee a.s. convergence of frequency
estimates.

Theorem 6. Assume that the p.d. subsystem of (2.2) has simple
eigenvalues and that k is chosen large enough so that k ≥ n. Assume
also that n̂ is a consistent estimate of the true order n of the system.
Then the finite sample estimates (ĈN , ÂN , ˆ̄CN) defined in Section 4,
converge modulo similarity and with probability one to a minimal

realization, (C, A, ˆ̄C
⊤

), of the limit sample covariance Λ̂ of the system.

Proof. The idea of the proof is to show that the approximate rank
factorizations (4.7) converge to the exact rank factorizations of the
asymptotic normalized Hankel matrix Ĥ(k + 1) constructed as in
(3.2), with the limit covariance sequence Λ̂k of Section 3. Since
Λ̂k

N → Λ̂k, consistency will follow by a continuity argument and
by Theorem 5.

Now, because of a.s. consistency of the order estimator there is a
(random) sample sizeN0 such that n̂will be equal to the true orders
n of the system (2.2), indefinitely for all N > N0. In the following
we shall assume that N > N0. Then the sample truncated singular
value matrix Σ̂N computed by the algorithm will be n × n, and
the corresponding (normalized) observability and constructability
factors, Ω̂N(k + 1), ˆ̄ΩN(k + 1), of ĤN(k + 1) will have n columns,
so that all involved factorizations will be of rank n.
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Lemma 7. Under the stated assumptions, there is a sequence of
nonsingular matrices {TN} such that

Ω̂N(k + 1)TN → Ω̂(k + 1),

ˆ̄ΩN(k + 1)T−⊤

N →
ˆ̄Ω(k + 1),

(5.1)

Ω̂N(k)TN → Ω̂(k), ˆ̄ΩN(k)T−⊤

N →
ˆ̄Ω(k), (5.2)

almost surely, where the Ω’s without subscripts are rank n factors of
the asymptotic unnormalized sample Hankel matrices in (3.4).

Proof. By consistency of the order estimator, for all N > N0, the
truncated SVD approximation, ĤN(k + 1), has rank n equal to the
rank of the asymptotic Hankel matrix Ĥ(k + 1). Then by a well-
known estimate (see e.g. Golub and van Loan (1983)),

∥ĤN(k + 1) − ĤN(k + 1)∥ ≤ σ̂N(n + 1)

where the σ̂N( j) are the singular values of ĤN(k + 1) (of course
depending on N). Now, since the singular values are a continuous
function of the relative matrix (see e.g. Stewart and Sun (1990,
p. 204)), the singular values of index j greater than n of Ĥ(k + 1)
are all zero, and limN→∞ ĤN(k + 1) = Ĥ(k + 1), it follows that all
singular values of ĤN(k + 1) of index greater than n must tend to
zero for N → ∞ (although ĤN(k+1) may have rank > n for all N)
and therefore ĤN(k + 1) → Ĥ(k + 1) for N → ∞.

Consider the SVD factorization Ĥ(k + 1) = ÛΣ̂ V̂⊤ where Σ̂ is
n × n and let Û := span{Û} and V̂ := span{V̂ } denote the column
spaces of Û and V̂ . Since ĤN(k + 1) converges to Ĥ(k + 1), the
eigenspaces ÛN := span{ÛN} and V̂N := span{V̂N} must converge
in the gap metric to Û and V̂, respectively, see Stewart and Sun
(1990, p. 260)2, the gap metric on subspaces of a Hilbert space
being defined as

γ (X, Y) := ∥ΠX − ΠY∥

where ΠX denotes an orthogonal projection onto X and ∥ · ∥ is the
induced operator norm. Convergence in the gap metric of ÛN to Û
then implies that ΠÛN

Û must converge to ΠÛÛ = Û . Since, in the

orthonormal basis given by the columns of ÛN , we have ΠÛN
Û =

ÛN T̂N , where T̂N := Û⊤

N Û , we have ÛN T̂N → Û , where {T̂N} is a
sequence of n × n matrices which are nonsingular for N large
enough. Non-singularity for N large follows from the convergence
ÛN → Û in the gap metric and can also be checked directly as any
nonzero vector a in the nullspace of Û⊤

N Û would corresponds to a
vector Ûa ∈ Û orthogonal to ÛN . Let now TN := Σ̂

−1/2
N T̂NΣ̂

1/2
N so

that Ω̂N(k + 1)TN = ÛN T̂NΣ̂
1/2
N converges to ÛΣ̂1/2

= Ω̂(k + 1).

Now, since ĤN(k+1) = Ω̂N(k+1)TNT−1
N

ˆ̄ΩN(k+1)⊤ converges

to Ĥ(k+1) = Ω̂(k+1) ˆ̄Ω(k+1)⊤ and Ω̂N(k+1)TN → Ω̂(k+1), all
factors having (for N large enough) linearly independent columns,
it follows that T−1

N
ˆ̄ΩN(k + 1)⊤ converges to ˆ̄Ω(k + 1)⊤.

We may equivalently say that the convergence Ω̂N(k + 1) →

Ω̂(k + 1) and ˆ̄ΩN(k + 1) →
ˆ̄Ω(k + 1) takes place in the gap

metric. Moreover, since ĤN(k) → Ĥ(k), ĤN(k + 1, k) → Ĥ(k +

1, k), ĤN(k, k + 1) → Ĥ(k, k + 1) almost surely for N → ∞, the
factors, Ω̂N(k) and ˆ̄ΩN(k), in (4.7), tend in the gap metric almost
surely to upper truncations of dimension mk × n, of the left and
right factors, Ω̂(k + 1) and ˆ̄Ω(k + 1), of Ĥ(k + 1).

2 A theorem of Chatelin quoted in Bauer and Jansson (2000, Lemma 7) can also
be used for the same purpose.

Consequently, since the Cholesky factors L±

k , L±

k+1 converge
almost surely as N → ∞, the unnormalized factors (4.8) also
converge in the gap metric when N → ∞, so there is a sequence
of nonsingular matrices {TN} such that (5.1) and (5.2) are satisfied
almost surely. �

It is now easy to check that the solution of the shift invariance
equations (4.9) in which Ω̂N(k + 1) and Ω̂N(k) are substituted
by Ω̂N(k + 1)TN , Ω̂N(k)TN etc. is just the similarity transform

(ĈNTN , T−1
N ÂNTN , T−1

N
ˆ̄C
⊤

N ) of the original estimates, provided N
is large enough so that rank Ω̂N(k) = n. The above immediately

implies that ĈNTN → C, T−1
N ÂNTN → A and T−1

N
ˆ̄C
⊤

N →
ˆ̄C
⊤

. This

is of course due to the fact that the mapping from (Ω̂NTN , T−1
N

ˆ̄Ω
⊤

N )

to (ĈNTN , T−1
N ÂNTN , T−1

N
ˆ̄C
⊤

N ) is continuous for all matrices where
Ω̂N(k)TN has full rank n. �

Note that this proof works for a (large enough but) fixed
future/past regression horizon k and does not require that k tends
to infinity at a certain rate with the sample length N , as required
in a large part of the current literature on the asymptotic behavior
of subspace methods. This seems to fit the spirit of the discussion
about the need of the condition i → ∞ in van Overschee and
De Moor (1993, Section 9). So far we have shown convergence
of the overall covariance estimation procedure. To complete
the picture we should discuss how to extract consistent (mod
similarity) estimates of the (Cd, Ad) and (Cs, As, C̄s) parameters.
In the following we shall take A in block diagonal form A =

diag {Ad, As} as in (2.2). By Theorem 6 there is a sequence of
invertible matrices TN such that T−1

N ÂNTN − A → 0 almost surely
as N → ∞. Here we shall need to assume that this happens at a
certain rate O(f (N)) with f (N) → 0 as N → ∞. Typically when
A has only eigenvalues of modulus strictly less than one, f (N) will
tend to zero as 1/

√
N , see e.g. Bauer (2005); Chiuso andPicci (2004)

and for concretenesswe shall assume f to be a function of this class
inwhat follows. The final resultwill however be independent of the
particular form of f . Then, for N → ∞

T−1
N ÂNTN = A + δAN/

√
N

with δAN almost surely bounded. Let α(N) be an integer-valued
function which grows more slowly than

√
N , for N → ∞. Then,

from Newton binomial expansion, the second member in the
expression

Âα(N)
N = TN(A + δAN/

√
N)α(N)T−1

N

is of the same order of TNAα(N)T−1
N so that, for N → ∞, T−1

N Âα(N)
N TN

→ diag {Aα(N)
d , 0}, since all eigenvalues ofAs are inmodulus strictly

less than one. Hence for N → ∞ the range space of Âα(N)
N (which

may be computed say by an ordered real Schur decomposition)
becomes arbitrarily close in the gap metric to the d-dimensional
eigenspace spanned by the eigenvalues of modulus one of A.
This eigenspace is a simple invariant subspace of A in the sense
of Stewart and Sun (1990, p. 221). Then, by continuity of the
eigenvalues and eigenspaces with respect to the relative matrix,
see e.g Stewart and Sun (1990, pp. 236–241), consistent estimates
of Cd, Ad (and Cs, As) can be found by restricting ĈN , ÂN to this
invariant subspace or, equivalently, by enforcing shift invariance
to the two submatrices


Ω̂d,N(k + 1) Ω̂s,N(k + 1)


obtained from

the corresponding change of basis on Ω̂N(k+1). The eigenvalues of
the estimate Âd,N in general will not have modulus one. Therefore
it is reasonable to add a further step where Âd,N is replaced
by an ‘‘equivalent’’ orthogonal matrix. In the new basis one can
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impose that the solution of the shift invariance equation for the
deterministic Amatrix,

↓ Ω̂d,N(k + 1) = Ω̂d,N(k)Âd

should be an orthogonal matrix. This is aMatrix Procrustes Problem
which can be solved by SVD (Golub& van Loan, 1983). The estimate
P̂d may then be computed as in (3.5). Note that knowledge of
the exact order of convergence O(1/

√
N) is not important as the

argument above works for any function f (N) such that α(N)f (N)

tends to zero as N → ∞.
Estimates K̂N and D̂N can be computed for finite N by solving

a sample algebraic Riccati equation depending on the estimated
parameters (Ĉs,N , Âs,N , ˆ̄C s,N , Λ̂s,N(0)) of the p.n.d. subsystem.

X = Âs,NXÂ⊤

s,N + ( ˆ̄C
⊤

s,N − Âs,NXĈ⊤

s,N)

× (Λ̂s,N(0) − Ĉs,NXĈ⊤

s,N)−1( ˆ̄C
⊤

s,N − Âs,NXĈ⊤

s,N)⊤

where Λ̂s,N(0) := Λ̂N(0) − Ĉd,N P̂d,N Ĉ⊤

d,N . This will converge for
N → ∞ to the true ARE for the p.n.d. subsystem of (2.2). Note
however that even if the sequence of estimates (Ĉs,N , Âs,N , ˆ̄C s,N ,

Λ̂s,N(0)) is consistent, there is no guarantee that the estimated
system will be positive real (i.e. define a positive semidefinite
spectral density) for finite N . In other words, even if the spectrum
estimate Φ̂s,N(z), of the p.n.d. component for N → ∞ will
converges to a positive function, there is no guarantee that for
any finite N this estimate should be positive since the sequence of
functions on the unit circle {Φ̂s,N(ejθ );N = 1, 2, . . .}may converge
to a nonnegative limit without being everywhere nonnegative as
functions of θ , for any N . Therefore the algebraic Riccati equation
based on finite sample estimates (Ĉs,N , Âs,N , ˆ̄C s,N)may fail to have a
solution for all N . To avoid this nuisance an additional assumption
of strict positive realness (or coercivity) of the true spectrum is
needed. Then the limitwhenN → ∞ of Λ̂s,N will be a positive (and
sample independent) sequence for N large enough. The following
result is taken from Lindquist and Picci (1996).

Theorem 8. Assume that the spectral density function, Φs(z), of the
p.n.d. component of the process y is strictly positive definite on the
unit circle. Then, under the same assumptions of Theorem 6, the CCA
partial realization algorithm applied to a string of sample covariance
lags generated by the true system (2.2)will yield consistent estimates
of the parameter K and D modulo multiplication from the right by an
arbitrary orthogonal matrix.

6. Conclusions

In this paper, we have presented a general proof of strong
consistency of subspace identification applied to signals with
oscillatory components. Even if these signals are not ergodic and
hence the standard consistency arguments based on second-order
ergodicity do not apply, their sample covariance converges almost
surely (to a sample dependent limit) and this fact can be exploited
to show convergence of the estimates of the identifiable system
parameters.
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