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Minimal Realization and Dynamic Properties of
Optimal Smoothers
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Abstract—Smoothing algorithms of various kinds have been work for the problem. The computational aspects are surveyed

around for several decades. However, some basic issues regardingn the paper by Park and Kailath [23].
the dynamical structure and the minimal dimension of the Other recent work on smoothing has been motivated by the
steady-state algorithm are still poorly understood. It seems fair . ?
to say that the subject has not yet reached a definitive form. In two-point boundary value formulation of Adaresal. [1], and .
this paper, we derive a realization of minimal dimension of the L€vy et al. [14]; however, we shall not need to consider this
optimal smoother for a signal admitting a state-space description type of framework here. Treatments of smoothing from various
of d_imensionn. Itis shown that the dime_znsion of the smoothing al- points of view are also found in textbooks as [4], [11], and [15].
gorithm can vary from n to 2n, depending on the zero structure of 1, o opinion, notwithstanding the vast literature existing on
the signal model. The dynamics (pole structure) of the steady-state _, . . . . .
smoother is also characterized explicitly and is related to the zero this subject, thg theory of smoothing has notyet crystallized into
structure of the model. a standard universally accepted format as, for example, causal

We use several recent ideas from stochastic realization theory. In Kalman filtering. The basic structure of the filter, its implemen-
particular, a minimal Markovian representation of the smoother  tation and the analysis of its steady-state behavior, do not appear
is derived, which requires solving a nonsymmetric Wiener—Hopf  haye reached a definitive form. For example, a basic issue like
factorization problem. In this way, the smoother is naturally ex- g
pressed as the cascade of a whitening filter and a linear filter of describing the poles of the stea(_jy—s.tate smoother .d.oes not seem
least possible dimension, whose state space is a minimal Markoviant0 have been answered. Also, in virtually all traditional treat-
subspace containing the smoothed estimatg. This, among other ments of smoothing, it is given for granted that the smoother
aspects, affords a very simple calculation of the error covariance should be a dynamical system whose dimension is equal to twice
matrix of the smoother. A reduced-order two-filter implementation the dimensiom of the signal model. Only recently has it been
of the Mayne—Fraser type is obtained by solving a Riccati equation . . . . .
of reduced dimension, which is in general smaller than the dimen- discovered that, instead, the d_|men5|on of the optimal smoother
sion of the Riccati equations considered in the literature. can vary fromn to 2n, depending on the zero-structure of the
signal model transfer function. This fact was first pointed out
by geometric arguments in [18]. This reference, however, does
not deal specifically with smoothing, and the characterization
of the dimension of the smoother is not explicit and is buried in

. INTRODUCTION AND PROBLEM FORMULATION a wealth of other results related to stochastic modeling.

MOOTHING of linear stochastic systems is a classical sub- I this paper, we shall attempt to provide a clear and hopefully
ject with a long history. Due to the availability of ultrafasdefinitive picture, at least for the steady-state behavior of the
computers, its relative importance with respect to the classioother. We shall first derive by elementary computations a
Kalman-type algorithms has been growing in the recent yeafinimal realization of the smoother and show that its dimension
since real-time processing can now often be done more effi-0etweem and2n and can be related to the zero structure of

ciently by off-line algorithms, which process the data in batch&3€ transfer function of the given model. This fact was shown
of finite length. by more abstract arguments in [18]. In order to understand its
Among the early references on smoothing we may quote tHgnamic structure, we address the problem of computing a
paper by Rauclet al. [26], the celebrated two-filter formula Minimal stochastic realization (i.e., a Markovian representation)
of Mayne [20] and Fraser [10], and the papers by Kailath a/ti the smoother. This problem is reduced to a (nonsymmetric)
Frost [13], Sidhu and Desai [28], and Weinert and Desai [29fViener—Hopf factorization of a rational matrix function, the
We quote also the important paper by Badatwal. [5] where C€ross spectral density matrix of the state and output processes.

stochastic realization theory was shown to be the natural framidle factorization need not be minimal in the classical sense, but
some other minimality constraints must be satisfied. Exploiting
well-known spectral factorization theory, we relate this problem
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Our basic assumption will be that the signal model is time imf minimal degre@ Moreover, we shall adopt the standard as-
variant. The steady-state smoothing problem can be formulagadnption that, (s) is coercivei.e., there exist > 0such that
as follows: we are given a linear stochastic model
®, (iw) > o, VweR. (1.6)
T = Az + Bw y=Czx+ Dw (1.1) ) o
This assumption implies that the matidX has full (row) rank
. . . . . . — T _ i i 1
driven by ap-dimensional normalized white noise Observe SO thati := DD™ = &(o0) is nonsingular. Without loss of
that this model is more general than the classical two-noisg@nerality, we can choose a basis in the input space of (1.1) such

model sometimes considered in the literature thatD = [R'/*|0], whereR'/* is, say, the (unique) symmetric
square root of2. We partitionB conformly asB = [B;|Bs].
i = Az + Byw, y = Cz + Dyw, (1.2) Itis required that the solutiafi(t) be computable recursively

as the output of a (generallyoncausal dynamical system of

wherew, andw. are uncorrelated white noises, since the latidfansfer functiors(s) (thesmoothe). Acausal linear filters and
may be viewed as a particular case of the former by seffing the interpretation of acausal transfer functions are discussed

[B1]0] andD = [0|D,] in (1.1). briefly in Appendix A.
Then x n matrix A is assumed stable, i.e., all the eigenvalues u(t) — S(s) |— 209
of A lie in the open left-half complex plangr(4) C C_). 7

This assumption is made for convenience only. What is reall . .
P y yWe shall require that the smoother is implemented by a nu-

needed here is that no eigenvalue-bfies on the imaginary rically stable algorithm of least complexity. We shall come
axis. Under this latter assumption, the seemingly more gene%? y 9 piexity.

framework of arbitrary eigenvalues can be reduced to the one i:;l?;tderdlscuss the meaning of these specifications in more
are considering here; see [25]. This implies that the systemisin, . IIlk that the orth litv princiole of li i
statistical steady state and thedimensional observed proces%. ¢ Its W(?[h hown % F:hor ogg?a Ity principle otlinear s
1y, output of (1.1), is a stationary process. imation theory provides the condition

Given observations af(t) on the interval-oo < ¢t < 400, B,y (s) = Dy (s) (1.7)
we denote byH (y+°) the Hilbert space spanned by such ob- i i '

servations; see e.g., [27] and [18] for a precise mathematigilered,, (s) is the cross spectral density of the processes
definition. We want to compute the minimum-variance lineagng, and®;,(s) is the cross spectral density of the processes
steady-state estimate (wide-sense conditional expectation) . andy. From this condition, the well-known relation for the

. oo transfer functionS(s) of the smoother readily follows:
#(t) = Ble(t) | H(y=)]

S(s) = @uy(s)®; 1 (s). (1.8)

of the (» components of the) statg¢). It is well known [27] Y

that this estimate is the limit in mean square of the finite-interv@lbserve that,,(s) and®,(s) may be expressed in terms of

estimate the data as
Py = Eln(t) |y(s); to < s <ti], to<t<t Duy(s) = (sI — A)T'BWT (=)
D, (s) =W (s)WT(-s) (1.9)
ast — to andt; — ¢ tend tooco and is often used as a constant-
parameter approximation of the latter. so that (1.8) can be written a little more explicitly as
We assume that the modelrnsinimal both in the sense that
(A, B) is controllable andC, A) is observable and in the sense S(s) = (s = AT BW™(5)® ()"

that the transfer function
where we have adopted the notatidff (s) := W(—s)?". These

W(s)=C(sI — A)"'B+D (1.4) expressions involve several pole-zero cancellations and the dy-
namics (i.e., the location of the poles) 8fs) is not easy to
is a spectral factor of the spectral densityyof figure Qut. . _ ' _
In this paper, similarly to what is done in the classical steady-
o, (s) = W(s)WT(—s) (1.5) state analysis of the Kalman filter, we would like to describe the
y(8) = .

dynamics of the steady-state smoother in terms, say, of the orig-
inal spectral data of the problem. One basic question is that of
1Some may argue that this stationary approximation may not be of much Valﬂ'éscribing the poles Cﬁ(s) This will be answered in Section V,
if the observation interval is small, since the optimal finite-interval smoother . . .
(which is time-varying) may not get close enough to the steady-state filter. Ho@ssent'a”y in the foIIowmg terms.
ever, in case of a small observation interval (i.e., one consisting of very few dataTheorem 1.1:The poles (including multiplicity) of the

points), there is really no need @fcursivefilters, since the computation of the teady-state SmOOthél’(s) are the subset of the zeros of the
estimate can be done by one-shot algorithms of static estimation theory. E?fi—

cient algorithms of this kind have been available in the literature for a whiigpectral densitg,, (s) obtained by deleting the elements which
an early reference being, e.g., [22]. So the critique really refers to a situatiatie also zeros dﬂ/*(s)

that is of little interest to dynamic smoothing since it is naturally dealt with by

different algorthms. 2“Degree” is always understood to mean MacMillan degree.
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This paper is organized as follows. In Section Il, we com- To prove this theorem we shall use the following technical
pute the minimal dimension (McMillan degree) of the optimdkemma, which is a straightforward consequence of the fact that
smoother. In Section IIl, in the spirit of the Wiener—Kolmogorothe unobservable subspace of a §&ft F') is the largest-in-
theory of filtering, the smoother is realized as a cascade ofariant subspace contained in kir(the nullspace off). The
withening filter and a shaping filter. In Section 1V, the relatiorproof will be skipped.
between the zeros & (s) and the dynamics of the smootheris Lemma 2.1:Let N be a matrix whose columns form a basis
investigated; moreover, the family of minimal realizations of thfor the unobservable subspace of the @i, F'). Then there
smoother is parametrized and the structure of the error covaaxists a matrix/ such that
ance is analyzed. Section V discusses the smoother implementa- F NJ
tion. In Section VI, the discrete-time counterpart of the results {H} N = { 0 } . (2.8)
of the previous sections (which deal with the contiunous-time
case) are outlined. In Section VII, some simulation results aB®onversely, if V is a matrix such that (2.8) holds, then the
described. In Section VIII, we finally draw some conclusiongolumns ofN belong to the unobservable subspacémf F).
Appendixes A, B, and C deal with some technical issues. Proof of Theorem 2.1:Equation (2.6) follows by multi-

plying together (2.1) and (2.3) and employing Lemma B.1 to

II. AMINIMAL REALIZATION OF THE OPTIMAL SMOOTHER compute the product @b, (s) with the strictly proper part of

—1
In this section, we shall express the smoother as a dynami@al (s).

system in state space form and compute the relative system mayeXt note that the McMillan degree df,(s) is 2n since
trix and the dimension of a minimal realization 8fs). (s) is a minimal spectral factor. Hence the McMillan degree

1 . . .
State-space realizations @, (s) and @, (s) are easily ob- ©f Ly(s)”" is also2n and, in view of (2.3), the pair
tained from the model (1.1) as follows: —1/2
(22

Doy (5) = (sI — A) L BWT (=s) _CTR

77\t 1/2 is controllable. Therefore, from (2.6), it is apparent thgtthe
i O]<$I_[A BB D [BlR } 2.1) (2.6) pp &

0 —AT —C7 McMillan degree of the smoothef(s), is equal to the dimen-
B (s) = Wi(s\WT(— sion o_f the observability space of the pgif 0], A). .
u(3) () ( 12 T Define thenX to be a matrix whose columns form a basis for
=R+[C RY"Br] the unobservable subspace of the fir 0], A). PartitionV as
L[4 BBT1\ ' [ B,R/? 22) N = [\}], where the blocksV; and N, haven rows. In view
T o —at -CcT |- : of Lemma 2.1, there exists a matrixsuch that
From the latter, employing a well-known formula for the in- A r B,BY N NJ
version of a rational matrix function, we get [[I 0]} N=|CTR1c -1I7T [Nl} = [ 0 } (2.9)
I 0 2
@, Y(s)=R*—[R7'C RY?BI|(sI-A)!
B R-1/2 which immediately yieldsV; = 0, so that (2.9) implies
N 2:3)
—C R FT NQ(—J)
BT Ny = . (2.10)
Here A is the Hamiltonian matrix 2 0

CTR-1C _IT (2.4) " |ong to the unobservable subspace of the p&f, I'T).

[ r BQBQT} In view of Lemma 2.1, this implies that the columns/éf be-
Conversely, if V5 is a matrix whose columns form a basis

with I being defined as for the unobservable subspace of the g&# ,T'7), then the
0
= A— BRV2C. (2.5) co[umns of[Nz] belong to the unobservable subspace of the
pair ([I 0], A).
From this a realization of the transfer function of the smoother In conclusion, the unobservable subspaces of the pairs
can be computed. (BY, TTy and([I 0],A) are isomorphic (being expressible
Theorem 2.1:The transfer function (1.8) of the steady-stat@s the column-span of; and the column-span of \ ],
smoother has the realization respectively) and hence have the same dimengioVe have
B R-1/2 already shown that the McMillan degreg of S(s) is equal to
S(s)=[I 0](sl —A)* [ ICTRl} (2.6) the dimension of the observability space of the [gfir 0], A).
- ‘ Therefore

whereA is the Hamiltonian matrix (2.4). The McMillan degree

no of the smoother is ng =2n—v (2.11)

2.7) and the theorem is proved. ]
We are led to conclude that ti#-dimensional realization

wherev is the dimension of the unobservable space of the p#2.6) is not necessarily minimal. A minimal realization$(fs)

(BT, TT). may be obtained from (2.6) by deleting thelimensional unob-

ng =2n — v
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servable subspace (this may be done using standard techniqueBinally, (3.1c) implies, assuming the realizatig@’,, Ay,
see, e.g., [12]). By} to be minimal, that the components of the smoothed
1) Relation with Zeros:As pointed out in [17] (see alsoestimatei(t) = Cozo(t) are expressed at any time as a
[18]), the unobservable subspace of the gd¥ ,I'") turns linear combination of the minimal possible number of state
out to be the vector space aéro directionsfor the transfer variables. In other words, the Markov procesg(t) is the
function (1.4) of the model (1.1), commonly denoted by thstate of a dynamical system of minimal dimension among
symbolV*. More precisely, the unobservable subspace of tllgose with the property of serving as a dynamic memory for
pair (BZ,I'T)3 coincides with the so-callechaximal output the smoother. Equivalently, this can be expressed by saying
nulling subspaceV* (AT, CT, BT D) for the dual system that the Markovian space of random variables spanned by the
(AT, CT, BT, DT) and plays a basic role in the study oftomponents of(#)
the zero dynamics of spectral factors by means of geometric 4 )
control theory [17], [6], [31]. Its dimension is the number of X := spartzy(t)), t=1,2-n (3.3)
invariant zeros of¥ (s), counted with multiplicity. As shown
in [17], in force of the coercivity condition (1.6), the invarian
zeros of W (s) coincide with the eigenvalues &f' restricted

to the ilnva;riant ﬁubds_paclé*_. It ]is eviclien; f7romh(2.6h), and in whitening filter Wt and a filterV;(s) of minimal McMillan
particular from the dimension formula (2.7), that t eStructurc?egree yields a minimal recursive filter with output the

of the steaﬂ%/—statle smqotr?er IS ||nt|rr;]at§g relﬁted to the Z&hoothed estimaté(¢). This representation was introduced
structure ofi¥’(s). In particular, only wheriV'(s) has no zeros ;, previous publication [18], where, however, the explicit

IS th? dlmenS|op of thg smoothea, a fact often claimed to be calculation of a state-space realization of the smoother was not
true in general in the literature. addressed

Observe that the poles of the smooti$gx) are a subset of In order to solve the minimal factorization problem, we shall

the eigenvalues of the matriy, and then, by coercivity cb(s), analyze all solution pair§”(s), W(s)) of (3.1a) and (3.1b) and

5(s) is _analyti_c on an open strip containing_ t.he Imaginary aX'ﬁompare the McMillan degrees ®f(s). Since, in view of (1.8),
Hence it admits “two-filter” type decompositions as a sum of factorizationS(s) = V(s)W ~L(s) is equivalent to the factor-
causal and an anticausal filter. The two-filter structure will b%

. . . 1zation
examined in the next sections.

is a minimal Markovian subspace containing the (components
tof) the estimate:(¢).
In conclusion, expressing the smoother as the cascade of a

@, (s) = V(s)W*(s) (34)

[ll. M ARKOVIAN REPRESENTATION OF THESMOOTHER . .
of the cross spectral density, the search fof af minimal de-

Inthis section, we shall address the problem of expressing {j@e is made in the st/ (s) = D, ()W (s)|W(s) € W},

smootherS(s) in the form wherelV is the set of all minimal square spectral factors. Note
that in principle, we should search the whole senof nec-
S(s) = Vo(s)Wq ' (s) (3.18) essarily stablespectral factors¥(s) of ®,(s). However, it is
where proven in Appendix € that one can, without loss of generality,

Wao(s) is a minimal square spectral factorf(s) (3.1b) restrictthe searchtothe classafalyticspectral factors. Infact,
it is shown in Appendix C that the transfer functidf(s) =
.., (s)W~*(s) corresponding to an arbitrary minimal spectral

Such a factorization is in the spirit of Wiener—KoImogoro&acmr (not necessarily stabl#(s) has the same McMillan de-

theory of filtering and prediction and is motivated by th%rii(;)i;th;ttﬁ:ifsir Lljenr(;[:giiyr%g)s :ua;l)ggl(ii)z;ec(:fr)alcgcr;c;r
following considerations: the filtedV;!(s) driven by the P g q q yric sp

. ) o : . W, (s), which has the same zero structurd/®fs). Hence, by
observationy is clearly awhitening filtet. For, the inverse of restricting attention to analytic spectral factors only, we do not
any Wy(s) satisfying (3.1b) transformsg into a white noise 9 ytic sp Y

processwy (of the same dimensiom). Hence the dynamical lose in generality.
systemV(s), whose output is the estimat€t), is driven by a otrcl)e ?see:i\;eoiht?]té ?cl)vri?;/ pzd;ff}/o‘(j )(’ ;/%()S)gviglr\g;gif’é?é?g}y
white noise. This implies that the statg(t) of any realization P \YOLS)S 5 YOS ),
of Vi(s) trary orthogonal matrix, is also a solution of (3.1). We shall re-
0 gard two such solutions as equivalent and choose as a represen-

tative the paitWy(s), Vo(s)), which hasiWy (o) = R/,

0
Vo(s) has minimal McMillan degree (3.1¢c)

Vo(s) = Co(sI — Ag) ™ By (3.2)
) ) ) ] A. Riccati Equations and Spectral Factorization
driven by the white noise procesgs is aMarkov process Note i )
that#(¢) is not Markov in general and does not satisfy any dif- We sha_ll m_eed to review below some classical results of spec-
ferential equation driven by white noise (recursive filter) whild@! factorization theory, mostly due to Anderson [3], [2]. These
2o(t) instead does by construction. results describe a parametrization of the minimal analytic square

spectral factors o, (s) in terms of the solutions of a certain
30r, equivalently, the orthogonal complement of the reachable subspaceddgebraic Riccati equation.
(T, By).
4Note that this statement has no implications on the stabilityofwe refer 5We advise the reader that Appendix C uses definitions and notations intro-
the reader again to [25] for a discussion of acausal models of Markov processkesed up to the end of Proposition 3.1 below.
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Let P be the state covariance of model (1.1), i.e., the uniqi a minimal analytic square spectral factor ®f(s). Con-

solution of the Lyapunov equation versely, to any minimal analytic square spectral faété(s) of
- - @, (s) there corresponds a symmetric solutif (3.11) such
AP+ PA” = -BB". (3:3)  thatW (s) = Wx(s) has the form specified by (3.14).

Then, a change of basis in the state space of the realization (2.2*6‘?06’ given a symmetric SOIUt@hOf_ the algebraic R|_ccat|
of @,(s) induced by the matri :— [é _ﬂ splits the spectral equation (3.11), we have a corresponding transfer funéficn

density®, (s) in the form of the smoother, defined by

D, (s) = 2y () + D)4 (5) (36) Va(s) 1= By () W5 (5)
where =(sI — A)T'BW*(s)Wg5*(s).  (3.15)
P, (s) =C(sl —A) 'CT + iR (3.7)
the matrixC?' being given by B. A Family of Smoothing Filters

We shall introduce the following technical assumption.
Assumption 3.1:The pole and the zero sets of the spectral

It follows from (3.7) that the matrice”, A, CT) yield a min- density, () are disjoint
imal realization of the spectrum,(s) and hence are the same <[A BBTD

C" := PC" + B,R"*.

(i.e., invariants) for the class of all minimal models (1.1) repreo T
. ; . . 0 —-A
senting the procesgs (in the given basis). Then a central result

i A - BR7Y2C BB}
of stochastic system theory (see, e.g., [18]) states that the state, q 1 252 D =0,
covariance matri¥X of any other stationary minimal realization CTR™'C — AT + CTR7V2BY
of y of the form (1.1) satisfies the algebraic Riccati inequality (3.16)

AX +XAT +(C-CX)'R™Y(C-CX)<0 (3.8) Many of the results described below continue to hold even if

_ ) this assumption does not hold, however their proofs would be

and, conversely to each symmetric solutifinof (3.8), there o0, dened by technicalities risking to hide the meaning of
corresponds an essentially unique minimal systéa3, C', D) a0 resyits. It is worth observing that the condition (3.16) is al-

generating, as the output of a “shaping filter” of the type (1.1), 5y ¢ satisfied wher(s) is scalar and holds generically in the

In particular, the state covarianéeof our signal model satisfies multivariable case.

AP 4+ PAT 4 (C — CP)TR™Y(C — CP) = —B,BT (3.9) The foIIovx_/ing_proposition_provides arealizationlaf(s) and
a formula yielding its McMillan degree. Note that the eigen-
which is just an equivalent way of writing the Lyapunov equavalues of the matriX's, introduced in (3.17) are the zeros of the
tion (3.5). The particular solution®, of (3.8) with the equality square spectral factd¥(s). For this reasof’s; is sometimes
sign, i.e., the solutions of called thenumerator matrixof Wx(s).
. . Proposition 3.1: Let 2 be a solution of (3.11) anty(s) be
APy + PoAT +(C — CP)"R™H(C - CPy) =0 (3.10) the corresponding transfer function defined by (3.15). Let

correspond to (minimal) stochastic realizations with the
smallest number of input noise components, i.e.miaimal
square spectral factord¥, of ¢,. By subtracting (3.10) Then
from (3.9) and rearranging terms, one obtains another Riccati

equation for the differencE = P — F, _TT 1T p-1/2
q 0 Va(s) =[-% 1] <SI— { gz EJ) [C ]g }
e+ 317 - 2C"R™ICY 4+ BB =o0. (3.11) >

I's:=A-BsR Y?2C=r-2CTR'C. (3.17)

(3.18)

Clearly, sinceP is fixed, the solution& of this equation are in .
one-to-one correspondence with those of (3.10) by the relati@fd, under Assumption 3.1

YX=P-F,. (3.12) deg V5 (s)) = 2n — ny, (3.19)
Some of these facts are collected in the following lemma, whigtheren. is the dimension of the unobservable spacef the
will be used repeatedly in the sequel. pair (2, T'L).
Lemma 3.1 (Anderson)Let 3 be a symmetric solution of the Proof: We have

algebraic Riccati equation (3.11). Define

Wg(s) =[Ws(s)"']"
:R_1/2B£($I+F£)_1OTR_1/2 +R_1/2

Then (3.20)

Ws(s) := O(sI — A)"' By + RY/? (3.14)  ®Here and in the following, dég) denotes the McMillan degree.

By, := B, + SCTR™Y/2. (3.13)
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wherel's, is defined in (3.17). Then, taking into account that Formula (3.24) describesfamily of state-space realizations
CTRY?2BL = AT —T'L and using Lemma B.1, we easily gebf the smoother, parametrized by It is easy to show that this
formula particularizes to the well-knowtwo-filters formulaof
WH(s)Wg™(s) 2 the smoothing literature, of which it provides a generalized ver-
I R=/<C% TN—1,~T p—1/2 sion.
o [0} + [ -BY } (sI +T5)"CTRT2 (3.21) Consider the Lyapunov equation
From this, using again Lemma B.1, we compUigs) = (s — XI's+I'LX = —CTR™'C. (3.25)
A)"'BW*(s)Wg*(s) and obtain (3.18).
To computedeg(Vs(s)), we observe that from the minimal Since the spectral densify, (s) has been assumed to be coer-
realization (3.14), it follows that the pajri, Byx) is reachable, cive [(1.6)], we may pick in such a way that
and from the minimal realization (3.20), it follows that the pair T
(—I'L,cTR=1/2) is also reachable. Moreover, (3.20) implies ol's) No(-I'g)=0 (3.26)
thato(—I'%) is a subset of the zeros &, (s); hence from As-

. T - _
sumption 3.1 it follows that i.e., the spectra of's; and of —I'5; are disjoint (which is

commonly called “unmixed spectrum” condition). In this

o(A) N o(=I'L) = . (3.22) case, (3.25) has a unique symmetric solution which we de-
note by A~! for convenience. This solution is nonsingular
Then the following is clear. since ('L, CT R~1/2) is reachable, as noted in the proof of
1) The realization (3.18) is reachable. Proposition 3.1. For example, choosing farthe maximal

2) The unobservable subspagé of the realization (3.18) solution of the ARE (3.11)X := P — P_, whereP_ is the
is isomorphic to the unobservable subspeaaf the pair minimal solution of the algebraic Riccati equation (3.10); then
(£,T%). Indeedw € N ifand only if v = [%'] with I's, := 'y is a stability matrix and turns out to be precisely

0 . . .. .
v € . the difference between the maximal and minimal solutions of

These two observations clearly yield (3.19). m (3.10), namelya = Py — P_ > 0, which is sometimes called
The following proposition shows that cascading with théegapof the Riccati equation [30], [9].

withening filter Wy (s)~! does not change the MacMillan Proposition 3.3 (Two-Filters Formula)iet X be any
degree oft&(s). symmetric solution of the ARE (3.11) such that the numerator

Proposition 3.2: Denote by[zs(t)7  zx(¢)7]” the state Matrix I's has unmixed spectrum. Denote By! the corre-
(Markov) process of the realization (3.18) driven by the inpdPonding unique symmetric solution (necessarily invertible) of
white noise processs,(t). Then, for each, the smoothing the Lyapunov equation (3.25). Then the transfer function of the
filter is obtained by applying to (3.18) the state feedback ~ Smoother (3.24) admits the additive decomposition

ws(t) = —R~Y2Cxs(t) + R™Y2y(t). (3.23) S(s)=(I —SA Y)(s] —I's) 'BgR '/?

_ _ + XA s —Ts) 'BgR™Y/2 (3.27)
The transfer function of the smoother can be written as

S(s) = Vals) W5 (s) where
T _oTr-cI\ ! Ty :=I'ys - ACTR™'C = —ATLA™!
=2 <SI_[ 0 r D By =Bs — ACTR /2
s 5 =By — - (3.28)
CTR—I
. [B R_I/Q} (324) ¥ =%, = P—-P_,thenA = P, — P_ > 0, and the
> smoothed estimate can be written in the form
Proof: The formula can be obtained by transfer function A N
manipulations of (3.18) and’x:(s). A more instructive deriva- #(t) = [I— (P —P_)(Py — P_)7 ] a4 (t)
tion is obtained by noting that the shaping filter of transfer func- +(P—P_ )Py —P_) 'a_(t) (3.29)

tion Wx(s) can be represented by the state space model . )
wherez . (t) is the steady-state causal (forward) Kalman Filter

Zx(t) = Azx(t) + Byws(?) estimate ofz(¢) andZ_ (¢) is the steady-state anticausal (back-
y(t) = Cas(t) + R ?ws(t) ward) Kalman Filter estimate of(z).
Proof: We show that there is a similarity transformation of

where the input and hence the state processes are the santeeoformT := [é )I(] , which block-diagonalizes the realization

the second component of (3.18). From this obtain a realizati®24), if and only if there is a symmetric solutict of the
of the withening filter of transfer functiof/s,(s)~* Lyapunov equation (3.25). In fact, sin@&! := [é _)I(] we
have
is(t) =(A — BaR™Y2C)ax(t) + BeR™Y2y(t) . _—
ws(t) = —R™Y2Cas () + R~/ 2y(t) 71 [‘gz O C} T
=
and then just substitute the last equation in the state space model [—F% XTIy -TLX - CTR™IC

corresponding to the realization (3.18). [ | “l o0 I's
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and the northeast corner of the transformed matrix is zero if agdould be equivalent to a realization of the family (3.24). We
only if X solves (3.25). The similarity transformation inducedry a similarity transformation of block-upper triangular form

by any suchX gives T := [} %], whereby
- IIT=[-% I-3%X] H 0= [T=[-% I {é ﬂ
-1 CTR™* ] [CTR™* - XByR™'/?
ByR™Y2 |~ By R™1/2 . . .
implies, assuming is invertible, thatk = ¥~ andH; = —X.

and consequently provides the following decomposition &PmPuting the upper right off-diagonal block (of place 12) in

S(s): [1 —2—1} [—r’—g —CTR—lC} [I 2—1}
0 I 0 r 0o I
S(s) =%(—sI —TL)"HCTR™ — XBsR™V/?) >
+ (I —¥X)(sI —I's) 'BgRV2 we find =X "'y — I'EX ! — CTR~1C. Now X is a solution

of the algebraic Riccati equation (3.11), which can be rewritten
Now, substituting{ = A~* and rearranging terms, one obtains
IsX + STL + SCTYR™ICE + BoBY =0 (3.32)
S(s)=(I — XA Y (sI —Tg) *BgRY/?
+ YA (=8l — ATLATH !
A(ACTR™ — ByR™/?) G1H, =Y 'ByBTy L,

and this implies that

which is (3.27). That the two expressiond &f are the same fol- Finally, imposing that
lows sinceA ! solves the Lyapunov equation (3.25) and hence . S
_ATZAL = I'y, — ACTR'C. Finally, in caseX = ¥, = [f - } { C RI/Q} _ {GlDﬂ
P — P_, we obtain the well-known formulas for the backward 0 1 BsR G2
Kalman filter; see [16] and [9, p. 124]. | . _ _1/2

The last part of this proposition can be obtained as a corolla\%‘? obtainG; = Bz R and
of [5, The_orem 4.1]. Note that the parameters of the anticausz&v{,lD2 — Y YSCTR - BER_l/Q) _ E_l(_Bl)R_l/Q
Kalman filtere are

where the last equality is based on (3.13). It follows that for each

I's, = —AFiA—l =I's =1- invertible solutionX of (3.11) the transfer functions (3.30) and
By, =By :=B_. (3.31) provide a cascade factorization¥fs). [ |
Since the two-filter formula (3.27) and the cascade decom-
Compare [16] and [9]. position above are just a decomposition of the transfer func-

Yet another useful form of the smoother that is easily derivaidn (3.24), which has the same MacMillan degred’efs) in
from (3.24) is thecascade decompositiatescribed in the fol- (3.18), it is clear that these formulas provide a minimal recur-
lowing proposition, which to our knowledge seems not to be &ive implementation of the smoother if and only(¥,T'%) is
the literature. observable, which is the same of saying that= 0, or equiv-

Proposition 3.4 (Cascade Decompositiorijo each nonsin- alently
gular solutionX of the Riccati equation (3.11), there corre-
sponds a cascade decomposition of the transfer function of the degV=(s)) = 2n.
smootherS(s) = Wi(s)Wa(s), where L N

This is really a condition on theero structure otV (s), as stated
Wi(s) =%(—sI —TL) 1x-1 (3.30) in the following theorem.. o
Wa(s) = ByBI S~ (sI — FE)_IBER_I/Q . Theoren_1 _3.1.The two-ﬂ_lt_er realization (3.2_7_) orthe ca_scadg
B S ecomposn_lon of Prop_osmon 3.4 are of minimal possible di-
Birm7 (3:31)  mensior2n if and only if W (s) has no zeros.
_ ) _ _ For the proof of this theorem, we shall need the following
If ¥ =X, thenW,(s) is anticausal an®-(s) is causal, while  oq it
for 2 = X_, the opposite is true. _ Lemma 3.2: Let . be any solution of (3.11); then the unob-
Proof: Since S is strictly proper, we |ook for factoriza- seryaple subspadeis equal to ke andV is invariant for both

tions where one of the factors is also strictly proper. SUPPOBE andI'?. Infact,V C V* is a zero-direction subspace and
we want to find factorizations of (s) with W1y (s) = Hy(sI —

Fy)~1Gy (strictly proper) and¥s(s) = Ha(sI — Fb) ™ Gy + L, =17y (3.33)
Ds. If such afactorization exists, the cascade realization defined
by the triplet so that the square factd¥x(s) sharesny, = dim V zeros

(counted with multiplicity) withi¥(s). Hence
Fl G1H2 G1D2
[Hl 0]7 ’

0 F2 G2 nx S 14 (334)
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wherer is the dimension of*, the zero direction space ofleads to conjecture that the optimidfs(s)’s should be those

W(s), and which shareall the - zeros ofiW ().
Indeed, there is a whole family of minimal square factors of
degVx(s)) > 2n —v (3.35) @, that share exactly the zeros of the (nonsquare) transfer
function W (s) of the original model. In order to describe this
for all X solving (3.11). family, we need to recall the concept of tightest local frame of a

Proof: Letw € ker X. By multiplying (3.11) on the left sojution P of the Riccati inequality (3.8). Le,_ and Py, be,
side byu” and on the right side by, it readily follows that  respectively, the maximal solutioR, of the Riccati equation
- (3.10) for whichP — Py > 0 and the minimal solution of (3.10)

ker By 2 ker X (3:36) for which P — P, < 0 [18]. Thetightest local frame ofP,

denoted[Py_, Py, ]], is the subset of solutiong = Q7 of (3.8)

which, using the Riccati equation (3.11) rewritten in the formdeﬁneOI by the matrix inequality

T _ T _ T
'Y+ 305, =XI" +I's¥ = —B2B; (3.37) [Po—, Por]] = {Q| Po- < Q< Poi ). (4.1)

implies that the subspace Keiis an invariant subspace for bothatyrally, P € ([P, Py ]], the inclusion being trivial P =

F:‘; andL'{. Since kerX is [f-invariant andV is the largest p — p ) in caseP itself solves the Riccati equation (3.10).
I's-invariant subspace of ke, it is obvious that ke&: = V. |t is shown in [18, Theorem 11.1] and [17] that

Formula (3.33) follows from (3.17). Finally, in view of the in-

clusion (3.36) and thE?'-invariance of ke, it is obvious that ker(P — Py_) =ker(Pyy — P)
B%“ = ker(P0+ — Po_) =V* (42)
kers. C ker BTt _ oy (3.38) whereV* is the supspace of zero directions of the spectral factor
: W (s) corresponding td”.
BY(T)n1 To our purposes, it will be convenient to reparametrize the
2 tightest frame in terms of the solutiodsof the “centered” al-
which clearly impliesy C V* and (3.34). m gebraic Riccati equation (3.11). Letting
Inclusion (3.36) is also proved in [21]; see also [18,
Lemma 10.2], and [17, Prop. 4.10] for a slightly different Yoy =P—F_-  Xo-:=P—-Foy (4.3)

formulation. Note that the lemma establishes a lower bound for . _— . .
the dimension of the smoothédeg(Vs;(s))). We shall show it follows readily from the definition thakq is the minimal

later that this lower bound is always attainable for suitabike positive _semidefini_te SOIU“_O” Of (3.11),_and similarjo_ is
Proof of Theorem 3.14f W (s) has no zeros; = 0 = the maximal negative semidefinite solution of (3.11).

ny = 0 = V(= ker¥) = {0}, i.e., ¥ is nonsingular and Letﬂl“o, and I'p; be the numerator matrices of t.he “ex-

(2, T'L) is trivially observable so that (3.18) is minimal. treme” square factors¥o_(s), Wo+(s) correspoTnd|_nlg to
Conversely, assume there are minimal filters of dimensigrP— 2nd 2o+, respgcui/lely, lelo- = I' = X CTR™C,

2n, i.e., such thad’ (= ker £) = {0}. This will imply in I'op := T = 34 C* R~+C. We have the following result on

particular that the maximal solutioh, = P — P_ of the € 2€r0S 0V (s).

ARE is nonsingular and, in fact, positive definite. Sificg :=  -€mma 4.1:There holds

I'— %, CTR~1Cis asymptotically stable, it follows from stan-

dard Riccati theory thgfl’, B>) must be a controllable pair.

Alternative Proof: From standard Riccati theory; | is ¢ thatWo_(s), Wo..(s) share the zeros ofi¥ (s).

e jye =17

ye =I5, by (4.4)

the unique positive semidefinite solution of (3.11). Similarly, Proof: This is essentially the same claim as that of
Y_ = P— P, < Oisthe unique negative semidefinite S0 gmma 3.2, with the additional information that in this case
lution of (3.11). Anticipating from Lemma 4.3, which will be oy — ker(P — Py_) = ker(Pyy — P) = V*. -
stated in the next section, this implies that = 0, since.. It is shown in [18] and [17] that the zero-sets of all spectral
and_ are both nonsingular. See Lemma 4.3 below. factors Wq(s) corresponding to solution§ of the Riccati
This concludes the proof of Theorem 3.1. B inequality (3.8) belonging to the séfP,_,P,.]]” contain
the common zeros of the “extreme” square factlrg_(s),
IV. A FAMILY OF MINIMAL DEGREESMOOTHERS Wo4(s) (counting multiplicity). When[Po_, Po]] is actually

The solution of the factorization problem (3.1) has been réetightestframe for@, in the sense defined above, the zeros
duced to the following question: For whits is the McMillan  0f Wo(s) are exactly the common zeros o#¥,_(s) and
degree2n — ny, of Vx(s), minimal? This question will be an- Wo(s). Of interest for our problem are the (square) spectral

swered in this section in a series of Lemmas culminating wifActors attached to the elemets of the tightest frame of’,
Theorem 4.1. [[Fo-, FPo+]], which solve the Riccatequation(3.10). These

In the light of Lemma 3.2, the analytic spectral factors thltill be discussed in more detail below.

solve problem (3.1) are the square factdrg(s), which share  7q5 is,P,_ < Q < Py, inwhich case one says thaP,_, P».]] is a
the maximal number of zeros with (). In fact, Lemma 3.2 frame forQ.
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Define whereY, andY_ are the maximal and the minimal solution of
the RARE (4.8).
(Yo, Xo4] := {¥| X solves (3.11) andly < X < Yoy} Returning to the parametrization of minimal analytic square

(4.5) spectral factors in terms of solutiofy = P — X of the Riccati
) equation (3.10), we have the following characterization.
so that the sefFy = P — X[X € [Yo—, Xo4]} isthe subsetof | emma 4.3:Let T € [Z,_, X0, ] and letl's, be the numer-
the tightest local frame aP, made of all solutions of the Riccati ator matrix of the corresponding minimal square spectral factor

equation (310) that belong ﬁfgo_, P0_|_]]. WE(S) (Lemma 3.1). Then, ket = V* and
A Change of Basisilt will henceforth be convenient to
assume, without loss of generality, that a change of basis is r’—g ve =TT (4.12)

introduced in the signal model (1.1), which transforms the pair
(T, By) into the so-calledstandard form of controllability so that all these spectral factors, including the extref¥igs(s)

which is a block structure of the type andWg (s), share all thes zeros of W (s).
Proof: In view of the relation betweef>,_,¥o4] and
r= {‘g ﬂ , By = {ﬂ (4.6) [[Fo—,Pos]] we have
whereF" € R(—)*(n=¥) and the pai( F', G) is reachable. In a ker((P> = Xo-) — (P = Zo4))
basis of this kind, the subspat¥ is made up of vectors of the =ker(P — (P — Xo4)) = ker(P — (P — ¥o_))
formz = [0 ']',v € R”. =kerX, =ker¥_ =V*. (4.13)

Ther x v matrix Z is the restriction of” to V* and carries
the zeros of the signal model (1.1). The change of basis indudéareover, by a famous representation theorem of Willems [30],
a partition of the matrice€’ and B, of the signal model (1.1) in every solutiont” of (4.8) has a representation
blocks of the same dimension
Y =1IY_ + (I - 1I)Y, (4.14)

c=[C G, BI:[B“} 4.7)

Bis wherell is a projection matrix, so that we also have

mx(n—v) mxy (n—v)xm
vgleree%yxemﬂ.% ,Cr € R ,B11 € R , and Sy, +(I- )%, = [13 —ﬂ (4.15)
Consider then the reduced-order algebraic Riccati equation
(RARE) obtained by restricting (3.11) t»*)* from which it clearly follows thata = 0 for all a € V*,
i.e., kerX O V*. On the other hand, by (3.36) in the Proof of
FY +YF' - YCIR™'CY = -GG*. (4.8) Lemma 3.2, we always haker . C V*. This proves the claim
that ker> = V*. The rest is as usual. [ |
The following theorem gives a solution of (3.1) and parame-
terizes all factorizations(s) = Vx(s)Wy'(s), whereWs(s)
Y 0 is a minimal square analytic spectral factordaf(s) andVx(s)
L= [ 0 0} (4.9)  has minimal McMillan degree, in terms of solutionof (3.11)
belonging to the sdtq_, Zo4].
is a solution of (3.11). Theorem 4.1:Assume that a basis transformation on the
Observe that the pafiC, A) is, by assumption, observable model (1.1) has been chosen so tkiBtBs) is in standard

Hence (C,I'), and consequentlyCy, F) are observable. controllability form (4.6). Then, the filteFs(s) is of minimal
Therefore the reduced-order Riccati equation (4.8) satisfigMillan degree

the system-theoretic conditions ensuring the existence and
uniqueness of a maximal (positive definite) solutidn and of degVs(s)) =2n —v (4.16)
a minimal (negative definite) solutioyi_. Each other solution
Y of (4.8) is such that ifand only ifX € [Xg_, X04], 1.€., has the form (4.9), the matrix
Y being a solution of the reduced Riccati equation (4.8). Hence
Y <Y<Y, (4.10) all pairs(Wx(s), Vs(s)) solving (3.1) are parametrized by the

. . . . solutionsy € [, Xo4] of (3.11).
Since the paitG®, F'*') is observable by construction, any solu- Proof: We only nged to show that if a solutiahof (3.11)
tionY" of (4.8) is nonsingular; moreoveét, is the only positive | < ha structure

semidefinite solution andf_ is the only negative semidefinite
solution of (4.8). Therefore, we obtain the following represen- 5= X Yo
tations for the extremal solutions, ., ¥o_. CEE %,

Lemma 4.2:In any basis bringingI", B>) in standard form _ o
of controllability, S04 andX,_ have the form where at least one of the two matrices, and., is different

from zero, then

Yoy = [%” 0} , Mo— = [Y_ 0} (4.11) ny < v (4.18)

It is immediate to check that for any solutidn of (4.8) the
matrix X given by

(4.17)

0 0 O
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strictly. To this aim, observe that i is given by (4.17), then block of the corresponding numerator matfix, . SinceY_

there exists a vectar such that

L[ 2L wo
But we also have
BY m —GT 0 m —0 (4.20)

and
BI(IT) [ﬂ =B ()™ [?é ZOT} [ﬂ
=BI (Tt Lﬂ

=[G* O]L?J =0, VI>0 (421

This argument, taking into account (3.38), provesdtret in-
clusion

satisfies the reduced Riccati equation, which can be written (in
the form (3.32)) as

FY_+Y.F_=-GGY - Y_CYR™'CiY_.  (4.25)

a standard Lyapunov-type argument proves that all the eigen-
values of F_ lie in the open right-half plane or, equivalently,
—F_ is a stability matrix. For this choice @i, the filter Vs (s)

is analytic on{Re [s] > 0} having a minimal realization

= [ 4 8o 2])
, [CIBZ } -

where the eigenvalues of the state matrix lie affRe [s] < 0}.

SinceVy,_(s) is an analytic filter driven by white noise, its
state processy(t) is a stationary Markov process, and its co-
variancel, satisfies the Lyapunov equation

BY ~FT 0 ~FT 01"
BITT ) [ 0 A}POJFPO[ 0 A}
ker% C ker : =V (4.22) CTR-1/27 [cTR-1/217
. +{ ! H i } —0. @427)
BI(IT)r-1 By, _ By, _

which is equivalent to (4.18). m Partitioning P, in four blocks conformly with the state matrix
Remark: As pointed out before, the dimension (McMillanof Ve, _(s)
degree) of a minimal smoother is equal to the McMillan degree
of Vx(s), ¥ € [Yo—, Xo4], Which is in turn equal to the dimen-
sion of a minimal Markovian subspace containing the estimate
#(-). Theorem 4.1 states that this dimensionds= 2n — v. B equation (4.27) can be decoupled into the three independent
equations

Py = {Pm

Foia
P12

4.28
Poy (4.28)

A. Error Covariance of the Optimal Smoother

Oncel  is put in standard controllability form (4.6), the nu- ~FIPy — PP +C{R™'CL =0 (4.292)
merator matrix's, of Wy, defined in (3.17), has, for any ¢ APyo — PooF_ + Bs, R7Y2C, =0  (4.29b)
[20—,Xo+], the partitioned form APy + PpAT + By, BL, =0.  (4.29¢)

I's=T-%CTR™C = [FY LZY} (4.23) ltis standard, and not difficult to check directly, that the so-
0 lution of (4.29a) is given by

whereFy = F —YCTR'Cy, Ly = L — YCYR1C,.
Because ofv*-invariance, the lower bloc 5|22 is indepen- 1
dent of> and equal taZ. The eigenvalues of are the zeros of — <[I 0)(Poy — Po) [ID )
W (), which are shared by &ll’s;’s in the chosen family. They 0

are (fixed and) independent &f. Taking into account (3.17), it is easy to verify that the (unique)

In the chosen basis, the unobservable part of (3.18) Ca”&ﬁution of (4.29b) iPo10 = [_’],while the solution of (4.29¢)
deleted by inspection obtaining a minimal realizatior/ef s) is clearly P, = Py = P — E%_.

Y I 0 FT o1\ ! On the other hand, the optimal smoothed estini#te is ex-
—_ |~ Yy
o= o P78 5]

P =Yy —Y )™

(4.30)

pressed by a linear function of the Markov proces§)

T p—1/2 _
. {Cl gz } . (4.24) #(t) = [ ! ﬂ 2o(t) (4.31)

In this formula, it is evident that the “additional dynamics’so that its covariance matrix is computed as
(—FE) of the stochastic realization of the smoother depends T
on the particular choice of the whitening filtér, i.e., on the p— [—Y— I 0} j o [—Y— I 0}
choice of%. Now, chooseZy_ = P — P,, = diag{Y_, 0}, 0 0 1I 0 0 1[I
where Y_ is the minimal (negative definite) solution of the Y (Y —-Y_ ) 'Y_+2Y_ 0
RARE, and denote by := F' — Y_CT R=1C] the upper left =For + [ 0 0} - (432)
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By standard properties of the orthogonal projection, the errorFrom this realization, we can obtain a family of minimal
processi(t) = x(t) — z(¢) is orthogonal taz(¢), so that its “two-filter” or “cascade” formulas of the type seen in Propo-
covariance is given by? = P — P. Recalling that” = Po+ + sitions 3.3 and 3.4. In particular, a minimal causal-anticausal
Yo—, by straightforward computations, we obtain the followingwo-filters implementation is described in the theorem below.
formula. Theorem 5.1 (Reduced Two-Filter Formulakssume that

Proposition 4.1: In a basis bringing(I', B2) in standard the signal model (1.1) is transformed by a change of basis in
controllability form (4.6), the error covariance matdikof the the state space, bringindf', B-) into a standard controllability
smoothed estimate(t), is given by form of the type (1.1).

LetY, = P — Fy_ be the maximal symmetric solution of
the RARE (4.8), and let’,. be the corresponding numerator
matrix with spectrum in the left-half plane. Consider the reduced
Lyapunov equation
whereY, andY_ are the extreme solutions of the reduced-order
ARE (4.8). XFy+FIX =-CI'R'Cy (5.2)

This formula is remarkably similar to the one derived in [5]. ey ) ) ) )
The difference is that n [5], the extremal solutidRsandP_ of and denote byAy™ its unique symmetric solution, necessarily
the full Riccati equation were needed while here we only requitdvertiole, wherea, =Y, - Y. > 0. o
the extreme solution¥, andY_ of a reduced Riccati equation ' nen the smoothing filter (5.1) has a minimal realization de-
of dimensionn — . scribed by the following state-space equations:

Incidentally, (4.33) shows that the optimal estimate) is

S Y- Y —Y)lyy o

P A 0 (4.33)

exact, i.e., not affected by errors, along the zero-directions space .C =ZC+ BuR™ %y (5-3)
V*, the smoothing error occurring only in the directions of the {4 =Fy&i + LyC+ By Ry (5.4)
orthogonal complemer{t*)+. This fact agrees with the geo- . =F ¢ +L C+B,_ R V% (5.5)
metric property of the “ogtput-indqced subspace” of the state i [T () + T ()] In—v

space of the smoother, discussed in [17]. (1) = () 1% (5.6)

Inthe “extreme,” yet scarcely interesting, case when the given
model is internal  (s) square spectral factor adtlis solution Where
of (3.10)] Poy = P = P, P = 0, and the estimate is, as
expected, not affected by errors. Moreover there is no need J;Jf -
solving Riccati equations.

Y (Y, -Y. )yt I =Y (Y, -Y_)! (5.7)

and
V. SMOOTHER IMPLEMENTATION Fy=F-Y,C{R7'C4
The smoother has, in general, an acausal structure, and a £~ = F4 + 200l R™1C1 = —AoFAF"  (5.8)
numerically stable implementation of the algorithm requires a B, =B + E/Jrc*lTllz—l/2
causal—-anticausal decomposition of its transfer function (this is, Bi_ =By, — ACF R-1/2 (5.9)

in fact, the motivation of “two-filter” formulas). In this section, Ii—I —Y.CTR-'C
we shall address the problem of computing causal-anticausal - 1 2
decompositions of the smoother in the general case Whéx) L_=Li+2ACR'Ch. (5.10)
may have an arbitrary number of zeros. . i L

In a basis in which(T", B) has the control canonical form '_rhe state_ _varlables of the fllte_r have the foIIOW|_ng interpreta-
(4.6), . has the block diagonal form (4.9) afig has the block tion. Partition the state of the signal model (1.1) in two subvec-

T _ T T i i i
structure (4.23). In this basis, the unobservable part of (3.29]S 8¢ d(t) » €)™ ¢ (t)_]r,hvyhere_c |shthez/-cilj|men3|0nfal
can be deleted by inspection, yielding a minimal realization odtput-induce .compqnent. en(t) ist € steady-state (for-

ward) Kalman filter estimate @f(¢) and¢_(¢) is the steady-state

v I o0 backwardKalman filter estimate of (¢).
S(s) = [ 0 0 I} The error covariance matrix of the estimate is given by (4.33).

1 Proof. Clearly¢ is also the subvector formed by the last

-y —C{R7'Ci, —C{R™'Cy v components of the state vector in the realization (5.1). It is
sl—1 0 Fy Ly immediate that satisfies (5.3) and that it stays unchanged under
0 0 Z projection onto the space spannediby herefore( is also the
CTR™! subvector of the last components of the output, as in (5.6).
By R /2 (5.1) Next consider the(n — 1)-dimensional subsystem obtained by
ByR™1/? extracting the first two blocks of (5.1) with transfer function
where the two row-block®,y = By, +Y CT R~1/? of dimen- Su(s) =[-Y 1] <sI _ {—Fff —C;[‘FR‘ICHD :
sion(n — v) x m, and By, of dimension x m, are the parti- ! 0 by

tioning of By, = B; + XCTR™!, induced by the partitioning CIR™! —CIR™1C,
By = [BY, BL]* in the standard controllability form. "| Biy R™1/? Ly :
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The output of this system is the smoothed estinjattthe state may be located anywhere in the complex plane except on

subvectorg. Note that the input to this subsystem is the “aug- the imaginary axis.

mented” input variable{g], as it follows from the block-trian-  What computations are needed to implement the minimal

gular structure of the realization (5.1). By a change of bésissmoother?

of the same upper triangular form as used in the Proof of Propo-One should first perform a basis transformation on the model

sition 3.3, with.XX' a solution of the reduced Lyapunov equatioifl.1) in order to bring1’, B:) in standard controllability form

(4.6). This may be obtained from the data of the problem at a

XFy + FEX = -CTR'Cy (5.11) modest computational cost employing one of several algorithms

existing inthe literature, and no solution of Riccati equations are
(here we assumey has unmixed spectrum), the realization ofequired.

5,(s) above is transformed into one of the form Further, in order to obtain the reduced causal-anticausal de-
. B composition of the smoother, the stable/unstable eigenspaces of
[ﬁy(t)] _ [—F{f 0 } [Sy(t) the matrix
ey | 0 By || &)
&r(®) —FT CTR™'Cy CYR™C,
C?R_I—XBlyR_l/Q —C?R_ICQ—XLY leled F L (5 15)
+ ~1/2 '
|y
{g} need to be computed.
R & () This may, in turn, be decoupled into two separate subprob-
éo=tv 1-vx1| &) fems

1) Compute the stable/unstable eigenspace af the: ma-
ChoosingY = Y., this is easily rewritten in the state-space trix Z carrying the zero structure & (s). This decom-

form of the theorem. [ | position has to be dealt with on a case-by-case basis. If
The transfer function of the smoother can be written com-  W(s) is minimum phase or maximum phase, no decom-
pactly as position is needed.
2) Compute the stable/unstable eigenspace of the matrix
S(s) = S.(s) 1
01 J(s) -FT CTR™1C,
H:= T (5.16)

J(s) =(sI — Z) ' By R™/? (5.12) GG r
whereJ (s) is the transfer functiop — ¢ describing the output- which has dimensio@(n — v) x 2(n — ).
induced subvector of the statét). This latter matrix is Hamiltonian, and computing its stable

A reduced cascade decomposition of the same structureetgfenspace is equivalent to the solution of the reduced algebraic
(3.30) and (3.31) of Proposition 3.4 also holds for(s). The Riccati equation (4.8) of dimension— v.
proof of this result is identical and will be omitted.

Theorem 5.2:To each solutionY” of the reduced Riccati VI. DISCRETETIME RESULTS
equﬁltlon (4'%)' there corresponds a cascade decomposition %e shall list in this section the discrete-time versions of the
the “reduced” transfer function of the smooths(s) of the main results obtained in the previuos sections for the contin-
form 5, (s) = Wu+(s)W,—(s), where uous-time problem. The derivations are in principle the same,
although the calculations are often more involved than in the

V(o _ Ty-1y -1
Wot(s) =Y( TSI_IFV) Y . Iy (5.13) continuous-time case and will not be reported here.
Wy—(s) =GG Y (sl — Iy)" [Biy R Ly] We shall consider the following discrete-time linear sto-
— [BuR™Y? 1J. (5.14) chastic model with constant coefficients:
IfY =Y, = P—- P, > 0,thenFy, = F is a stability z(t+1) = Az(t) + Bw(t) (6.1)
matrix so thatf¥, ; (s) is anticausal whiléV,,_(s) is causal. If y(t) = Ca(t) + Dw(t) (6.2)

instead we choose = Y_ = P—Fy. < 0O,thenfy_ = F_is

antistable so that’, , (s) is causal whildV,,_(s) is anticausal. yriven by ap-dimensional normalized white Gaussian naise
We see thatin any case the dynamics of the minimal smootheiye seek the linear minimum-variance estimate

(5.1) splits into three decoupled subsystems.

1) A causal part governed by the eigenvalueg of #(t) = E[x(t) | HyT2)] (6.3)
2) An anticausal part governed by the eigenvalueg of
(which is similar to—F1). of the state:(¢) given the whole time history of the observations

3) An invariant subsystem, which provides the output-inty(¢);¢ € Z}. The transfer function of this smoothing filter,
duced subvector of the state. This part is governed fgrmally given by the well-known expression
the eigenvalues of, i.e., the zeros otV (s). It follows
from coercivity of the spectrum that these eigenvalues Dy (2)Py ()"
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is in general noncausal. We want to decompose it in a combiith
nation (either parallel or cascade) of causal-anticausal filters of —r - 12 -
minimal dimension C" == APCY + BiR%, Ng:=R+CPC". (6.8)
We shall make the following assumptions.
1) (A, B) is reachable an g Ais c?bser able These two quantities afievariantsof the output process in a
5 ( 1’4 ) C. - ?’ )| - v N t.h ntin chosen basis. From the discrete-time version of the positive real
o tiem case EQ S e |ni| ti<n i}'na? tri ﬂe (r:]O _lemma (see, e.g., [7] and [19]), it follows along the same lines
uous-time case, this assumption 1S not Strctly NECESSalYy, o - ninuous-time case that the set of minimal square stable
and we could only assume (at the price of some compllc&\'-e. analytic in{z € C: |z| > 1}) spectral factors o, (z)

3) 3;”3) .tsh:tr:pnn;gr;higga(??gggrewmﬁas msogtsjgjlstqgr?' can be parametrized in terms of the symmetric solutiref
(2)i ini P 1Y (2)i UUON e discrete-time Riccati equation

of ®,(z) := W(z)W*(z) of minimal degree [the nota-
tion W*(z) now stands foiV* (z~*)]. % =2’ —1CT (R4 020T)~oxr? + B,BY. (6.9)

4) ¢,(z) is coercive, i.e.®, () > 0,Vw € R.

5) ®,(o0) is finite and nonsingular. This assumption, whiclThere is a one-to-one correspondence that makes anysuch
in the continuous-time case is implied by coercivity, igorrespond to the minimal square spectral factor

known asregularity [24], [7]. It implies that the minimal

spectral factors o, () have zeros neither at the origin Wx(z) == C(2 — A)™' By + Dy (6.10)

nor at infinity [24]. In particular, ifi(z) is a minimal

square spectral factoky (o) is nonsingular and the nu- Where

merator matrixl’ of an arbitrary .mini_mal realizat_ion of Dy :=(R+ CnCT)Y/?

W (z) has no zero eigenvalues, i.e., is also nonsingular. 12 S
SinceW (o0) is nonsingular, the matri® in (6.1) may be as- By :=(BiRY" + AXCT ) Dy, (6.11)
sumed to be in the form = [R'/2|0], with R being square and =B R Y2Dg +TECT DL
nonsingular. We partitio®? conformly asB = [B; Bz].

Note that the regularity assumption implies that the numdpefine Ry, := (R + C¥C?) = Dy DE. Notice that the reg-
ator matrixI' := A — B;R~!/2C is nonsingular. ularity assumption guarantees thagt is nonsingular. The nu-
A calculation in the same spirit of that in the Proof of Themerator matrix of the spectral factor (6.10) is
orem 2.1 leads to the following realization of the steady-state .
smoother: Is:=A-BaDg C

=I' -TSCT(R+CxCT)"'C =TK (6.12)

se-u af[? o7 r B,BY 1\ _
0 2 ~-CTR-Cc TI7* whereK := I — SCT(R + CxCT)71C. In view of the regu-
ByR1/? larity assumption]'s, and hencé' and K, are nonsingular.
: [ CTR-1 } : (6.4) Arguing as in the continuous-time case, it is possible to show

that a Markovian space containing the optimal estimates is the
By nonsingularity ofl", this realization can also be rewritten instate space of the filter

the familiar “forward difference” form, with: in place ofz—!.
The price to pay for this operation is somewhat more compli- Va(z) i= Ouy ()W5 ™ (2) (6.13)
cated formulas.

As in the continuous-time case, it is not difficult to check thaifiven by the output of the whitening filté#’; ' (z). Thus, we
the realization (6.4) is reachable but not necessarily observaiave to face again the problem of characterizing the solubions
and its unobservable subspace is isomorphi¥tpthe unob- for which Vy;(2) has minimal McMillan degree. Itis possible to
servable subspace of the paZ, I'7), so that the result (2.11) Show thati’z () has the realization

remains true in the discrete-time case as well. =T o1\~
Va(z) =[-2 1] <zI— [ g A})

rs"cT gt
By

A. Discrete-Time Stochastic Realization and ARE

The state covariancE of the model (6.1) is the unique solu- . [
tion of the discrete-time Lyapunov equation

(6.14)

and that the smoothing filter is obtained by state feedback from

_ T T
P=APA"+ BB (6.5) this realization so that
By the same block triangular change of basis, the spectral den- =T _p=TcTp=1o1\ "
sity ®,(z) may be decomposed in the form S(z)=[-% I <zI - [ o Yo D
=
By(2) = Dyy () + 074 (2) (6.6) [TSFCTRG 6.15
BsDZt |7 (6.15)
=

where
Let us now assume that the péit, B, ) is in canonical form

Dy (2) = Clzl — A)7'CT + L Ao (6.7) of controllability (4.6), letC be partitioned conformly as in
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(4.6), and consider the reduced-order algebraic Riccati equati@ppens in the continuous-time case, this allows the computa-
obtained by restricting (6.9) toV*)+ tion of the smoothing error covariané which turns out to be
given by the same expression of the continuous-time case so that
Y =FYF' - FYCIH(R+CYCT)T'OYFT + GGT. (4.33) remains valid in the discrete time too. We shall skip the
(6.16) details, referring the reader to [7, pp. 95-96] for a guideline on
discrete-time computations.
It is immediate to check that for any solutidh of (6.16), the As in the continuous-time case, by choosido be of the

matrix ¥ given by form (6.17) and by deleting the unobservable part of (6.15), we
Y o get the following minimal realization of the smoother as shown
3= [ 0 0} (6.17) in (6.20) at the bottom of the page, which, particularized for
Y =Y., leads to the following discrete-time version of The-
is a solution of (6.9). We define the sef§,_,Y%o.] and ©rem>s.1.

[Y_,Y,] exactly as in the continuous-time case. Moreover, we 1 neorem 6.2 (Reduced Two-Filter Formula, Discrete
Case): Assume that the signal model (6.1) is transformed by

set
a change of basis in the state space, brindgifigB,) into a
Ry =R+ C,YCT, Dy := R;/Q standard controllability form of the type (4.6). _
Fy =F — FYCITR;lcl LetY, = P — Fy_ be the maximal symmetric solution of

the RARE (6.16), and lef’, be the corresponding numerator

e T p—1
Ly :=L-FYC] Ry Cr matrix with spectrum in the unit circle. Consider the reduced

and Lyapunov equation
By — Biy | BllR_l/QDY + FYClTD{,l
T | Bay | BioR™Y2Dy X =F{XF, +C{ Ry (6.21)
whereB;; and B are defined in (4.7). and denote by\;* its unique symmetric solution, necessarily

The following discrete-time version of Theorem 4.1 holds. invertible, whered, = Y, — Y_ > 0.
Theorem 6.1:Assume that the pole and zero sets of the spec-Then the smoothing filter (6.20) has a minimal realization
tral density®, () are disjoint, andI’, B2) is in standard con- described by the following state-space equations:

trollability form. Then the filterVs:(s) is of minimal McMillan
degree ((t+1) =Z¢(t) + Bay, D;jy(t) (6.22)

E4(t+1) = Fy&y () + Ly C(t) + Bip Dyly(t)  (6.23)

degVs(s)) =2n —v (6.18) _ _
E(t-1)=T ¢ ()L ((t—1)
if a_md only if X has the _form_(6.17),_ the matriX being a so- — B,_Dyty(t—1) (6.24)
lution of the reduced Riccati equation (6.16) belonging to the I * I
tightest framgY_, Y, ]. Hence the minimal state-space realiza- i) = +4(t) +LLL(t) | Jn—v (6.25)
tions of the optimal smoother are parametrized by the solutions ¢(®) ty
Y € [Y_, Y] of (6.16). where
To the minimum solutiort_ of (6.16) [or equivalently, to
the solution>_ = diag{Y_, 0} of (6.9)] there corresponds a Oy = -Y_ (v, -Yy_)!
;table filterV3-_ (%), which has the following minimal realiza- I =Y, (Y, —Y_)! (6.26)
tion:
_ and
Ve (= [T T O] ([0 :
V-0 o0 1|\~ 0 A Fyi=Fy, =F - FY;C{Ry!Cy
. {FTCITDYT (6.19) F_i=AgFTAS! (6.27)
B ' _ _
V- Biy == Biy, = BuRY*Dy, + FY,CF Dyt
whereF_ := Fy_ has all eigenvalues outside of the unit circle Bi_:=F_Bj, — AoClTD;j (6.28)
so thatF=* is a (discrete-time) stability matrix. L —lv — [ FY.CTR=1C
The covariancé, of the state process &%, _(z) canthenbe _+ Ty T AT A A My 2
obtained by solving a Lyapunov equation, and, similar to what L_=F_L+ AoClTR;jCQ. (6.29)

0 Fy Ly
0 0 A

By Dy} (6.20)

FoT —F;TCFRG'Cy —FyTCFRGI Oy
} 2l —
B2 Dy}

>—1 FyTC Ry
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Fig. 1. State estimation errors.

The state variables of the filter have the following interpreta- VIl. SIMULATIONS
tion. Partiton the state of the signal model (6.1) in two subvec-
tors asz?'(t) = [£(&)T ¢T(t)] where( is ther-dimensional

output-induced component. Thélp(t) is the steady-state (for-
ward) Kalman filter estimate @f() andé_ (¢) is the steady-state

In this section, we present a very simple example of applica-
tion of the reduced agorithm to simulated data.

We have driven a two-dimensional discrete-time system of
) ) the form (6.1) with white Gaussian noise and computed the
backwardkalman filter estimate of (#). moothed estimates of the state employing the reduced two-

The error covariance matrix of the estimate is given by (4.33). .
A reduced cascade decomposition of the same structurer gﬂ;grrgma of Theorem 6.2. The model has the following pa-

Theorem 5.2 holds also in the discrete-time case.

Theorem 6.3:The transfer function of the smoother can be A _Ll7, p—|"t 01
written as = T 24y =l o -1 o0
_ S]] 1 C =1, D:[l 0 0}
5= 537 L) 010
J(z) = (21 = Z) " Bay, Dy (6.30) Note that the system has dimension two but, thanks to the re-

duction process, we only need to solve a one-dimensional ARE
whereJ(z) is the transfer functiop — ¢ describing the output- corresponding td" = 1/2, C; = [ ] andG = 1, whose solu-
induced subvector of the statét). Moreover,S, (z) has a cas- tjgns areY, = (1++/65/8) andY_ = (1 — \/5/8)
cade decomposition of of the for$},(z) = W, (2)W.+(2),  Fig. 1 shows the two components of the estimation efror
where, employing the same notations of Theorem 6.2 The estimation error of the second state varible (the output-in-
duced component), which should be zero on an infinite time in-

W—(2) terval, for a finite smoothing interval converges to zero very fast.
=Yy (el - F)THELT (6.31) The sample error covariance of the first state varible computed
W4 (2) on 100 samplepoints is 0.5, which should be compared with the
= (- C%“R)—/icl — FTY,F,) theoretical valu&’y — Y, (Yy — Y_)—1Y+. = 0.4961....
4 1 The smoothed estimate represented in Fig. 1 is obtained con-
(ol = Fy) [Bl+DY+ | L+] sidering the steady-state process. Hence in the extremes of the
+[Cf Ry = FL{Y ' By Dy O Ry ! Co = FLY 'Ly ] interval, itis indeed a suboptimal estimate. Let thigp, () be
(6.32) the optimal estimate (obtained with the time-varying filter). The

differencei.p (t) — £(t) is appreciably different from zero only

whereF,. = Fy, is a (discrete-time) stability matrix so thatin correspondence of small intervals at the two extremes, as rep-

W,_

(s) is anticausal whilé¥V,, (s) is causal.

resented in Fig. 2.
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Fig. 2. Difference between the optimal estimate and the steady-state suboptimal estimate of the state.

It may be worth noticing that the estimate of the second sumff;’: s(t—7)y(7) dr converges in mean square. For purely
state variable is optimal in the left extreme of the interval tomondeterministic processes (like the ones we consider in this
This is not surprising since it is given by the forward Kalmapaper) this is equivalent te(¢) being square integrable and
filter, and after a brief transient, its error covariance vanisheshence to the Fourier transform

Similar results may be obtained also in the continuous-time

+oo .
case. S(jw) = / (et gt
— 00
VIII. CONCLUSIONS being also square integrable on the imaginary axis (Parseval the-

In thi h ided a th h vsis of torem). IfS(-) is rational, it can be extended (by letting= jw)
N IS paper, we have provided a orougn analysis of " e yhole complex plane. The extensi®fs) is referred to as
steady-state smoothing problem for linear signal models. T

transfer functiorof the filter. Notice that in general some of

d_ynamlc structur_e of the smoother has been (_alu0|dated_, _anﬂ'n@poles of5(s) may lie in the right-half plane, although square
simple computational procedure for constructing the minimglye - apility implies that no poles can lie on the imaginary axis.

smoother has been proposed. In the construction ofastate—spa@,ery rational noncausal filter can be decomposed into the

realization, the minimal smoother does not require the solutiQqym, of acausaland aranticausapart by just decomposingy(s)
of Riccati equations. The solution of a Riccati equation of regg

duced order is needed only for the decomposition of the filter

into a causal and an anticausal part.
P S(s) = S4(s) + S_(s)

whereS_ (s) is analytic on the right, whil&_(s) is analytic on
the left-half plane. The corresponding impulse resporsés)
ands_(t) are zero fort < 0, i.e., causal, and zero far >

All transfer functions of this paper represent linear operatiofsi.e., anticausal, respectively (Paley—Wiener theorem). There-
on stationary processes defined on the whole time axis. The @ore the operation of convolution af¢) with a stationary input
derlying mathematical theory is called “spectral representatipnocess, splits into a sum of a causal and an anticausal convolu-
theory of stationary processes” and can be found in the cléi®n operators, whereby the “stable” modgsof the impulse re-
sical literature on stationary processes, for example, in [27, dponse are integrated forward in time and provide a causal func-
I, Sect. 8]. Here we shall just recall the essential facts. tional of y, while the “unstable” modes_ are integratethack-

A (not necessarily causal) linear filter operating on the staards in timeand involve instead the future history of the input
tionary procesgy(t)} is a convolution operator with a kernelprocess. This is explained in more detail in [18, pp. 298-299]
function s(t) (theimpulse responsef the filter) such that the and [25].

APPENDIX A
NONCAUSAL TRANSFERFUNCTIONS
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APPENDIX B and

PRODUCT AND INVERSE OFTRANSFERFUNCTIONS T L
Kx(s) =1 + BEX(SI - Ao)_ BE- (C4)

In this appendix, we present in form of lemmas two formulas
that are useful for the computation of the product of two transf&hen K x (s) is unitary on the imaginary axis, i.efx(s) =
functions and of the inverse of a transfer function. Such formulé€y *(s), and
are used several times in the paper. The first formula generalizes

a well-known trick first used by Popov. Wex (s) := We(s)Kx(s) (C.5)
: (s) = Hi(sI — FV1@,. 4 =
Lemm;;’;lfl}et_wés) }HEI_(P‘:I Fy)7Gi i =1,2and is a minimal square spectral factor®f (s). Conversely, to any
assume Lz = F2 = fa-hen minimal square spectral factd#;(s) of ¢,(s), there corre-

spond a solutiort of (3.11) and a solutionX of (C.1) such
that W1 (s) has the form specified by (C.5).
To each pairZ, X of solutions of (3.11) and (C.1), we can

W1(s)Wa(s) = Hi(sI—F) 'Gy—Hy(sI—F)™*G. (B.1)

Proof:
therefore associate a unique minimal spectral faBtery (s)
W1(s)Wa(s) and define the corresponding transfer function
= Hi(s] — F1)'G1Hy(sI — F) 7' G Vox () 1= By ()Wh(s) = Va(s)Kx(s) (C.6)
=H\(s] —F\) Y (I — F)(s] - ) 'Gy, (B.2) _ _
— H (s — F-Y(s] — F where Vx(s) is defined byVs(s) = ®,,(s)Wg*(s) and
= Hy(sl = F1)7((s] ~ 11) the last equality of (C.6) readily follows from the relation
— (8] = Fy))(s] — F»)" G (B.3) K3 *(s) = Kx(s) [8].

= Hy(s] — F3)7'Gy — H (s — F1)"'G,. (B.4) Proposition C.1: Let X be a solution of (3.11)X be a solu-
tion of (C.1), andVsx (s) be defined by (C.6).
[ | Then, under Assumption 3.1
LemmaB.2:LetW(s) = H(sI — F)~1G+ J be a minimal

realization of a square matrix function withnonsingular. Then degVsx (s)) = degVs(s)). (C.7)
W*(s) = — GF(sI + FY)"'HT 4 J* (B.5) ;reoSlpj)Irtove this proposition we need the following preliminary
—1 _ —1 —1 —1 .
W= (s) = = J7H(sl — (F = GJTH)) Lemma C.2:For any pair(2, X) solving (3.11) and (C.1),
SGJT T (B.6) respectively, the paif(I + ©X), Ap) is observable.
W *s)=J TGY (s — (—FT + HY J7TGgT) ! Proof: Taking into account (3.11) and the definition (C.2)
) HTJ—T + ,]_T (B?) of BZ, we get

T _ T T
are minimal realizations dv *(s), W~1(s), andW —*(s), re- BeBs = BB 4+ 1A 448 8
spectively. _ _ so that (C.1) may be rewritten as
The proof is straightforward.
(I+X2)ATX + XA +XX)+ XBB"X =0. (C.9)
APPENDIX C

RULING OUT NONANALYTIC SPECTRAL EACTORS Now, letv be a vector in the unobservable subspace of the

pair ((1 + ¥X), Ap), i.e.,
In this appendix, we show that to solve Problem (3.1) we can
restrict attention to the set of analytic spectral factors. Agv =\ (C.10a)
The sedV of minimal square (not necessarily stable) spectral (I+%X)v=0. (C.10b)
factorsiV (s) of ¢, (s) can be parametrized in terms of twedi-
mensional algebraic Riccati equations (see, e.g., [8] or [25]). Multiplying (C.9) on the left byv™ and on the right by and
particular, we shall need the following result which we recathking into account (C.10b), we get
from [8]: -
Lemma C.1:Let ¥ be a symmetric solution of the ARE B Xv =0. (C.11)

(3.11) andX be a solution of the homogeneous ARE Now write (C.1) in the form

A"X + XA+ XBgBEX =0 (C.1) ATY = —X Ay (C.12)

with which, multiplied on the right by, yields
By := B, + XCTR™/2, (C.2) AT Xv = =2 Xwv (C.13)
Moreover, let where we have employed (C.10a). Since the pBit, AT) is

observable, (C.11) and (C.13) implyv = 0 and, in view of
Ao := A+ BsBLX (C.3) (C.10b),u =0. ]
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Proof of Proposition C.1:Let us compute nows x (s)

and its McMillan degree dédxx(s)). To this aim, we ob-

serve that the matrix transfer functidiix (s) introduced in
Lemma C.1 is given by

Kx(s) =1+ BLX(sI — Ag)™'Bs
=I+[BLX 0

A Ag o 1\*
T -rTx - x4, -TE
By,
: |:CTR—1/2:| .

Then, in view of the identity

(C.14)

ByxBLX 0
CTR™Y2?BIX 0
_ Ao 0 A 0
- [—r’—gX—XAO —r’—g} B {0 —r’—g} (C.15)
we can employ Lemma B.1, which yields
Vex(s) =Vs(s)Kx(s)
—1
Ag 0
=[ -X](sI-
(o= g, 1))
By,
: |:CTR—1/2:|
-1
_ Ay O
_weny oyi(u- B %)
B
. {XBE +C§TR1/2} . (C.16)
From (3.14), (C.4), and (C.5), it easily follows that

Wsx(s) = (C+RY?BEX)(sI — Ag)~* By + RY/? (C.17)

which implies that the paif4,, Byx) is reachable; moreover, it

is easy to check that

Wei(s) =R™Y2BL(sT + TL)"Y(X By + CTR™Y/?)
+ R7Y/? (C.18)

which implies that the paif—I'L, (X Bs + CTR~1/2)) is also

(1]

(2]
(3]
(4]
(3]

(6]

(7]
(8]
(9]
(10]
(11]
[12]

[13]

(14]

[15]
[16]

(17]

(18]

[19]

[20]
[21]

(22]

(23]
(24]

[25]

reachable. Finally, Lemma C.2 states the observability of thee)

pair (I +>X), Ap) and, in view of Assumption 3.1
o(Ag) N o(~-TL) = 0. (C.19)

Then, arguing as in Proposition 3.1, we conclude that
degVsx(s) =2n — ny = degVs(s) = 2n —ny  (C.20)

wherenx(s) is defined in Proposition 3.1. ]

(27]

(28]

[29]

(30]

(31]
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