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Minimal Realization and Dynamic Properties of
Optimal Smoothers
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Abstract—Smoothing algorithms of various kinds have been
around for several decades. However, some basic issues regarding
the dynamical structure and the minimal dimension of the
steady-state algorithm are still poorly understood. It seems fair
to say that the subject has not yet reached a definitive form. In
this paper, we derive a realization of minimal dimension of the
optimal smoother for a signal admitting a state-space description
of dimension . It is shown that the dimension of the smoothing al-
gorithm can vary from to 2 , depending on the zero structure of
the signal model. The dynamics (pole structure) of the steady-state
smoother is also characterized explicitly and is related to the zero
structure of the model.

We use several recent ideas from stochastic realization theory. In
particular, a minimal Markovian representation of the smoother
is derived, which requires solving a nonsymmetric Wiener–Hopf
factorization problem. In this way, the smoother is naturally ex-
pressed as the cascade of a whitening filter and a linear filter of
least possible dimension, whose state space is a minimal Markovian
subspace containing the smoothed estimatê. This, among other
aspects, affords a very simple calculation of the error covariance
matrix of the smoother. A reduced-order two-filter implementation
of the Mayne–Fraser type is obtained by solving a Riccati equation
of reduced dimension, which is in general smaller than the dimen-
sion of the Riccati equations considered in the literature.

Index Terms—Filtering, Riccati equation, smoothing, stochastic
realization.

I. INTRODUCTION AND PROBLEM FORMULATION

SMOOTHING of linear stochastic systems is a classical sub-
ject with a long history. Due to the availability of ultrafast

computers, its relative importance with respect to the classical
Kalman-type algorithms has been growing in the recent years,
since real-time processing can now often be done more effi-
ciently by off-line algorithms, which process the data in batches
of finite length.

Among the early references on smoothing we may quote the
paper by Rauchet al. [26], the celebrated two-filter formula
of Mayne [20] and Fraser [10], and the papers by Kailath and
Frost [13], Sidhu and Desai [28], and Weinert and Desai [29].
We quote also the important paper by Badawiet al. [5] where
stochastic realization theory was shown to be the natural frame-

Manuscript received May 29, 1998; revised December 19, 1999. Recom-
mended by Associate Editor, J. Spall. This work was supported in part by the
Ministery of Higher Education of Italy (MURST) under ProjectIdentification
and Control of Industrial Systems.

A. Ferrante is with the Dipartimento di Elettronica e Informazione, Politec-
nico di Milano, Milano 20133, Italy (e-mail: ferrante@elet.polimi.it).

G. Picci is with the Dipartimento di Elettronica e Informatica, Università di
Padova, Padova 35131, Italy (e-mail: picci@dei.unipd.it).

Publisher Item Identifier S 0018-9286(00)09443-5.

work for the problem. The computational aspects are surveyed
in the paper by Park and Kailath [23].

Other recent work on smoothing has been motivated by the
two-point boundary value formulation of Adamset al. [1] and
Levy et al. [14]; however, we shall not need to consider this
type of framework here. Treatments of smoothing from various
points of view are also found in textbooks as [4], [11], and [15].

In our opinion, notwithstanding the vast literature existing on
this subject, the theory of smoothing has not yet crystallized into
a standard universally accepted format as, for example, causal
Kalman filtering. The basic structure of the filter, its implemen-
tation and the analysis of its steady-state behavior, do not appear
to have reached a definitive form. For example, a basic issue like
describing the poles of the steady-state smoother does not seem
to have been answered. Also, in virtually all traditional treat-
ments of smoothing, it is given for granted that the smoother
should be a dynamical system whose dimension is equal to twice
the dimension of the signal model. Only recently has it been
discovered that, instead, the dimension of the optimal smoother
can vary from to , depending on the zero-structure of the
signal model transfer function. This fact was first pointed out
by geometric arguments in [18]. This reference, however, does
not deal specifically with smoothing, and the characterization
of the dimension of the smoother is not explicit and is buried in
a wealth of other results related to stochastic modeling.

In this paper, we shall attempt to provide a clear and hopefully
definitive picture, at least for the steady-state behavior of the
smoother. We shall first derive by elementary computations a
minimal realization of the smoother and show that its dimension
is between and and can be related to the zero structure of
the transfer function of the given model. This fact was shown
by more abstract arguments in [18]. In order to understand its
dynamic structure, we address the problem of computing a
minimal stochastic realization (i.e., a Markovian representation)
of the smoother. This problem is reduced to a (nonsymmetric)
Wiener–Hopf factorization of a rational matrix function, the
cross spectral density matrix of the state and output processes.
The factorization need not be minimal in the classical sense, but
some other minimality constraints must be satisfied. Exploiting
well-known spectral factorization theory, we relate this problem
to the solution of an algebraic Riccati equation (ARE). The
solution that leads to the requested minimal factorization is char-
acterized as the unique positive definite solution of a generally
smaller dimensional Riccati equation. In this way, a numerically
stable, two-filter-type implementation of the optimal filter
requires the solution of an ARE of dimension that can vary from
zero to , depending on the zero structure of the model.

0018–9286/00$10.00 © 2000 IEEE
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Our basic assumption will be that the signal model is time in-
variant. The steady-state smoothing problem can be formulated
as follows: we are given a linear stochastic model

(1.1)

driven by a -dimensional normalized white noise. Observe
that this model is more general than the classical two-noises
model sometimes considered in the literature

(1.2)

where and are uncorrelated white noises, since the latter
may be viewed as a particular case of the former by setting

and in (1.1).
The matrix is assumed stable, i.e., all the eigenvalues

of lie in the open left-half complex plane .
This assumption is made for convenience only. What is really
needed here is that no eigenvalue oflies on the imaginary
axis. Under this latter assumption, the seemingly more general
framework of arbitrary eigenvalues can be reduced to the one we
are considering here; see [25]. This implies that the system is in
statistical steady state and the-dimensional observed process
, output of (1.1), is a stationary process.
Given observations of on the interval ,

we denote by the Hilbert space spanned by such ob-
servations; see e.g., [27] and [18] for a precise mathematical
definition. We want to compute the minimum-variance linear
steady-state estimate (wide-sense conditional expectation)

(1.3)

of the ( components of the) state . It is well known [27]
that this estimate is the limit in mean square of the finite-interval
estimate

as and tend to and is often used as a constant-
parameter approximation of the latter.1

We assume that the model isminimalboth in the sense that
is controllable and is observable and in the sense

that the transfer function

(1.4)

is a spectral factor of the spectral density of

(1.5)

1Some may argue that this stationary approximation may not be of much value
if the observation interval is small, since the optimal finite-interval smoother
(which is time-varying) may not get close enough to the steady-state filter. How-
ever, in case of a small observation interval (i.e., one consisting of very few data
points), there is really no need ofrecursivefilters, since the computation of the
estimate can be done by one-shot algorithms of static estimation theory. Effi-
cient algorithms of this kind have been available in the literature for a while,
an early reference being, e.g., [22]. So the critique really refers to a situation
that is of little interest to dynamic smoothing since it is naturally dealt with by
different algorthms.

of minimal degree.2 Moreover, we shall adopt the standard as-
sumption that is coercive, i.e., there exist such that

(1.6)

This assumption implies that the matrix has full (row) rank
so that is nonsingular. Without loss of
generality, we can choose a basis in the input space of (1.1) such
that , where is, say, the (unique) symmetric
square root of . We partition conformly as .

It is required that the solution be computable recursively
as the output of a (generallynoncausal) dynamical system of
transfer function (thesmoother). Acausal linear filters and
the interpretation of acausal transfer functions are discussed
briefly in Appendix A.

We shall require that the smoother is implemented by a nu-
merically stable algorithm of least complexity. We shall come
back and discuss the meaning of these specifications in more
detail later.

It is well known that the orthogonality principle of linear es-
timation theory provides the condition

(1.7)

where is the cross spectral density of the processes
and and is the cross spectral density of the processes

and . From this condition, the well-known relation for the
transfer function of the smoother readily follows:

(1.8)

Observe that and may be expressed in terms of
the data as

(1.9)

so that (1.8) can be written a little more explicitly as

where we have adopted the notation . These
expressions involve several pole-zero cancellations and the dy-
namics (i.e., the location of the poles) of is not easy to
figure out.

In this paper, similarly to what is done in the classical steady-
state analysis of the Kalman filter, we would like to describe the
dynamics of the steady-state smoother in terms, say, of the orig-
inal spectral data of the problem. One basic question is that of
describing the poles of . This will be answered in Section V,
essentially in the following terms.

Theorem 1.1:The poles (including multiplicity) of the
steady-state smoother are the subset of the zeros of the
spectral density obtained by deleting the elements which
are also zeros of .

2“Degree” is always understood to mean MacMillan degree.
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This paper is organized as follows. In Section II, we com-
pute the minimal dimension (McMillan degree) of the optimal
smoother. In Section III, in the spirit of the Wiener–Kolmogorov
theory of filtering, the smoother is realized as a cascade of a
withening filter and a shaping filter. In Section IV, the relation
between the zeros of and the dynamics of the smoother is
investigated; moreover, the family of minimal realizations of the
smoother is parametrized and the structure of the error covari-
ance is analyzed. Section V discusses the smoother implementa-
tion. In Section VI, the discrete-time counterpart of the results
of the previous sections (which deal with the contiunous-time
case) are outlined. In Section VII, some simulation results are
described. In Section VIII, we finally draw some conclusions.
Appendixes A, B, and C deal with some technical issues.

II. A M INIMAL REALIZATION OF THE OPTIMAL SMOOTHER

In this section, we shall express the smoother as a dynamical
system in state space form and compute the relative system ma-
trix and the dimension of a minimal realization of .

State-space realizations of and are easily ob-
tained from the model (1.1) as follows:

(2.1)

(2.2)

From the latter, employing a well-known formula for the in-
version of a rational matrix function, we get

(2.3)

Here is the Hamiltonian matrix

(2.4)

with being defined as

(2.5)

From this a realization of the transfer function of the smoother
can be computed.

Theorem 2.1:The transfer function (1.8) of the steady-state
smoother has the realization

(2.6)

where is the Hamiltonian matrix (2.4). The McMillan degree
of the smoother is

(2.7)

where is the dimension of the unobservable space of the pair
.

To prove this theorem we shall use the following technical
lemma, which is a straightforward consequence of the fact that
the unobservable subspace of a pair is the largest -in-
variant subspace contained in ker(the nullspace of ). The
proof will be skipped.

Lemma 2.1:Let be a matrix whose columns form a basis
for the unobservable subspace of the pair . Then there
exists a matrix such that

(2.8)

Conversely, if is a matrix such that (2.8) holds, then the
columns of belong to the unobservable subspace of .

Proof of Theorem 2.1:Equation (2.6) follows by multi-
plying together (2.1) and (2.3) and employing Lemma B.1 to
compute the product of with the strictly proper part of

.
Next, note that the McMillan degree of is since

is a minimal spectral factor. Hence the McMillan degree
of is also and, in view of (2.3), the pair

is controllable. Therefore, from (2.6), it is apparent that, the
McMillan degree of the smoother , is equal to the dimen-
sion of the observability space of the pair .

Define then to be a matrix whose columns form a basis for
the unobservable subspace of the pair . Partition as

, where the blocks and have rows. In view
of Lemma 2.1, there exists a matrixsuch that

(2.9)

which immediately yields , so that (2.9) implies

(2.10)

In view of Lemma 2.1, this implies that the columns of be-
long to the unobservable subspace of the pair .

Conversely, if is a matrix whose columns form a basis
for the unobservable subspace of the pair , then the
columns of belong to the unobservable subspace of the
pair .

In conclusion, the unobservable subspaces of the pairs
and are isomorphic (being expressible

as the column-span of and the column-span of ,
respectively) and hence have the same dimension. We have
already shown that the McMillan degree of is equal to
the dimension of the observability space of the pair .
Therefore

(2.11)

and the theorem is proved.
We are led to conclude that the -dimensional realization

(2.6) is not necessarily minimal. A minimal realization of
may be obtained from (2.6) by deleting the-dimensional unob-
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servable subspace (this may be done using standard techniques;
see, e.g., [12]).

1) Relation with Zeros:As pointed out in [17] (see also
[18]), the unobservable subspace of the pair turns
out to be the vector space ofzero directionsfor the transfer
function (1.4) of the model (1.1), commonly denoted by the
symbol . More precisely, the unobservable subspace of the
pair 3 coincides with the so-calledmaximal output
nulling subspace for the dual system

and plays a basic role in the study of
the zero dynamics of spectral factors by means of geometric
control theory [17], [6], [31]. Its dimension is the number of
invariant zeros of , counted with multiplicity. As shown
in [17], in force of the coercivity condition (1.6), the invariant
zeros of coincide with the eigenvalues of restricted
to the invariant subspace . It is evident from (2.6), and in
particular from the dimension formula (2.7), that the structure
of the steady-state smoother is intimately related to the zero
structure of . In particular, only when has no zeros
is the dimension of the smoother , a fact often claimed to be
true in general in the literature.

Observe that the poles of the smoother are a subset of
the eigenvalues of the matrix, and then, by coercivity of ,

is analytic on an open strip containing the imaginary axis.
Hence it admits “two-filter” type decompositions as a sum of a
causal and an anticausal filter. The two-filter structure will be
examined in the next sections.

III. M ARKOVIAN REPRESENTATION OF THESMOOTHER

In this section, we shall address the problem of expressing the
smoother in the form

(3.1a)

where

is a minimal square spectral factor of (3.1b)

has minimal McMillan degree (3.1c)

Such a factorization is in the spirit of Wiener–Kolmogorov
theory of filtering and prediction and is motivated by the
following considerations: the filter driven by the
observation is clearly awhitening filter. For, the inverse of
any satisfying (3.1b) transforms into a white noise
process (of the same dimension ). Hence the dynamical
system , whose output is the estimate , is driven by a
white noise. This implies that the state of any realization
of

(3.2)

driven by the white noise process is aMarkov process.4 Note
that is not Markov in general and does not satisfy any dif-
ferential equation driven by white noise (recursive filter) while

instead does by construction.

3Or, equivalently, the orthogonal complement of the reachable subspace for
(�; B ).

4Note that this statement has no implications on the stability ofA . We refer
the reader again to [25] for a discussion of acausal models of Markov processes.

Finally, (3.1c) implies, assuming the realization
to be minimal, that the components of the smoothed

estimate are expressed at any time, as a
linear combination of the minimal possible number of state
variables. In other words, the Markov process is the
state of a dynamical system of minimal dimension among
those with the property of serving as a dynamic memory for
the smoother. Equivalently, this can be expressed by saying
that the Markovian space of random variables spanned by the
components of

span (3.3)

is a minimal Markovian subspace containing the (components
of) the estimate .

In conclusion, expressing the smoother as the cascade of a
whitening filter and a filter of minimal McMillan
degree yields a minimal recursive filter with output the
smoothed estimate . This representation was introduced
in a previous publication [18], where, however, the explicit
calculation of a state-space realization of the smoother was not
addressed.

In order to solve the minimal factorization problem, we shall
analyze all solution pairs of (3.1a) and (3.1b) and
compare the McMillan degrees of . Since, in view of (1.8),
a factorization is equivalent to the factor-
ization

(3.4)

of the cross spectral density, the search for aof minimal de-
gree is made in the set ,
where is the set of all minimal square spectral factors. Note
that in principle, we should search the whole set ofnot nec-
essarily stablespectral factors of . However, it is
proven in Appendix C5 that one can, without loss of generality,
restrict the search to the class ofanalyticspectral factors. In fact,
it is shown in Appendix C that the transfer function

corresponding to an arbitrary minimal spectral
factor (not necessarily stable) has the same McMillan de-
gree of the transfer function corre-
sponding to the unique minimal squareanalyticspectral factor

, which has the same zero structure of . Hence, by
restricting attention to analytic spectral factors only, we do not
lose in generality.

Observe that, given a pair solving (3.1), any
other pair of the form , where is an arbi-
trary orthogonal matrix, is also a solution of (3.1). We shall re-
gard two such solutions as equivalent and choose as a represen-
tative the pair , which has .

A. Riccati Equations and Spectral Factorization

We shall need to review below some classical results of spec-
tral factorization theory, mostly due to Anderson [3], [2]. These
results describe a parametrization of the minimal analytic square
spectral factors of in terms of the solutions of a certain
algebraic Riccati equation.

5We advise the reader that Appendix C uses definitions and notations intro-
duced up to the end of Proposition 3.1 below.
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Let be the state covariance of model (1.1), i.e., the unique
solution of the Lyapunov equation

(3.5)

Then, a change of basis in the state space of the realization (2.2)
of induced by the matrix splits the spectral
density in the form

(3.6)

where

(3.7)

the matrix being given by

It follows from (3.7) that the matrices yield a min-
imal realization of the spectrum and hence are the same
(i.e., invariants) for the class of all minimal models (1.1) repre-
senting the process(in the given basis). Then a central result
of stochastic system theory (see, e.g., [18]) states that the state
covariance matrix of any other stationary minimal realization
of of the form (1.1) satisfies the algebraic Riccati inequality

(3.8)

and, conversely to each symmetric solutionof (3.8), there
corresponds an essentially unique minimal system
generating as the output of a “shaping filter” of the type (1.1).
In particular, the state covarianceof our signal model satisfies

(3.9)

which is just an equivalent way of writing the Lyapunov equa-
tion (3.5). The particular solutions of (3.8) with the equality
sign, i.e., the solutions of

(3.10)

correspond to (minimal) stochastic realizations with the
smallest number of input noise components, i.e., tominimal
square spectral factors of . By subtracting (3.10)
from (3.9) and rearranging terms, one obtains another Riccati
equation for the difference

(3.11)

Clearly, since is fixed, the solutions of this equation are in
one-to-one correspondence with those of (3.10) by the relation

(3.12)

Some of these facts are collected in the following lemma, which
will be used repeatedly in the sequel.

Lemma 3.1 (Anderson):Let be a symmetric solution of the
algebraic Riccati equation (3.11). Define

(3.13)

Then

(3.14)

is a minimal analytic square spectral factor of . Con-
versely, to any minimal analytic square spectral factor of

there corresponds a symmetric solutionof (3.11) such
that has the form specified by (3.14).

Hence, given a symmetric solutionof the algebraic Riccati
equation (3.11), we have a corresponding transfer function
of the smoother, defined by

(3.15)

B. A Family of Smoothing Filters

We shall introduce the following technical assumption.
Assumption 3.1:The pole and the zero sets of the spectral

density are disjoint:

(3.16)

Many of the results described below continue to hold even if
this assumption does not hold, however their proofs would be
overburdened by technicalities risking to hide the meaning of
the results. It is worth observing that the condition (3.16) is al-
ways satisfied when is scalar and holds generically in the
multivariable case.

The following proposition provides a realization of and
a formula yielding its McMillan degree. Note that the eigen-
values of the matrix introduced in (3.17) are the zeros of the
square spectral factor . For this reason is sometimes
called thenumerator matrixof .

Proposition 3.1: Let be a solution of (3.11) and be
the corresponding transfer function defined by (3.15). Let

(3.17)

Then

(3.18)

and, under Assumption 3.16

deg (3.19)

where is the dimension of the unobservable spaceof the
pair .

Proof: We have

(3.20)

6Here and in the following, deg(�) denotes the McMillan degree.
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where is defined in (3.17). Then, taking into account that
and using Lemma B.1, we easily get

(3.21)

From this, using again Lemma B.1, we compute
and obtain (3.18).

To compute , we observe that from the minimal
realization (3.14), it follows that the pair is reachable,
and from the minimal realization (3.20), it follows that the pair

is also reachable. Moreover, (3.20) implies
that is a subset of the zeros of ; hence from As-
sumption 3.1 it follows that

(3.22)

Then the following is clear.

1) The realization (3.18) is reachable.
2) The unobservable subspace of the realization (3.18)

is isomorphic to the unobservable subspaceof the pair
. Indeed, if and only if with
.

These two observations clearly yield (3.19).
The following proposition shows that cascading with the

withening filter does not change the MacMillan
degree of .

Proposition 3.2: Denote by the state
(Markov) process of the realization (3.18) driven by the input
white noise process . Then, for each , the smoothing
filter is obtained by applying to (3.18) the state feedback

(3.23)

The transfer function of the smoother can be written as

(3.24)

Proof: The formula can be obtained by transfer function
manipulations of (3.18) and . A more instructive deriva-
tion is obtained by noting that the shaping filter of transfer func-
tion can be represented by the state space model

where the input and hence the state processes are the same of
the second component of (3.18). From this obtain a realization
of the withening filter of transfer function

and then just substitute the last equation in the state space model
corresponding to the realization (3.18).

Formula (3.24) describes afamily of state-space realizations
of the smoother, parametrized by. It is easy to show that this
formula particularizes to the well-knowntwo-filters formulaof
the smoothing literature, of which it provides a generalized ver-
sion.

Consider the Lyapunov equation

(3.25)

Since the spectral density has been assumed to be coer-
cive [(1.6)], we may pick in such a way that

(3.26)

i.e., the spectra of and of are disjoint (which is
commonly called “unmixed spectrum” condition). In this
case, (3.25) has a unique symmetric solution which we de-
note by for convenience. This solution is nonsingular
since is reachable, as noted in the proof of
Proposition 3.1. For example, choosing for the maximal
solution of the ARE (3.11), , where is the
minimal solution of the algebraic Riccati equation (3.10); then

is a stability matrix and turns out to be precisely
the difference between the maximal and minimal solutions of
(3.10), namely, , which is sometimes called
thegapof the Riccati equation [30], [9].

Proposition 3.3 (Two-Filters Formula):Let be any
symmetric solution of the ARE (3.11) such that the numerator
matrix has unmixed spectrum. Denote by the corre-
sponding unique symmetric solution (necessarily invertible) of
the Lyapunov equation (3.25). Then the transfer function of the
smoother (3.24) admits the additive decomposition

(3.27)

where

(3.28)

If , then , and the
smoothed estimate can be written in the form

(3.29)

where is the steady-state causal (forward) Kalman Filter
estimate of and is the steady-state anticausal (back-
ward) Kalman Filter estimate of .

Proof: We show that there is a similarity transformation of
the form , which block-diagonalizes the realization
(3.24), if and only if there is a symmetric solution of the
Lyapunov equation (3.25). In fact, since , we
have
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and the northeast corner of the transformed matrix is zero if and
only if solves (3.25). The similarity transformation induced
by any such gives

and consequently provides the following decomposition of
:

Now, substituting and rearranging terms, one obtains

which is (3.27). That the two expressions of are the same fol-
lows since solves the Lyapunov equation (3.25) and hence

. Finally, in case
, we obtain the well-known formulas for the backward

Kalman filter; see [16] and [9, p. 124].
The last part of this proposition can be obtained as a corollary

of [5, Theorem 4.1]. Note that the parameters of the anticausal
Kalman filtere are

Compare [16] and [9].
Yet another useful form of the smoother that is easily derived

from (3.24) is thecascade decompositiondescribed in the fol-
lowing proposition, which to our knowledge seems not to be in
the literature.

Proposition 3.4 (Cascade Decomposition):To each nonsin-
gular solution of the Riccati equation (3.11), there corre-
sponds a cascade decomposition of the transfer function of the
smoother, , where

(3.30)

(3.31)

If , then is anticausal and is causal, while
for , the opposite is true.

Proof: Since is strictly proper, we look for factoriza-
tions where one of the factors is also strictly proper. Suppose
we want to find factorizations of with

(strictly proper) and
. If such a factorization exists, the cascade realization defined

by the triplet

should be equivalent to a realization of the family (3.24). We
try a similarity transformation of block-upper triangular form

, whereby

implies, assuming is invertible, that and .
Computing the upper right off-diagonal block (of place 12) in

we find . Now is a solution
of the algebraic Riccati equation (3.11), which can be rewritten

(3.32)

and this implies that

Finally, imposing that

we obtain and

where the last equality is based on (3.13). It follows that for each
invertible solution of (3.11) the transfer functions (3.30) and
(3.31) provide a cascade factorization of .

Since the two-filter formula (3.27) and the cascade decom-
position above are just a decomposition of the transfer func-
tion (3.24), which has the same MacMillan degree of in
(3.18), it is clear that these formulas provide a minimal recur-
sive implementation of the smoother if and only if is
observable, which is the same of saying that , or equiv-
alently

deg

This is really a condition on thezero structure of , as stated
in the following theorem.

Theorem 3.1:The two-filter realization (3.27) or the cascade
decomposition of Proposition 3.4 are of minimal possible di-
mension if and only if has no zeros.

For the proof of this theorem, we shall need the following
result.

Lemma 3.2:Let be any solution of (3.11); then the unob-
servable subspaceis equal to ker and is invariant for both

and . In fact, is a zero-direction subspace and

(3.33)

so that the square factor shares dim zeros
(counted with multiplicity) with . Hence

(3.34)
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where is the dimension of , the zero direction space of
, and

deg (3.35)

for all solving (3.11).
Proof: Let ker . By multiplying (3.11) on the left

side by and on the right side by, it readily follows that

(3.36)

which, using the Riccati equation (3.11) rewritten in the form

(3.37)

implies that the subspace keris an invariant subspace for both
and . Since ker is -invariant and is the largest

-invariant subspace of ker, it is obvious that ker .
Formula (3.33) follows from (3.17). Finally, in view of the in-
clusion (3.36) and the -invariance of ker , it is obvious that

ker ker ...
(3.38)

which clearly implies and (3.34).
Inclusion (3.36) is also proved in [21]; see also [18,

Lemma 10.2], and [17, Prop. 4.10] for a slightly different
formulation. Note that the lemma establishes a lower bound for
the dimension of the smootherdeg . We shall show
later that this lower bound is always attainable for suitable’s.

Proof of Theorem 3.1:If has no zeros,
( ker , i.e., is nonsingular and

is trivially observable so that (3.18) is minimal.
Conversely, assume there are minimal filters of dimension
, i.e., such that (= ker . This will imply in

particular that the maximal solution of the
ARE is nonsingular and, in fact, positive definite. Since

is asymptotically stable, it follows from stan-
dard Riccati theory that must be a controllable pair.

Alternative Proof: From standard Riccati theory, is
the uniquepositive semidefinite solution of (3.11). Similarly,

is the unique negative semidefinite so-
lution of (3.11). Anticipating from Lemma 4.3, which will be
stated in the next section, this implies that , since
and are both nonsingular. See Lemma 4.3 below.

This concludes the proof of Theorem 3.1.

IV. A FAMILY OF MINIMAL DEGREESMOOTHERS

The solution of the factorization problem (3.1) has been re-
duced to the following question: For what’s is the McMillan
degree, of , minimal? This question will be an-
swered in this section in a series of Lemmas culminating with
Theorem 4.1.

In the light of Lemma 3.2, the analytic spectral factors that
solve problem (3.1) are the square factors , which share
the maximal number of zeros with . In fact, Lemma 3.2

leads to conjecture that the optimal ’s should be those
which shareall the zeros of .

Indeed, there is a whole family of minimal square factors of
that share exactly the zeros of the (nonsquare) transfer

function of the original model. In order to describe this
family, we need to recall the concept of tightest local frame of a
solution of the Riccati inequality (3.8). Let and be,
respectively, the maximal solution of the Riccati equation
(3.10) for which and the minimal solution of (3.10)
for which [18]. The tightest local frame of ,
denoted , is the subset of solutions of (3.8)
defined by the matrix inequality

(4.1)

Naturally, , the inclusion being trivial (
) in case itself solves the Riccati equation (3.10).

It is shown in [18, Theorem 11.1] and [17] that

ker ker

ker (4.2)

where is the subspace of zero directions of the spectral factor
corresponding to .

To our purposes, it will be convenient to reparametrize the
tightest frame in terms of the solutionsof the “centered” al-
gebraic Riccati equation (3.11). Letting

(4.3)

it follows readily from the definition that is the minimal
positive semidefinite solution of (3.11), and similarly, is
the maximal negative semidefinite solution of (3.11).

Let and be the numerator matrices of the “ex-
treme” square factors , corresponding to

and , respectively, i.e., ,
. We have the following result on

the zeros of .
Lemma 4.1:There holds

(4.4)

so that , share the zeros of .
Proof: This is essentially the same claim as that of

Lemma 3.2, with the additional information that in this case
ker ker ker .

It is shown in [18] and [17] that the zero-sets of all spectral
factors corresponding to solutions of the Riccati
inequality (3.8) belonging to the set 7 contain
the common zeros of the “extreme” square factors ,

(counting multiplicity). When is actually
the tightestframe for , in the sense defined above, the zeros
of are exactly the common zeros of and

. Of interest for our problem are the (square) spectral
factors attached to the elements of the tightest frame of ,

, which solve the Riccatiequation(3.10). These
will be discussed in more detail below.

7That is,P � Q � P , in which case one says that[[P ; P ]] is a
frame forQ.
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Define

solves (3.11) and

(4.5)

so that the set is the subset of
the tightest local frame of , made of all solutions of the Riccati
equation (3.10) that belong to .

A Change of Basis:It will henceforth be convenient to
assume, without loss of generality, that a change of basis is
introduced in the signal model (1.1), which transforms the pair

into the so-calledstandard form of controllability,
which is a block structure of the type

(4.6)

where and the pair is reachable. In a
basis of this kind, the subspace is made up of vectors of the
form .

The matrix is the restriction of to and carries
the zeros of the signal model (1.1). The change of basis induces
a partition of the matrices and of the signal model (1.1) in
blocks of the same dimension

(4.7)

where , and
.

Consider then the reduced-order algebraic Riccati equation
(RARE) obtained by restricting (3.11) to

(4.8)

It is immediate to check that for any solution of (4.8) the
matrix given by

(4.9)

is a solution of (3.11).
Observe that the pair is, by assumption, observable.

Hence , and consequently are observable.
Therefore the reduced-order Riccati equation (4.8) satisfies
the system-theoretic conditions ensuring the existence and
uniqueness of a maximal (positive definite) solution and of
a minimal (negative definite) solution . Each other solution

of (4.8) is such that

(4.10)

Since the pair is observable by construction, any solu-
tion of (4.8) is nonsingular; moreover is the only positive
semidefinite solution and is the only negative semidefinite
solution of (4.8). Therefore, we obtain the following represen-
tations for the extremal solutions .

Lemma 4.2: In any basis bringing in standard form
of controllability, and have the form

(4.11)

where and are the maximal and the minimal solution of
the RARE (4.8).

Returning to the parametrization of minimal analytic square
spectral factors in terms of solutions of the Riccati
equation (3.10), we have the following characterization.

Lemma 4.3:Let and let be the numer-
ator matrix of the corresponding minimal square spectral factor

(Lemma 3.1). Then, ker and

(4.12)

so that all these spectral factors, including the extremes
and , share all the zeros of .

Proof: In view of the relation between and
we have

ker

ker ker

ker ker (4.13)

Moreover, by a famous representation theorem of Willems [30],
every solution of (4.8) has a representation

(4.14)

where is a projection matrix, so that we also have

(4.15)

from which it clearly follows that for all ,
i.e., ker . On the other hand, by (3.36) in the Proof of
Lemma 3.2, we always have . This proves the claim
that ker . The rest is as usual.

The following theorem gives a solution of (3.1) and parame-
terizes all factorizations , where
is a minimal square analytic spectral factor of and
has minimal McMillan degree, in terms of solutionsof (3.11)
belonging to the set .

Theorem 4.1:Assume that a basis transformation on the
model (1.1) has been chosen so that is in standard
controllability form (4.6). Then, the filter is of minimal
McMillan degree

deg (4.16)

if and only if , i.e., has the form (4.9), the matrix
being a solution of the reduced Riccati equation (4.8). Hence

all pairs , solving (3.1) are parametrized by the
solutions of (3.11).

Proof: We only need to show that if a solutionof (3.11)
has the structure

(4.17)

where at least one of the two matrices and is different
from zero, then

(4.18)
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strictly. To this aim, observe that if is given by (4.17), then
there exists a vector such that

(4.19)

But we also have

(4.20)

and

(4.21)

This argument, taking into account (3.38), proves thestrict in-
clusion

ker ker ...
(4.22)

which is equivalent to (4.18).
Remark: As pointed out before, the dimension (McMillan

degree) of a minimal smoother is equal to the McMillan degree
of , , which is in turn equal to the dimen-
sion of a minimal Markovian subspace containing the estimate

. Theorem 4.1 states that this dimension is .

A. Error Covariance of the Optimal Smoother

Once is put in standard controllability form (4.6), the nu-
merator matrix of , defined in (3.17), has, for any

, the partitioned form

(4.23)

where , .
Because of -invariance, the lower block is indepen-
dent of and equal to . The eigenvalues of are the zeros of

, which are shared by all ’s in the chosen family. They
are (fixed and) independent of.

In the chosen basis, the unobservable part of (3.18) can be
deleted by inspection obtaining a minimal realization of

(4.24)

In this formula, it is evident that the “additional dynamics”
of the stochastic realization of the smoother depends

on the particular choice of the whitening filter , i.e., on the
choice of . Now, choose diag ,
where is the minimal (negative definite) solution of the
RARE, and denote by the upper left

block of the corresponding numerator matrix . Since
satisfies the reduced Riccati equation, which can be written (in
the form (3.32)) as

(4.25)

a standard Lyapunov-type argument proves that all the eigen-
values of lie in the open right-half plane or, equivalently,

is a stability matrix. For this choice of, the filter
is analytic on e having a minimal realization

(4.26)

where the eigenvalues of the state matrix lie all in .
Since is an analytic filter driven by white noise, its

state process is a stationary Markov process, and its co-
variance satisfies the Lyapunov equation

(4.27)

Partitioning in four blocks conformly with the state matrix
of

(4.28)

equation (4.27) can be decoupled into the three independent
equations

(4.29a)

(4.29b)

(4.29c)

It is standard, and not difficult to check directly, that the so-
lution of (4.29a) is given by

(4.30)

Taking into account (3.17), it is easy to verify that the (unique)
solution of (4.29b) is , while the solution of (4.29c)
is clearly .

On the other hand, the optimal smoothed estimateis ex-
pressed by a linear function of the Markov process

(4.31)

so that its covariance matrix is computed as

(4.32)
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By standard properties of the orthogonal projection, the error
process is orthogonal to , so that its
covariance is given by . Recalling that

, by straightforward computations, we obtain the following
formula.

Proposition 4.1: In a basis bringing in standard
controllability form (4.6), the error covariance matrixof the
smoothed estimate , is given by

(4.33)

where and are the extreme solutions of the reduced-order
ARE (4.8).

This formula is remarkably similar to the one derived in [5].
The difference is that in [5], the extremal solutionsand of
the full Riccati equation were needed while here we only require
the extreme solutions and of a reduced Riccati equation
of dimension .

Incidentally, (4.33) shows that the optimal estimate is
exact, i.e., not affected by errors, along the zero-directions space

, the smoothing error occurring only in the directions of the
orthogonal complement . This fact agrees with the geo-
metric property of the “output-induced subspace” of the state
space of the smoother, discussed in [17].

In the “extreme,” yet scarcely interesting, case when the given
model is internal [ square spectral factor andis solution
of (3.10)] , , and the estimate is, as
expected, not affected by errors. Moreover there is no need of
solving Riccati equations.

V. SMOOTHER IMPLEMENTATION

The smoother has, in general, an acausal structure, and a
numerically stable implementation of the algorithm requires a
causal–anticausal decomposition of its transfer function (this is,
in fact, the motivation of “two-filter” formulas). In this section,
we shall address the problem of computing causal–anticausal
decompositions of the smoother in the general case when
may have an arbitrary number of zeros.

In a basis in which has the control canonical form
(4.6), has the block diagonal form (4.9) and has the block
structure (4.23). In this basis, the unobservable part of (3.24)
can be deleted by inspection, yielding a minimal realization

(5.1)

where the two row-blocks of dimen-
sion , and of dimension , are the parti-
tioning of , induced by the partitioning

in the standard controllability form.

From this realization, we can obtain a family of minimal
“two-filter” or “cascade” formulas of the type seen in Propo-
sitions 3.3 and 3.4. In particular, a minimal causal–anticausal
two-filters implementation is described in the theorem below.

Theorem 5.1 (Reduced Two-Filter Formula):Assume that
the signal model (1.1) is transformed by a change of basis in
the state space, bringing into a standard controllability
form of the type (1.1).

Let be the maximal symmetric solution of
the RARE (4.8), and let be the corresponding numerator
matrix with spectrum in the left-half plane. Consider the reduced
Lyapunov equation

(5.2)

and denote by its unique symmetric solution, necessarily
invertible, where .

Then the smoothing filter (5.1) has a minimal realization de-
scribed by the following state-space equations:

(5.3)

(5.4)

(5.5)

(5.6)

where

(5.7)

and

(5.8)

(5.9)

(5.10)

The state variables of the filter have the following interpreta-
tion. Partition the state of the signal model (1.1) in two subvec-
tors as , where is the -dimensional
output-induced component. Then is the steady-state (for-
ward) Kalman filter estimate of and is the steady-state
backwardKalman filter estimate of .

The error covariance matrix of the estimate is given by (4.33).
Proof: Clearly is also the subvector formed by the last

components of the state vector in the realization (5.1). It is
immediate that satisfies (5.3) and that it stays unchanged under
projection onto the space spanned by. Therefore, is also the
subvector of the last components of the output, as in (5.6).
Next consider the -dimensional subsystem obtained by
extracting the first two blocks of (5.1) with transfer function
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The output of this system is the smoothed estimateof the state
subvector . Note that the input to this subsystem is the “aug-
mented” input variable , as it follows from the block-trian-
gular structure of the realization (5.1). By a change of basis
of the same upper triangular form as used in the Proof of Propo-
sition 3.3, with a solution of the reduced Lyapunov equation

(5.11)

(here we assume has unmixed spectrum), the realization of
above is transformed into one of the form

Choosing , this is easily rewritten in the state-space
form of the theorem.

The transfer function of the smoother can be written com-
pactly as

(5.12)

where is the transfer function describing the output-
induced subvector of the state .

A reduced cascade decomposition of the same structure of
(3.30) and (3.31) of Proposition 3.4 also holds for . The
proof of this result is identical and will be omitted.

Theorem 5.2:To each solution of the reduced Riccati
equation (4.8), there corresponds a cascade decomposition of
the “reduced” transfer function of the smoother of the
form , where

(5.13)

(5.14)

If , then is a stability
matrix so that is anticausal while is causal. If
instead we choose , then is
antistable so that is causal while is anticausal.

We see that in any case the dynamics of the minimal smoother
(5.1) splits into three decoupled subsystems.

1) A causal part governed by the eigenvalues of.
2) An anticausal part governed by the eigenvalues of

(which is similar to ).
3) An invariant subsystem, which provides the output-in-

duced subvector of the state. This part is governed by
the eigenvalues of , i.e., the zeros of . It follows
from coercivity of the spectrum that these eigenvalues

may be located anywhere in the complex plane except on
the imaginary axis.

What computations are needed to implement the minimal
smoother?

One should first perform a basis transformation on the model
(1.1) in order to bring in standard controllability form
(4.6). This may be obtained from the data of the problem at a
modest computational cost employing one of several algorithms
existing inthe literature, and no solution of Riccati equations are
required.

Further, in order to obtain the reduced causal–anticausal de-
composition of the smoother, the stable/unstable eigenspaces of
the matrix

(5.15)

need to be computed.
This may, in turn, be decoupled into two separate subprob-

lems.

1) Compute the stable/unstable eigenspace of the ma-
trix carrying the zero structure of . This decom-
position has to be dealt with on a case-by-case basis. If

is minimum phase or maximum phase, no decom-
position is needed.

2) Compute the stable/unstable eigenspace of the matrix

(5.16)

which has dimension .
This latter matrix is Hamiltonian, and computing its stable
eigenspace is equivalent to the solution of the reduced algebraic
Riccati equation (4.8) of dimension .

VI. DISCRETE-TIME RESULTS

We shall list in this section the discrete-time versions of the
main results obtained in the previuos sections for the contin-
uous-time problem. The derivations are in principle the same,
although the calculations are often more involved than in the
continuous-time case and will not be reported here.

We shall consider the following discrete-time linear sto-
chastic model with constant coefficients:

(6.1)

(6.2)

driven by a -dimensional normalized white Gaussian noise.
We seek the linear minimum-variance estimate

(6.3)

of the state given the whole time history of the observations
. The transfer function of this smoothing filter,

formally given by the well-known expression
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is in general noncausal. We want to decompose it in a combi-
nation (either parallel or cascade) of causal–anticausal filters of
minimal dimension.

We shall make the following assumptions.

1) is reachable and is observable.
2) ; as in the contin-

uous-time case, this assumption is not strictly necessary,
and we could only assume (at the price of some complica-
tions) that none of the eigenvalues ofhas modulus one.

3) is a minimal spectral factor, i.e., is a solution
of of minimal degree [the nota-
tion now stands for ].

4) is coercive, i.e., , .
5) is finite and nonsingular. This assumption, which

in the continuous-time case is implied by coercivity, is
known asregularity [24], [7]. It implies that the minimal
spectral factors of have zeros neither at the origin
nor at infinity [24]. In particular, if is a minimal
square spectral factor, is nonsingular and the nu-
merator matrix of an arbitrary minimal realization of

has no zero eigenvalues, i.e., is also nonsingular.
Since is nonsingular, the matrix in (6.1) may be as-
sumed to be in the form , with being square and
nonsingular. We partition conformly as .

Note that the regularity assumption implies that the numer-
ator matrix is nonsingular.

A calculation in the same spirit of that in the Proof of The-
orem 2.1 leads to the following realization of the steady-state
smoother:

(6.4)

By nonsingularity of , this realization can also be rewritten in
the familiar “forward difference” form, with in place of .
The price to pay for this operation is somewhat more compli-
cated formulas.

As in the continuous-time case, it is not difficult to check that
the realization (6.4) is reachable but not necessarily observable,
and its unobservable subspace is isomorphic to, the unob-
servable subspace of the pair , so that the result (2.11)
remains true in the discrete-time case as well.

A. Discrete-Time Stochastic Realization and ARE

The state covariance of the model (6.1) is the unique solu-
tion of the discrete-time Lyapunov equation

(6.5)

By the same block triangular change of basis, the spectral den-
sity may be decomposed in the form

(6.6)

where

(6.7)

with

(6.8)

These two quantities areinvariantsof the output process in a
chosen basis. From the discrete-time version of the positive real
lemma (see, e.g., [7] and [19]), it follows along the same lines
of the continuous-time case that the set of minimal square stable
(i.e., analytic in ) spectral factors of
can be parametrized in terms of the symmetric solutionsof
the discrete-time Riccati equation

(6.9)

There is a one-to-one correspondence that makes any such
correspond to the minimal square spectral factor

(6.10)

where

(6.11)

Define . Notice that the reg-
ularity assumption guarantees that is nonsingular. The nu-
merator matrix of the spectral factor (6.10) is

(6.12)

where . In view of the regu-
larity assumption, , and hence and , are nonsingular.

Arguing as in the continuous-time case, it is possible to show
that a Markovian space containing the optimal estimates is the
state space of the filter

(6.13)

driven by the output of the whitening filter . Thus, we
have to face again the problem of characterizing the solutions
for which has minimal McMillan degree. It is possible to
show that has the realization

(6.14)

and that the smoothing filter is obtained by state feedback from
this realization so that

(6.15)

Let us now assume that the pair is in canonical form
of controllability (4.6), let be partitioned conformly as in
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(4.6), and consider the reduced-order algebraic Riccati equation
obtained by restricting (6.9) to

(6.16)

It is immediate to check that for any solution of (6.16), the
matrix given by

(6.17)

is a solution of (6.9). We define the sets and
exactly as in the continuous-time case. Moreover, we

set

and

where and are defined in (4.7).
The following discrete-time version of Theorem 4.1 holds.
Theorem 6.1:Assume that the pole and zero sets of the spec-

tral density are disjoint, and is in standard con-
trollability form. Then the filter is of minimal McMillan
degree

deg (6.18)

if and only if has the form (6.17), the matrix being a so-
lution of the reduced Riccati equation (6.16) belonging to the
tightest frame . Hence the minimal state-space realiza-
tions of the optimal smoother are parametrized by the solutions

of (6.16).
To the minimum solution of (6.16) [or equivalently, to

the solution diag of (6.9)] there corresponds a
stable filter , which has the following minimal realiza-
tion:

(6.19)

where has all eigenvalues outside of the unit circle
so that is a (discrete-time) stability matrix.

The covariance of the state process of can then be
obtained by solving a Lyapunov equation, and, similar to what

happens in the continuous-time case, this allows the computa-
tion of the smoothing error covariance, which turns out to be
given by the same expression of the continuous-time case so that
(4.33) remains valid in the discrete time too. We shall skip the
details, referring the reader to [7, pp. 95–96] for a guideline on
discrete-time computations.

As in the continuous-time case, by choosingto be of the
form (6.17) and by deleting the unobservable part of (6.15), we
get the following minimal realization of the smoother as shown
in (6.20) at the bottom of the page, which, particularized for

, leads to the following discrete-time version of The-
orem 5.1.

Theorem 6.2 (Reduced Two-Filter Formula, Discrete
Case): Assume that the signal model (6.1) is transformed by
a change of basis in the state space, bringing into a
standard controllability form of the type (4.6).

Let be the maximal symmetric solution of
the RARE (6.16), and let be the corresponding numerator
matrix with spectrum in the unit circle. Consider the reduced
Lyapunov equation

(6.21)

and denote by its unique symmetric solution, necessarily
invertible, where .

Then the smoothing filter (6.20) has a minimal realization
described by the following state-space equations:

(6.22)

(6.23)

(6.24)

(6.25)

where

(6.26)

and

(6.27)

(6.28)

(6.29)

(6.20)
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Fig. 1. State estimation errors.

The state variables of the filter have the following interpreta-
tion. Partiton the state of the signal model (6.1) in two subvec-
tors as where is the -dimensional
output-induced component. Then is the steady-state (for-
ward) Kalman filter estimate of and is the steady-state
backwardKalman filter estimate of .

The error covariance matrix of the estimate is given by (4.33).
A reduced cascade decomposition of the same structure of

Theorem 5.2 holds also in the discrete-time case.
Theorem 6.3:The transfer function of the smoother can be

written as

(6.30)

where is the transfer function describing the output-
induced subvector of the state . Moreover, has a cas-
cade decomposition of of the form ,
where, employing the same notations of Theorem 6.2

(6.31)

(6.32)

where is a (discrete-time) stability matrix so that
is anticausal while is causal.

VII. SIMULATIONS

In this section, we present a very simple example of applica-
tion of the reduced agorithm to simulated data.

We have driven a two-dimensional discrete-time system of
the form (6.1) with white Gaussian noise and computed the
smoothed estimates of the state employing the reduced two-
filter formula of Theorem 6.2. The model has the following pa-
rameters:

Note that the system has dimension two but, thanks to the re-
duction process, we only need to solve a one-dimensional ARE
corresponding to , , and , whose solu-
tions are and .

Fig. 1 shows the two components of the estimation error.
The estimation error of the second state varible (the output-in-
duced component), which should be zero on an infinite time in-
terval, for a finite smoothing interval converges to zero very fast.
The sample error covariance of the first state varible computed
on 100 samplepoints is 0.5, which should be compared with the
theoretical value .

The smoothed estimate represented in Fig. 1 is obtained con-
sidering the steady-state process. Hence in the extremes of the
interval, it is indeed a suboptimal estimate. Let then be
the optimal estimate (obtained with the time-varying filter). The
difference is appreciably different from zero only
in correspondence of small intervals at the two extremes, as rep-
resented in Fig. 2.
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Fig. 2. Difference between the optimal estimate and the steady-state suboptimal estimate of the state.

It may be worth noticing that the estimate of the second
state variable is optimal in the left extreme of the interval too.
This is not surprising since it is given by the forward Kalman
filter, and after a brief transient, its error covariance vanishes.

Similar results may be obtained also in the continuous-time
case.

VIII. C ONCLUSIONS

In this paper, we have provided a thorough analysis of the
steady-state smoothing problem for linear signal models. The
dynamic structure of the smoother has been elucidated, and a
simple computational procedure for constructing the minimal
smoother has been proposed. In the construction of a state-space
realization, the minimal smoother does not require the solution
of Riccati equations. The solution of a Riccati equation of re-
duced order is needed only for the decomposition of the filter
into a causal and an anticausal part.

APPENDIX A
NONCAUSAL TRANSFERFUNCTIONS

All transfer functions of this paper represent linear operations
on stationary processes defined on the whole time axis. The un-
derlying mathematical theory is called “spectral representation
theory of stationary processes” and can be found in the clas-
sical literature on stationary processes, for example, in [27, ch.
I, Sect. 8]. Here we shall just recall the essential facts.

A (not necessarily causal) linear filter operating on the sta-
tionary process is a convolution operator with a kernel
function (the impulse responseof the filter) such that the

sum converges in mean square. For purely
nondeterministic processes (like the ones we consider in this
paper) this is equivalent to being square integrable and
hence to the Fourier transform

being also square integrable on the imaginary axis (Parseval the-
orem). If is rational, it can be extended (by letting )
to the whole complex plane. The extension is referred to as
thetransfer functionof the filter. Notice that in general some of
the poles of may lie in the right-half plane, although square
integrability implies that no poles can lie on the imaginary axis.

Every rational noncausal filter can be decomposed into the
sum of acausaland ananticausalpart by just decomposing
as

where is analytic on the right, while is analytic on
the left-half plane. The corresponding impulse responses
and are zero for , i.e., causal, and zero for
, i.e., anticausal, respectively (Paley–Wiener theorem). There-

fore the operation of convolution of with a stationary input
process splits into a sum of a causal and an anticausal convolu-
tion operators, whereby the “stable” modesof the impulse re-
sponse are integrated forward in time and provide a causal func-
tional of , while the “unstable” modes are integratedback-
wards in timeand involve instead the future history of the input
process. This is explained in more detail in [18, pp. 298–299]
and [25].
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APPENDIX B
PRODUCT AND INVERSE OFTRANSFERFUNCTIONS

In this appendix, we present in form of lemmas two formulas
that are useful for the computation of the product of two transfer
functions and of the inverse of a transfer function. Such formulas
are used several times in the paper. The first formula generalizes
a well-known trick first used by Popov.

Lemma B.1:Let , and
assume that . Then

(B.1)

Proof:

(B.2)

(B.3)

(B.4)

Lemma B.2:Let be a minimal
realization of a square matrix function withnonsingular. Then

(B.5)

(B.6)

(B.7)

are minimal realizations of , , and , re-
spectively.

The proof is straightforward.

APPENDIX C
RULING OUT NONANALYTIC SPECTRAL FACTORS

In this appendix, we show that to solve Problem (3.1) we can
restrict attention to the set of analytic spectral factors.

The set of minimal square (not necessarily stable) spectral
factors of can be parametrized in terms of two-di-
mensional algebraic Riccati equations (see, e.g., [8] or [25]). In
particular, we shall need the following result which we recall
from [8]:

Lemma C.1:Let be a symmetric solution of the ARE
(3.11) and be a solution of the homogeneous ARE

(C.1)

with

(C.2)

Moreover, let

(C.3)

and

(C.4)

Then is unitary on the imaginary axis, i.e.,
, and

(C.5)

is a minimal square spectral factor of . Conversely, to any
minimal square spectral factor of , there corre-
spond a solution of (3.11) and a solution of (C.1) such
that has the form specified by (C.5).

To each pair of solutions of (3.11) and (C.1), we can
therefore associate a unique minimal spectral factor
and define the corresponding transfer function

(C.6)

where is defined by and
the last equality of (C.6) readily follows from the relation

[8].
Proposition C.1: Let be a solution of (3.11), be a solu-

tion of (C.1), and be defined by (C.6).
Then, under Assumption 3.1

deg deg (C.7)

To prove this proposition we need the following preliminary
result.

Lemma C.2:For any pair solving (3.11) and (C.1),
respectively, the pair is observable.

Proof: Taking into account (3.11) and the definition (C.2)
of , we get

(C.8)

so that (C.1) may be rewritten as

(C.9)

Now, let be a vector in the unobservable subspace of the
pair , i.e.,

(C.10a)

(C.10b)

Multiplying (C.9) on the left by and on the right by and
taking into account (C.10b), we get

(C.11)

Now write (C.1) in the form

(C.12)

which, multiplied on the right by , yields

(C.13)

where we have employed (C.10a). Since the pair is
observable, (C.11) and (C.13) imply and, in view of
(C.10b), .
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Proof of Proposition C.1:Let us compute now
and its McMillan degree deg . To this aim, we ob-
serve that the matrix transfer function introduced in
Lemma C.1 is given by

(C.14)

Then, in view of the identity

(C.15)

we can employ Lemma B.1, which yields

(C.16)

From (3.14), (C.4), and (C.5), it easily follows that

(C.17)

which implies that the pair is reachable; moreover, it
is easy to check that

(C.18)

which implies that the pair is also
reachable. Finally, Lemma C.2 states the observability of the
pair and, in view of Assumption 3.1

(C.19)

Then, arguing as in Proposition 3.1, we conclude that

deg deg (C.20)

where is defined in Proposition 3.1.

REFERENCES

[1] M. B. Adams, A. S. Willsky, and B. C. Levy, “Linear estimation of
boundary value stochastic processes—Part II: 1-D smoothing prob-
lems,” IEEE Trans. Automat. Contr., vol. AC-29, pp. 811–821, 1984.

[2] B. D. O. Anderson, “A system theory criteria for positive real matrices,”
SIAM J. Contr., vol. 5, pp. 171–182, 1967.

[3] , “The inverse problem of stationary convariance generation,”J.
Statist. Phys., vol. 1, pp. 133–147, 1969.

[4] B. D. O. Anderson and J. B. Moore,Optimal Filtering. Englewood
Cliffs, NJ: Prentice-Hall, 1979.

[5] F. Badawi, A. Lindquist, and M. Pavon, “A stochastic realization ap-
proach to the smoothing problem,”IEEE Trans. Automat. Contr., vol.
AC-24, pp. 878–888, 1979.

[6] G. Basile and G. Marro, “Controlled and conditioned invariant sub-
spaces in linear system theory,”J. Optim. Theory Appl., vol. 3, pp.
306–316, 1973.

[7] P. Faurre, M. Clerget, and F. Bermain,Operateurs Rationnels Posi-
tifs Dunod, Paris, France, 1979.

[8] A. Ferrante, “A prametrization of minimal stochastic realizations,”IEEE
Trans. Automat. Contr., vol. 39, no. 10, pp. 2122–2126, 1994.

[9] L. Finesso and G. Picci, “On the structure of minimal square spectral
factors,”IEEE Trans. Automat. Contr., vol. AC-27, pp. 122–127, 1982.

[10] D. C. Fraser, “A new technique for optimal smoothing of data,” Sc.D.
dissertation, MIT, Cambridge, MA, 1967.

[11] A. Gelb, Ed., Applied Optimal Estimation. Cambridge, MA: MIT
Press, 1974.

[12] T. Kailath, Linear System Theory. Englewood Cliffs, NJ: Pren-
tice-Hall, 1980.

[13] T. Kailath and P. A. Frost, “An innivations approach to least-squares
estimation—Part II: Linear smoothing in additive noise,”IEEE Trans.
Automat. Contr., vol. AC-13, pp. 655–660, 1968.

[14] B. C. Levy, R. Frezza, and A. J. Krener, “Modeling and estimation of dis-
crete-time Gaussian reciprocal processes,”IEEE Trans. Automat. Contr.,
vol. 35, pp. 1013–1023, Sept. 1990.

[15] F. L. Lewis,Applied Optimal Control & Estimation. Englewood Cliffs,
NJ: Prentice-Hall, 1992.

[16] A. Lindquist and G. Picci, “On the stochastic realization problem,”SIAM
J. Contr. Optim., vol. 17, pp. 365–389, 1979.

[17] A. Lindquist, Gy. Michaletzky, and G. Picci, “Zeros of spectral fac-
tors, the geometry of splitting subspaces, and the algebraic Riccati in-
equality,”SIAM J. Contr. Optim., vol. 33, no. 401, p. 365, 1995.

[18] A. Lindquist and G. Picci, “A geometric approach to modeling and es-
timation of linear stochastic systems,”J. Math. Syst., Estim. Contr., vol.
1, pp. 241–333, 1991.

[19] , “Geometric methods for state-space identification,” inIdentifica-
tion, Adaptation, Learning, S. Bittanti and G. Picci, Eds. Berlin, Ger-
many: Springer-Verlag, 1996.

[20] D. Q. Mayne, “A solution of the smoothing problem for linear dynamic
systems,”Automatica, vol. 4, pp. 73–92, 1966.

[21] B. P. Molinari, “The time-invariant linear-quadratic optimal-control
problem,”Automatica, vol. 13, pp. 347–357, 1977.

[22] C. C. Paige and M. A. Sauders, “Least-squares estimation of discrete
linear dynamical systems using orthogonal transformations,”SIAM J.
Numer. Anal., vol. 14, pp. 180–193, 1977.

[23] P. Park and T. Kailath, “New square-root smoothing algorithms,”IEEE
Trans. Automat. Contr., vol. 41, pp. 727–732, 1996.

[24] M. Pavon, “Stochastic realization and invariant directions of the matrix
Riccati equation,”SIAM J. Contr. Optim., vol. 18, pp. 155–180.

[25] G. Picci and S. Pinzoni, “Acausal models and balanced realizations
of stationary processes,”Linear Algebra Applicat., vol. 205-206, pp.
997–1043, 1994.

[26] H. E. Rauch, F. Tung, and C. T. Striebel, “Maximum likelihood estimates
of linear dynamic systems,”AIAA J., vol. 3, pp. 1445–1450, 1965.

[27] Yu. Rozanov,Stationary Random Processes. San Francisco, CA:
Holden-Day, 1967.

[28] G. S. Sidhu and U. B. Desai, “New smoothing algorithms based on re-
versed-time lumped models,”IEEE Trans. Automat. Contr., vol. AC-21,
pp. 538–541, 1976.

[29] H. L. Weinert and U. B. Desai, “On complementary models and fixed-
interval smoothing,”IEEE Trans. Automat. Contr., vol. AC-26, 1981.

[30] J. C. Willems, “Least squares stationary optimal control and the alge-
braic Riccati equation,”IEEE Trans. Automat. Contr., vol. AC-16, pp.
621–634, 1971.

[31] W. M. Wonham, Linear Multivariant Control: A Geometric Ap-
proach. Berlin, Germany: Springer-Verlag, 1977.



2046 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 45, NO. 11, NOVEMBER 2000

Augusto Ferrante was born on August 5, 1967. He
received the “Laurea,”cum laude, in electrical engi-
neering in 1991 and the Ph.D. degree in control sys-
tems engineering in 1995, both from the University
of Padua, Italy.

In June 1995, he became a Junior Faculty Member
in the “Departimento di Ingegneria Elettrica, Ges-
tionale e Meccanica,” of the University of Udine,
Italy. Since November 1998, he has been Associate
Professor in the “Dipartimento di Elettronica e
Informazione” of the “Politecnico di Milano,” Italy.

His research interests are in the areas of stochastic realization, optimal control
and filtering, and Riccati Equation.

Giorgio Picci (S’67–M’70–SM’91–F’94) holds a
full professorship with the University of Padova,
Italy, Department of Electronics and Informatics,
since 1980. He graduatedcum laude from the
University of Padova in 1967 and since then has held
several visiting appointments with various American
and European universities among which M.I.T.,
Arizona State University, C.W.I. in Amsterdam, the
Royal Institute of Technology, Stockholm Sweden,
Kyoto University, Japan, and Washington University,
St. Louis, MO.

He has been contributing to Systems and Control theory mostly in the area
of modeling, estimation, and identification of stochastic systems. Since 1992,
he has been active also in the field of dynamic vision and scene and motion
reconstruction from monocular vision.


