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On the State Space and Dynamics Selection in Linear Stochastic
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Abstract—Matrix spectral factorization is traditionally described
as finding spectral factors having a fixed analytic pole configu-
ration. The classification of spectral factors then involves study-
ing the solutions of a certain algebraic Riccati equation, which
parametrizes their zero structure. The pole structure of the spectral
factors can also be parametrized in terms of solutions of another
Riccati equation. We study these two Riccati equations and de-
scribe how they can be combined for the construction of general
spectral factors, which involve both zero and pole flipping on an
arbitrary reference spectral factor.

Index Terms—Causality, modeling, Riccati equations, spectral
factorization, state space, stochastic realization.

I. INTRODUCTION

An important and widely used class of models in control engineering
and signal processing describes an m-dimensional observed random
signal {y(t)} as the output of a linear system driven by white noise{

x(t + 1) = Ax(t) + Bw(t)
y(t) = Cx(t) + Dw(t)

(1)

where A ∈ Rn×n , B ∈ Rn×m , C ∈ Rm ×n , D ∈ Rm ×m , and w is a
normalized white noise. The n-dimensional signal x is the state vector.
The basic steps for the constructions of models of the form (1) from
observations of {y(t)} lead to the following three problems which in
various forms permeate linear systems and control theory:
1) Estimate the spectral density Φy (z) of y (see [8], [13], [14], [24]–

[26], and references therein).
2) Compute a stochastically minimal1 spectral factor of Φy (z), i.e., a

matrix transfer function W (z) of minimal McMillan degree such
that

Φy (z) = W (z)W �(z−1 ) (2)

(see [3], [4], and references therein).
3) Fix a minimal realization W (z) = C(zI − A)−1B + D to pro-

vide a parametrization of model (1).
The literature on these topics being enormous, we have chosen to

quote only a few recent papers in which one can find a more extensive
bibliography. The study of models (1) of the signal y without a priori
constraints of causality or analyticity is motivated by the fact that a
stochastic process can be seen as a flow of trajectories, which has no
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1Stochastic minimality means that we are only interested in models of mini-

mal complexity (McMillan degree).

privileged direction of time built in and hence must admit representa-
tions that are neither causal nor anticausal. This general point of view
is discussed in the recent book [18, pp. 637–639].

The objective of this paper is to continue the analysis and study
in more depth the relations among different models (1), which are
in a sense equivalent as they serve to represent the same pro-
cess but may have different system-theoretic structures and prop-
erties. Indeed, representations (1) have several degrees of freedom.
The most obvious (and least interesting) one is the choice of ba-
sis in the input and in the state space. In particular, the matrices
A, B, C, and D in step 3) are determined up to a transformation of the
form T −1AT, T −1BU, CT, andDU , where T is an arbitrary invertible
matrix and U is an arbitrary orthogonal matrix. Once these degrees of
freedom are factored out, we are left with two more interesting objects:

1) The state space as a coordinate free representative of model (1);
2) The (dynamical) causality structure (related in particular to the

choice of direction of the time arrow) of equivalent models.
One of the key results of the stochastic realization theory (see [18])

is that these two choices correspond, respectively, to the choice of zeros
and poles of the spectral factor W (z) in (2). Each pole configuration of
the spectral factor corresponds to a certain causality structure so that,
once this configuration is fixed, one is left with the choice of the zero
structure of the spectral factor, which just means choosing a (minimal)
state space of the realization.

Matrix spectral factorization is traditionally described as finding
spectral factors having a fixed analytic (also called Schur stable) pole
configuration so that all corresponding models are causal, and classi-
fying different models corresponds to parametrizing all possible zero
structures of W . However, a zero structure fixes, independently of
causality, a possible minimal state space2 for y. Hence, once a minimal
state space (i.e., the zero structure of W ) is fixed, there is a whole
family of possible causality structures, which can be parametrized by
the allowed pole locations of a spectral factor W .

If some minimal reference spectral factor is fixed, minimal spectral
factorization can be seen as a zero- or pole-flipping transformation
performed on the reference factor. In this paper, we analyze the inter-
play between these two operations in relation to the solution sets of
two families of algebraic Riccati equations (AREs). We derive closed-
form formulas that allow to compute the model corresponding to a
given causality structure and state space. This may be viewed as the
completion of an endeavor first undertaken in [20] in continuous time
but not pushed to the final consequences. Here we shall address the
discrete-time situation and give a complete solution.

An important point, which needs to be stressed, is that once the
spectral density Φy (z) is assigned, the selection of a state space, that
is, the selection of a specific zero structure of the spectral factor, is
independent of the selection of the causality structure, i.e., of the poles.
Of course both need to be compatible with the zero–pole configuration

2We stress that the choice of the state space must not be confused with the
choice of basis in Rn .
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of Φy (z). In practice, once a reference spectral factor is fixed, the zero
selection (that is the zero flipping) is operated by choosing a specific
solution of an ARE whose coefficients are obtained from the matrices
of the reference model. More generally, to obtain all the models with
a fixed desired zero configuration starting from an arbitrary reference
model, a family of AREs (each corresponding to a specific pole selec-
tion) needs to be considered. In other words, for any choice of poles, in
principle we have to solve a different ARE in this family to select the
desired zeros. Of course, to achieve the wanted fixed zero structure, a
specific solution for each ARE of the family must be selected. On the
other hand, the zeros can be chosen only based on the zero structure
of Φy (z) and independently of the poles of a reference model so that
the sets of solutions of the AREs of the family (parametrized by pole
selection) must be in a one-to-one correspondence with each other. In
this paper, we derive an explicit formula for such a correspondence, so
that the problem can be solved by selecting suitable solutions of only
two independent AREs instead of considering one ARE coupled with
a family of (possibly infinitely many) other AREs.

Although our main motivation is stochastic modeling, our contribu-
tion can also be viewed as related to AREs and to spectral factorization.
Both have important applications in several areas of control, signal pro-
cessing, and system theory.

Some technical assumptions of this paper could probably be weak-
ened, however, at the expense of clarity. For pedagogical reasons, we
have decided to work in a setting, which reduces technicalities to a
minimum.

II. BACKGROUND ON SPECTRAL FACTORIZATION AND ARES

Let Φ(z) be an m × m, full-rank rational spectral density matrix of
a regular stationary process, where regularity means that Φ(z) has no
zeros at z = 0, nor at infinity, see [12] for more details on the concept
of regularity. Let

W (z) := C(zI − A)−1B + D (3)

be a minimal realization of a minimal square spectral factor of Φ(z) so
that Φ(z) = W (z)W (z)∗, where W (z)∗ := W (z−1 )� is the conjugate
transpose. By regularity, the matrix D is nonsingular for any minimal
square spectral factor W (z) [12]; without loss of generality, the matrix
D can be assumed to be symmetric and positive definite: this rules
out the uninteresting degree of freedom corresponding to multiplying
a spectral factor on the right side by a constant orthogonal matrix.
By regularity, the numerator matrix Γ := A − BD−1C is nonsingular
(see [18, Th. 6.8.2]).

Definition 2.1: Let Wi (z) ; i = 1, 2 be minimal spectral factors of
the same rational spectral density. We shall say that W1 (z) and W2 (z)
have the same pole structure if they admit a state-space realization
with the same state transition matrix. Likewise, we say that W1 (z)
and W2 (z) have the same zero structure if they admit a state-space
realization with the same numerator matrix.

In this paper, we consider a reference spectral factor W0 (z) =
C(zI − A)−1B + D. We hasten to stress that we do not assume W0 (z)
to be analytic outside of the unit disk. We only assume that both A and
Γ are unmixed, i.e., they do not have reciprocal pairs (λ, 1/λ) of eigen-
values. Hence, in particular, both A and Γ cannot have eigenvalues of
modulus one.

Once the state matrix A is fixed, all minimal spectral factors having
a fixed pole structure are classified in terms of their zero structure;
equivalently, in terms of invariant subspaces of the transpose of the
numerator matrix Γ. It is well known that this involves the study of an
ARE. In continuous time, the connection between spectral factoriza-
tion and solutions of the ARE has been known for a long time, see [2]

and [22, Remark 27]; see, in particular, [17, p. 381] for the connection
between solutions of the ARE and the zero location (i.e., the numerator
matrix). These ideas are now a cornerstone of the linear system theory
and an enormous literature has been produced discussing various appli-
cations to linear control and filtering theory. The discrete-time versions
seem, to the best of our knowledge, to have been first collected in a
systematic way in the monograph [6]. In particular, we quote here the
following result, slightly different versions of which have appeared in
several places of the literature.

Proposition 2.1: Let W0 (z) := C(zI − A)−1B + D be a minimal
realization of a square reference spectral factor.
1) There is a one-to-one correspondence between symmetric solutions

of the homogeneous ARE

P = ΓPΓ� − ΓPC�(DD� + CPC�)−1CPΓ� (4)

and minimal spectral factors of Φ(z) having the same pole structure
of W0 (z). This correspondence is defined by the map assigning to
each solution P the spectral factor

WP (z) := C(zI − A)−1BP + DP (5)

where

BP := (BD� + APC�)(DD� + CPC�)−1/2

DP := (DD� + CPC�)1/2 . (6)

2) There is a one-to-one correspondence between symmetric solutions
of (4) and Γ�-invariant subspaces which is defined by the map
assigning to each solution P the Γ�-invariant subspace ker(P ).

For a proof, we shall just refer the reader to [18, Corollary 16.5.7
and Lemma 16.5.8] where the equation differs by an inessential change
of sign. A similar Riccati equation although in a different context is
studied in [23].3

We just recall that in a basis adapted to the orthogonal decomposition

Rn = ker P ⊕ im P

we have P = diag{0, P̂ }, where P̂ is nonsingular. Letting ΓP :=
A − BP D−1

P C , the ARE (4) can be rewritten in the form

Γ−1P = PΓ�
P

which implies Γ̂−1 P̂ = P̂ Γ̂�
P , where Γ̂ and Γ̂P are the restrictions of

Γ and ΓP to im P . In particular, let P+ be the unique nonsingular
solution of (4), then the corresponding Γ�-invariant subspace ker P+

is trivial, Γ�
P is similar to Γ−1 , and the zeros of W0 (z) are all flipped

to reciprocal positions. We shall denote the corresponding spectral
factor by WP+ (z). Zero flipping can also be visualized as the right
multiplication of W0 (z) by a suitable square all-pass function so as
to preserve minimality. The entailed factorization of WP (z) is in turn
uniquely identified by the existence of a Γ�-invariant subspace [5].

On the other hand, we have the following fact that describes the pole-
flipping relation among spectral factors keeping a fixed zero structure.

Proposition 2.2: Let W0 (z) := C(zI − A)−1B + D be a minimal
realization of a square reference spectral factor.
1) There is a one-to-one correspondence between symmetric solutions

of the ARE

Q = A�QA − A�QB (I + B�QB)−1B�QA (7)

3Any solution P can actually be seen as the difference say X − X0 of two
arbitrary solutions of an equivalent Riccati equation parametrizing the minimal
spectral factors, which is defined directly in terms of a realization of Φ and does
not involve a reference spectral factor, see [18, Sec. 16.5]. Here, X0 is kept
fixed as a reference solution and Γ describes the zero structure of the reference
spectral factor W0 .
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and minimal normalized spectral factors having the same zero
structure of W0 (z). This correspondence is defined by the map
assigning to each solution Q the spectral factor

WQ (z) := CQ (zI − AQ )−1BQ + DQ (8)

where

ΔQ := I + B�QB

CQ := C − DΔ−1
Q B�QA

AQ := A − BΔ−1
Q B�QA

BQ := BΔ−1/2
Q U

DQ := DΔ−1/2
Q U (9)

and U is the orthogonal matrix

U := (DΔ−1/2
Q )�((DΔ−1/2

Q )(DΔ−1/2
Q )�)−1/2

which is selected in such a way that DQ is symmetric and positive
definite.4

2) There is a one-to-one correspondence between symmetric solutions
of (7) and A-invariant subspaces, which is defined by the map
assigning to each solution Q the A-invariant subspace ker(Q).

Proof: That the zero structures of WQ (z) and of W0 (z) coincide
is the content of [18, Th. 16.4.4]. The rest is readily checked. �

Notwithstanding pole flipping may be viewed as dual of the classical
results on zero flipping, and indeed can be dealt with by considering
zero flipping for the spectral factor (W ∗)−1 of the inverse spectral
density Φ−1 , the literature on this topic is, to the best of our knowledge,
very limited. As far as we know, the first contribution in this direction (in
the continuous-time case) was proposed in [19], (see also [7], [9], [20])
while we do not know any reference earlier than [18] for the discrete-
time case. In fact, while the idea of considering the spectral factors
of Φ−1 leads to pole flipping with simple algebraic manipulations,
the ideas proposed in [20] and developed in [18] are founded on much
deeper system-theoretics grounds that allow for the treatment of a more
general situation where the spectral factor can possibly be nonsquare.
A different approach, where pole and zero flipping are treated without
reference to state-space realization, is in [4].

III. COMBINING POLE AND ZERO FLIPPING

We want to understand the combination of zero and pole flipping
leading to an arbitrary minimal square spectral factor W (z). To this end,
let us consider the spectral factor WQ (z) defined in (8) as a reference
spectral factor and describe the zero-flipping process on WQ (z). By
direct computation we easily find that the numerator matrix of WQ (z)
is the same as that of the numerator matrix of W0 (z), i.e., the matrix Γ.
Hence, the Riccati equation (4) corresponding to the reference WQ (z)
takes the form

PQ = ΓPQ Γ� − ΓPQ C�
Q (DQ D�

Q + CQ PQ C�
Q )−1CQ PQ Γ� (10)

where CQ and DQ are defined in (9). Notice that, since (4) and (10)
involve the same matrix Γ and each symmetric solution of either equa-
tion is uniquely attached to a Γ�-invariat subspace [22], the map as-
signing to each solution P of (4) the solution PQ of (10) such that
ker(P ) = ker(PQ ) is a one-to-one correspondence between the set P
of solutions of (4) and the set PQ of solutions of (10).

4Of course if we do not require DQ to be symmetric and positive definite, we
can take U to be an arbitrary orthogonal matrix including the identity matrix.

Our main contribution is to analyze the relations between P and PQ

and to provide an explicit formula to compute the solution PQ from a
given pair P, Q. In this way, once we have parametrized the solutions
of (4) and (7), we do not need to solve (10) and we have a closed-form
formula for the spectral factor with assigned pole and zero structures, or
equivalently for the model with the assigned state space and causality
structure.

We may represent the situation by the following commutative
diagram:

(11)

Here, WP has the same pole structure of the the reference spectral
factor W0 (but a different zero structure) and WQ has the same zero
structure of the the reference spectral factor W0 (but a different pole
structure). We want to compute the target spectral factor W (having
the same pole structure of WQ and the same zero structure of WP )
directly, i.e., without solving (10) for computing PQ [or, dually, an
equation similar to (7) to compute QP ].

We shall proceed in two steps: First consider the following diagram
corresponding to a complete flipping of zeros:

(12)

where P+ is the unique invertible solution of ARE (4). This solution
leads to flipping all the zeros of W0 (z). Similarly, PQ ,+ , which leads
to flipping all the zeros of WQ , must be the only invertible solution of
ARE (10).

The first step is to establish the relation between the unique nonsin-
gular solutions P+ and PQ ,+ of (4) and (10), respectively. This is the
content of the following lemma.

Lemma 3.1: The nonsingular solutions P+ and PQ ,+ are related by
the formula

P −1
Q ,+ = Q + P −1

+ . (13)

Proof: It is immediate to check that P −1
+ is the unique solution of

the Stein equation

P −1
+ − Γ�P −1

+ Γ + C�D−�D−1C = 0. (14)

Similarly, P −1
Q ,+ is the unique solution of the Stein equation

P −1
Q ,+ − Γ�P −1

Q ,+ Γ + C�
Q D−�

Q D−1
Q CQ = 0. (15)

Therefore, the difference Δ := P −1
Q ,+ − P −1

+ is also the unique solution
of the equation

Δ − Γ�ΔΓ + C�
Q D−�

Q D−1
Q CQ − C�D−�D−1C = 0. (16)
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We now compute

RQ := C�
Q D−�

Q D−1
Q CQ − C�D−�D−1C

= C�D−�ΔQ D−1C + A�QBΔ−1
Q B�QA

− C�D−�B�QA − A�QBD−1C

− C�D−�D−1C

= C�D−�B�QBD−1C − C�D−�B�QA

− A�QBD−1C + A�QBΔ−1
Q B�QA

= C�D−�B�QBD−1C − C�D−�B�QA

− A�QBD−1C + A�QA − Q

= Γ�QΓ − Q (17)

where the penultimate equality follows from the fact that Q is a so-
lution of (7) and the last equality can be checked by plugging the
definition Γ := A − BD−1C into the final expression and developing
the products.

Identity (17), together with (16), gives

Δ − Γ�ΔΓ = Q − Γ�QΓ (18)

and, by uniqueness, Δ := P −1
Q ,+ − P −1

+ = Q, so that (13) follows. �
We are now ready for the second step: To derive an explicit formula

for expressing an arbitrary solution PQ as a function of P and Q. To
this end, we shall use the following lemma, which is a particular case
of [1, Th. 2.2]. An analogous result is Statement 1(iii) in [11, Th. 3.1]
although referring to the specific case of all-pass functions.

Lemma 3.2: The solution P of the Riccati equation (4) correspond-
ing to a Γ�-invariant subspace S can be expressed by the formula

P =
[
(I − ΠS)P −1

+ (I − ΠS)
]†

(19)

where † denotes the Moore–Penrose pseudoinverse and ΠS is the or-
thogonal projector onto the subspace S = ker P .

Formula (19) allows to compute the solution of a homogeneous
ARE having a specified kernel. It only depends on two ingredients:
The unique invertible solution of the ARE (which may be regarded
as the “most informative” among the solutions) and the kernel of the
desired solution. Intuitively, it says that the inverse of the invertible part
of the desired solution P is equal to the inverse of the only invertible
solution P+ restricted to the orthogonal complement of the specified
kernel.

We are now ready to present our main result.
Theorem 3.1: Let P be an arbitrary solution of (4) and Q be an

arbitrary solution of (7). Then the unique solution PQ of (10) such that
ker(P ) = ker(PQ ) can be expressed by the formula

PQ = [PP †QPP † + P †]† (20)

which generalizes (13).
Proof: Since (I − ΠS) projects onto the range space of P , a ba-

sic property of the Moore–Penrose pseudoinverse [16, p. 421] im-
plies that (I − ΠS) = PP † so that (19) can be rewritten as P =[
PP †P −1

+ PP †]† and hence

P † = PP †P −1
+ PP † . (21)

Now, since P and PQ have the same kernel, they also have the same
image so that the orthogonal projectors on this image may be written
in two ways as

I − ΠS = PP † = PQ P †
Q . (22)

Thus, the analog of formula (19) for PQ yields

PQ =
[
(I − ΠS)P −1

Q ,+ (I − ΠS)
]† =

[
PP †P −1

Q ,+ PP †]† (23)

where PQ ,+ is the only nonsingular solution of (10) (such a solution
corresponds to the Γ�-invariant subspace {0}). Hence, after inserting
(13), we get PQ = [PP †(Q + P −1

+ )PP †]†, and, finally, by using (21),
we obtain the explicit expression (20) for PQ depending only on P
and Q. �

A. State-Space Formulas for the Spectral Factor W

Next we show how our result can be employed to derive state-space
formulas for a model (1) with an arbitrary state space and causality
configuration. Let us consider two arbitrary Γ�- and A-invariant sub-
spaces X and Y which is to say two arbitrary zero- and pole-flipping
transformations of the singularities of W0 (z) associated with the de-
sired state space and causality configuration for the model (1). Let P
and Q be the solutions of the Riccati equations (4) and (7) correspond-
ing to the invariant subspaces X and Y and consider the left lower path
in the commutative diagram (11) so that the zero flipping is done after
a pole flipping defined by Q. The relevant Riccati solution PQ is given
in formula (20) so that the desired realization of W (z) can be written
in a closed form as

W (z) := CQ (zI − AQ )−1BPQ
+ DPQ

(24)

with

BPQ
:= (BQ D�

Q + AQ PQ C�
Q )(DQ D�

Q + CQ PQ C�
Q )−1/2

DPQ
:= (DQ D�

Q + CQ PQ C�
Q )1/2

where PQ is given by (20), and AQ , BQ , CQ , and DQ are given
by (9).

B. Remarks

1) There is symmetry in flipping poles and zeros and indeed the
roles of AREs (4) and (7) are completely interchangeable. Hence, an
analogous formula holds for expressing QP in terms of Q and P and
a dual procedure would work to obtain a realization such as (24) by
following the upper right path of (11), i.e., computing P first and then
performing the appropriate pole flipping defined by QP .

2) The commutative diagram (11) can be viewed as a restricted
version of the following diagram corresponding to the “total” flipping
of singularities:

where P+ and Q+ are the invertible solutions of AREs (4) and (7),
respectively. Hence, P+ flips all the zeros and Q+ flips all the poles of
W0 , PQ + ,+ flips all the zeros of WQ + , and QP+ ,+ flips all the poles
of WP+ . In this way, the spectral factor W++ has all the singularities
reflected to reciprocal positions with respect to those of W0 .

3) We have developed our theory for the discrete-time case. With
obvious modifications and a much simpler derivation, similar results
hold for the continuous-time case.

4) Concerning the general causality structure considered in this pa-
per, we may just hint at several possible connections, such as gener-
alized time-symmetric stochastic models, as those considered in [15],
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stationary processes defined on a one-dimensional spatial domain, or
on line transects in two-dimensional spatial domains as those consid-
ered by Whittle [21]. In another direction, a general causality structure
is involved in models of stationary reciprocal processes of which sta-
tionary processes on the line may be seen as limits when their boundary
conditions are moved to ±∞.

IV. CONCLUSION

We have discussed the classification of general (not necessarily an-
alytic outside of the unit circle) square spectral factors in terms of the
solutions of two AREs. We have also described the construction of
general spectral factors, which involve both zero and pole flipping on
an arbitrary reference spectral factor.

Among the possible applications of our theory, we mention steady-
state smoothing (see [10] and references therein). Indeed, the smooth-
ing algorithm is based on two (causal and anticausal) models that
must be computed in order to implement the Mayne–Fraser two-filter
formula.
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