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Representation and Factorization of
Discrete-Time Rational All-Pass Functions

Augusto Ferrante and Giorgio Picci, Life Fellow, IEEE

Abstract—In this paper, we obtain a general characteriza-
tion of discrete-time all-pass rational matrix functions from
state-space representations. We establish a general char-
acterization of the solutions of LMI’s and Riccati equations.
Finally, we derive a complete factorization theory of all-pass
functions. Our results are obtained in the most general set-
ting, without introducing any ad hoc assumption and can be
applied to a variety of problems such as the discrete-time
counterpart of the H∞ model reduction problems solved by
Glover in continuous-time.

I. INTRODUCTION

CONSIDER real rational, proper, square matrix-valued
functions

K(z) := C(zI − A)−1B + D (1)

which are all-pass, namely such that K(z)[K(1/z)]� = I .
When A is an asymptotically stable matrix, i.e. it has all its
eigenvalues inside the unit disk, these functions are called ra-
tional inner. A rich literature dealing with the characterization
and factorization of these functions flourished in the last four
decades. Starting from the pioneering work on state space re-
alization of scalar orthogonal filters [5], [16], [18], [19]–[21],
there is now a quite complete theory available for matrix inner
functions; besides [9] and the work referred to in the paper [17],
one may look in Chap. 4 of the recent book [10].

In this paper we leave the well understood framework of
stable matrices. This gives rise to a theory that is much more
general but much harder to derive. In fact, several previous
attempts made in this direction have always resorted to ad hoc
facilitating assumptions such as D and/or A being non-singular
as in many early references like [4] and [2, Chapter 7] (where J-
all-pass functions are considered). Another typical assumption
is unmixing, i.e. absence of reciprocal pairs of eigenvalues of
A, which is a facilitating assumption used for example in the
book [14]. Clearly unmixing is automatically guaranteed for
inner functions where all the poles are inside the unit disk. We
consider here the most general case and recover the results for
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A asymptotically stable, for A invertible and for A unmixed as
particular cases.

We provide a completely general characterization and param-
eterization of discrete-time all-pass matrix functions and use this
result to describe in full generality the geometry of the solution
set of certain LMI’s and of the associated Riccati equations.
We also develop a factorization theory and related state-space
procedures for the factorization of all-pass functions. Some of
the results presented in the main theorem of the next section,
parallel the continuous-time fundamental result of Glover’s [12,
Theorem 5.1] in the most general setting, without introducing
any ad hoc assumption. A complete discussion of this problem
seems to be presented here for the first time. The derivation
of the discrete-time version of Glover’s model reduction pro-
cedure is not a simple transposition of the arguments used in
continuous-time as there are several differences which make the
endeavor technically much harder. Some of these difficulties are
well-known and can be recognized in the literature, for exam-
ple in the paper [13]. The use of the often advocated Cayley
transform (that maps a continuous-time system into a discrete-
time one by transforming a continuous state matrix Ac into the
discrete counterpart Ad := (I − Ac)−1(I + Ac)) requires, for
example, invertibility assumption on the matrices (I − Ac) and
(Ad + I) which are not met in some applications (see for exam-
ple the comment in [26, p. 1996]). In this respect, it seems to be
an accepted point in the systems and control community that, as
stated in [26, p. 559], “ . . . it is generally more appealing to give
derivations in the coordinates of the original [discrete-time]
data; also algorithms may be more reliable if generated for
the specific model class”. A case in point seems to be discrete-
time H∞ model reduction. Apparently a discrete version of the
continuous-time all-pass dilation of Glover under general hy-
potheses corresponding to those made in the present paper has
been lacking. So far, to our best knowledge, the book literature
of the last two or three decades, e.g. [1] or, [26], [11] seems
to be just re-proposing continuous-time H∞ model reduction
without directly addressing a discrete-time version of Glover’s
theory.

The results of this paper have many possible applications. Ap-
plications to Hankel-norm approximation of rational discrete-
time transfer functions may now be pursued by just following
the route shown in the paper [12]. In Chapter 16 of the book [14]
a slightly less general characterization of discrete all-pass func-
tions is used to do Hankel-norm stochastic model approxima-
tion. Stochastic modeling without stability constraints is another
direction which has been touched upon in [8], further exposed in
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[14] and can be addressed in wider generality by using the tech-
niques described in this paper. This is a relatively unappreciated
area of stochastic modeling which has several applications to
smoothing and to non causal estimation [15]. We believe that
this setting is worth understanding especially because of a very
illuminating isomorphism with LQ control with an indefinite
cost function.

The lay-out of this paper is as follows:
Section II contains the statement and proof of the main re-

sult. The proof is essentially self-contained save for a technical
Lemma from [6] which considerably generalizes a result on
controllability due to Wimmer [23], [24].

In Section III we introduce two dual linear matrix inequalities
with a rank constraint which define families of square all-pass
functions having a fixed pole structure. We prove a geometric
characterization of all solutions in terms of A- or A�- invariant
subspaces. When A is non singular these matrix inequalities
turn into two dual homogeneous algebraic Riccati equations. A
very exhaustive classification and description of the solutions
of those Riccati equations is provided. It is well-known, see
e.g. [25] that the analysis of algebraic Riccati equations can be
reduced to that of homogeneous Riccati equations.

The study of families of solutions of the constrained LMI’s
of Section III unveils the basic principles and a direct method
to characterize and classify the left- and right all pass factors of
an arbitrary square all pass rational function. Rational factoriza-
tion theory was first systematically discussed in the early book
[3] quite heavily relying on the assumption of an invertible D
matrix. Here we extend the factorization results of Fuhrmann
and Hoffmann [9] derived for inner functions, under general
hypotheses. When A is non-singular the classification can be
given directly in terms of solutions of two dual homogeneous
algebraic Riccati equations.

In the concluding section we indicate some possible general-
izations to non square matrix functions.

Notation and background results: The image and the kernel
of matrix M are denoted by im (M) and ker(M), respectively,
while the transpose and the Moore-Penrose pseudo-inverse of M
are denoted by M� and M+ , respectively. A technical condition
which is often referred to is that of unmixing. One says that
A ∈ Rn×n has unmixed spectrum or, briefly, is unmixed if it does
not have reciprocal pairs (λ, 1/λ) of eigenvalues. In particular
an unmixed matrix cannot have eigenvalues of modulus one.
Given a real rational matrix-valued function K(z), we define
the conjugate rational function

K∗(z) := [K(1/z)]�,

so that K(z) is all-pass when K(z)K∗(z) = I . Hence all-pass
functions are spectral factors of the identity. In particular, K(z)
restricted to the unit circle (i.e. for z such that |z| = 1) is a
unitary matrix. In the setting of [15, Chap. 16], K(z) can be
interpreted as the transfer function of a (possibly a-causal) filter
which maps a normalized white noise input into an output which
is also a normalized white noise.

In our analysis a crucial role is played by a very powerful and
(surprisingly) recent result on Stein (discrete-time Lyapunov)
equations [6, Lemma 3.1]. This result will be used repeatedly

in the paper so for the benefit of the reader, we shall recall its
statement. Using our notation, the lemma reads as follows:

Lemma 1.1: Let A ∈ Rn×n and C ∈ Rm×n be given and let
Q be a solution of equation A�QA − Q = C�C. Then ker(Q)
is A-invariant and ker(Q) ⊂ ker(C).

This result implies that ker(Q) is contained in the unobserv-
ability subspace

N := ker

⎡
⎢⎢⎢⎢⎣

C

CA

...

CAn−1

⎤
⎥⎥⎥⎥⎦

of the pair (A,C). In fact, N can be characterised as the largest
A-invariant subspace contained in ker(C). If A is unmixed,
equation A�QA − Q = C�C has a unique solution (see e.g.
[24, Lemma 5.1]) Q, and it has long been known that its kernel
is exactly N [24, Lemma 5.1]. In the general case however, it
may have infinitely many solutions but each such solution has
a kernel which is A-invariant and is contained in ker(C). In
the extreme case when A = I and C = 0, any matrix Q is a
solution so that there exist solutions whose kernel is {0} even
if N = Rn . Of course, dual considerations can be made for
the dual equation APA� − P = BB�, where A ∈ Rn×n and
B ∈ Rn×m .

Another concept worth recalling is that of inertia of a sym-
metric matrix E = E�. It is defined as the ordered triplet
(n+ , n−, n0) of integers consisting of the numbers of posi-
tive, negative and zero eigenvalues of E (counting multiplic-
ity). Recall that, if E is partitioned as E = [ E1

E�
1 2

E1 2
E2

] and E1

is invertible, one can define T := [ I
0
−E−1

1 E1 2
I

] in such a way
that T�ET = diag(E1 , E2 − E�

12E
−1
1 E12) so that the inertia

of E is the (elementwise) sum of the inertia of E1 and of the
inertia of the Schur complement E2 − E�

12E
−1
1 E12 . Similarly,

if E2 is invertible, the inertia of E is the (elementwise) sum of
the inertia of E2 and of the inertia of the Schur complement
E1 − E12E

−1
2 E�

12 .

II. THE MAIN RESULT

Theorem 2.1
1) Let (1) be a minimal realization of an m × m rational

discrete-time all-pass function. Then A is non-singular if
and only if D is non-singular.

2) Let (1) be a minimal realization of a rational discrete-time
all-pass function. Then, there exist

a) a unique symmetric matrix P = P� such that
⎧
⎪⎨
⎪⎩

APA� − P = BB�

BD� − APC� = 0

DD� − CPC� = I

(2)

b) a unique symmetric matrix Q = Q� such that
⎧
⎪⎨
⎪⎩

A�QA − Q = C�C

C�D − A�QB = 0

D�D − B�QB = I

(3)
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The matrices P and Q are invertible and satisfy PQ = I .
3) Let A ∈ Rn×n ,B ∈ Rn×m ,C ∈ Rm×n ,D ∈ Rm×m be

given (no minimality is now assumed). If there exists
P = P� satisfying (2) then K(z) given by (1) is all-pass.
Similarly, if there exists Q = Q� satisfying (3) then K(z)
given by (1) is all-pass.
Finally, P is a non-singular solution of (2) if and only if
P−1 is a (non-singular) solution of (3).

4) Let A ∈ Rn×n ,B ∈ Rn×m be a given reachable pair.
Then, P = P� is such that

APA� − P = BB� (4)

if and only if there exist matrices C ∈ Rm×n and D ∈
Rm×m such that (1) is a minimal realization of an all-
pass function K(z) and P is the solution of (2) for the
quadruple (A,B,C,D). In this case, P is necessarily
non-singular and such that

I + B�P−1B ≥ 0. (5)

5) Let A ∈ Rn×n , C ∈ Rm×n be a given observable pair.
Then, Q = Q� is such that

A�QA − Q = C�C (6)

if and only if there exist matrices B ∈ Rn×m and D ∈
Rm×m such that K(z) given by (1) is a minimal realiza-
tion of an all-pass function and Q is the solution of (3) for
the quadruple (A,B,C,D). In this case, Q is necessarily
non-singular and such that

I + CQ−1C� ≥ 0. (7)

6) Let A ∈ Rn×n ,B ∈ Rn×m ,C ∈ Rm×n be given. If there
exists P = P� and Q = Q� such that

⎧
⎪⎨
⎪⎩

APA� − P = BB�

A�QA − Q = C�C

PQ = I

(8)

then there exists a matrix D ∈ Rm×m such that K(z)
given by (1) is all-pass.

Proof:
1) By assumption we have

K(z)K∗(z) = I. (9)

Notice that K(∞) = D so that, by taking the limit z → ∞ in
(9), we see that D is non-singular if and only if K∗(z) is bounded
at infinity or, equivalently, if and only if K(z) is bounded in a
neighborhood of the origin. Since (1) is a minimal realization,
this is equivalent to A being non-singular.

2) Let us first assume that D is non-singular. By recalling
point 1), we have that A is non-singular as well.

We have the following minimal realizations:

K(z)−1 = D−1 − D−1C(zI − Γ)−1BD−1, Γ:=A − BD−1C.
(10)

and

K∗(z) = B�(z−1I − A�)−1C� + D�

= D�
0 − B�A−�(zI − A−�)−1A−�C�, (11)

with D�
0 := D� − B�A−�C�, so that, by imposing K(z)−1 =

K∗(z), we conclude that there exists a unique invertible matrix
T such that

T−1A−�T = A − BD−1C(= Γ) (12a)

T−1A−�C� = BD−1 (12b)

B�A−�T = D−1C (12c)

D−1 = D� − B�A−�C� (12d)

By inserting (12c) in (12a) and multiplying on the right side by
(A−�T )−1 , we get

T−1 − AT−1A� = −BB� (13)

so that the first of (2) admits a solution P = T−1 . Moreover,
by inserting the expression of D−1 provided by (12d) in (12b)
we get BD� = (T−1 + BB�)A−�C�, which, in view of (13),
may be written as BD� = AT−1C�, so that P = T−1 solves
also the second of (2). Finally, by multiplying (12d) on the left
side by D and taking into account of (12c), we easily see that
P = T−1 solves also the third of (2). Similarly we see that
from (12) it follows that T solves the three equations (3). The
proof that T is symmetric is a bit lengthy and is deferred to
Appendix B.

So far we have established our result in the case when D
is non-singular. We now show how this case may be viewed
as a first step for proving the result in the general setting
in which D may be singular. Consider an arbitrary rational
proper all pass function K(z) and the corresponding factor-
ization (78) established in Lemma A.1 of the Appendix. Let
K0(z) := C0(zI − A0)−1B0 + D0 be a minimal realization of
K0(z) so that D0 = K0(∞) is non-singular. Then equations (2)
with A = A0 , B = B0 , C = C0 and D = D0 have a symmetric
solution P0 which is non-singular. In view of Lemma A.2 we
know that K1(z) := K0(z)K̄1(z) has the reachable realization
K1(z) = C1 (zI − A1)

−1 B1 + D1 where

C1 := [D0,2 | C0 ], A1 :=

[
0 0

B0,2 A0

]
, B1 :=

[
0 I

B0,1 0

]
U1 ,

and D1 := [D0,1 | 0]U1 . Now it is immediate to check by in-
spection that

P1 :=

[
−I 0
0 P0

]
(14)

solves equations (2) with A = A1 , B = B1 , C = C1 and
D = D1 . We can iteratively repeat this argument for Ki(z),
i = 2, 3, . . . , k and eventually find that K(z) has a reachable
realization K(z) = C̄

(
zI − Ā

)−1
B̄ + D and that equations

(2) with A = Ā, B = B̄, C = C̄ and D = D, have a solution
P̄ . Without loss of generality we may assume that Ā, B̄, C̄ are
in the Kalman reachability form

C̄ = [C̃ | 0], Ā =

[
Ã 0

A21 A22

]
, B̄ :=

[
B̃

B2

]

(15)
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and P̄ is partitioned conformably as

P̄ =
[

P̃ P12
P�

12 P22

]
. (16)

By writing block-wise equations (2) with A = Ā, B = B̄, C =
C̄, D = D, and P = P̄ we see that the (1, 1) block P̃ is a
symmetric solution of equations (2) with A = Ã, B = B̃, C =
C̃, D = D corresponding to the minimal realization

K(z) = C̃
(
zI − Ã

)−1
B̃ + D. (17)

The original minimal realization of K(z) is related to (17) by a
change of basis so that there exists a non-singular matrix T such
that A = T−1ÃT , B = T−1B̃, C = C̃T . Then it is immediate
to check that P := T−1 P̃ T−� is a solution of equations (2) for
the original realization (1).

By resorting to a dual argument we establish the existence of
a symmetric matrix Q = Q� solving (3).

We now prove uniqueness. Assume that P1 and P2 are solu-
tions of (2) and let Δ := P1 − P2 . We need to show that Δ = 0.
It is immediate to check that Δ satisfies the equations

AΔA� − Δ = 0, AΔC� = 0, CΔC� = 0. (18)

From the second and the third of these equations we see that
im (ΔC�) is contained in the non-observability subspace N
of (A,C) and, since (A,C) is assumed to be observable,
this means that ΔC� = 0. This implies that CΔ = 0 and,
in turn, CAkΔ(A�)k = 0 for all k = 0, 1, . . . , n − 1, so that
CAkΔ(A�)n = 0 for all k = 0, 1, . . . , n − 1. This means that
im (Δ(A�)n ) is contained in the unobservable subspace of
(A,C), so that, as before, Δ(A�)n = 0. Now, by multiply-
ing the first of (18) on the right side by (A�)n−1 , we get
Δ(A�)n−1 = 0 and, iteratively, Δ(A�)n−2 = 0, and so on, up
to Δ = 0. The proof for equations (3) is dual and is therefore
skipped.

We now address the non-singularity of P and Q. Indeed, from
observability of the pair (A,C) and Lemma 1.1, it follows that Q
is invertible. The invertibility of P follows by a dual argument.
It remains to show that PQ = I . To this aim, write (2) in the
form

FXF� = X (19)

where

F :=
[

A B

C D

]
X :=

[
P 0
0 −I

]
. (20)

Clearly, X is non-singular and

X−1 =
[

P−1 0
0 −I

]
. (21)

Thus FXF�X−1 = I . Therefore, F is non-singular as well and
we have F�X−1 = X−1F−1 or

F�X−1F = X−1 . (22)

The expression (21) of X−1 implies that P−1 is a solution of
equations (3). These equations, however, admit a unique solution
so that P−1 = Q or, equivalently, PQ = I .

3) Assume that equations (2) admit a solution P = P�. Let
us compute the product

Φ := K(z)K∗(z)

= [C(zI − A)−1B + D][B�(z−1I − A�)−1C� + D�].

The first of equations (2) can be rewritten as

BB� = (zI − A)P (z−1I − A�) − zP (z−1I − A�)

−z−1(zI − A)P,

so that

C(zI − A)−1BB�(z−1I − A�)−1C�

= CPC� − zC(zI − A)−1PC�

− z−1CP (z−1I − A�)−1C�.

Moreover, from

z(zI − A)−1 = I + A(zI − A)−1 = I + (zI − A)−1A

it follows that

C(zI − A)−1BB�(z−1I − A�)−1C�

= −CPC� − C(zI − A)−1APC�

− CPA�(z−1I − A�)−1C�.

In conclusion, we have

K(z)K∗(z) = DD� − CPC�

+C(zI − A)−1(BD� − APC�)

+(DB� − CPA�)(z−1I − A�)−1C�.

By taking into account the second and the third of equations (2),
we now get K(z)K∗(z) = I .

Assume now that equations (3) admit a solution Q = Q�. By
computing the product K∗(z)K(z) and using the dual of the
previous argument, we get K∗(z)K(z) = I .

The fact that P is a non-singular solution of (2) if and only if
P−1 is a non-singular solution of (3) can be shown by defining
F and X as in (20) and using the same argument that led to
(22).

4) One direction is an immediate consequence of point 2). For
the converse, as we have seen in the proof of point 2) invertibility
of P only depends on reachability of the pair (A,B) and on the
fact that P solves the first of equations (2) which is indeed (4).
Therefore, P is invertible. Let (n+ , n − n+ , 0) be the inertia of
P which is equal to the inertia of Q := P−1 . Let

E :=

⎡
⎢⎣
−Q 0 A�

0 Im B�

A B −Q−1

⎤
⎥⎦ .

The inertia of E is given by the inertia of [−Q
0

0
Im

], i.e.
(m + n − n+ , n+ , 0), plus the inertia of the corresponding
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Schur complement S which is given by

S := −Q−1 − [A B]

[
−Q 0

0 Im

]−1 [
A�

B�

]

= −P + APA� − BB� = 0n×n .

In conclusion, the inertia of E is (m + n − n+ , n+ , n). On
the other hand, the inertia of E is also given by the inertia
of −Q−1 = −P , i.e. (n − n+ , n+ , 0), plus the inertia of the
corresponding Schur complement W which is given by

W :=

[
−Q 0
0 Im

]
−
[

A�

B�

]
(−Q−1)−1 [A B]

=

[
A�QA − Q A�QB

B�QA B�QB + I

]
. (23)

Hence the inertia of W is given by the inertia of E, i.e. (m +
n − n+ , n+ , n) minus the inertia of −Q−1 = −P , i.e. (n −
n+ , n+ , 0), which amounts to (m, 0, n). Thus, W is positive
semidefinite and has rank equal to m. Therefore, there exists a
full row-rank matrix [C | D] ∈ Rm×(n+m ) such that W = [C |
D]�[C | D]. This means that for the given A and B and for the
C and D obtained above, there exists a Q = P−1 solving (3).
Then, in view of point 3), the corresponding K(z) given by (1)
is all-pass.

We now prove (5). Indeed, we have already proved that P−1

solves (3) and from the third of these equations (5) follows
immediately.

It remains to show that (A,C) is an observable pair. To ad-
dress this issue we exploit (3) whose validity we have already
proven. Assume now by contradiction that the pair (A,C) is
not observable and let V be a full column-rank matrix whose
columns (at least one by the contradiction assumption) form a
basis for the unobservable subspace N of the pair (A,C). Since
N is A-invariant, there exists a matrix K such that

AV = V K. (24)

By multiplying the first of (3) on the right side by V we get
A�QAV = QV . We now multiply the first of (3) on the right
side by AV and on the left side by A�: We get (A�)2QA2V =
A�QAV = QV . We can iterate this argument and multiply the
first of (3) on the right side by AkV and on the left side by
(A�)k , k = 2, 3, . . ., getting

(A�)lQAlV = QV, l = 1, 2, . . . . (25)

We now show that

U := QAnV 	= 0, (26)

where n is the dimension of A. In fact, from (25) we get
(A�)nU = (A�)nQAnV = QV and since Q is non-singular
and V has full column-rank this yields (26). We now con-
sider the second of equations (3). From this equation, we get
D�C = B�QA, and by right-multiplication by V , we get

B�QAV = 0 (27)

so that

B�QAlV = B�QAV Kl−1 = 0, l = 1, 2, . . . , n − 1.
(28)

Thus, for any l = 0, 1, . . . , n − 1, we have

B�(A�)lU = B�(A�)lQAnV = B�(A�)lQAlV Kn−l

= B�QV Kn−l = B�QAV Kn−l−1 = 0. (29)

In conclusion, im (U) 	= {0} is contained in the unobservable
subspace of the pair (A�, B�) and this is a contradiction be-
cause (A,B) is, by assumption, reachable, so that (A�, B�) is
observable.

5) This point is the dual of the previous one.
6) Since P is clearly invertible we can use the same argument

employed in the proof of point 4) to show that

W :=

[
−Q 0
0 Im

]
−
[

A�

B�

]
(−Q−1)−1 [A B]

=

[
A�QA − Q A�QB

B�QA B�QB + I

]

is positive semidefinite and has rank equal to m. Therefore, there
exists a full row-rank matrix [C0 | D0 ] ∈ Rm×(n+m ) such that
W = [C0 | D0 ]�[C0 | D0 ]. In particular,

A�QA − Q = C�C = C�
0 C0

so that there exists an orthogonal matrix U such that C = UC0 .
Let D := UD0 . Therefore,

W := [C0 | D0 ]�[C0 | D0 ]

= [C0 | D0 ]�U�U [C0 | D0 ] = [C | D]�[C | D].

In conclusion, we have

D�D = I + B�QB (30)

and

D�C = B�QA (31)

These two equations together with the second of (8) give (3)
and hence, in view of point 3), K(z) = C(zI − A)−1B + D is
all-pass. �

Remark 2.1: We shall now pinpoint similarities and differ-
ences with the inner case. When A is asymptotically stable, an
all-pass filter is actually inner. In this case the results of The-
orem 2.1 become much easier to derive. In fact, in the inner
setting, the key idea (which is actually just based on Parseval
relation), described in [16] for the scalar case (but easily extend-
able to the matrix case), that K(z)K∗(z) = 1 is equivalent to
the impulse response sequence of the filter being an orthonormal
sequence, requires asymptotic stability and makes only sense in
a �2-type context. In the language of dissipative systems this is
equivalent to the existence of a lossless state space realization
as was also noticed by [20]. This is definitely not the case when
A is not asymptotically stable.
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In the inner case, again by stability, the matrix −P is pos-
itive definite1 and is indeed the reachability Gramian of the
system. Likewise −Q is positive definite and is the observabil-
ity Gramian. In the general all-pass case the impulse response
need not be in �2 , orthogonality of the impulse response does
not make sense and P and Q are in general indefinite and do
not have a Gramian interpretation. Moreover in the inner case,
where −P is positive definite and can therefore be factored as
−P = TT�, after a change of basis in the state space of K(z)
induced by the matrix T−1 , equation (19) reads as FF� = I ,
showing that F is an orthogonal matrix. As a consequence, in
this basis, it becomes apparent that, in the words of [20], “the
instantaneous output energy plus the instantaneous increase in
state energy is precisely equal to the instantaneous input en-
ergy.” This “energy balance” is valid only for the inner case in
which the relation FF� = I implies that all the eigenvalues of
F have modulus equal to 1. In our general case we only have
(19) which clearly implies that F is similar to F−� so that we
can only conclude that the eigenvalues of F come in reciprocal
pairs (λ, 1/λ) which is a much weaker form of balancing.

Remark 2.2: In point 4) of Theorem 2.1 the assumption of
reachability of (A,B) can probably be eliminated for the first
part of the result. More precisely, we suggest the following
conjecture whose proof, however, seems to be non-trivial.

Conjecture 2.1: Let A ∈ Rn×n ,B ∈ Rn×m be given. Then,
there exists P = P� such that APA� − P = BB� if and only
if there exist matrices C ∈ Rm×n and D ∈ Rm×m such that (1)
is an observable realization of an all-pass function. Of course, a
dual conjecture could be made for point 5).

Remark 2.3: Consider an all-pass function K(z) represented
by (1). Clearly, for any orthogonal matrix U , K(z)U is
still all-pass. The two functions K(z) and K(z)U = C(zI −
A)−1BU + DU correspond to the same dynamics and it is
natural to regard them as equivalent. By considering the po-
lar decomposition of D we see that for any given D there is
a unique D0 = DU such that D0 = D�

0 ≥ 0. Therefore, from
now on, whenever convenient, we can safely assume, without
loss of generality, that the “D” matrix of the all-pass function
K(z) is symmetric and positive semidefinite.

Remark 2.4: Consider point 4) (or 5)) of Theorem 2.1. If
A is unmixed, once A and B are given, the solution P of (4)
is uniquely determined and hence also the matrices C and D
for which K(z) = C(zI − A)−1B + D is all-pass are uniquely
determined up to multiplication on the left side by a common
orthogonal matrix. This is not the case when A is not unmixed.
In this case, for any particular solution P of (4) there exists a
particular pair of matrices C and D (essentially different, i.e.
not differing by multiplication on the left side by a common
orthogonal matrix) for which K(z) = C(zI − A)−1B + D is
all-pass. Notice, however, that, once A, B and P are fixed,

1The reason for our choice of sign, namely for not replacing P with −P
and Q with −Q is that on one hand, in the general case P and Q are, anyway,
indefinite and, on the other hand, our choice leads to the algebraic Riccati
equations (52) and (53) that have the standard form of those arising in optimal
control and Kalman filtering.

the matrices C and D are always uniquely determined up to
multiplication on the left side by a common orthogonal matrix.

Similar considerations can be made for 5). For example, let
A = [2

0
0

1/2 ] and C = I . In this case the set of all solutions Q

of (6) can be parametrized as Q = [1/3
q

q
−4/3 ] with q being a

real parameter. For example, for q = 0, we get B0 = [ 3
0

0
−3/4 ]

and D0 = [ 2
0

0
1/2 ], where the degree of freedom corresponding

to the choice of an arbitrary orthogonal matrix multiplying both
B0 and D0 on the right side, has been fixed in such a way that
D0 = D�

0 ≥ 0. Since D0 is non-singular this procedure does
not leave any further degree of freedom. For q = 1/6, we get
B1/6 = [ 2.85

0.14
0.57
−0.71 ] and D1/6 = [ 1.95

0.14
0.14
0.52 ], where, again, the

degree of freedom corresponding to the arbitrary orthogonal
matrix has been fixed in such a way that D1/6 = D�

1/6 ≥ 0.
In conclusion, the two solutions corresponding to q = 0 and
q = 1/6 lead to all-pass functions with different dynamical
properties.

Corollary 2.1: A square matrix A can be the state matrix of
a minimal realization of an all-pass function if and only if none
of the eigenvalues of A has modulus equal to 1.

Proof: Let us first assume that none of the eigenvalues of A
has modulus 1. Without loss of generality, we can choose a basis
in which A = diag(As,Au ), where all eigenvalues of As have
modulus smaller than 1 and all eigenvalues of Au have mod-
ulus greater than 1. Choose B to be the identity and partition
it conformably with A so as B = diag(I, I); it is easy to see
that the pair (A,B) is reachable and that Equation (4) admits a
symmetric, block-diagonal solution P = diag(Ps, Pu ). There-
fore, in view of point 4 of Theorem 2.1, the pair (A,B) can
be completed to a quadruple (A,B,C,D) of matrices provid-
ing a minimal realization of an all-pass function. Conversely,
assume that A has an eigenvalue of modulus 1 and let v be
the corresponding eigenvector and v∗ be its transpose conju-
gate. By multiplying the first of Equations (3) on the right
side by v and on the left side by v∗, we get v∗C�Cv = 0
so that Cv = 0. Thus v is in the null space of C and hence
the pair (A,C) is not observable. In conclusion, A cannot
be the state matrix of a minimal realization of an all-pass
function. �

Remark 2.5: Consider a minimal realization (1) of an all-
pass function K(z). Clearly, there is a one-to-one correspon-
dence between the poles of K(z) and the eigenvalues of the A
matrix. Therefore, as a consequence of Corollary 2.1, an all-
pass function may well feature pairs of reciprocal poles and,
in general, a given constellation of points in the complex plane
(naturally having complex-conjugate symmetry) can be cho-
sen as the set poles of an all-pass function if and only if none
of these points has modulus 1. Futhermore, since the zeros
of an all-pass function are the reciprocals of its poles, it is
also clear none of the zeros of an all-pass function can have
modulus 1.

However, the existence of all-pass functions with pairs of
reciprocal poles (or zeros) is a possibility that can only happen in
the multivariate case. For scalar all-pass functions, cancellation
clearly prevents the presence of such pairs of poles (or zeros).
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Indeed, a rational scalar function cannot feature a pole and a zero
in the same point of the complex plane while this is possible in
the multivariate case.

III. LMI’S AND HOMOGENEOUS ALGEBRAIC

RICCATI EQUATIONS

All-pass functions can be seen as spectral factors of a spec-
tral density function identically equal to the identity matrix; i.e.
Φ(z) ≡ I . This point of view turns out to be useful for classifica-
tion of all-pass functions having a pre-assigned pole dynamics.
It is a classical result in system and control theory [22] that
rational spectral factorization can be cast in terms of linear ma-
trix inequalities (LMI). This point of view will be used here. In
this section we shall consider square spectral factors which are
all-pass.

To fix the pole dynamics we may either assign a reach-
able pair (A ∈ Rn×n , B ∈ Rn×m ) or an observable pair (C ∈
Rm×n , A ∈ Rn×n ). These are two “dual” structural data which
will be fixed hereafter. Accordingly, define

M(P ) :=

[
APA� − P APC�

CPA� CPC� + I

]
,

and

N(Q) :=

[
A�QA − Q A�QB

B�QA B�QB + I

]

and consider the two dual, constrained linear matrix inequalities
(CLMI),

{
M(P ) ≥ 0

rank[M(P )] = m
(32)

{
N(Q) ≥ 0

rank[N(Q)] = m
(33)

The following is an immediate corollary of Theorem 2.1.
Corollary 3.1: Let P = P� be a solution of (32) and let

M(P ) =
[

G
L

] [
G� L� ] (34)

be a factorization of full rank m. Then

KL (z) := C(zI − A)−1G + L (35)

is a (in general non minimal) realization of a square all-pass
function. Dually, let Q = Q� be a solution of (33) and let

N(Q) =
[
H J

]� [
H J

]
(36)

be a factorization of full rank m. Then

KR (z) := H(zI − A)−1B + J (37)

is a realization of a square all-pass function.
Clearly P = 0 and Q = 0 are always solutions of the inequal-

ities (32) and (33) and it may well happen that these inequalities
admit no other solutions save for these trivial ones. We need
to exclude these uninteresting circumstances. We shall hence-
forth assume that there is a D such that the matrix function with

(minimal) realization

K(z) := C(zI − A)−1B + D (38)

is all-pass. By Theorem 2.1 this happens if and only if equations
(34) with G = B and L = D hold for a nonsingular P ≡ P0 or,
equivalently, if and only if (36) with H = C and J = D hold
for a nonsingular Q ≡ Q0 . In fact, P0 and Q0 turn out to be
such that P0Q0 = I . In the next section it will be shown that
each KR (z) is a right factor of K(z) and each KL (z) is a left
factor of K(z).

Notational convention: From now on, the problem data will be
a minimal realization (A,B,C,D) of a square all-pass function
as in (38). The unique solutions of (2) and (3) will be denoted
by P0 and Q0 , respectively and we shall reserve the symbols P
and Q for generic solutions of (32) and (33).

Theorem 3.1: Let (38) be a minimal realization of a square
all-pass function. Then

1) (i) For each solution P = P� of (32), the subspace

Y = ker(P ) (39)

is A�-invariant.
(ii) The set of non-singular solutions of (32) can be
parametrized as:

P = {PΔ : Δ ∈ Dp} , (40)

where PΔ := (P−1
0 + Δ)−1 , P0 is the unique solution

of (2), and Dp is the vector space of solutions of
A�ΔA − Δ = 0. If A is unmixed, then Dp = {0} and
(32) admits a unique non-singular solution PΔ = P0 ,
which is the unique solution of (2). If A is not unmixed,
then P contains infinitely many solutions.
(iii) Let PΔ be a non-singular solution of (32); then to any
A�-invariant subspace Y there corresponds a solution P
of (32) given by

P :=
[
(I − Π)P−1

Δ (I − Π)
]+

(41)

where Π is the orthogonal projector onto Y. The kernel
of P is Y. If A is unmixed, equation (41), with PΔ = P0
being the unique solution of (2), parametrizes the set of
all solutions of (32) in terms of A�-invariant subspaces.

2) (i) For each solution Q = Q� of (33), the subspace

X = ker(Q). (42)

is A-invariant.
(ii) The set Q of non-singular solutions of (33) can be
parametrized as:

Q = {QΔ : Δ ∈ Dq} (43)

where QΔ := (Q−1
0 + Δ)−1 , Q0 is the unique solu-

tion of (3), and Dq is the vector space of solutions of
AΔA� − Δ = 0. If A is unmixed, then Dq = {0} and
(33) admits a unique non-singular solution QΔ = Q0 ,
which is the unique solution of (3). If A is not unmixed,
than Q contains infinitely many solutions.
(iii) Let QΔ be a non-singular solution of (33), then to
any A-invariant subspace X, there corresponds a solution
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Q of (33) given by

Q :=
[
(I − Π)Q−1

Δ (I − Π)
]+

(44)

where Π is the orthogonal projector onto X. The kernel
of Q is X. If A is unmixed, equation (44), with QΔ = Q0
being the unique solution of (3), parametrizes the set of
all solutions of (33) in terms of A-invariant subspaces.

Proof: We prove only point 2), as the proof of point 1) is
dual.

(i) It is clear that (33) is equivalent to existence of two matrices
H ∈ Rm×n and J ∈ Rm×m such that [H | J ] has full row-rank
and N(Q) = [H | J ]�[H | J ]. Therefore, if Q is a solution of
(33) then A�QA − Q = H�H , so that, in view of [6, Lemma
3.1], X := ker(Q) is A-invariant.

(ii) Clearly the solution Q0 of (3) is a non-singular solution of
(33) and the corresponding matrices H and J , introduced before,
coincide with C and D of (38). Then in view of Theorem 2.1,
point 3), we have

AQ−1
0 A� − Q−1

0 = BB�. (45)

Let now Q̃0 be another non-singular solution of (33) and C0
and D0 be such that N(Q̃0) = [C0 | D0 ]�[C0 | D0 ]. Equiva-
lently, Q̃0 is a non-singular solution of (3) corresponding to the
quadruple (A,B,C0 ,D0). Using again Theorem 2.1, point 3),
we have that Q̃−1

0 is a solution of (2) corresponding to the same
quadruple, so that, in particular, AQ̃−1

0 A� − Q̃−1
0 = BB�.

Comparing the latter with (45), we see that Q̃−1
0 = Q−1

0 + Δ
where Δ is a solution of the homogeneous Lyapunov equation
AΔA� − Δ = 0. If A is unmixed, this equation has a unique
solution Δ = 0 so that Q̃0 = Q0 .

Assume now that A is not unmixed. Then equation AΔA� −
Δ = 0 has a non-trivial vector spaceDq of solutions and the pre-
vious argument shows that any non-singular solution of (33) has
the form (Q−1

0 + Δ)−1 . It remains to show that for each Δ ∈ Dq ,
(Q−1

0 + Δ) is nonsingular and (Q−1
0 + Δ)−1 is a solution of

(33). Observe that A[Q−1
0 + Δ]A� − [Q−1

0 + Δ] = BB� for
any Δ ∈ Dq . Since (A,B) is reachable, any P̃Δ := Q−1

0 + Δ
is invertible by the dual of [6, Lemma 3.1] and, in view of
Theorem 2.1, point 4), there exist two matrices CΔ and DΔ
such that CΔ(zI − A)−1B + DΔ is a minimal realization of a
rational all-pass function and P̃Δ is the solution of (2) corre-
sponding to the quadruple (A,B,CΔ ,DΔ). This is equivalent to
QΔ := P̃−1

Δ = (Q−1
0 + Δ)−1 solving (3) for the same quadru-

ple so that QΔ is a solution of (33) which therefore has infinitely
many solutions.

(iii) Let X be an A-invariant subspace. Consider an orthogo-
nal change of basis induced by the matrix T = [V⊥ | V ], where
the columns of V form a basis for X and the columns of V⊥
form a basis for X⊥. In this basis we have

T�X = im
[

0
I

]
(46)

and

Ā := T−1AT = T�AT =
[

A1 0
A21 A2

]
. (47)

Partition B̄ := T−1B = T�B conformably as B̄ = [B1
B2

]. Let
QΔ be a non-singular solution of (33) and let CΔ and DΔ be
such that N(QΔ) = [CΔ | DΔ]�[CΔ | DΔ]. Equivalently, QΔ
is the non-singular solution of (3) corresponding to an all-pass
function described by the quadruple (A,B,CΔ ,DΔ). Hence,
in the new basis Q̄Δ := T�QΔT is a non-singular solution
of (3) corresponding to the quadruple (Ā, B̄, C̄Δ ,DΔ), with
C̄Δ := CΔT . In view of Theorem 2.1, point 3), Q̄−1

Δ is a non-
singular solution of (2) corresponding to the same quadruple.
Partition such a Q̄−1

Δ conformably with Ā as

Q̄−1
Δ =

[
P11 P12

P�
12 P22

]
(48)

and note that it must in particular satisfy the first equation of
(2) so that the block of index (1,1) must satisfy the reduced
Lyapunov equation

A1P11A
�
1 = P11 + B1B

�
1 . (49)

Since the pair (A,B) is reachable, the pair (A1 , B1) is reachable
as well, so that from Theorem 2.1, point 4), it follows that P11
is invertible and there exist C1 and D1 such that P11 is the
unique solution of (2) corresponding to a reduced quadruple
(A1 , B1 , C1 ,D1) and hence, P−1

11 is the unique solution of (3)
corresponding to the same quadruple. It is now a matter of direct
computation to check that

Q̄ :=

[
P−1

11 0

0 0

]
(50)

is a solution of (3) corresponding to the quadruple (Ā, B̄, [C1 |
0],D1). Therefore, Q := TQ̄T� is a solution of (3) correspond-
ing to the quadruple (A,B, [C1 | 0]T�,D1) and hence, it is also
a solution of (33). The fact that ker[Q] = X is a direct conse-
quence of (50). We need to show that (44) is a coordinate-free
representation of Q. By observing that T�ΠT = [0

0
0
I ] and

(I − Π)Q−1
Δ (I − Π) = (I − Π)TT�Q−1

Δ TT�(I − Π)

= (I − Π)T

[
P11 P12

P�
12 P22

]
T�(I − Π),

it is a straightforward computation to show that

[
(I − Π)Q−1

Δ (I − Π)
]+ = T

[
P−1

11 0

0 0

]
T� = Q. (51)

The last thing that remains to be proven is the fact that when A
is unmixed, all solutions of (33) are parametrized in terms of
A-invariant subspaces by (44), with QΔ = Q0 . We have already
shown that in this case (33) has a unique non-singular solution
which coincides with the unique solution Q0 of (3). The repre-
sentation of the other (singular) solutions can be obtained by a
procedure similar to the one introduced above. Indeed, assume
that Q is a singular solution of (33) and let H , and J be such
that N(Q) = [H | J ]�[H | J ]. As already proved, ker[Q] is A-
invariant so that we can perform a change of coordinates such
that in the new basis Q has the structure of the right-hand side
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of (50), with P11 being a non-singular matrix, A has the struc-
ture of the right-hand side of (47), and B = [B�

1 | B�
2 ]� and

H = [H1 | H2 ] are partitioned conformably. It is now a matter
of direct computation to check that P−1

11 is a solution of (3)
corresponding to the quadruple (A1 , B1 ,H1 , J) so that P11 is a
solution of (2) corresponding to the same quadruple. Hence, P11
satisfies the Lyapunov equation A1P11A

�
1 − P11 = B1B

�
1 . But

since A is unmixed, A1 is also unmixed so that P11 is uniquely
determined by the Lyapunov equation. As a consequence, there
is a unique Q with the given kernel which necessarily coincides
with the one given by the right-hand side of (44) with QΔ = Q0
and X = ker[Q]. �

Remark 3.1: Let PΔ and QΔ denote the set of solutions
of (32) and (33) described by (41) and (44) for a specific Δ.
While when A is unmixed (and hence Dp = Dq = {0} so that
we necessarily have Δ = 0) the families P0 and Q0 constitute
the entire set of solutions of the LMI’s (32) and (33), it is not
clear if this also holds for the case of a mixed A even if one
takes the union of the sets PΔ with respect to Δ ∈ Dp or the
union of the sets QΔ with respect to Δ ∈ Dq . The theorem
provides a bijective correspondence between the family Q0 of
solutions of (33) and the family of A-invariant subspaces. When
A is not unmixed, (33), besides Q0 , has infinitely many other
families of solutions each of which being likewise parametrized
by A-invariant subspaces. Each of these families corresponds
to a non-singular solution QΔ ∈ Q of (33) where Q is the
set of non-singular solutions parametrized by (43). The family
Q0 corresponding to Δ = 0 will play an important role in the
following.

Similar considerations can be made for the dual family P0 of
solutions of (32) which, in case of unmixed A constitutes the
set of all solutions of (32) and in case of a mixed A is just one
of infinitely many families of solutions of (32).

Remark 3.2: There is an obvious bijective correspondence
between the set of A-invariant subspaces and that of A�-
invariant subspaces. Indeed, X is A-invariant if and only if
Y := X⊥ is A�-invariant. This correspondence induces a bijec-
tive correspondence between the sets P0 and Q0 . In fact, to any
solution Q =

[
(I − Π)Q−1

0 (I − Π)
]+ ∈ Q0 there corresponds

a solution P =
[
ΠP−1

0 Π
]+ ∈ P0 . To see this, just note that the

orthogonal projector ΠY onto Y := X⊥ is equal to (I − Π), with
Π being the orthogonal projector onto X. In this case we shall
call P and Q complementary solutions of the LMI’s (32) and
(33). Indeed for complementary solutions we have

rankP + rankQ = n .

Of course, when A is not unmixed, a similar correspondence
holds for any pair of families PΔ and QΔ ′ of solutions of (32)
and (33) respectively, where PΔ is the family corresponding
to a certain PΔ ∈ P and QΔ ′ is the family corresponding to
QΔ ′ := P−1

Δ ∈ Q (with Δ′ := PΔ − P0).

A. The Case of Non-Singular A: Riccati Equations

In case of a non-singular A matrix, equations (32) and (33)
reduce, respectively, to the following homogeneous algebraic

Riccati equations (ARE)

P = APA� − APC�(I + CPC�)−1CPA� (52)

and

Q = A�QA − A�QB(I + B�QB)−1B�QA. (53)

The equivalence of the two representations is stated in the fol-
lowing proposition.

Proposition 3.1: Let (38) be a minimal realization of a ra-
tional discrete-time all-pass function and assume that A is non-
singular. Then P = P� is a solution of (32) if and only if it is a
solution of (52) and Q = Q� is a solution of (33) if and only if
it is a solution of (53).

Proof: We prove only the equivalence of (33) and (53) as
the other equivalence is dual. Let Q be a solution of (33).
Then there exist H ∈ Rm×n and J ∈ Rm×m such that N(Q) =
[H | J ]�[H | J ]. In view of Theorem 2.1, point 3), H(zI −
A)−1B + J is all-pass. After eliminating the non-observable
part of this realization we obtain a minimal realization say
C̄(zI − Ā)−1B̄ + J of the same all-pass function where the Ā
matrix clearly remains non-singular. This, in particular implies
that J is also non-singular so that I + B�QB = J�J is strictly
positive definite and hence invertible. Then, rank[N(Q)] = m
implies that the Schur complement of I + B�QB in N(Q)
vanishes which is equivalent to Q being a solution of (53). Con-
versely, let Q = Q� be an arbitrary solution of (53). To show that
Q satisfies the LMI (33) it is enough to show that I + B�QB
is positive semi-definite and, hence, positive defnite. In fact, in
this case we can use, in the opposite direction, the previous ar-
gument based on the Schur complement. The Riccati equation
(53) can be written as

QA−1 = A�Q − A�QB(I + B�QB)−1B�Q (54)

from which it is easy to see that ker(Q) is A−1-invariant and
hence A-invariant. Select a basis where A has the form shown in
the right-hand side of (47), B = [B1

B2
] is partitioned conformably

and Q has the same structure of the right-hand side of (50) where
P11 is non singular so that Q11 := P−1

11 is also non-singular.
Then substituting Q = diag(Q11 , 0) into (53) it is immediate
to see that P−1

11 satisfies

P−1
11 = A�

1 P−1
11 A1 − A�

1 P−1
11 B1(I + B�

1 P−1
11 B1)−1B�

1 P−1
11 A1

(55)
so that, by using the Sherman-Morrison-Woodbury formula,
we get A1P11A

�
1 = P11 + B1B

�
1 . Since (A,B) is reachable,

(A1 , B1) is also reachable and Theorem 2.1, point 4), implies
that I + B�

1 Q11B1 is positive semidefinite. Observing that I +
B�QB = I + B�

1 Q11B1 concludes the proof. �
Notice that the ARE’s (52) and (53) do not impose explicitly

any positivity condition: the previous result shows that these
conditions are automatically met when A is non-singular. On
the contrary, when A is singular, it seems that one needs to
impose explicitly the positivity condition in (32) and (33): this
may be merely due to a technical difficulty and we conjecture
that the LMI (32) has the same solution set of the equation
rank[M(P )] = m and dually, the LMI (33) has the same solu-
tion set of equation rank[N(Q)] = m.
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As a direct consequence of Theorem 3.1 and Proposition 3.1,
we have the following corollary.

Corollary 3.2: Let (38) be a minimal realization of a rational
bi-proper discrete-time all-pass function. Then

1) The unique solution P0 = P�
0 of (2) is also a non-singular

solution of the homogeneous Riccati equation (52). This
solution generates the family P0 of symmetric solutions
of (52) as described by equation (41), where PΔ = P0 and
where Π is the orthogonal projector onto an A�-invariant
subspace Y. The elements P = P� of this family are in a
one-to-one correspondence with the set of A�-invariant
subspaces.
If A is unmixed then P0 is the only non-singular solution
of (52) and P0 is the set of all solutions of (52).

2) The unique solution Q0 = Q�
0 of (3) is also a non-

singular solution of the homogeneous Riccati equation
(53). This solution generates the family Q0 of symmetric
solutions of (53) as described by equation (44), where
QΔ = Q0 and where Π is the orthogonal projector onto
an A-invariant subspace X. The elements of this fam-
ily are in a one-to-one correspondence with the set of
A-invariant subspaces X.
If A is unmixed then Q0 is the only non-singular solution
of (53) and Q0 is the set of all solutions of (53).

IV. FACTORIZATION OF ALL-PASS FUNCTIONS

In this section we discuss a remarkable relation between so-
lutions of the constrained LMI’s (or ARE) and all pass divisors.
The background facts are established in the following lemma.

Lemma 4.1: Let (38) be a minimal realization of a ratio-
nal discrete-time all-pass function and let Q0 be the unique
solution of (3). Let P ∈ P0 and let Q ∈ Q0 be the comple-
mentary solution of (33) associated to P in the sense described
in Remark 3.2. Let X := kerQ be the A-invariant subspace
corresponding to Q and Y := kerP = X⊥ be the A�-invariant
subspace corresponding to P . Then, one can select a basis such
that, X, Y, A,B,C,Q, P and Q0 have the following structure

X = im

[
0
I

]
, Y = im

[
I

0

]
, (56)

A =

[
Ar 0

A21 Al

]
, B =

[
B1

B2

]
, C = [C1 | C2 ], (57)

Q =

[
P−1

11 0

0 0

]
, P =

[
0 0

0 Q−1
22

]
, Q0 =

[
P−1

11 0

0 Q22

]
.

(58)

Proof: Perform a preliminary change of basis as in equation
(46) of the proof of Theorem 3.1 (now we use a slightly different
notation) so that X, Y are given by (56), and A has the block-
triangular structure A = [ Ar

Ā 2 1

0
Al

]. In this basis, partition Q0 and

P0 = Q−1
0 as Q0 = [Q 1 1

Q�
1 2

Q 1 2
Q 2 2

] and P0 = [P1 1
P �

1 2

P1 2
P2 2

]. We have

already proved that in this basis Q = [P −1
1 1
0

0
0 ]. We now show

that Q22 is invertible. Partition B and C conformably with Q0
as B = [B1

B̄2
], and C = [C̄1 | C2 ]. Matrix Q0 is the solution of

(3) the first of which, in the chosen basis, yields,

A�
l Q22Al − Q22 = C�

2 C2 . (59)

Since (A,C) is observable, (Al, C2) is observable as well so
that from (59) it follows that Q22 is non-singular, [6, Lemma
3.1]. Considering now (41), where we set PΔ = Q−1

0 , and Π is
the orthogonal projector onto Y, we see that in the same basis
P = [0

0
0

Q−1
2 2

]. Since Q0 and Q22 are non-singular, the Schur

complement Q11 − Q12Q
−1
22 Q�

12 is also non-singular and P11 =
(Q11 − Q12Q

−1
22 Q�

12)
−1 . Perform now a further change of basis

induced by T = [ I
−Q−1

2 2 Q�
1 2

0
I ]. Although the two subspaces (56)

are no longer orthogonal they are still in direct sum, matrix A
in (57) is modified by just changing Ā21 into A21 := Ā21 +
Q−1

22 Q�
12A1 − A2Q

−1
22 Q�

12 , and in (57) we have B2 := B̄2 +
Q−1

22 Q�
12B1 , and C1 := C̄1 − C2Q

−1
22 Q�

12 . �
Theorem 4.1: Let (38) be a minimal realization of a rational

discrete-time all-pass function. LetP0 be the family of solutions
of (32) associated to the (unique) solution P0 of (2) and Q0 be
the family of solutions of (33) associated to the (unique) solution
Q0 or (3), as described in Remark 3.1.2

1) For each P ∈ P0 , let G and L be such that [G� | L�] has
full row-rank and

M(P ) = [G� | L�]�[G� | L�]. (60)

Then

KL (z) := C(zI − A)−1G + L (61)

is a (non-minimal) realization of a left all-pass divisor of
K(z). The McMillan degree nl of KL (z) is equal to the
rank of P .
Conversely, any left all-pass divisor of K(z) has the struc-
ture (61), where [G� | L�] has full row-rank and satisfies
(60) for a suitable P ∈ P0 .

2) For each Q ∈ Q0 , let H and J be such that [H | J ] has
full row-rank and

N(Q) = [H | J ]�[H | J ]. (62)

Then

KR (z) := H(zI − A)−1B + J (63)

is a (non-minimal) realization of a right all-pass divisor
of K(z). The McMillan degree nr of KR (z) is equal to
the rank of Q.
Conversely, any right all-pass divisor of K(z) has the
structure (63), where [H | J ] has full row-rank and satis-
fies (62) for a suitable Q ∈ Q0 .

Proof: We prove only point 1) as point 2) is dual. We first
observe that KL (z) is all-pass; in fact, P is a solution of (2)
associated to the quadruple (A,G,C,L) so that in view of point
3) of Theorem 2.1, KL (z) is all-pass.

Let P ∈ P0 and Q ∈ Q0 be complementary solutions of (32)
and (33), respectively, as described in Remark 3.2. Select a basis
as in Lemma 4.1 so that X, Y, A,B,C,Q, P and Q0 have the

2As already observed, under the additional assumption that A is unmixed,
P0 is the family of all symmetric solutions of (32) and Q0 is the family of all
symmetric solutions of (33).
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structure described in (56), (57) and (58). In the chosen basis,
compute M(P ) to obtain

M(P ) =

⎡
⎢⎣

0 0 0

0 AlQ
−1
22 A�

l − Q−1
22 AlQ

−1
22 C�

2

0 C2Q
−1
22 A�

l C2Q
−1
22 C�

2 + I

⎤
⎥⎦ (64)

so that G must have the block structure, G = [ 0
Gl

] and KL (z)
defined in (61) has the following realization

KL (z) = C2(zI − Al)−1Gl + L (65)

(it could be shown that this realization is minimal but this re-
sult will come as a byproduct at the end of the proof). Observe
now that (A,C) is observable so that (Al, C2) is observable
as well. Now since Q−1

22 is a solution of (2) associated with the
quadruple (Al,Gl, C2 , L), then Q22 must be a solution of (3) as-
sociated with the same quadruple. In particular, from the second
of equations (3) we get A�

l Q22Gl = C�
2 L which may be rewrit-

ten as [A�
l Q22 | −C�

2 ][Gl

L ] = 0. In this factorization, the matrix
[A�

l Q22 | −C�
2 ] has full row-rank; in fact, (Al, C2) is observ-

able so that [A�
l | C�

2 ] has full row-rank; hence [A�
l | −C�

2 ] has
full row-rank as well; furthermore since Q22 is non-singular also
[A�

l Q22 | −C�
2 ] has full row-rank. The right matrix [Gl

L ] has full
column-rank; in fact, we have already observed that its transpose
has full row-rank. In conclusion, [A�

l Q22 | −C�
2 ] ∈ Rn×(n+m )

has rank n so that its kernel has dimension m and hence the m
linearly independent columns of the matrix [Gl

L ] are a basis for
ker[A�

l Q22 | −C�
2 ].

Now use the fact that Q0 is a solution of equations (3) asso-
ciated with the quadruple (A,B,C,D). From the lower block
of the second of these equations, we get

[A�
l Q22 | −C�

2 ]

[
B2

D

]
= 0. (66)

Similarly, from the left-lower block of the first of the same
equations, we get

[A�
l Q22 | −C�

2 ]

[
A21

C1

]
= 0. (67)

Hence, there exist matrices Dr and Cr such that
[

B2
D

]
=

[
Gl

L

]
Dr ;

[
A21

C1

]
=

[
Gl

L

]
Cr . (68)

It is now a matter of direct computation to see that

K(z) = [LCr | C2 ]
(

zI −
[

Ar 0
GlCr Al

])−1 [
B1

GlDr

]
+ LDr

= [C2(zI − Al)−1Gl + L][Cr (zI − Ar )−1B1 + Dr ]

= KL (z)K̂R (z) (69)

where we have introduced the rational function K̂R (z) :=
Cr (zI − Ar )−1B1 + Dr . Note that, since K(z) and KL (z) are
all-pass, K̂R (z) is necessarily all pass. To show that KL (z)
is a left divisor of K(z) it remains only to observe that K(z)
has a minimal realization of dimension n and that n = nl + nr

where nl is the dimension of Al and nr is the dimension of
Ar . As a byproduct, (65) is a minimal realization of KL (z) and
Cr (zI − Ar )−1B1 + Dr is a minimal realization of K̂R (z). Fi-
nally, by construction, the McMillan degree nl of KL (z) equals
the dimension of Q22 or, equivalently, the rank of P .

Conversely, let K(z) = K̂L (z)K̂R (z) with K̂L (z) :=
Cl(zI − Al)−1Bl + Dl , and K̂R (z) := Cr (zI − Ar )−1Br +
Dr , being minimal realizations of all-pass functions and as-
sume that the McMillan degree of K(z) equals the sum of the
McMillan degrees of K̂L (z) and K̂R (z). Then, up to a change of
basis which does not affect the result that we need to establish,
we have that

A =

[
Ar 0

BlCr Al

]
; B =

[
Br

BlDr

]
. (70)

C = [DlCr | Cl ]; D = DlDr . (71)

Hence, without loss of generality, we assume that the matrices
A,B,C,D of (38) have the expressions (70) and (71). Since
K̂L (z) and K̂R (z) are all-pass functions, there exist an in-
vertible matrix Pl solving equations (2) associated with the
quadruple (Al,Bl, Cl ,Dl) and an invertible matrix Pr solving
equations (2) associated with the quadruple (Ar ,Br , Cr ,Dr ).
By exploiting (70) and (71), it is straightforward to check that,
in the selected basis, diag(Pr , Pl) is the (unique) solution of (2)
associated with the quadruple (A,B,C,D). Hence, we have
P0 = [Pr

0
0
Pl

]. Let Y = im [ I
0 ] be an A�-invariant subspace so

that

P :=
[
(I − Π)P−1

0 (I − Π)
]+ =

[
0 0

0 Pl

]
∈ P0 . (72)

By direct computation, it is also straightforward to check that

M(P ) = [G� | L�]�[G� | L�] (73)

where G := [ 0
Bl

] and L := Dl . Now define, as in (61), the left
factor KL (z) associated with P , G and L given by (72) and
(73). By eliminating the non-reachable part of this KL (z), we
see that KL (z) = K̂L (z). �

Theorem 4.1 provides a one to one correspondence between
the family P0 of solutions of (32) and left all-pass factors of
K(z) defined up to multiplication from the right side by a con-
stant orthogonal matrix U . Similarly, Theorem 4.1 also pro-
vides a one to one correspondence between the family Q0 of
solutions of (33) and right factors of K(z) defined up to mul-
tiplication from the left side by a constant orthogonal matrix
U . On the other hand, a left factor KL (z) of K(z) is asso-
ciated with a right factor KR (z) by the factorization relation
K(z) = KL (z)KR (z). Given a factorization of this type, it is
natural to ask what is the relation between the solution P ∈ P0
associated with KL (z) and the solution Q ∈ Q0 associated with
the corresponding KR (z). The following result addresses this
question and shows that P and Q are related by the same bijec-
tive correspondence introduced in Remark 3.2.

Proposition 4.1: Let (38) be a minimal realization of
a rational discrete-time all-pass function and let K(z) =
KL (z)KR (z) be a minimal factorization of K(z). The matrices
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P ∈ P0 and Q ∈ Q0 associated with KL (z) and KR (z), respec-
tively, by Theorem 4.1 satisfy the relation ker[P ] = (ker[Q])⊥

and are therefore a complementary pair.
Proof: As in the proof of Theorem 4.1, let P ∈ P0 and

let Q ∈ Q0 be the corresponding solution of (33) as de-
scribed in Remark 3.2, i.e. the only element of Q0 such that
ker[P ] = (ker[Q])⊥. We select a basis as in Lemma 4.1 so that
X, Y, A,B,C,Q, P and Q0 have the structure described in (56),
(57) and (58). Consider a left factor KL (z) associated with P :
as we have seen in the proof of Theorem 4.1, the corresponding
right factor K̂R (z) (that satisfies equation (69)) has a mini-
mal realization of the form K̂R (z) = Cr (zI − Ar )−1B1 + Dr .
Let Pr be the solution of (2) associated with the quadru-
ple (Ar ,B1 , Cr ,Dr ). By taking (57) and (68) into account,
we easily see by a direct computation that diag(Pr ,Q

−1
22 ) is the

solution of (2) associated to the quadruple (A,B,C,D). Since
the solution P = diag(P11 , Q

−1
22 ) of this equation is unique,

we have Pr = P11 . On the other hand, we know that the
right factor KR (z) associated with the matrix Q is given by
(63) and, by duality, has a minimal realization of the form
KR (z) = Hr (zI − Ar )−1B1 + J . Now we compare the all-
pass functions K̂R (z) and KR (z) and we see that they have the
same state and input matrices and that the solutions of the equa-
tion (2) associated to the minimal quadruple (Ar ,B1 , Cr ,Dr )
and of the equation (2) associated to the minimal quadruple
(Ar ,B1 ,Hr , J), coincide. Hence, KR (z) and K̂R (z) differ
by multiplication on the left side by a constant orthogonal
matrix. �

In the case when K(z) is bi-proper, or equivalently, A and D
are non-singular, we know that (32) and (33) reduce to ARE’s.
Moreover, for any given solution P of (32), (or, equivalently,
of (52)) we can provide an explicit expression for the matrices
G and L by solving (60). The following corollary connects
solutions of ARE’s and all-pass factorizations.

Corollary 4.1: Let (38) be a minimal realization of a rational
bi-proper discrete-time all-pass function. Let P0 be the family
of solutions of (52) associated with the solution P0 of (2) andQ0
be the family of solutions of (53) associated with the solution
Q0 or (3), as described in Corollary 3.2.3

1) For each P ∈ P0 , the function

KL (z) := C(zI − A)−1G + L, (74)

with {
L := (I + CPC�)1/2

G := APC�L−� (75)

is a (non-minimal) realization of a left all-pass divisor of
K(z).
Conversely, any left all-pass divisor of K(z) is given
up to multiplication from the right side by a constant
orthogonal matrix by (74), (75).

2) For each Q ∈ Q0 , the function

KR (z) := H(zI − A)−1B + J, (76)

3Similarly to the general case, under the additional assumption that A is
unmixed, P0 is the family of all symmetric solutions of (52) and Q0 is the
family of all symmetric solutions of (53).

with
{

J := (I + B�QB)1/2

H := J−�B�QA
(77)

is a (non-minimal) realization of a right all-pass divisor
of K(z).
Conversely, any right all-pass divisor of K(z) is given—
up to multiplication on the left side by a constant orthog-
onal matrix by (76), (77).

V. CONCLUSION

In this paper we have provided a completely general char-
acterization of discrete-time all-pass matrix functions in the
same spirit of the continuous-time result of Glover’s [13,
Theorem 5.1]. Applications to some class of LMI’s, to homo-
geneous Riccati equations and to the factorization of all-pass
functions are discussed. The characterization is presented for
square all-pass matrix functions but a generalization to non-
square functions can be pursued along the same lines.

Our analysis has been carried over for the case of real rational
all-pass functions because this is the interesting case in a large
majority of control applications. We remark, anyway, that the
complex case can be dealt with by exactly the same arguments
and computations. The results and all the formulas are the same
with the only precaution that M� should be understood as the
transpose conjugate of the matrix M and, for a rational function
K(z), K∗(z) should be interpreted as [K(1/z̄)]�, where z̄ is
the complex conjugate of z and, as just specified, ·� denotes
transposition and conjugation.

APPENDIX A
FACTORIZATION OF ALL-PASS FUNCTIONS WHICH ARE

SINGULAR AT INFINITY

Lemma A.1: Let K(z) be an m × m rational proper discrete-
time all-pass function. Then K(z) can be written as

K(z) = K0(z)K̄1(z)K̄2(z) . . . K̄k (z) (78)

where K0(z) is a rational discrete-time all-pass function such
that K0(∞) is non-singular and the K̄i(z)’s are rational proper
all-pass functions (whose only pole is in the origin) having a
realization of the following form

K̄i(z) =

[
Im−pi

0

0 0

]
Ui +

[
0

Ipi

]
(zIpi

− 0)−1 [0 | Ipi
]Ui

(79)
where Ui is a constant orthogonal matrix.

Proof: Consider a minimal realization K(z) = C(zI −
A)−1B + D. If D is non-singular, K0(z) = K(z) and we are
done. If D is singular, we resort to the Silverman algorithm as
described in [7]. Assume the matrix D has q1 linearly indepen-
dent columns, with 0 ≤ q1 < m. Let V1 be an orthogonal matrix
such that DV1 =

[
D11 0

]
, with D11 ∈ Rm×q1 being full col-

umn rank. Let us partition BV1 =
[
B11 B12

]
conformably,
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obtaining the following block structure,

K̃1(z) := K(z)V1 = C(zI − A)−1 [B11 B12
]
+
[
D11 0

]
,

(80)
and let

K̂1(z) := K̃1(z)

[
Iq1 0

0 zIm−q1

]
. (81)

Clearly, K̂1(z) is all-pass as it is the product of all-pass func-
tions. Moreover, K̂1(z) can be written as

K̂1(z) = [K̂11(z) | K̂12(z)]

where

K̂11(z) := D11 + CB11z
−1 + CAB11z

−2 + . . .

and

K̂12(z) := CB12 + CAB12z
−1 + CA2B12z

−2 + . . .

so that K̂1(z) has the following realization

K̂1(z) = C(zI − A)−1 [B11 AB12
]
+
[
D11 CB12

]
.

(82)
At this point, either

[
D11 CB12

]
is right-invertible, or we

may iterate the above procedure by introducing another orthog-
onal matrix V2 , such that

[
D11 CB12

]
V2 =

[
D21 0

]
,

with D21 ∈ Rm×q2 of full column rank and q2 ≥ q1 ; we define
the new all-pass function

K̃2(z) := K̂1(z)V2 = C(zI − A)−1[B21 B22
]
+
[
D21 0

]
,

(83)
where

[
B21 B22

]
=
[
B11 AB12

]
V2 .

Notice that K(z) is all-pass so that it has full rank (as a
rational matrix function) and at each step it is multiplied by a
full rank all-pass matrix. Hence, at each step the pole at infinity
of the factor diag(Iqi

, zIm−qi
) must cancel a zero at infinity

because the product remains proper and its McMillan degree
does not increase. Since K(z) is rational, it has finitely many
zeros and hence, after a finite number of steps (say k) of the
above procedure, we get a rational proper all pass function

K̃k (z) = K(z)
k∏

i=1

Vi

[
Iqi

0

0 zIm−qi

]
, (84)

without zeros at infinity i.e. such that K̃k (∞) is non-singular.
Now we set K0(z) := K̃k (z), so that

K(z) = K0(z)

[
k∏

i=1

Vi

[
Iqi

0

0 zIm−qi

]]−1

. (85)

Finally, by setting pi := qk+1−i , i = 1, 2, . . . , k, and Ui :=
V �

k+1−i , i = 1, 2, . . . , k, and observing that

[
Ipi

0
0 zIm−pi

]−1

=
[
Im−pi

0
0 0

]
+
[

0
Ipi

]
(zIpi

− 0)−1 [0 | Ipi
]

(86)
we obtain (78) and (79). �

Lemma A.2: Let K(z) be an m × m rational proper discrete-
time all-pass function factored as in (78). Consider a reachable
realization

Ki(z) = Ci(zI − Ai)Bi + Di (87)

of Ki(z) := K0(z)K̄1(z)K̄2(z) . . . K̄i(z). Partition Bi and Di

as Bi = [Bi,1 | Bi,2 ] and Di = [Di,1 | Di,2 ], where Bi,1 and
Di,1 have m − pi+1 columns. Then a reachable realization of
Ki+1(z) := Ki(z)K̄i+1(z) is given by

Ki+1(z) = [Di,2 | Ci ]

(
zI −

[
0 0

Bi,2 Ai

])−1[
0 I

Bi,1 0

]
Ui+1

+[Di,1 | 0]Ui+1 . (88)

Proof: The realization (88) is the result of a direct compu-
tation. The fact that this realization is reachable may be easily
seen by using the PBH test. In fact, as a consequence of the fact
that [Ai − λI | Bi,1 | Bi,2 ] has full row-rank for all λ ∈ C, we
immediately see that also

[
−λI 0 0 I

Bi,2 Ai − λI Bi,1 0

]

has full row-rank for all λ ∈ C. �

APPENDIX B
PROOF OF SYMMETRY OF T :

Somehow in the same spirit of [12], we shall show that

U := T−1T� (89)

satisfies

A = U−1AU, (90a)

B = U−1B, (90b)

C = CU. (90c)

This means that U is a similarity transform that leaves un-
changed the triple (A,B,C) of the system. Since (A,B,C) is,
by assumption, a minimal realization, this means that U = I , or
that T = T�.

We start with (90c). Solving (12b) and (12c) for B we get

B = T−1A−�C�D (91)

and

B = AT−�C�D−� (92)

By inserting in the latter the expression of D−� obtained by
transposing (12d), we get

B = AT−�C�D − AT−�C�CA−1B (93)

Now we take the inverse of both sides of (12a) and use the
Sherman-Morrison-Woodbury formula thus obtaining

T−1A�T = A−1 + A−1B(D − CA−1B)−1CA−1

= A−1 + A−1BD�CA−1 . (94)
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From (92) we get BD� = AT−�C� which, plugged into the
left-hand side of (94), yields

T−1A�T = A−1 + T−�C�CA−1 . (95)

The latter provides an expression for T−�C�CA−1 which,
plugged into the left-hand side of (93) gives

B = AT−�C�D + B − AT−1A�TB (96)

so that T−�C�D = T−1A�TB, or B = T−1A−�TT−�C�D.
By comparing the latter with (91), we eventually get

C� = TT−�C� (97)

which, by recalling that U := T−1T�, readily implies (90c).
We now use a dual argument to obtain (90b). Solving (12b)

and (12c) for C we get

C = DB�A−�T (98)

and

C = D−�B�T�A (99)

By inserting in the latter the expression of D−� obtained by
transposing (12d), we get

C = DB�T�A − CA−1BB�T�A (100)

From (99) we get D�C = B�T�A which, plugged into the left-
hand side of (94), yields T−1A�T = A−1 + A−1BB�T�. The
latter provides an expression for A−1BB�T� which, plugged
into the left-hand side of (100) gives

C = DB�T�A + C − CT−1A�TA (101)

so that DB�T� = CT−1A�T, or C = DB�T�T−1A−�T . By
comparing the latter with (98), we eventually get

B� = B�T�T−1 (102)

which, by recalling that U := T−1T�, readily implies (90b).
We now prove (90a). We multiply equation (12a) on the left

side by U−1 and on the right side by U . By taking into account
(90b) and (90c), we get

U−1AU = T−�A−�T� + BD−1C. (103)

On the other hand, by transposing the first and the last member
of (94) and multiplying on the left side by T−� and on the right
side by T� we get

A = T−�A−�T� + T−�A−�C�DB�A−�T�

= T−�A−�T� + T−�A−�C�DD−1DB�A−�T�.

(104)

Moreover, by inserting in the right-hand side of the latter the
expressions of A−�C�D and DB�A−� obtained from (91) and
(98), respectively, we get

A = T−�A−�T� + T−�T︸ ︷︷ ︸
U −1

BD−1C T−1T�︸ ︷︷ ︸
U

= T−�A−�T� + BD−1C. (105)

Finally, by comparing the latter with (103), we get (90a). �
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