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this BSR it is trivial to verify that all of the state-affine theory presented 
here extends to the multidimensional input setting. The details are left to 
the reader. 

In this paper we have employed the techniques of [4] to develop a 
theory of state-affine systems. Both infinite degree and infinite dimen- 
sional sistems are studied. An alternate  approach to state-affine realiza- 
tion is  given  in  [7]. In [7] the input-output data is arranged in a Hankel 
matrix. Using this Hankel matrix [7] obtains  a realization algorithm for 
state-affine systems. 

In this paper Hankel matrices were not used. Our input-output data 
are characterized by the transfer function 0 for a Volterra series. It is our 
transform representation that leads to an efficient realization algorithm. 
The simplicity of the algorithm followed because the operators S. T .  and 
E are naturally suited to act on rational functions. For n-homogeneous 
systems, our transfer function for a Volterra series degenerates into the 
regular transfer function used  in [I]. [2]. In [2]. [7] other transform 
techniques for a Volterra series are also discussed. For further references 
on transform representation for nonlinear systems see [2]. [4]. (71. 

Finally. we have developed a theory of minimahty. span reachability. 
and observability directly from the  BSR and the operator H z .  This 
method degenerates into the approach of [4] when the underly<ng system 
is bilinear, Le..  of the form (1.3). As noted earlier. alternate proofs to 
Corollaries (6.2) and (6.3) are given  in  [7]. For further comments concern- 
ing the applications of shifts to nonlinear systems. see [4]. 
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A Characterization of Minimal  Square  Spectral 
Factors 

LORENZO FINESSO AND GIORGIO PICCI 

A bsfract -Two different well-hom approaches to the spectral factori- 
zation problem @( s)=  W (  s)W‘( - s )  are connected together by relating 
the geometric properties of the solution set of the underlying algebraic 
Riccati equation to the structure of the “all-pass” factor of each minimal 
solution M’(s). 

I. INTRODUCTION 

The aim of this paper is to study the family of all minimal square 
solutions of the (matrix) spectral factorization problem @ ( s )  = 
W (  x )  W‘( - 5 ). 
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It is well known that in the scalar case all minimal spectral factors are 
obtainable from the minimum phase one by “flipping” zeros to the 
right-half plane (cf., e.g.. [ 11).  We show that an intuitive generalization of 
this “zero flipping” process characterizes the matrix factors as well. To 
obtain this result we have however to dwell on a rather detailed analysis 
of the algebraic Riccati equation which underlies the spectral factorization 
problem. Especially, useful in this context are the results derived by J. C. 
Willems  in his important paper [18] connecting the solution set of the 
ARE and the family of invariant subspaces for a certain pair of “extremal” 
feedback matrices. These matrices in our context describe the zeros of the 
minimum and maximum phase spectral factors. In this respect our results 
make also contact xvith the geometric approach of C. Martin [ 1 11. [ 121. 

The analysis presented here is motivated by  the interpretation  that 
minimal square spectral factors have in stochastic realization theory [8], 
[ 151. [ 131. In fact. loolung at spectral factors from this point of \<ew 
provides a very intuitive interpretation of the above characterization in 
terms of invariant subspaces. These subspaces support the time evolution 
of certain “error processes” associated to the (stochastic) state of any 
minimal spectral factor. Also. the classical description of spectral factors 
in term of inner-outer factorization [ 191 can be made very  precise in this 
context. A complete characterization of the inner part of a minimal 
spectral factor is given. It is shown that all  these inner parts  are left 
(inner) divisors of a certain fixed rational matrix inner function and 
therefore (cf. [4]. [7]) in one to  one correspondence with invariant sub- 
spaces. These subspaces are precisely those describing the geometry of the 
solutions of the ARE 

11. “ M A L  SQUARE SPECTRAL FACTOFS AND ARE 

Given an m X m real rational matrix function @( s )  for which’ 
i) @(s)=@’ ( -s ) .  
ii) @ ( s )  is analytic for s = iw  and @ ( i w ) S O .  
iii) @(cc.)<cc, 

the specrrul fuctori:ariotl problem for @( s). consists in finding real rational 
matrices M’(s). Xvhose poles lie  in  the left-half complex plane (Re s<O) 
and such that they satisfy the relation 

@(s)=W(s)N”(-s )  (2.1) 

for all s in  the complex plane. Such functions W( s) will be called (stable) 
spectral factors. 

In this paper we shall make the following additional assumption on @. 
iv) @ ( r w ) > O .  

This implies that @(x, ) :=  R .  is a symmetric positive definite matrix. The 
assumption is not an essential one  but it simplifies the formalism consid- 
erably and in any case it seems to be important enough for the applica- 
tions to deserve a separate treatment. A mininzal spectral factor is one 
having the least McMillan degree [ 141,  Le., the smallest possible dimension 
of any minimal realization. Since minimal spectral factors are the solu- 
tions of (2.1) of least complexity. the search for spectral factors is usually 
restricted to the minimal ones. 

The srochust~ reah:ution problem  is tightly connected to spectral fac- 
torization ( [ I ] .  [6]. [SI). It can be formulated as follows. Let { J ( r ) }  be an 
nt-dimensional Gaussian stochastic process on the real line. with sta- 
tiona? increments and incremental spectral density matrix @(s) (Le.. 
E [ d t i . f r ] = @ ( r w ) d w .  where df is the spectral measure of { . v ( f ) } .  [7]). 
We look for representations of { ! ( r ) }  of the form. 

d . ~ ( r ) = A s ( r ) d r + B d t c ( r )  (2.2) 

dr( r )  = C Y (  t )  dt + Ddtr( f )  

where ( N( t ) )  is some Gaussian, say p-dimensional. process \vith orthog- 
onal stationw increments and normalized incremental variance (a 
”Wiener process” on R ) 

E[du(  r )  du( ,)’I= I d t .  (2.3) 

The transfer function of the  model (2.2) is the m X p matrix 

j t y s ) : = D - I C ( s l - . . i ) ~ ’ B .  (2.4) 

‘Throughout this paper  prime  denotes transpoae. “ 5 ”  dcnotes complex conlugate trans- 
.4 sn( 4 >O) means that the mntnx 9 1s positlre \em~del~nrte lposltire  definite) 
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and it  is clear that a necessary condition for { y ( r ) }  to be representable in 
the form (2.2) is that W ( s )  satisfies (2.1).  i.e., W ( s )  must be a spectral 
factor of @(s). Note that, if @(s) satisfies assumption iv) above, it follows 
from (2.4) and (2.1) that DD’= R >O, and hence D must be of rank m at 
least. This implies that the number of components,p. of the driving noise 
process { u ( r ) }  in (2.2) is greater or equal than m .  The preceding observa- 
tions refer to the spectral density of { y ( t ) } ,  i.e., to its second-order 
description only. For the output of the system (2.2) to be the  same process 
us { y ( t ) }  (or more precisely to be as.  equal  to y ( t )  for each t )  however, 
the  input process has to be chosen in a special  way. 

A linear system { A ,  B ,  C, D }  plus an orthogonal increments process 
{u (  t ) }  for which representation (2.2) holds (a.s. for each t )  will  be called a 
(strong) realization of the process { y ( r ) } .  From now on -we shall agree on 
taking { A ,  B. C, D }  as a minimal realization. This is no loss of generality. 

A special class of realizations are the so-called internal or output induced 
realizations, for which { u ( f ) }  is prescribed to be “pmeasurable,” i.e., 
obtainable for each f ,  as  a (nonnecessarily causal) function of the random 
variables { y ( s ) ;  sE R } .  

It is relatively easy to see that, under assumption iv) internal reali- 
zations must have a square transfer function matrix W ( s )  [8]. In this 
situation the number of components, p .  of the noise process is the 
nlinimum possible (i.e., m);  and ( ~ ( 2 ) )  can be generated by passing 
{v( t ) }  through the “whitening filter” whose transfer function is W- ’( s). 

The first important characterization of square minimal spectral factors 
is that they are parametrized in a one to one way  by the solutions of a 
certain matrix algebraic Riccati equation. To obtain this characterization 
decompose the spectral density matrix as 

@ ( s ) = Z ( s ) + Z ’ ( - s )  (2.5) 

with Z ( s )  positive real [2]. It is known that there is only one such 
decomposition for which  the McMillan degree of 2( s), 6( Z ) ,  is one-half 
of the McMllan degree of @(s), [l], [2].  Let 

Z(s)=1/2R+C(sl-A)-’G (2.6) 

be a minimal realization of Z ( 5 ) .  By positive realness and condition ii), 
the n X n matrix A has all its eigenvalues in {Re s (0). There are 
well-known computational procedures for determining ( A ,  G ,  C. R )  from 
@ [5], and in the sequel we shall regard this description as part of the data 
of the problem. Define the function A: RnX” - RnX“ as 

A ( P ) : = A P + P A ’ + ( G - P C ’ ) R - ’ ( G - P C ~ ) ’  (2.7) 

and let To: = {PI P = P’; A (  P )  = 0 }  be the  set of all symmetric n X n 
solutions to the algebraic Riccati equation A( P)=O. The following theo- 
rem is taken from [I], [6],  [18]. 

Theorem 2.1: All minimal square solutions to the spectral factori:ation 
problem are gicen, modulo multiplication on the right b y  a constant unirun; 
murrix, bF ’ 

w(S)= R ’ / ~ + c ( ~ I - A ) - ’ B  (2.8) 

where 

B = ( G - P c ’ ) R - ’ / ~  (2.9) 

and P is a solution of the ARE A (  P)=O. 
Formulas (2.8) and (2.9) display the one to one correspondence be- 

tween the family of minimal square spectral factors and the set q0. In the 
following we shall refer to the numerator matrix. r, of W(s). defined as 

r:= A -  BR-’/’C. (2.10) 

Clearly, the eigenvalues of r are the zeros of the spectral factor W(s), 
since by a well-known formula [ 141 the inverse W ’ ( 5 )  of W(s) is given 
by 

W - ’ ( s ) =  R - ’ / 2  - R - ’ / 2 C ( s l - T ) - ’ B R - ’ / ’ .  (2.11) 

Theorem 2.2 [ I ] ,  [n],  [18]: Allsolutions  in To arepositiae definite and 
there are a mininzal and a maximal element. P ,  and P”, respecticelv. such 
that 

2 R ’ / 2  is the  symmetrix positive  definite square r w t  of R. 

P,C P* (2.12a) 

and 

P ,<PcP*  forallPinCi’o. (2.12b) 

Moreocer, let B ,  and B* be defined by (2.9) with P set equul to P ,  and P*, 
respecticely, and consider the numerator matrices. 

r*; = A - B,R-‘/’C, (2.13) 

r* :=A-BB*R- ’ /2C;  (2.14) 

then all eigenoalues of I’,( r*) hase strict(y negatir;e ( respectice[):, positive) 
real part. 

Each P E  q0 can be interpreted as the covariance matrix of the state 
process { x ( r ) }  of the corresponding stochastic realization. Note  that, 
since P is positive definite and solves the Lyapunov equation, 

A P  + PA’+ BB’=O (2.15) 

all realizations (2.8) of the minimal spectral factors W(s) are minimal. 
From (2.12) it follows that there is a minimal and a maximal variance 
realization whose state processes we shall denote by {.x*( t ) }  and {x*( I)}, 
respectively. The corresponding input noises { u , ( t ) }  and { u * ( t ) }  can 
then be obtained as outputs of the whitening filters, 

dx,( t ) =  rex,( t )  dt + B,R-’/’ dy( t )  (2.16a) 

du,(t)=- R-’ / ’Cx , ( t )d f+  R - ’ / * d y ( i )  (2.16b) 

and 

d s * ( f ) = T * x * ( t ) d t +  B * R - ’ / ’ d y ( t )  (2.17a) 

du*(t)=- R-’/’Cx*(t)dt+ R - ” 2 ~ b l ( t )  (2.1%) 

which are realizations of the inverses of the “minimal” and “maximal” 
spectral factors, W,(s)  and W*(s) ,  corresponding to P ,  and P*. The 
process { u,( t ) }  is the (forward) innmation of { y ( t ) }  and { u * ( t ) }  can be 
related to  the  so-called backward innooafion of { y ( t ) }  [8]. 

Let x ( t )  be the  state process of any minimal realization, it is shown in 
[8] that 

E [ x ( t ) [ . ~ ( s ) , s c t ] = x , ( t )  (2.18) 

and so the minimum variance realization is actually a steady-state 
Kalman-Bucy filter, the filter being moreover the same for all minimal 
realizations of { y (  t ) } .  On the other hand. if P is the covariance of { x ( t ) } ,  

~ [ ~ - ‘ . ~ ( r ) i r ( s ) , s ~ t ] = ( ~ * ) - ’ + * ( r )  (2.19) 

for all minimal realizations. This means that, after the change of basis 
Y ( r ) :  = P-’x ( t ) .  all minimal realizations have  the same “backwwd” (or 
completely anticausal) Kalman-Bucy filter, the latter being obtained from 
the maximum variance realization by the change of basis X , ( / ) : =  
( P * ) - ’ x * ( t )  (see [8] for further details). 

111. bfINIhiAL ALL-PASS FACTORS 

It descends from standard theory (see, for instance, [ 191) that all square 
spectral factors (not even necessarily rational) can uniquely be decom- 
posed as a  product 

W ( s ) =  W*(s)U(s) (3.1) 

of an outer (or “minimum phase”) factor W,(s)  and an inner part L7(s). 
W , ( s )  is analytic together with its inverse on the whole right-half plane 
{Res >O}, while U ( s )  is a square m X m matrix function which is 
analytic and bounded on  {Re s >O} and unitary on the imaginary axis. In 
other words, 

U ( s ) U ‘ ( - s ) = l  (3 4 
for all complex s. Rational inner functions will be called all puss, Note 
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that inner  functions are only determined  up  to multiplication on the  right 
by an  arbitrary  constant m X m unitary  matrix and therefore it is no loss 
of generality to normalize U(s) in such a way that L'(x)= I .  

The abuse of notation  in (3.1)  is justified,  as the  minimal  variance 
spectral  factor W,(s)  introduced  in Section I1 is  the (unique)  outer 
spectral  factor of @(s). The  all-pass part of the other minimal square 
spectral factors  has a particularly  interesting structure that we  now 
prepare to  investigate.  Let 

dx(  f )  = Ax(  t )  dt + Bdu( t )  (3.3a) 

d v ( t ) = C x ( t ) d r + R ' / ' d u ( t )  (3.3b) 

be  any minimal internal realization and let us define  the error process 
Z ( f ) : =  x ( t ) -   x , ( t )  [notice that Z ( t )  is uncorrelated to x * ( t ) ] .  It is easily 
checked  that Z ( f )  satisfies  the stochastic differential equation 

d Z ( r ) = . A i ( t ) d r L ( B - B , ) d u ( t ) + B , ( d u ( r ) - d u , ( t ) ) .  (3.4) 

Now,  after  eliminating d u ( t )  or du,(r) from  (3.4)  by  using (2.16b)  and 
(3.3b). we find that { . f ( r ) )  satisfies either  one of the  two  differential 
equations 

d Z ( t ) = r Z ( t ) d t + ( B - B , ) d u , ( t )  (3.5) 

d ~ ~ ( t ) = r , Z ( t ) d t + ( B - B , ) d u ( t )  (3.6) 

which  are  indeed  related by the transformation, 

du, (r )=R- ' / 'C .17(r )dr+du( t ) .  (3.7) 

Putting no%' (3.6)  and (3.7)  together, we single out  a dynamical  system 
driven by the  noise  process ( u c t ) ) .  which  produces as output ( u * ( t ) } .  Its 
transfer function is 

L i ( s ) : = r + R - l : 2 c ( s l - r , ) - 1 ( B - B , ) .  (3.8) 

and since { u , ( t ) }  has incremental  spectral  density I d a  it follotvs that 
U ( s )  must  satisfy (3.2). Le., U ( s )  is an all-pass  function. By the  above 
computation, the  realization  (3.3)  can  actually  be  decomposed into the 
cascade of two  subsystems,  the first (having  the  transfer function  (3.8)  and 
state vector a ( t ) )  which  transforms  the  original input noise ( ~ ( 1 ) )  into 
{ u * (  r ) ) *  and  the other, producing ( . ( I ) )  as the output  corresponding to 
the input ( u * ( l ) ) .  The latter can be taken as the  minimum  v-ariance 
realization. Note  that this  decomposition  corresponds  to a factorization of 
the transfer  function W ( 5 )  which is exactly of the  type (3.1). By- unique- 
ness. lve than have  the  following  result. 

Lemma 3.1: .4 spectral factor M'( s )  I S  minimal square 4' und onlv if its 
inner purr is ojthe  form (3.8) with B gioen bv (2.9) for some P E  <?,,. urd r, 
and B ,  us defined in Theorem 2.2. 

Let us denote by E*(s)  the  inner part of the  maximum  variance 
spectral factor W*(s) .  Its  state  equations are 

d Z * ( f ) = r , . i - * ( t ) d t + ( B * - B , ) d u * ( t )  (3.9a) 

d u , ( t ) = R - " 2 C ~ * ( t ) d t + d u * ( t )  (3.9b) 

where .i-*(t) = x * ( t ) -  x , ( t )  is the  "maximal" error process.  The covar- 
ance  matrix of . f - * ( t )  is  easily  computed  to  be 

z*:= P*- P, (3.10) 

and by asymptotic stability of r*, it satisfies  the  Lyapunov equation 

r ,Z*+Z*r;+(B*-B,)(B*-B,) '=o. (3.11) 

As Z*>O (Theorem  2.2) it follows that  the  pair (r*. B*-  B,) is control- 
lable [j]. and  hence  the  realization  (3.9) of L'*(s) is minimal.  Incidentally. 
(3.1 I )  provides an easy way to  compute P*, [and hence W'*( s)] once P, is 
known ([I]. [ 1 81) and also the  following  useful  identity. 

Lemma 3.2 [ 181; The matrices r* and - r; are simrlur. irt fact. 

r* = - z*r, c + -  I *- ' (3.12) 

We  now  define  the  ''dual'' error process .?(I): = x*( t )  - x( t ) ,  where x( t )  
is  the state of any internal realization. By following  essentially  the same 
route as done  for . x ( t ) ,  we find  that 3 ( r )  satisfies 

d ~ ( t ) = r * R ( t ) d r + ( B * - B ) d u ( r )  (3.13) 

or 

d Z ( t ) = r . i ( f ) d t + ( B * - B ) d u * ( t )  (3.14) 

with u ( t )  and u * ( t )  related  by 

d u ( r ) = R - ' / ' C . ? ( r ) d t + d u * ( r ) .  (3.15) 

Equations (3.14)  and  (3.15). can  be thought as defining a linear dynamical 
systems  tvhich  accepts as input the  process ( u * ( t ) )  and returns ( u ( t ) )  as 
the corresponding output.  Its transfer function is 

V ( ~ ) : = I ~ R - ~ / ' ~ C ( ~ I - ~ ) - ' ( B * - B ) .  (3.16) 

Again,  the  relationship V( s)V'( - s )  = I follows  from  the  fact that { u( r ) )  
is a normalized orthogonal increments  process. It is not  hard to check that 
V ( s )  is actually  inner. This follows  in  fact  from  (3.14) and (3.15)  which. 
together.  provide a realization  for  the  inverse. V - ' ( s )  of V ( s ) .  We can 
write 

V - ' ( s ) = I - R - 1 / 2 C ( s I - r " ) - ' ( B " - B )  

and by Theorem  2.2 all poles of V - ' ( s )  have  strictly  positive  real part. To 
conclude. Just recall that V -  '(s) = V'( - s). 

Consider  now  the linear system obtained by  cascading V ( s )  and W ( s )  
(in  that  order). This system  has a realization  which is obtained combining 
(3.3). (3.14). and (3.15).  Once  the intermediate variable ( u ( t ) )  is 
eliminated, it defines a linear  dynamic  relationshlp  between  the input 
( u * ( r ) )  and  the output { F ( t ) ) .  The corresponding transfer function  is 
precisely W ' ( 5 ) .  So we have  the  following. 

Lemma 3.3: For  an. minimal square spectral factor W ( s )  there is a 
correspouding all-pass  function. V( s ), for which 

upL(s)=  W ( s ) V ( s ) .  (3.17) 

For each W ( s ) .  rhe related V ( s )  is gicen bJ (3.16) where B. r and B* are 
defined in (2.9). (2. IO). and 77zeorem 2.2. respectlcelv. 

Given  any  rational m X m matrix function, R ( s ) ,  a left dikisor of R ( s )  
is  any square matrix. R ' (s). such  that. 

R ( 5 ) =  Rds)R , ( s )  (3.18) 

for  some  matrix R z ( s ) .  If in addition R , ( s )  [and R , ( s ) )  are also rational. 
we say  that the factorization  is coprime (or minimal [I71 if the  McMillan 
d e g r e e s 6 ( R , ) . S ( R ~ ) o f R , a n d R z . a d d u p t o 6 ( R ) , t h e d e g r e e o f R .  
Proposition 3.1: The all-passfuncrron L Y s )  defined i n  (3.8) is a left inner 

drcisor of L ' * (s ) .  In jacf ,  L!*(s) admits the coprime factorcation. 

&-( s) = L;( s) V( s) (3.19) 

1r.here V ( s  ) is gicerl (3.16). 
Proof.. Follows  from (3.1  7). Lemma  3.1  and  the  uniqueness of the 

factorization  (3.1)  for W ( s ) .  The coprimeness  is a consequence  [14, 
Theorem 7.2 (v)] since  no  pole-zero  cancellations can occur  between 
all-pass  functions. 

From coprimeness, Le.. 6(( ; )+6(V)=6(d '*)= n it follows that the 
realizations  (3.8) and (3.16) are not  minimal. biinimal realizations for 
L:( s )  and V( s )  will be investigated in Section V. 

IV. ARE AND INVARIANT SUBSPACES 

To each  solution P E  yo of the ARE we can  associate a pair of matrices 

rI+:=(P- P*)( P*- P*) 

II-:=(P*-P)(P*-P,)-'. ( 4 4  

- I  

(4.1) 
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which satisfy the  identity n- = I - II- and permit us to express P as 

P = n - P * + n + P * .  (4.3) 

Let x ( t )  be the  state process of the internal realization corresponding to 
P. Then a direct computation [ 151, [3] shows that the relative error process 
satisfies 

n(  t ) =  n-n*( t )  (4.4) 

and by taking covariances and postmultiplying by X*- '  =( P* - P J '  it 
follows that (n+) '=n+, i.e., II+ is a projection. Let 3 be the range 
space of II+ and 9 those of n-. It easily follows from (4.1) that3 

"s=6jqn+)y=q(Z*-ln+z'f=[X*-'5f] '=~*~' .  
(4.5) 

This pair of subspaces and the associated projection operators have a 
special importance in the theory of ARE as pointed out by J. C .  Willems 
11 81. 

Theorem 4.1: A n  n X n matrix P is  a  solution to the ARE A(P)=O if 
and only if P  can be expressed  in  the form (4.3) for a  pair of projection 
operators nt and n- = I - n- such that 

i) %:=%(n') is r,-invariant, 
ii) u?l:=CR.(n-) is r*-invariant, 
iii) X@% = R". 

~Woreouer, P is symmetric if and on4 if 9 = X*%', where Z' is the  matrix 
defined by (3.10). 

Theorem 4.1 gives an alternative way  of parametrizing spectral factors. 
Indeed since there is a one correspondence between and the family of 
invariant subspaces % for T*, the spectral factors can be parametrized 
directly in terms of % (or, better, in terms of the projection II+ ). The 
formulas can be derived from (2.9) and (2. IO) by using (4.3). For example, 
from P - P, = n+( P* - P,) we can see that 

B - B , = ~ + ( B * - B , ) ,  r-r*=n+(r*-r*), (4.6) 

Let n be a projection operator  on R" and e its range space. The 
compression of A :  R" + R" to the subspace !?., is the linear operator 
[A],:= I I A I I .  The concept is  used in the  following lemma which estab- 
lished an  important relation existing between the numerator matrix r of 
any minimal square spectral factor  and  the "extreme" numerators r+ and 

Lemma 4.1: Let r be the  numerator ma1ri.x of the spectral fucror corre- 
sponding to PE  To and (X, 4) the ussociared pair of conlplemenraty 
subspaces.  Then both % and 9 are  inoariant for r and on these subspaces r 
coincides  with  !he  compression of r* and r* IO % and 8 ,  respectice!ls. 

r*. 

rn? =n+r*n+ ,  rn- =n-r,n-. (4.7) 

In fact. the following relations  hold 

rn- =n+r* ,  rn- =n-r,. (4.8) 

Proof: By taking differentials in (4.4) and substituting (3.5) and its 
analog for i * ( t ) ,  we obtain 

r J ( r ) d t + ( B - B , ) d u , ( t ) = n + r * J * ( t ) d t t n + ( B * + B , ) d u , ( t )  

which  by virtue of (4.6) and (4.4) reduces to 

rn+.t*(t)=n+r*n*(t). 
Right multiplying by Z*(t ) '  and taking expectations, gives the first 
formula in (4.8). Then the first part of (4.7) and  r-invariance of % follow, 
immediately. Notice now that the second relation in (4.6) can be rewritten 
as 

r=n-r ,+n+r*.  

Premultiply this identity by IT+ (recalling that TI+ n- =O) and insert 
rn+ in place of n+r*, getting 

3Symbols %and ?X stay for "range" and "nullspace:" I means onhogonal complement. 

n + r = r n + .  
This formula proves that the direct sum decomposition R" = X.@?! is 
actually reducing for r and hence, 

n - r=rn-  
holds as well. Premultiplying the expression for r given above by n- 
yields then the second halves of (4.8) and (4.7). 

Let  now T = [ X \ Y ]  be a basis matrix in R" obtained by picking basis 
matrices X and Y in '% and 3, respectively, and  denote by 

(4.9) 

the inverse of T partitioned conformably. Since WY = O  and Z X = O ,  Z' 
and W are bases for X ' and 9 ' , respectively. Let us introduce a change 
of basis in R". described by the matrix T. It is clear that the  numerator 
matrices r*. r* assume thereby the structure 

(4.10) 

where 

r,,,=wr,x, I - * , ~ = w ~ * Y ,  T * ~ ~ = Z ~ , Y  (4.11) 

rTI = wr*x, = zr*x, rg = z r * Y .  (4.12) 

Also, since X@ % is a direct sum of reducing subspaces for r we obtain 

(4.13) 

The diagonal blocks f , ,  and f22 coincide with r;, and r*22 becau:e of 
(4.7). This fact can also be checked by a direct computation. In fact, rlI is 
given  by 

wrx= wrn+x= wn+r*x 
and M'n- = N.'. since W' is a basis for %' = % [ ( I -  n')']. It follows 
from (4.12) (first equality) that r, I = rTI. That = r,22 follows  by dual 
arguments. 

Formula (4.13) provides a parametrization of the zeros of any minimal 
spectral factor W ( s )  in terms of the uniquely associated invariant sub- 
space %. Let us denote by a + ( r )  and o-(T) the unstable (i.e., lying on 
Res>O) and stable part of the spectrum of I' and by A+(T) and L ( T )  
the corresponding generalized eigenspaces. The structure of all minimal 
square spectral factors is then described in the  follo\ving theorem. 

Theorem 4.2: Let M/(s)= R ' / 2  + C(sI  - A ) - ' B  be the  minimal  square 
spectral  factor which corresponh to the  r,-innuriunt subspuce %. Irs 
numerutor r is then  the direct sum 

r =[r*],e[r,lq (4.14) 

of the compressions [ P I , ,  [ r*]%. of r* to %.and,  respecticell:, of Tt IO the 
complementuty subspace % = E*% I. The  spectrum of r is  uccordingb 
decomposed us, 

a+(r)=a([r*]T), o_(r)=a([r,ls) (4.15a) 

x+(r)=x, A - ( ~ ) = s .  (4. I5b) 

Consequenrly,  the  whitening  filter W(s)- run be  decomposed us 

R ' / : W - ' ( s ) R ' / 2 = I - C X ( s I - r , * l ) - ' w B * -  

- C Y ( S I - T , ~ ~ ) - ' Z B ,  (4.16) 

where r;, and r*22 are  mutrix  representations of [r*],; und [r,], relatke 
to any busis T =[ XI Y] in %.@ 9 [whose  inoerse is purtitioned us in (4.9)]. 

Proof: All that needs to be proven is the decomposition (4.16), since 
the rest follows from (4.13). In order to do  that, notice that if  we change 
basis in the realization (2.11) of W - ' ( s ) ,  by using the above defined 
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matrix T .   F : = T - ' T T  assumes the structure (4.13) and T - ' B  can be 
partitioned as 

Let us now use the representation (4.6) for B and notice that W I I -  =0, 
Wn = W ,  and similarly Z I I -  = Z ,  ZII-  =O. A simple computation 
leads then to (4.16). 0 

Remarks: Since r* is similar to - r; [cf. (3.12)], it follows that r:l is 
similar to T i ,  and hence the first equation in (4.15a) can also be 
rewritten in the form 

o + ( r ) = - @ * , Y )  (4.17) 

which  is  the vector analog of the "zero flipping" rule. 
Formula (4.16) shows that the input noise ( u ( t ) }  in any internal 

realization can be obtained by combining a causal (asymptotically stable) 
and  a completely anticausal (totally unstable) whitening filter. This addi- 
tive decomposition can be related to smoothing formulas of the "Mayne- 
Fraser" type [3]. 

V. INNER DIVISOW AND INVARIANT SUBSPACE 

In this section we investigate the relations whch exist between inyariant 
subspaces and  an alternative parametrization of the minimal square 
spectral factors, namely. their all-pass part, U ( s ) ,  which wras defined in 
Section 111. There are recent results which connect divisor theory for 
rational matrices and invariant subspaces ([4]. [ 171). These results. once 
specialized to all-pass functions d l 1  provide a neat isomorphism betw-een 
the lattice of r,-invariant subspaces %. and the lattice of all left inner 
divisors. C(s), of the maximal inner function U*(s)  defined in (3.9). 

We start with a lemma on minimal realizations of all-pass functions. 
Lzmnta 5.I: Ecey rational inrzer function, C'(5). cun  he  rninintallv 

represented CIS 

L ' ( s ) = I - H ( s l -  F ) - ' Q H '  (5.la) 

or us 

U ( s ) = I - G ' Q - ' ( s l -   F ) - ' G  (5.lb) 

mhere F is an asynlpfoticullv stable matrix. ( F. G) is a conlrollahlepair. Q is 
the unique posltice  definite sollrtioll  of the n1arri.x Lxapunoc equution 

FQ + QF'+ GG'=O ( 5  4 
and G and H ure  related b y  the  transformation, 

H = - G ' Q - ' ,  (5.3) 

Proo/r Let U(5) have a minimal realization ( F .  G .  14. J ) .  Le.. 

U ( ~ ) = J + -  H ( ~ I - F ) - ' G  

Since &(x)=  J ,  J is a unitary matrix and since L'(s) is defined up to 
multiplication by an arbitrary unitary matrix, we can as well assume 
J = I .  From K I (  s )  = Lr'( - s) we obtain 

I - H ( s I - F ) - ' G = I - G ' ( s l + F ' ) - ' H '  

where F: = F - GH. The matrix triples ( F. G, H )  and (- F'. H'.  G') must 
then be similar. i.e., there has to exist some nonsingular T for which 

F -  GH= - TF'T-' (5.4,) 

H = G ' T '  

G = TH' .  

From (5.4a. b) it follows that 

F 1 TF'T- = GG'T- I 

and hence Q: = - T must satisfy the Lyapunov equation 

FQ + QF'+ GG'=O 

(5.4b) 

(5.4c) 

which, by controllability, has a unique positive definite solution. Notice 
that the numerator matrix F. of U ( s ) +  is then given by formula (5.4a). Le., 

( 5  5) 

Let us now consider the problem of describing all (coprime) all-pass 
factorizations of a given rational inner function &(s). 

(5.6) 

The factor L',(s)(U2(s)) in (5.6) is called u lefr (right) all-pass  dicisor of 
U ( 5 ) .  Either L;,(s) or L!2(s) determine the factorization uniquely. 

We shall assume that U(s) is described by a minimal realization of the 
form (5.la) of dimension 1 1 .  The corresponding minimal state space 
realizations of &(s) will be denoted by 

y ( S ) = ~ - ~ , ( s ~ - ~ ; ) - ' ~ , ~ ~ ,  ;=1,2.  (5.7) 

Lentnu 5.2: There is a one to one correspondence  henseen [he set of inner 
fuctori:ations of L'(s) und the  fumilv of subspaces :X of R" which  are 
F-incarianr, 

To each 3 i n  R".  sutisfring i ) .  associate the conlplenlentaty  suhspace 3 
defined as. 

This suhspace is  F-incariant. ;.e., 

and for a y  clzange of basis  in R" defined br a nlatri.; T =[ XI  Y ] .  with 
?X =span X, &?! =span F-. one has 

i) F% C 3. 

ii) ~3 = Q% I, 

ic) F% c C'J 

where c. H,. Q, .  i=1.2 define, through (5.7). an dl-pass fuctorizarion of 
L;( S). 

Proof; Let us first show that any % satisfying the invariance condi- 
tion i), yields an all-pass factorization of U(s) .  From ( 5 . 5 )  it follows that 
% defined by ii) is indeed F-invariant. Also. the matrix T clearly trans- 
forms F to  an upper block diagonal form of the type shown in iv). 

If  we partition T -  as [ WZ'] '  and recall that by definition of T,  
W' is a basis for ?! - 
2' is a basis for % 

it follows from ii) that QZ' is a basis for and hence in the partitioned 
matrix 

the off-diagonal blocks are zero. Letting Q ,  : = WQ W' and Q ,  : = ZQZ' ,  
v) follows. 

Notice that any pair of complementary subspaces satisfying i)  and iii) 
corresponds ([4]) to  a coprime factorization of U ( s )  of the form (5.6) 
where L ; ( s )  are rational matrices. That L:,(s) are inner follows  however 
from the special choice ii) of the complementary subspace <I which leads. 
via v). to the special structure (5.7) of the factors. In order  to check this 
fact we shall compute the upper right block F,,. of the transformed F 
matrix. Since M/FY=O. by- iii). we can write 

[in the last passage we have used (5 .2)  and (5.3)]. Using the second 
relation in v) one obtains 

F;'12=-Q,H;H, 

tvhich  proves iv). Notice now that iv) and v) provide an explicit state-space 
realization of the cascade U I ( s ) b 2 ( s )  where &,(s) are the all-pass func- 
tions (5.7). 

To prove the converse one needs to show that to any inner factorization 
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of U(s), (5.6): with U j ( s )  given by ( 5 . 7 )  there correspond complementary 
subspaces % and 3 with the stated properties. 

If we write down explicitely the state-space realization of the cascade 
U l ( s ) U 2 ( s )  and compare to  the  given realization (5.la) of U(s) we see 
that there has to exist an invertible n X n matrix T such that iv) and v) 
hold. 

In fact, the first equation in v) comes from the diagonal structure of the 
solution of the Lyapunov equation for the cascade realization. Now, from 
the first relation in iv) it follows that there must exist an invariant 
subspace X for F such that Fl = F I X .  In fact. T has the structure 
T = [  XI Y ]  where % = sp X ,  and Y is a basis for some complementary 
subspace 9. 

Let T -  = [ W Z ’ ] ‘ .  Notice that W’ and Z’ can be  given the same 
meaning as in the first part of the proof. From the first equation in v) if 
then follows that 

WQZ‘=O 

which implies that QZ’ is the orthogonal complement in R“ of ?J I. Le.. 
that QZ‘ is a basis for 9, Since Z’ is a  basis for %,I, ii) follows. 0 

The all-pass function of special interest to us is  the maximal all-pass 
factor U * ( s )  defined by (3.9). 

q S ) =  I -  ~ - 1 / 2 c ( ~ r -  r , ) - 1 x J R - l / 2 .  (5.10) 

The numerator matrix of V * ( s )  is r* + Z*C’RplC = r* and so the 
inverse U * - ’ ( s )  has the realization 

L / * ( ~ ) - ’  = I + R - ~ / * C ( ~ I  - r*)-’x,R-l/2. (5.1 I )  

An easy identification of symbols, namely 

F = r , . H = R - ‘ / ’ C , Q = X *  

leads to the following corollary of Lemma 5.2. 
CoroIlaiy 5.1:  The  (partial!y  ordered) ser  of left inner dicisors of C*(s) 

is in one to one correspondence with rhe fami!v of r,-intlariant subspaces 3 
of R”. Each left dicisor, Ul(s), has a minimal  realization 

and the relative right dicisor U2(s)  (such thar U*(s)=  L/,(s)L‘,(s))  has a 
corresponding  minimal realization, 

U 2 ( s ) =  I-’R-’/2CY(sI-r,22)-1ZZ*C‘R-1/2 (5.13) 

where X and Y are  bases in ‘X and Z*XL. respectice!):.  and W .  Z, r+l ,, 

It is  not hard to see that UI(s) and &(s) coincide with the all-pass 
functions U ( s )  and V ( s )  of Proposition 3.1. In fact. the matrix (23 - B , )  
of (3.8) can, by using (4.6). (3.12), be put in the form 

have the sume meaning as in Section IV. 

B - B  = - n T Z * C f R - I / 2  * 

and similarly. ( B ’ -  B )  appearing in (3.16) can be rewritten as 

B * - B = - n - Z * C ’ R - 1 / 2 ,  

The usual change of basis leads us now to consider the matrices 

n B - B * : = - [  F ] , L Z * C ’ R p ’ / 2 ,  
(5.14) 

(5.15) 

S inceWII+=U’andZII+=O(eq$valen t toWII-=OandZII -=Z) ,  
combining (5.14), the expression of r* in (4.10) and R - I / ’ C [   X l Y ]  gives 
(5.12). Similarly(5.15). (4.10) and R-’ / ’C[XIY]  give (5.13). 

At t h i s  point we have more than enough material to proLVe the following 
important characterization of minimal square spectral factors, 

Theorem  5.1: A square  spectral factor W ( s )  is minimul if und on!v if its 
itmerpart is a left inner dialsor of L’*(s). 

Proo) If W ( s )  is minimal, we have already seen that its inner part 
U ( s )  is a left divisor of U * ( s )  (Proposition 3.1). Vice versa, if U l ( s )  
divides C:*(s) on the left! then we have just checked that U , ( s )  is the 
inner  part, U(s), of some minimal spectral factor. 

Theorem 5.1 was proven, for the scalar discrete time case in [ 161 and for 
(D (m)=O, in (91 and [IO]. In these references the result is obtained by 
rather sophisticated analytical tools (theory of Hardy spaces). Our  ap- 
proach instead is completely elementary. 

The structure of inner divisors of U * ( s )  helps to understand the 
pole-zero cancellation process which takes place when we multiply W , (  s )  
and U ( s )  [or alternatively W * ( s )  and V - ’ ( s ) ) ]  together. From (5.12) and 
(5.13) it follows that the inverses of U l ( s ) ( = U ( s ) )  and U2(s) (=  V ( s ) )  are 
given by 

and 

V - ’ ( s ) = I +  R - ’ / ’ C Y ( s l - r ~ * ) - ’ Z Z * C ’ R - ‘ i 2 .  

In  fact, the respective numerator matrices are given  by 

r , , , - ~ ~ ~ * c ~ ~ - ~ ~ ~ = ~ r , x + ~ ( r + - r , ) x = r ~ ~  

and 

[compare with (4.1 I)]. 
If we  now look back at (4.4) we may note that the dynamics of the state 

vector associated with U(s)  [i.e., the error process . q r ) j  takes entirely 
place in  the invariant subspace of r*. Since r, ~ is r,,, (in the 
appropriate coordinate system) and Z(f) evolves accordmg to a pole zero 
configuration described by Ti I, and r&, respectively, the effect of cascad- 
ing W,(s)  with U ( s )  is the neat substitution of the upper left block r*l l ,  
of f,. with rFl. thus leading to the structure (4.13) for r. 

The same type of heuristic explanation works for the cascade of W“(s )  
and V - ’ ( S ) ;  now  we just have to  refer to the “dual” error process 
q r ) =  n-i*(t). 
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