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Modeling Complex Systems by
Generalized Factor Analysis

Giulio Bottegal and Giorgio Picci, Life Fellow, IEEE

Abstract—We propose a new modeling paradigm for large di-
mensional aggregates of stochastic systems by Generalized Factor
Analysis (GFA) models. These models describe the data as the
sum of a flocking plus an uncorrelated idiosyncratic component.
The flocking component describes a sort of collective orderly mo-
tion which admits a much simpler mathematical description than
the whole ensemble while the idiosyncratic component describes
weakly correlated noise. We first discuss static GFA representa-
tions and characterize in a rigorous way the properties of the two
components. The extraction of the dynamic flocking component
is discussed for time-stationary linear systems and for a simple
classes of separable random fields.

Index Terms—Collective behavior, complex systems, flocking,
generalized factor analysis, multi-agent systems, stochastic sys-
tems.

I. INTRODUCTION

I T has been observed in several circumstances [3], [16]–
[18] that modeling and identification of complex stochastic

systems by traditional AR or ARMA models may lead to
problems where the number of parameters can be of the same
order of magnitude or larger than the sample size. The only
way out of this problem seems to be to change our ideas
on modeling. In this paper we propose a new paradigm on
stochastic modeling of complex systems based on the theory of
Generalized Factor Analysis (GFA) and the idea of stochastic
flocking. Although the two terminologies belong to different
cultures which seem to have little in common, our point in
this paper will be to show that dynamic GFA modeling of a
large ensemble of interacting random units hinges on splitting
the overall motion into a component which deserves the name
of flocking plus a weakly correlated kind of noise. The latter
is called the idiosyncratic component. The first component
describes the average random motion of the system by a rather
simple statistical model while the second aims at describing the
stochastic dynamics which pertains exclusively to individual
fluctuations about the average.

The word Flocking is used to describe a commonly observed
behavior in gregarious animals by which many equal individu-
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als tend to group and follow, at least approximately, a common
path in space. The phenomenon has been studied very actively
in recent years; see e.g., [9], [48], [55], [57] and the literature
on this subject is now huge, consisting of hundreds of papers
which would be impossible to discuss here. Our interest in
flocking derives from the fact that the phenomenon has simi-
larities with many scenarios observed in artificial/technological
environments a few examples of which will be described below.

The mechanism of formation of flocks is sometimes also
called convergence to consensus and has been intensely stud-
ied in the literature. There is now a quite articulated theory
addressing the convergence to consensus under a variety of
assumptions on the communication strategy among agents,
specific nonlinearities of the dynamics, the kind of permissible
local control actions etc. see e.g., [15], [21], [29], [41], [42],
[51], [53], [54] and references therein.

In this paper, we want to address a different and possibly
more basic issue: given observations of the motion of a large
set of interacting agents and assuming statistical steady state,
find out whether there is a flocking component in the collective
motion and estimate its characteristics. The rationale for this
search is that the very concept of flocking implies an orderly
motion which must then admit a much simpler mathematical
description than that of the whole ensemble. Once the flocking
component (if present) has been separated, the motion of the
ensemble splits naturally into flocking plus a random term
which describes local random disagreements of the individual
agents or the effect of external disturbances. Hence extracting
a flocking structure is essentially a parsimonious modeling
problem. Prediction of the future behavior and control of a
complex ensemble of random agents could then reasonably be
restricted to the flocking component and be based on the simple
model thereof.

A. Problem Statement and Scope of the Paper

We start by setting notations: In this paper boldface symbols
will normally denote random arrays, either finite or infinite.
All random variables will be real, zero-mean and with finite
variance. In the following we shall denote by the symbol H(v)
the standard Hilbert space of random variables linearly gener-
ated by the scalar components {v1, . . . ,vn, . . .} of a (possibly
infinite) family of random variables which we generically de-
note v. For ξ,η ∈ H(v), the inner product is the mathematical
expectation 〈ξ,η〉 := E ξη which induces the (variance) norm
of random variables by setting ‖ξ‖2 = E ξ2. Convergence of
random sequences will always be understood with respect to
this norm.
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Let y(k, t) be a finite variance random field depending on
a discrete space variable k and on a time variable t. We shall
denote by y(t) the random (column) vector with components
{y(k, t); k = 1, 2, . . . , N}. Suitable mathematical assumptions
on this process will be specified in due time. The variable k is
indexing (space) locations of a large ensemble of “agents” each
of which produces at time t a scalar measurement, y(k, t), of
an observable quantity.1 We shall assume that k varies on some
ordered index set of N elements and let t ∈ Z or Z+, depending
on the context. Eventually we shall be interested in problems
where N = ∞. The following is a first attempt to define in
precise terms a random flock. The definition is given for a finite
ensemble and, as it stands, may lead to non-unique modeling
of the same system, which is instead of paramount importance
in statistical identification theory. The notion will have to be
refined later for an infinite ensemble. See Sections IV and VI.

A q-dimensional random flock is a random field hav-
ing the multiplicative structure ŷ(k, t) =

∑q
i=1 fi(k)xi(t), or

equivalently

ŷ(t) =

q∑
i=1

fixi(t) (1)

where fi = [fi(1) fi(2) . . . fi(N)]�, i = 1, 2, . . . , q are non-
random N -vectors which do not depend on time and x(t) :=
[x1(t) . . . xq(t)]

� is a random processes depending on the
time variable only, which can be chosen with orthonormal
components; i.e., Ex(t)x(t)� = Iq, t ∈ Z.

The idea is that a random flock can essentially be regarded as
a rigid deterministic geometric configuration of N objects (or
points) in space moving synchronously in a random fashion.
A very simple intuitive picture can be imagined extending for
a moment our model to allow for three dimensional (vector
valued) outputs y(k, t) ∈ R

3, k = 1, 2, . . .. The k-th agent can
then be visualized as a point moving in 3-D space. Let q be also
equal to three and think of the 3-dimensional random motion
with coordinates x(t) as the motion of, say, the barycenter
of the ensemble. This implies that all different agents follow
the same trajectory in 3-dimensional space, modulo a constant
offset depending on their relative location. In general however
the agent’s output does not need to be of the same dimension of
the common state x(t). As already said, here for simplicity we
restrict to one dimensional output components.

The above may look like a rather crude mathematical ide-
alization of animal flocking behavior especially in that the
spatial pattern of flocks of birds or herds of animals etc. may
also deform its shape in time [27]. Note however that the
deformations may be interpreted as random fluctuations about
an average common trajectory that all agents of the flock aim
at and that these fluctuations could in principle be embodied
in the “noisy component” ỹ of our modeling scheme. The
denomination of random flock above may be reasonable as a
description of the average behavior of a realistic flock. It should

1An extension of the theory presented in this paper to a more general
setting where each component y(k, t) may take vector values, say in R

m, is
conceptually straightforward, although of course at the price of more compli-
cated notations. For the sake of clarity we shall here restrict to scalar-valued
processes.

however be said very clearly that our objective in this paper is
not to address animal behavior, but rather to discuss dynamical
modeling of complex technological systems.

The main goal of this paper is to investigate when a second
order random field has a flocking component and study the
problem of extracting it from sample measurements of y(k, t).
This means that one should be searching for decompositions of
the type

y(t) =

q∑
i=1

fixi(t) + ỹ(t) (2)

where q ≥ 1 and ỹ(t) is a “random noise” field which should
not contain flocking components. Naturally for the problem
to be well-defined one has to specify conditions making this
decomposition unique.

B. Examples

1) Detection of Emitters: In this scenario we suppose there
is an unknown number, say q, of emitters, each of them broad-
casting radio impulse trains at a fixed common frequency. Such
impulses are received by a large array of N antennas spread in
space. The measurement of each antenna is corrupted by noise,
generated by measurement errors or local disturbances, pos-
sibly correlated with that of neighboring antennas. The setup
can be described mathematically, by indexing each antenna by
an integer i = 1, 2, . . . , N and denoting by yi(t) the signal
received at time t by antenna i. Then, model (2) can be used
to describe the received signal, with x(t) being the signals
sent by the emitters at time t, fi coefficients related to the
distance between the emitters and antenna i and ỹi(t) some dis-
turbance affecting antenna i at time t. Hence, we may identify∑q

i=1 fixi(t) as the flocking component of y(t). The goal is
to detect the number of emitters q and possibly estimate the
signal components impinging on the antenna array. Note that in
the model there are several hidden (non-measurable) variables,
including the dimension q. In our setting N is assumed to
be very large; ideally we shall assume N → ∞. One should
note that estimation of this model from observations of y(t)
consists first of estimating the model parameters, say {fi} and
the covariance matrix of ỹ(t) but also in constructing the hidden
random quantities x(t) and ỹ(t). The covariance matrix of y(t),
say Σ ∈ R

N×N may be obtained from the data by standard
procedures.

A problem leading to models of similar structure is au-
tomated speaker detection. This is the problem of detecting
the speaking persons (emitters) in a noisy environment at any
particular time, from signals coming from a large array of N
microphones distributed in a room. Here the number of emitters
is generally small but could be varying with time. Robustly
solving this problem is useful in areas such as surveillance
systems, and human-machine interaction.

2) Inference on Gene Regulatory Networks: Transcription
Factors (TFs) are proteins which regulate gene expression bind-
ing to specific sequences of the promoter region of a gene. This
regulation brings to the transcription of genes into mRNAs,
which are in turn translated into proteins giving rise to a complex
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gene regulatory network. In a schematic representation of this
network, TF regulation of genes is represented by directed links
with a weight proportional to the strength of the regulation
on each gene; possible mutual interactions among genes are
also accounted for [36], [47]. Usually, measurements of the
activity of a large number of genes can be collected, but no
information is available about their regulators (i.e., the TFs).
Hence, retrieving the TF activity from gene expression data is a
challenging problem in gene regulatory networks.

Referring to the model (2), we may use the vector y(t) to
represent the measured expression profile of the genes of the
network in the t-th experiment. Describe the TF activity by
the variable x(t), the strength of the effect of the TFs on the
i-th gene of the network by the loading vector fi’s and the
gene mutual influences by the random vector ỹ(t), we obtain a
description of the network as a “flocking component plus local
interactions” model. Estimating the flocking component x(t)
due to the action of the TFs may constitute a preliminary step
towards understanding the TF activity in the network.

3) Modeling Energy Consumption: In this example, we may
want to model the energy consumption (or production) of a
network of N users distributed geographically in a certain area,
say a city or a region. The energy consumption yi(t) of user
i is a random variable which can be seen as the sum of the
two contributions in (2), where the term f�

i x(t), the flocking
component of the model, represents a linear combination of q
hidden variables xi(t) which model different factors affecting
the energy consumption (or production) of the whole ensemble;
say heating or air conditioning consumption related to seasonal
climatic variations, energy production related to the current
status of the economy etc. The factor vector x(t) determines the
average time pattern of energy consumption/production of each
unit, the importance of each scalar factor being determined by a
q-ple of constant weight coefficients fi,k. The terms ỹi(t), rep-
resent local random fluctuations which model the consumption
due to appliances or devices that are usually activated randomly,
for short periods of time. They are assumed uncorrelated with
the process x. The covariance Eỹi(t)ỹj(t) could be non-zero
for neighboring users but is reasonable to expect that it decays
to zero when |i− j| is large.

To identify such a model one should start from real data of
energy consumption collected from a large amount of units. A
possible application for such a model is the forecasting of the
average requirement of energy in a certain geographical area.

4) Dynamic Modeling in Computer Vision: Large-
dimensional time series occur often in signal processing appli-
cations, typically for example, in computer vision and dynamic
image processing. The role of identification in image process-
ing and computer vision has been addressed by several authors.
We may refer the reader to the survey [13] for more details
and references. One starts from a signal y(t) :=vec(I(·, t)),
obtained by vectorizing at each time t, the intensities I(·, t) at
each pixel of an image, into a vector, say y(t)∈R

N , with a
“large” number (typically tens of thousands) of components.
We may for instance be interested in modeling (and in identifi-
cation methodologies thereof) of “dynamic textures” (see [20]),
by linear state space models or in extracting classes of models
describing rigid motions of objects of a scene. Most of these

models involve hidden variables, say the state of linear models
of textures, or the displacement-angular velocity coordinates
of the rigid motions of objects in the scene. The purpose
is of course to compress high dimensional data into simple
mathematical structures. Note that the number of samples
that can be used for identification is very often of the same
order (and sometimes smaller) than the data dimensionality.
For instance, in dynamic textures modeling, the number of
images in the sequences is of the order of a few hundreds while
N (which is equal to the number of pixels of the image) is
certainly of the order of a few hundreds or thousands [6], [16].

C. Structure of the Paper

The organization of the paper is as follows: In Section II
we quickly review static finite-dimensional Factor Analysis; in
Section III following the basic definition of [23], we provide a
neat mathematical characterization of idiosyncratic sequences
(Theorem 3.1) which is believed to be new. In the following
Section IV, based on the characterization of idiosyncratic se-
quences, the notion of strong linear independence is introduced
and shown to be a crucial ingredient to provide a unique
representations by GFA models. New results characterizing the
factor loadings are presented in this section and related to the
condition of diverging eigenvalues from the literature on GFA.
The problem of representation by GFA models is discussed in
Section V. Here the proposed notion of q-aggregate sequence
from [23] is made concretely operational and a procedure to
compute asymptotically the factor and the idiosyncratic com-
ponents is presented for the first time. The literature on GFA
does not seem to distinguish between GFA representations of a
covariance matrix and of a random sequence. However while
the first may be unique there may be quite diverse random
components ŷ, ỹ yielding a GFA representation of the same
string y. To guarantee uniqueness one needs for example to
impose that ŷ, ỹ have components in H(y). An interpretations
of the two GFA components in terms of short and long range
interaction of a large ensemble of stochastic agents is discussed
in Section V-A. Also, new necessary and sufficient conditions
for a (weakly) stationary sequence to have a GFA representation
are presented at the end of the section in V-B. In Section VI,
which is believed to be completely original, dynamic GFA
representations of two classes of random fields of interest
in applications are discussed. Time-stationary random fields
provide in particular a wide class of linear stochastic models
which can describe complex systems arising in a variety of
applications in the system and control area. The extraction of
the flocking component for these systems reduces to the study
of an infinite dimensional Lyapunov equation.

Some of the material of this paper has been presented in a
preliminary form at conferences [7], [8].

II. A SHORT REVIEW OF STATIC

FACTOR ANALYSIS MODELS

Factor Analysis (FA) has a long history; it has apparently
first been introduced by psychologists and successively been
studied and applied in various branches of Statistics and
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Econometrics [5], [32]–[34]. Dynamic versions of factor mod-
els have also been introduced in the econometric literature,
see e.g., [24], [28], [43] and references therein. With a few
exceptions however, [30], [31], [39], [40], [45], [46], little at-
tention has been paid to these models in the system and control
engineering community. Recently, we have been witnessing a
revival of interest in FA, due to the generalization proposed by
Chamberlain, Rothschild, Forni, Lippi and collaborators in a
series of widely quoted papers [10], [11], [22], [23]. This new
modeling paradigm is attracting a considerable attention also in
the system identification community [3], [16]–[18], [44]. The
new models, called Generalized Factor Analysis (GFA) models,
although initially motivated by financial econometrics seem to
have a potential to be useful also in engineering applications.

A classical (static) Factor Analysis model is a representation
of N observable random variables y = [y(1) . . .y(N)]�, as
linear combinations of q common factors x = [x1 . . . xq]

�,
plus uncorrelated “noise” or “error” terms e = [e(1) . . .
e(N)]� of the type

y = Fx+ e. (3)

The columns {f1, f2, . . . , fq} of the matrix F , called the
factor loadings can be chosen linearly independent and the
common factors can be normalized in such a way that Exx� =
I , which we shall always assume in the following. An essential
part of the model specification is that the N components of
the error e should be (zero-mean and) mutually uncorrelated
random variables, i.e.,

Exe� = 0, Eee� = diag
{
σ2
1 , . . . , σ

2
N

}
. (4)

The aim of these models is to provide an “explanation” of the
mutual correlations of the observable variables y(i) in terms of
a small number of common factors, in the sense that, setting:
ŷ(k) :=

∑
fi(k)xi, where fi(k) is the k-th component of fi,

one has exactly Ey(i)y(j) = Eŷ(i)ŷ(j), for all i 
= j. Note
that a FA representation then induces a decomposition of the
covariance matrix Σ of y as

Σ = FF� + diag
{
σ2
e1
, . . . , σ2

eN

}
(5)

which can be seen as a special kind of low rank plus sparse
decomposition of a covariance matrix [12], [50], a diagonal
matrix being, in intuitive terms, as sparse as one could possibly
ask for.

Unfortunately, these models, although providing in many
circumstances a quite natural and useful data compression
scheme, suffer from a serious non-uniqueness problem coming
from the fact that, even for a fixed dimension q there are
in general many (generally infinitely many) statistically non-
equivalent FA models describing the same family of observ-
ables {y(1), . . . ,y(N)}. In addition, determining the minimal
integer q for which a FA decomposition holds for a given
symmetric positive definite matrix Σ has been an open problem
since the beginning of the last century. It is by now a well-
known fact that estimation of FA models (say minimal models
with F ’s of rank q and normalized factors) is an ill-posed
problem.

This inherent non-uniqueness is called “factor indetermi-
nacy,” or unindentifiability in the literature and the often acriti-
cal use of FA models has been vehemently criticized by Kalman
in a series of papers, see e.g., [30], [31]. Non-uniqueness of the
factors is an intrinsic difficulty common to stochastic models
with latent variables, whose role is to enforce some conditional
independence relation among the observables. As a rule the
choice of the latent variables is non-unique. It is known, see
[4], [37], [45], that a factor structure is also equivalent to a
relation of conditional independence of the observables given
the factors and this is in turn equivalent to the uncorrelation of
the noise components.

One may then try to obtain uniqueness by giving up or by
mitigating the requirement of uncorrelation of the components
of e. Obviously this tends to make the problem ill-defined
as the basic goal of uniquely splitting the external observable
signal into a noiseless component plus “additive noise” is made
vacuous, unless some extra assumptions are made on the model
and on the very notion of “noise.” Quite surprisingly, as we
shall see, for models describing an infinite number of observ-
ables a meaningful weakening of the uncorrelation property
can be introduced, so as to guarantee the uniqueness of the
decomposition.

III. STATIC GENERALIZED FACTOR ANALYSIS

AND IDIOSYNCRATIC SEQUENCES

In this section, we shall review Generalized Factor Analysis
restricting for now to the static case.

Consider a zero-mean finite variance stochastic process y :=
{y(k), k ∈ Z+} represented as a column vector with an infinite
number of random components. We want to represent y by an
infinite dimensional FA model of the form

y(k) =

q∑
i=1

fi(k)xi + ỹ(k), k = 1, 2, . . . (6)

where, in analogy to finite-dimensional FA, the random vari-
ables xi, i = 1, . . . , q are the common factors and the deter-
ministic vectors fi ∈ R

∞ the factor loadings. The xi form a
q-dimensional random vector x with orthonormal components;
i.e., Exx� = Iq. The ỹ(k)’s are zero mean random variables
orthogonal to (uncorrelated with) x. The linear combinations
ŷ(k) :=

∑
fi(k)xi; k = 1, 2, . . . are the components of an in-

finite random vector denoted ŷ which, together with the noise
terms ỹ(k), give the representation y = ŷ + ỹ, a compact way
to write the model (6) in vector form.

Which specific characteristics qualify the process ỹ as
“noise” is a nontrivial issue which will be the main theme of
this section and will lead to the concept of idiosyncratic random
sequence below. The underlying idea can be extracted from the
following example.

Example 3.1: Let 1l be an infinite column vector of 1’s,
let x be a zero-mean scalar random variable and ỹ a zero-
mean weakly stationary ergodic sequence uncorrelated with x.
Consider the FA model

y = 1lx+ ỹ
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and the sequence of vectors in R
∞

an =
1

n
[1 . . . 1︸ ︷︷ ︸

n

0 . . .]�. (7)

Since limn→∞ a�n1l = 1 and limn→∞ a�n ỹ =
limn→∞(1/n)

∑n
k=1 ỹ(k)= Eỹ(k) = 0 (limit in L2) we

have limn→∞ a�ny = x; hence we can recover the latent
factor by an operation of averaging. There are in fact more
general sequences an of infinite vectors, such that limn→∞ a�n1l
exists and is nonzero and in addition limn→∞ a�n ỹ = 0 for
processes like ỹ. These sequences recover x from the FA
model uniquely. �

The infinite covariance matrix of the vector y is formally
written as Σ := Eyy�. Let �2(Σ) denote the Hilbert space
of infinite sequences a := {a(k), k ∈ Z+} such that ‖a‖2Σ :=
a�Σa < ∞. When Σ = I , we use the standard symbol �2,
denoting the corresponding norm by ‖ · ‖2. The following
definition was introduced in [23]

Definition 3.1: A sequence {an}n∈Z+
⊂�2∩�2(Σ) is an av-

eraging sequence (AS) for y, if limn→∞ ‖an‖2 = 0.
We say that a sequence of random variables y is idiosyn-

cratic if limn→∞ a�ny = 0 for any averaging sequence an ∈
�2 ∩ �2(Σ).

Whenever the covariance Σ is a bounded operator on �2

one has �2(Σ) ⊂ �2; in this case an AS can be seen just as a
sequence of linear functionals in �2 converging strongly to zero.

The elements of the sequence (7) together with their limit
are clearly in �2 and form an averaging sequence. For a more
general class of AS’s, let Pn denote the compression of the n-th
power of the left shift operator to the space �2; i.e., [Pna](k) =
a(k − n) for k ≥ n and zero otherwise. Then limn→∞ Pna = 0
for all a ∈ �2 [25] so that {Pna}n∈Z+

is an AS for any a ∈ �2.
The nature of an idiosyncratic sequence is related to certain

properties of its covariance matrix. To explain this point, we
need to introduce some notations and facts about the eigenval-
ues of sequences of covariance matrices. We let Σn indicate
the top-left n× n block of Σ, equal to the covariance matrix of
the first n components of y, the corresponding n-dimensional
vector being denoted by yn. The inequality Σ > 0 means that
all submatrices Σn of Σ are positive definite, which we shall
always assume in the following. Letting Σ̂ := Eŷŷ� = FF�

and Σ̃ := Eỹỹ�, the orthogonality of the noise term and the
factor components implies that

Σ = Σ̂ + Σ̃ (8)

that is, Σn = Σ̂n + Σ̃n, ∀n ∈ Z+. Even imposing that Σ̂ should
be of low rank, this is a priori a highly non-unique decompo-
sition. There are situations/examples in which Σ̃ is diagonal
as in the finite-dimensional FA case, but these situations are
exceptional. Denote by λk(Σn) the k–th eigenvalue of the
n× n upper left submatrix Σn of Σ. The λk(Σn)’s are real
nonnegative and will always be ordered by decreasing magni-
tude. By Weyl’s theorem [52, p. 203], see also [23, Fact M],
the k–th eigenvalue of Σn is a non decreasing function of n
and hence has a limit, λk(Σ), which may possibly be equal to
+∞. Each such limit is called an eigenvalue of Σ. These limits

however are in general not true eigenvalues, as it is well-known
that Σ may not have eigenvalues. For example, a bounded
symmetric Toeplitz matrix has a purely continuous spectrum
[26]. Anyway since Σ is symmetric and positive, its spectrum
lies on the positive half line and its elements can be ordered.
Henceforth we shall denote by λ1(Σ) the maximal eigenvalue
of Σ, as defined above, with the convention that λ1(Σ) = +∞
when there are infinite eigenvalues. The following Lemma will
be instrumental in understanding the structure of idiosyncratic
processes.

Lemma 3.1: A symmetric matrix Σ defines a bounded oper-
ator on �2 if and only if λ1(Σ) is finite.

Proof: See the Appendix. �
A characterization of idiosyncratic sequences is stated in

the following theorem. The proof will also be given in the
Appendix.

Theorem 3.1: The sequence y is idiosyncratic if and only if
its covariance matrix defines a bounded operator on �2.

In particular, a white noise process with uniformly bounded
variance is idiosyncratic. This follows since the covariance
of a white noise process is a diagonal matrix with uniformly
bounded entries and therefore is a bounded operator. However
the notion of idiosyncratic process is much more general than
that of white noise. For example any (weakly) stationary purely
non deterministic process with a bounded spectral density is
idiosyncratic. See Section V-B.

A test for idiosyncracy of a random sequence can be based on
Lemma 3.1, whereby y is idiosyncratic if and only if λ1(Σ) is
finite; this last characterization is due to [23] (where however
the characterization in terms of boundedness of Σ was not
noticed).

IV. PURELY DETERMINISTIC SEQUENCES

The notion of a (discrete-time) purely deterministic random
sequence, or process, is well-known, see e.g., [14] which origi-
nated the terminology for not necessarily stationary processes.

Definition 4.1: Let q be a finite natural number. A sequence
y is purely deterministic of rank q (in short q-PD) if H(y) has
dimension q.

Clearly a q-PD sequence y is a (in general non-stationary)
purely deterministic process in the classical sense of the term.
More specifically, y is a q-PD random sequence if and only if
there are q deterministic infinite column vectors f1, f2, . . . fq
or, for short, an ∞× q matrix F = [f1 f2 . . . fq], such that

y(k) =

q∑
i=1

fi(k)xi, k ∈ Z+, or y = Fx (9)

for some random variables x1, . . . ,xq . Without loss of gener-
ality, the columns f1, f2, . . . fq can be assumed to be linearly
independent, for otherwise one of them could be expressed as
a linear combination of the others and eliminated. In this case
{x1, . . . ,xq} can be taken to be an orthonormal basis in H(y).

We want to relate this concept to the factor component of y,
as defined earlier. The factors will later on be shown to originate
the flocking component of y(t) in the time varying case. As it
stands the q-PD condition is however insufficient to guarantee
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uniqueness. Unfortunately it turns out that there are nontrivial
sequences representable in the form (9) which are idiosyncratic
(or contain idiosyncratic sequences). See the example below.

Example 4.1: Consider a sequence y whose k−th element is

y(k) = λkx , |λ| < 1 (10)

where x is a zero–mean random variable of positive variance
σ2. Clearly, y is 1-PD, its spanned subspace H(y) being the
one-dimensional space H(x). The covariance matrix of the first
n components of y is

Σn = Eyny
�
n = σ2

⎡
⎢⎢⎣

λ2 λ3 . . . λn+1

λ3 λ4 . . . λn+2

...
...

. . .
...

λn+1 λn+2 . . . λ2n

⎤
⎥⎥⎦ . (11)

Since rank(Σn) = 1 for every n, we have

λ1(Σ) = lim
n→∞

tr(Σn) = lim
n→∞

σ2
n∑

k=1

λ2k =
σ2λ2

1− λ2
(12)

thus, in force of Theorem 3.1, y is an idiosyncratic sequence.
Hence there are (non-stationary) q−PD sequences which are
idiosyncratic. �

This is a possibility which must clearly be excluded if the
decomposition (6) has to be unique.2 The question is which
properties need to be satisfied by the functions f1, f2, . . . fq for
y not to be an idiosyncratic sequence. One necessary condition
is easily found: the fi cannot be in �2 since otherwise any
sequence of functionals {an} in �2 converging to zero would
lead to

lim
n→∞

a�nfi = 0 (13)

so that limn→∞ a�ny = 0 as well. This is clearly the problem
with Example 4.1.

Proposition 4.1: If y is q−PD sequence with a uniformly
bounded variance, then the fi’s are uniformly bounded se-
quences; i.e., belong to the space �∞. If in addition y is not
idiosyncratic the fi’s belong to �∞ but cannot belong to �2.

Proof: The statement follows since ‖y(k)‖2 ≤ M2,
which is the same as

∑q
i=1 fi(k)

2 ≤ M2 implies that |fi(k)| ≤
M for all k’s. �

We now discuss conditions in terms of the covariance matrix.
Definition 4.2: A q-PD sequence y is q-aggregate if

rank(Σ) = q and limn→∞ λk(Σn) = +∞ for k = 1, . . . , q. In
short, there are only q nonzero eigenvalues of Σ which are all
infinite.

For q = 1 this condition just means that the (only) column of
F has �2-norm equal to infinity.

Proposition 4.2: A q-aggregate sequence y can be idiosyn-
cratic only if it is the zero sequence.

Proof: This follows trivially from Theorem 3.1. If q > 0
the maximal eigenvalue of the covariance matrix of y is +∞
by definition. �

2Note for example that Definition 2 in [11, p. 1294] is not enough to
guarantee uniqueness.

Hence, the condition guarantees some sort of uniqueness of
the decomposition (6). Of course the question is under what
conditions the q eigenvalues of Σ̂ may tend to infinity. The
notion of strong linear independence introduced below provides
an answer.

Definition 4.3: Let

f̃n
i := fn

i −Π [fn
i |Fn

i ] (14)

where Π is the orthogonal projection onto the Euclidean
space Fn

i = span {fn
j , j 
= i} of dimension q − 1. The vectors

fi, i = 1, . . . , q in R
∞ are strongly linearly independent if

lim
n→∞

∥∥∥f̃n
i

∥∥∥
2
= +∞ i = 1, . . . , q. (15)

In a sense, the tails of two strongly linearly independent
vectors in R

∞ cannot get “too close” asymptotically.
Theorem 4.1: Let y be a q−PD sequence, i.e., let

y(k) =

q∑
i=1

fi(k)xi, k ∈ Z+; (16)

then y is q−aggregate if and only if, the vectors fi, i = 1, . . . , q
are strongly linearly independent.

The proof is given in Appendix C.
Example 4.2: Consider the 2−PD sequence y(k) :=∑2
i=1 fi(k)xi, with

f1(k) = 1 for all k, f2(k) = 1−
(
1

2

)k

.

It is not difficult to check that this sequence does not sat-
isfy condition (15). We shall show that this sequence is not
2-aggregate. The Gramian matrix of the functions f1, f2 re-
stricted to [1, n] is

Fn�Fn =

[
‖fn

1 ‖22 〈fn
1 , f

n
2 〉2

〈fn
1 , f

n
2 〉2 ‖fn

2 ‖22

]

and it can be seen that as n → ∞, the second eigenvalue
converges to (5/3). Hence one eigenvalue of the covariance
matrix of y is finite and the sequence is not 2-aggregate. �

V. GFA REPRESENTATIONS: EXISTENCE

AND UNIQUENESS

Summing up Theorem 3.1, Theorem 4.1 and the uniqueness
result in Proposition 4.2 we obtain conditions on the covariance
Σ = Eyy� to describe processes admitting a GFA representa-
tion.

Definition 5.1: The covariance Σ has a GFA decomposition
of rank q if it can be decomposed as the sum of a matrix Σ̃
which is a bounded operator in �2, and a rank q perturbation
Σ̂ = FF�, namely

Σ=FF�+Σ̃, with F =[ f1 . . . fq ] , fi∈R
∞ (17)

where F ∈ R
∞×q has strongly linearly independent columns.
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Theorem 5.1: The infinite covariance matrix Σ has a GFA
decomposition of rank q if and only if for n → ∞, Σn has
q unbounded eigenvalues and λq+1(Σn) stays bounded as
n → ∞. A GFA decomposition of Σ is unique, modulo right
multiplication of F by a q × q orthogonal matrix.

This result is close to Chamberlain and Rothschild [11,
Theorem 4], where it is obtained via a quite different and rather
lengthy series of arguments.

Note that there may well be sequences (of positive symmet-
ric) Σn for which all eigenvalues tend to infinity. In this case
there is no GFA decomposition. When it applies, the criterion
can be seen as a limit of the well-known rule of separating
“large” from “small” eigenvalues in Principal Components
Analysis (PCA). Let fn

i ∈ R
n; i = 1, . . . , q be the eigenvectors

corresponding to the q (ordered) eigenvalues of Σn which
increase without bound when n → ∞. We normalize these
eigenvectors in such a way that Fn := [fn

1 . . . fn
q ] yields

Σ̂n = FnF
�
n . Then

lim
n→∞

FnF
�
n = FF�. (18)

See [11, Theorem 4 (ii), p. 1299] for a proof and a discussion.
Then convergence of {Fn} can be interpreted as column space
convergence in the gap metric, see [52, p. 260]. Although the
usual orthogonality of the fn

i in PCA does not make sense in
infinite dimensions as the limit eigenvectors do not belong to
�2, one may however interpret the strong linear independence
condition as a limit of the orthogonality holding for finite n.
Hence, we can (asymptotically) get q and F by a limit PCA
procedure on the sequence Σn.

Trivially, if a random sequence y admits a GFA representa-
tion then its covariance matrix has a GFA decomposition. On
the other hand, assume we are given a GFA decomposition
Σ̂ + Σ̃ of an infinite covariance Σ. How do we find the hidden
variables in the representation y = Fx+ ỹ?

This question has also to do with uniqueness of the repre-
sentation as there may be several non-equivalent choices of
x and ỹ compatible with a GFA decomposition of Σ. We
shall show that there is an essentially unique choice, under the
constraint that both x and ỹ belong to H(y). Models of this
kind are called internal in stochastic realization. The following
definition from [23] is meant to generalize the phenomenon
described in Example 3.1.

Definition 5.2: Let z ∈ H(y). The random variable z is
an aggregate (of y) if there exists an AS {an} such that
limn→∞ a�ny = z. The set of all aggregate random variables
in H(y) is a closed subspace denoted by F(y) called the
aggregation subspace of H(y).

Clearly, if y is an idiosyncratic sequence then F(y) = {0}.
One can then define an orthogonal decomposition of the type

y = E [y|F(y)] + u (19)

where E[·|F(y)] is the orthogonal projection operator onto the
subspace F(y), so that all components u(k) are uncorrelated
with F(y). The idea behind this decomposition is that, in case
F(y) is finite dimensional, say generated by a q-dimensional
random vector x, one may naturally identify u as the idiosyn-
cratic component and capture a unique decomposition of y of

the type (6). This intention is probably behind the analogous
decomposition in [23] but this idea cannot be pursued further
unless some further technical requirements are imposed, which
are so far unknown. There may be pathological situations in
which F(y) is finite dimensional, or in which F(y) = {0}, but
the process u is not idiosyncratic. Theorem 5.2 below asserts
that in the special case of stationary sequences, the construction
works if and only if the spectral density of u is in L∞.

Proposition 5.1: Assume that its covariance matrix Σ has a
GFA decomposition of rank q. Then y has a GFA representation
with q factors where both x and ỹ have components in H(y).

The Proof is in Appendix D.

A. Interpretation: Short and Long Distance Interaction

Imagine a scenario of an ensemble of infinitely many agents
distributed in space interacting randomly, producing as output
measurements the random variables y(k) = ŷ(k) + ỹ(k); k =
1, 2, . . ..

The covariances σ̃(k, j) = Eỹ(k)ỹ(j) measure the mutual
correlation of the idiosyncratic fluctuations of neighboring
agents ỹ(k), ỹ(j) located in positions k and j. Since Σ̃ is a
bounded operator in �2, it is a known fact [1, Section 26] that
σ̃(k, j) → 0 as |k − j| → ∞ so, in a sense the idiosyncratic
component ỹ of a GFA representation models only short range
interaction among the agents, as σ̃(k, j) is decaying to zero
when the distance |k − j| tends to infinity.

Whenever an ensemble can be described by an idiosyncratic
sequence, the agents which are far away from each other
essentially do not resent of mutual influence. The statement
holds in general, for every GFA model, although the decay of
the elements σ̃(k, j) may be faster depending on the particular
covariance structure. Just the opposite will be true for the
sequence ŷ.

On the other hand, Eŷ(k)ŷ(j) =
∑

i fi(k)fi(j) and the
elements of the column vectors fi cannot be in �2. In particular,
as stated in Proposition 4.1, fi ∈ �∞ when the variances of the
random variables y(k) are uniformly bounded.

In any case, since the components fi(k) do not decay with
distance, the products fi(k)fi(j) generically cannot vanish
when |k − j| → ∞. Therefore the factor loadings describe
“long range” correlation and the aggregate component ŷ of y
can be interpreted as variables modeling long range interaction
among the agents. In this sense ŷ models an average collective
behavior of the ensemble. This is in fact the core of the flocking
structure that will emerge as soon as the xi are allowed to
depend on time.

B. The Case of Stationary Sequences

The characterizations of GFA models discussed so far are for
general second order sequences, that is for processes y which
may well be non-stationarity with respect to the cross sectional
(space) index k. Much sharper results hold in the special case in
which the sequence y is (weakly) stationary; i.e., Ey(k)y(j) =
σ(k − j) for k, j ≥ 0. A complete analysis of this case cannot
be presented here and can be found in [7]. Here we shall just
report the main result.
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Let Hk(y) be the closed linear span of all random variables
{y(s); s ≥ k}. Introducing the remote future subspace of y:

H∞(y) =
⋂
k≥0

Hk(y) (20)

the sequence of orthogonal wandering subspaces Ek :=
Hk(y)�Hk+1(y) and their orthogonal direct sum Ȟ(y) =⊕

k≥0 Ek, it is well known, see, e.g., [19], [25], [49], that one
has the orthogonal decomposition

y = ŷ + y̌, ŷ(k) ∈ H∞(y), y̌(k) ∈ Ȟ(y) (21)

for all k ∈ Z+, the component ŷ being the purely deterministic
(PD), while y̌ the purely non-deterministic (PND) components.
The two sequences are orthogonal and uniquely determined.
Furthermore, it is well known that y̌ has an absolutely con-
tinuous spectrum with a spectral density function, say Sy(ω)
satisfying the log-integrability condition

∫
logSy(ω) dω >

−∞, while the spectral distribution of ŷ is singular with
respect to Lebesgue measure (for example consisting only
of jumps) possibly together with a spectral density such that∫
logSy(ω) dω = −∞, compare, e.g., [49].
Theorem 5.2: Assume that y is a stationary sequence with

dimH∞(y) < ∞ and an a.e. bounded spectral density. Then
H∞(y) ≡ F(y).

A stationary sequence admits a unique internal GFA repre-
sentation (6) with q factors if and only if it has a bounded
spectral density and the remote future space is of dimension
q. The aggregate component ŷ is the purely deterministic
component of y while the idiosyncratic ỹ is the purely non-
deterministic component.

Note that there are stationary processes with a finite dimen-
sional remote future space, whose PND component has an
unbounded spectral density. It follows from Szegö’s theorem
[49] that Σ̃ is an unbounded operator and these processes are
neither aggregate nor idiosyncratic.

In the papers [11], [23], stationarity with respect to the cross-
sectional index is not assumed. However, without stationarity,
there may be random sequences which fail to satisfy the eigen-
value conditions of Theorem 5.1 and do not admit a generalized
factor analysis representation. A precise characterization of
which class of non-stationary sequences admits a GFA repre-
sentation seems still to be an open problem.

VI. DYNAMIC GFA MODELS

We come back to dynamic modeling and to the question
raised in Section I-A namely when does a second order random
field have a flocking component. We shall initially restrict to
the case of processes which are stationary with respect to the
time variable which is a natural assumption to make in view of
statistical inference.

A time-dependent family y := {y(t); t ∈ Z} of infinite-
dimensional zero-mean random vectors, y(t), whose covar-
iance matrix,Σ(τ) :=Ey(t+τ)y(t)� is (finite and) independent
of t, will be called a time-stationary (second order) random
field. The following definition extends and makes precise the
finite-dimensional concepts introduced at the end of Section I.

Definition 6.1: We shall say that a time-stationary random
field has a dynamic GFA representation of rank q if it can be
written as

y(t) = Fx(t) + ỹ(t) (22)

where F ∈ R
∞×q has strongly linearly independent columns

and ỹ(t) is an idiosyncratic random field; i.e the covariance ma-
trix Σ̃(τ) := Eỹ(t+ τ)ỹ(t)� defines, for all τ ∈ Z, a bounded
linear operator in �2. The q dimensional factor process x(t) and
ỹ(t) are jointly stationary and uncorrelated, that is

Exi(t)ỹj(t) = 0, i = 1, . . . , q; j = 1, 2, . . . , t ∈ Z.

Without loss of generality, x(t) can be chosen with orthonormal
components; i.e., Ex(t)x(t)� = Iq.

Proposition 6.1: The stationary random field y := {y(t);
t ∈ Z} has a dynamic GFA representation (22) if and only
if y(0) has a static GFA representation with the same factor
loading matrix F , x ≡ x(0) and ỹ ≡ ỹ(0).

Proof: The proof of the direct implication is trivial. The
converse is proven in Appendix E. �

Incidentally, the proposition guarantees uniqueness of the
dynamic representation (22). The following criterion for the
existence of a flocking structure in a time-stationary random
field follows directly from Theorem 5.1 and the proposition
above.

Corollary 6.1: For a time-stationary random field, a flocking
structure exists with q factors if and only if q eigenvalues of the
steady state covariance matrix Σn of the n-dimensional random
subvector yn(t) of y(t), tend to infinity with n while the others
remain bounded.

We shall study a class of random fields described by linear
evolution equations of the general form

y(t+ 1) = Ay(t) +w(t) t ∈ Z (23)

where w is a string of uncorrelated stationary white noise
processes and A is an infinite matrix (a linear operator) acting
on infinite sequences. We assume that the evolution is stationary
in time so that the steady state covariance matrix of y(t) is
a constant positive definite matrix Σ, which should satisfy an
infinite dimensional Lyapunov equation

Σ = AΣA� +Q (24)

where Q is the variance matrix of the white noise which we
assume an infinite diagonal matrix with uniformly bounded
positive entries (it is actually no loss of generality assuming that
Q is the identity matrix). In this case, a GFA model of y will
also be stationary and the structure of the model can be inferred
by analyzing the covariance matrix Σ. To this end consider the
n-dimensional random sub-processes yn(t) of y(t), obeying
the equation

yn(t+ 1) = Any
n(t) +wn(t), n = 1, 2, . . . (25)

where An is the upper left n×n submatrix of A and the input
process wn(t) is the n-dimensional white noise with variance
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Ewn(t)wn(s)�=Qnδt,s, Qn being the upper left n×n sub-
matrix of Q, and study the behavior as n→∞ of the covariance
matrix of yn(t), solution to the family of Lyapunov equations

Σn = AnΣnA
�
n +Qn n = 1, 2, . . . . (26)

The existence of a flocking component can be addressed by
analyzing the asymptotic behavior of Σn when n → ∞. Some
families of matrices {An}n∈N are considered below.

A. Autonomous Agents

In this scenario, the behavior of each agent is independent of
the others, being just an autoregressive motion of the type

yk(t+ 1) = akyk(t) +wk(t), sup
k∈N

|ak| < 1. (27)

In this case, An = diag{a1, . . . , an} and the family of
Lyapunov (26) admits diagonal (nested) solutions with uni-
formly bounded elements. Hence, in this case the resulting
sequence is idiosyncratic noise with uncorrelated components
and there is no flocking structure.

B. Flocking by Following a Leader

As discussed in [51], flocking may be observed in hierarchi-
cal leadership models where the evolution of the first n agents
influences that of the agents of index k > n but not conversely
so the matrix of the operator A has a nested lower triangular
structure of the type

An+1 =

[
An 0
b�n an+1

]
(28)

where |an+1| < 1 to keep the asymptotic stability of An pre-
served.

A very simple instance is the following linear model where
each agent, evolving with the same scalar random dynamics,
wants to follow a leader by applying a proportional control law
based on the measurement of its position with respect to the
leader’s y1(t)

y1(t+ 1) = ay1(t) +w1(t), |a| < 1

yk(t+ 1) = (1− a)y1(t) + ayk(t) +wk(t), k = 2, 3, . . .

The question is if following a leader should, under appropriate
circumstances, produce a random flock. The steady-state co-
variance matrices of yn(t) solves the Lyapunov (26) for the
model

⎡
⎢⎣
y1(t+ 1)
y2(t+ 1)

. . .
yn(t+ 1)

⎤
⎥⎦=

⎡
⎢⎢⎢⎣

a 0 . . . 0

1− a a
...

... 0
. . . 0

1− a . . . a

⎤
⎥⎥⎥⎦
⎡
⎢⎣
y1(t)
y2(t)
. . .

yn(t)

⎤
⎥⎦+
⎡
⎢⎣
w1(t)
w2(t)
. . .

wn(t)

⎤
⎥⎦

and it is possible to show that indeed a flocking structure is
present.

Proposition 6.2: Assume for simplicity that Qn=In. The
solution of the Lyapunov (26) tends for n→∞ to a covariance
matrix of the form Σ=ff�+Σ̃ where f ∈R

∞ has components

fk =

⎧⎪⎪⎨
⎪⎪⎩

a

(1−a4)
1
2
, k = 1

(1+a2)
1
2[

(1+a)(1−a2)
1
2

] , k > 1

and Σ̃ is a bounded operator in �2. Hence

y(t) = fx(t) + ỹ(t), x(t) =
(
1− a4

) 1
2 y1(t− 1),

Var ỹ(t) = Σ̃.

The calculations and the structure of Σ̃ are in Appendix F. Note
that the infinite matrix A does not define a bounded operator
on the whole space �2 since the first column is not square
summable (it just belongs to �∞) the domain being the linear
subspace of all sequences in �2 having zero initial symbol.

C. Infinite-Dimensional Distributed Average Consensus

Assume that the k-th agent adjusts its output in discrete time
by a symmetric linear relation

yk(t+1)=akyk(t)+
∑
j∈Nk

ak,j (yj(t)−yk(t))+wk(t) (29)

where k = 1, 2, . . . and the sum is over the set of neighbors Nk

of each state k, which we assume to be a finite set. The overall
motion can be described as

y(t+ 1) = Ay(t) +w(t) (30)

starting at some initial state y(0). Here, A is a matrix with
positive elements such that

A = A� A1l = 1l

an infinite doubly stochastic matrix. The state of (30) is not
stationary since it has a random walk component. We want to
see if for some averaging sequence {an} the limit

lim
n→∞

a�nx(t)

is non-zero. This would imply the existence of a flocking
component. Problems of this kind have been studied in the
finite-dimensional setting in [58]. Here we study a slightly
different model, obtained by modifying (29) so as to deal with
an infinite number of agents. Let us assume that:

1) for each n ≥ n0, where n0 is a fixed initial integer, the
symmetric doubly stochastic matrix An, achieves consen-
sus on the first n agents;

2) define a sequence of matrices Ān := (1− (1/n))An, and
assume that consensus is reached as n → ∞.

Denoting by Ā the limit of the sequence {Ān, n ∈ N}, the
following result holds.
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Proposition 6.3: The model

y(t+ 1) = Āy(t) +w(t), Q = I (31)

admits a flocking structure. The relative GFA decomposition
has one (q = 1) latent factor.

The proof is in Appendix G.

D. Generalizations

In both the above examples, the matrix A can be decomposed
as the sum of a bounded operator in �2 plus an unbounded
rank one perturbation in �∞. It then happens that the unbounded
solution of the Lyapunov equation has exactly the same column
space and the same rank as the unbounded perturbation of A.
Although we do not have a rigorous proof, this seems likely
to be a general fact. Let us assume for simplicity that A is
symmetric and is a direct sum of a finite, rank q perturbation
plus a bounded operator in �2, defined on F ⊕ �2 where F
has dimension q, which are complementary invariant subspaces.
For each finite n, we therefore have a block decomposition

A[F G] = [F G]diag{Â, Ã}

where for n → ∞ the q columns of F belong to �∞ but not to
�2 while G is a unitary operator in �2. Writing formally T :=
[F G], we have A = Tdiag{Â, Ã}T−1 and also

Ak = Tdiag{Âk, Ãk}T−1.

Since Q is diagonal, letting T−1QT−∗ := diag{Q̂, Q̃}, the
solution of (24) can be written as

Σ= [F G]diag

{
+∞∑
k=0

ÂkQ̂
[
Â�
]k

,

+∞∑
k=0

ÃkQ̃
[
Ã�
]k}[F�

G∗

]

=FP̂F� +GP̃G∗

where P̂ ∈ R
q×q and P̃ are symmetric and positive with P̃

bounded in �2. Hence, when A has q eigenvectors in �∞ (but not
in �2), the steady-state covariance has a GFA decomposition.

Changing basis in (23) by letting y(t) = [F G]

[
x̂(t)
x̃(t)

]
so

that [
x̂(t+ 1)
x̃(t+ 1)

]
= diag{Â, Ã}

[
x̂(t)
x̃(t)

]
+

[
ŵ(t)
w̃(t)

]

we end up with a GFA decomposition y(t) = ŷ(t) + ỹ(t)
where the two components

ŷ(t) = F x̂(t), ỹ(t) = Gx̃(t)

are the flocking and the idiosyncratic parts of y(t). Note that
the noise components ŵ(t) and w̃(t) are mutually uncorrelated
and hence so are ŷ(t) and ỹ(t).

E. Separable Space-Time Processes

Random fields which are often encountered in geostatistics,
hydrology, marine wave models, meteorology, and environmen-

tal applications, see e.g., [38] and the references therein, belong
to the class of so-called separable space-time processes

y(k, t) =
m∑
i=1

vi(k)ui(t) (32)

represented as the product of a space, v(k) :=
[v1(k)v2(k) . . .vm(k)], and time component, u(t) :=
[u1(t)u2(t) . . .um(t)]�, both zero mean and with finite
variance. In general, one should take m = ∞ [56] but finite
dimensional approximations are often enough. To discuss
these models, one should generalize the static theory in the
preceding sections to m-vector-valued processes. Although
this is quite straightforward, involving no new concepts but just
more notations, for the sake of clarity we shall restrain to the
scalar case m = 1.

The model (32) needs to be specified probabilistically, as
the dynamics of the “time” process {u(t)} may well be space
dependent and dually, the distribution of v(k) may be a priori
time-dependent. The following assumption specifies in prob-
abilistic terms the multiplicative structure (32) of the random
field y(k, t).

Assumption: The space and time evolutions of y(k, t) are
multiplicatively uncorrelated in the sense that

E {v(k1)v(k2)|u(t1)u(t2)} = Ev {v(k1)v(k2)} (33)

where the first conditional expectation is made with respect to
the conditional probability distribution of v given the random
variables u(t1),u(t2), while the second expectation is with
respect to the marginal distribution of v.

From the multiplicative uncorrelation (33) one gets

E {v(k1)v(k2)u(t1)u(t2)}=E {v(k1)v(k2)}E {u(t1)u(t2)}
=σv(k1, k2)σu(t1, t2) (34)

where σv and σu are the covariance functions of the two
processes. Hence the covariance function of the random field
inherits the separable structure of the process. If v and u
are jointly Gaussian, the multiplicative uncorrelation property
follows if the two components are uncorrelated; namely their
joint covariance is separable. This is a structure which is
often assumed in the literature, see [35] and references therein.
Assume now that the space process has a nontrivial GFA
representation with q factors

v(k) =

q∑
i=1

fi(k)zi + ṽ(k) (35)

where v̂(k) :=
∑

i fi(k)zi is the aggregate and ṽ(k) the id-
iosyncratic component of v(k). Then setting xi(t) = ziu(t)
and ỹ(k, t) := ṽ(k)u(t) one can represent the random field
(32) by a dynamic GFA model

y(k, t)=

q∑
i=1

fi(k)xi(t)+ỹ(k, t) := ŷ(k, t)+ỹ(k, t). (36)

Proposition 6.4: If the processes v and u are multiplica-
tively uncorrelated then the two terms ŷ(k, t) and ỹ(h, s) in
the GFA model (36) are uncorrelated for all k, h and t, s.
Hence a separable random field satisfying the multiplicative
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uncorrelation property has a flocking component if and only
if its space process v has a nontrivial aggregate component.

Proof: We have

E {ŷ(k, t)ỹ(h, s)} =

q∑
i=1

fi(k)E {ziu(t)ṽ(h)u(s)} (37)

where the expectation in the last term can be written as

E {ziṽ(h)u(t)u(s)} =E {Ev [ziṽ(h)|u(t)u(s)]u(t)u(s)}
=E {Ev [ziṽ(h)]u(t)u(s)} = 0 (38)

since the zi’s are random variables in H(v̂) and ṽ(h) is orthog-
onal to this space. The last statement then follows directly. �

Here is probably the simplest nontrivial example of decom-
position (36).

Example 6.1 (Exchangeable Space Processes): Consider a
(weakly) exchangeable space process v; i.e., a process whose
second order statistics are invariant with respect to all in-
dex permutations of locations (k, j). Clearly the covariances
σv(k, j) = Ev(k)v(j) must be independent of k, j for k 
= j
and σv(k, k) = σ2 > 0 must be independent of k, see [2].
Letting ρ := σv(k, j), k 
= j, one has

Σv =

⎡
⎣ σ2 ρ ρ ρ . . .

ρ σ2 ρ ρ . . .

. . .
. . . . . .

⎤
⎦ (39)

where σ2 > |ρ| for positive definiteness. Letting f denote an
infinite column vector with components all equal to ρ, one can
decompose Σv as

Σv = ff� + (σ2 − ρ)I (40)

where I denotes an infinite identity matrix. This is a Factor
Analysis decomposition of rank q = 1 of Σv with Σ̃v a di-
agonal matrix. Hence a weakly exchangeable space process is
a 1-factor process with an idiosyncratic component which is
actually white. In the GFA representation (35), there is just one
factor z and the factor loading vector f does not depend on the
space coordinate. �

Consider a random field with the multiplicative structure
(32), then the flocking component

ŷ(k, t) = fx(t), x(t) = zu(t)

describes a constant, space independent, configuration moving
randomly in time.

VII. CONCLUSION

We have proposed a new modeling paradigm for large di-
mensional aggregates of random systems based on the theory of
Generalized Factor Analysis. We have discussed in some depth
static GFA representations and characterized in a rigorous way
their properties, especially the nature of the idiosyncratic and
aggregate components and provided new conditions guarantee-
ing uniqueness of the representation. We have shown that the
model splits the output y of the system into two components

describing the short- and long- range interaction among the
agents of the ensemble. For wide-sense stationary ensembles,
the nature and existence of these components can be clarified
in the light of the Wold decomposition. For time-dependent
evolutions, the aggregate component provides the core structure
of the (random) flocking component. A detailed analysis of
interesting classes of random fields, such as the linear evolution
equation in (23), by using the decomposition of the steady state
covariance has just been touched upon. Visibly, there is here
ample room for further research on specific structures. Also the
statistical identification had regrettably to be left out and will
be considered in forthcoming publications.

APPENDIX

A. Proof of Lemma 3.1

Let λ1(Σn) be the maximal eigenvalue of Σn. Since

Σn ≤ λ1(Σn)In ≤ λ1(Σ)In (41)

where In is the n× n identity matrix and λ1(Σ) < ∞ by
assumption, it follows that for all sequences x, y ∈ �2

xnΣny
n ≤ λ1(Σ)‖xn‖2‖yn‖2, n = 1, 2, . . . (42)

Then the result follows from the theorem in [1, p. 53].

B. Proof of Theorem 3.1

Assume first that limn→∞ λ1(Σn) = +∞. Since Σn > 0 is
symmetric it has a spectral representation

U�
nΣnUn = Dn (43)

where Un is orthonormal and Dn =
diag{λ1(Σn), . . . , λn(Σn)}. Consider the first column of
Un, say un

1 , which is the eigenvector of λ1(Σn) and define the
sequence of elements in �2 ∩ �2(Σ) constructed as

an :=
1√

λ1(Σn)

[
(un

1 )
� 0 . . .

]�
, n = 1, 2, . . . .

(44)
Since limn→∞ λ1(Σn) = +∞, this is an AS, for which∥∥a�ny∥∥2 =

1

λ1(Σn)
(un

1 )
� Σnu

n
1 = 1 (45)

for every n and hence the sequence y cannot be idiosyncratic.
Conversely, suppose that λ1(Σ) < +∞ and again use the

diagonalization (43). Let an be an arbitrary AS and consider the
random variable z = limn→∞ a�ny = limn→∞ an�n yn, which
has variance

var[z] = lim
n→∞

(ann)
� UnDnU

�
n a

n
n := (dnn)

� Dnd
n
n (46)

where the vector dnn := U�
n a

n
n is used to form the first n

elements of an infinite string, say dn, whose remaining entries
are taken equal to those of an; i.e., dn(k) = an(k) for k > n.
Clearly dn is an AS.
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Since (dnn)
�Dnd

n
n =

∑n
k=1 λk(Σn)dn(k)

2, one can write

var[z] = lim
n→∞

n∑
i=1

λk(Σn)dn(k)
2 ≤ lim

n→∞
λ1(Σ)

n∑
k=1

dn(k)
2

= lim
n→∞

λ1(Σ) ‖dn‖22 = 0

which shows that y is idiosyncratic.

C. Proof of Theorem 4.1

First we prove the sufficiency of condition (15). Let k be a
fixed positive constant and let f1 be such that

lim
n→∞

‖fn
1 −Π [fn

1 |Fn
1 ]‖2 = k

1
2 < +∞. (47)

Let

f̃n
1 = fn

1 −Π [fn
1 |Fn

1 ] = fn
1 − αn

2 f
n
2 − · · · − αn

q f
n
q ; (48)

whence, defining F̃n := [f̃n
1 fn

2 . . . fn
q ], one can write F̃n =

FnTn, with Tn is a full rank matrix of the form

Tn =

[
1 0

−αn Iq−1

]
(49)

where αn := [αn
2 . . . αn

q ]
�. Since f̃n

1 ⊥fn
i , i 
= 1, the Gramian

matrix of F̃n is block diagonal,

F̃n�F̃n =

[∥∥∥f̃n
1

∥∥∥2 0

0 An

]
(50)

where An is a positive definite matrix whose eigenvalues tend
to infinity as n increases. Note that the spectrum of F̃n�F̃n

contains the eigenvalue ‖f̃n
1 ‖2, which, for n → ∞, converges

to k < +∞. Now, let us compute the trace of both sides of the
identity Tn(F̃n�F̃n)−1Tn� = (Fn�Fn)−1 obtaining

tr
[
(Fn�Fn)−1

]
=tr

[
Tn(F̃n�F̃n)−1Tn�

]
=tr

[
Tn�Tn(F̃n�F̃n)−1

]
=tr

[
1 + ‖αn‖2 −α�

n

−αn Iq−1

] [
k−1 0
0 A−1

n

]

=tr

[
k−1(1 + ‖αn‖2) −α�

nA
−1
n

−αnk
−1 A−1

n

]
= k−1

(
1 + ‖αn‖2

)
+ tr

[
A−1

n

]
. (51)

Since the eigenvalues of An tend to infinity, those of A−1
n tend

to zero, while, for every n we have k−1(1 + ‖αn‖2) > 0. Thus,
one eigenvalue of (Fn�Fn)−1 is bounded below by a fixed
constant as n tends to infinity. Hence, we conclude that one
eigenvalue of Fn�Fn remains bounded as n tends to infinity,
which is a contradiction.

For the necessity, we define fn1,n2

i := [fi(n1) . . . fi(n2)]
�

and observe that condition (15) implies that

lim
n→∞

‖fn1,n
i −Π [fn1,n

i |Fn1,n
i ]‖2 = +∞ (52)

for every index i = 1, . . . , q and natural number n1. Moreover,
by definition of limit, we have that for every n1 ∈ N and K ∈
R+ there exists an integer n2 such that the inequality (with an
obvious meaning of the symbols)

‖fn1,n2

i −Π [fn1,n2

i |Fn1,n2

i ]‖22 ≥ K (53)

holds for every i = 1, . . . , q.
Now, consider the sequence generated by the q-th eigenvalue

of the matrix Fn�Fn, say {λn
q ;n ∈ N}. Our goal is to show

that for every natural n1 and arbitrary constant c > 0 there
exists a natural number n2 such that λn2

q ≥ λn1
q + c, so that

limn→∞ λn
q = +∞. To this end, fix c and, for a generic n1, con-

sider the normalized eigenvector of the q-th eigenvalue of the
matrix Fn2�Fn2 , say vn2

q . Since for every n2 > n1 it holds that

Fn2�Fn2 = Fn1�Fn1 + Fn1,n2�Fn1,n2 (54)

we can write

λn2
q = vn2�

q Fn1�Fn1vn2
q + vn2�

q Fn1,n2�Fn1,n2vn2
q . (55)

Consider the first term on the right side of this identity;
expressing vn2

q as a linear combination of the eigenvectors of
Fn1�Fn1 , i.e., vn2

q = α1v
n1
1 + · · ·+ αqv

n1
q , the orthogonality

of these eigenvectors implies that

vn2�
q Fn1�Fn1vn2

q =λn1
1 α2

1 + · · ·+ λn1
q α2

q≥λn1
q

q∑
i=1

α2
i =λn1

q

(56)
so that

λn2
q ≥ λn1

q + vn2�
q Fn1,n2�Fn1,n2vn2

q . (57)

Now we have to show that we can always find an integer n2

such that the quantity

vn2�
q Fn1,n2�Fn1,n2vn2

q

can be chosen arbitrarily large, i.e., greater or equal to the
previously fixed constant c. To this end, take n2 such that for
every i = 1, . . . , q the inequality (53) holds, with K = c

√
q.

Then, there is an index i such that the i-th component of the
norm one vector vn2

q = [w1 . . . wq]
�, satisfies the inequality

wi ≥ (1/
√
q). Without loss of generality we may and shall

assume that i = 1. Let α2 . . . αq be defined as in (48) and set

f̃n1,n2

1 := fn1,n2

1 − α2f
n1,n2

2 − · · · − αqf
n1,n2
q (58)

so that we have

vn2�
q Fn1,n2�Fn1,n2vn2

q =vn2�
q Tn�

[
‖f̃n1,n2

1 ‖2 0
0 An

]
Tnvn2

q

(59)

where Tn has the same structure as in (49). Now, observe that

Tnvn2
q = [w1 −α2w1 + w2 . . . −αqw1 + wq ]

� (60)

which implies that (59) is equal to w2
1‖f̃

n1,n2

1 ‖2 +Q,
where Q is a positive constant. Hence, from (58) we have
vn2�
q Fn1,n2�Fn1,n2vn2

q > c and hence, recalling (57)

λn2
q ≥ λn1

q + c (61)

which proves the theorem.
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D. Proof of Proposition 5.1

By a standard Q-R factorization we can orthogonalize the
columns of Fn

[ fn
1 fn

2 . . . fn
q ]

= [ gn1 gn2 . . . gnq ]

⎡
⎢⎢⎢⎢⎢⎢⎣

1 r1,2 r1,3 . . . r1,q
0 1 r2,3 . . . r2,q

0 0 1
. . . r3,q

. . . . . . . . .
. . . . . .

0 0 0 . . . 1

⎤
⎥⎥⎥⎥⎥⎥⎦ (62)

which we shall write compactly as

Fn = QnRn (63)

where Qn := [gn1 gn2 . . . gnq ] has orthogonal columns. It is well-
known that each gni can be obtained by a sequential Gram-
Schmidt orthogonalization procedure as the difference of fn

i

with its projection onto the subspace span{fn
j , j < i} ⊂ Fn

i .

Hence ‖gni ‖ ≥ ‖f̃n
i ‖ and hence, by assumption, tends to ∞

when n → ∞.
Next, define

a�i,n :=
1

‖gni ‖22
[ gni (1) gni (2) . . . gni (n) 0 . . . ] (64)

where the gni ’s are as defined above. Since ‖gni ‖2 → ∞ with
n, we have ‖ai,n‖2 = 1/‖gni ‖2 → 0 as n → ∞. Hence ai,n is
an AS.

Note that we can express each fn
i as fn

i = gni +
∑i−1

j=1 rj,ig
n
j

so that

a�i,nfi =
1

‖gni ‖
2
2

‖gni ‖22 = 1 (65)

for all n large enough and by a similar calculation one can easily
check that a�i,nfj = 0, for all j < i. With these ai,n construct a
sequence of q ×∞ matrices

An :=

⎡
⎣ a�1,n

. . .
a�q,n

⎤
⎦ (66)

which provides an asymptotic left-inverse of F , in the sense that
limn→∞ AnF = R, where R is the limit of a sequence of q × q
matrices all of which are upper triangular with ones on the main
diagonal. Next, define the random vector zn := Any which
converges as n → ∞ to a q-dimensional z whose components
must belong to F(y). These q components form in fact a basis
for F(y) as the covariance Eznz

�
n converges to RR� which is

non singular. From this, one can easily get an orthonormal basis
x, in H(ŷ). Hence, since F is known, we can form ŷ = Fx
and letting ỹ := y − ŷ does yield a GFA representation of y
inducing the given GFA decomposition of Σ. Uniqueness is
then guaranteed in force of Proposition 4.2.

E. Proof of Proposition 6.1

For infinite covariance matrices we have the positive semidef-
inite ordering Σ1≤Σ2 if and only if a�(Σ1−Σ2)a≤0 for all
finite support sequences a∈R

∞. Let y(t) be a time-stationary
random field with matrix covariance function Σ(τ) :=Ey(t+
τ)y(t)�. For any finite support sequence a∈R

∞ the scalar
covariance function σz(τ) of the process z(t) :=a�y(t) satis-
fies the well-known (Schwartz) inequality σz(τ)≤σz(0); hence
the matrix covariance function of a stationary process satisfies
Σ(τ)≤Σ(0). It follows that if Σ(0) is a bounded operator in �2

then all covariances Σ(τ) must also be bounded. The following
lemma is a straightforward consequence of this fact.

Lemma A.1: A time-stationary random field y(t) is idiosyn-
cratic; that is

lim
n→∞

a�ny(t) = 0, for any t ∈ Z

for all AS’s an, if and only if y(0) is an idiosyncratic sequence.
The lemma above implies in particular that a covariance

function Σ(τ) is the covariance of an idiosyncratic stationary
random field if and only if Σ(0) is a bounded operator on �2.

Now assume that Σ(0) has a static GFA decomposition of
rank q and let x and ỹ be constructed as in the proof of
Proposition 5.1 so that the vector y(0) has a GFA representation

y(0) = Fx+ ỹ

where x and ỹ have uncorrelated components belonging to
H(y(0)). Let H(y) denote the closed linear span of the scalar
components of the random field y; i.e.,

H(y) := closure of

⎧⎨
⎩∑

k,t

ak,ty(k, t); k = 0, 1, 2, . . . ; t ∈ Z

⎫⎬
⎭

where the real numbers ak,t are arbitrary but non zero only for
a finite set of values of the indices. Let U : H(y) → H(y) be
the forward shift operator of the process defined, for all finite
support vectors a, by

Ua�y(t) = a�y(t+ 1), t ∈ Z.

It is well known that U can be extended to the whole of H(y)
as a unitary operator [49] and that every scalar random variable
z ∈ H(y) can be propagated in time by the action of the shift
as z(t) := U tz to form a stationary scalar process. This unitary
propagation can in fact be applied to vector random variables
of arbitrary dimension.

It follows hat x(t) := U tx and ỹ(t) := U tỹ have uncor-
related components for all t. Moreover, by Lemma A.1 the
stationary process ỹ(t) is idiosyncratic and ŷ(t) := Fx(t) is
a flocking process since the columns of F are strongly linearly
independent.

F. Proof of Proposition 6.2

Consider first the case n = 3 and write the solution to the
related Lyapunov equation as

Σ3 =

⎡
⎣ p1 p2 p3
p2 p4 p5
p3 p5 p6

⎤
⎦ . (67)
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Then, simple calculations show that

p1 =
1

1− a2
, p2 = p3 =

a

(1 + a)(1− a2)

p4 = p6 =
1

1− a2
+

1

(1 + a)2
+ 2

a2

(1 + a)2(1− a2)

p5 =
1

(1 + a)2
+ 2

a2

(1 + a)2(1− a2)
. (68)

Now assume that, for a given n ≥ 3, the solution to the equation
Xn −AnXnA

�
n = In has the form

Σn =

⎡
⎢⎢⎢⎢⎢⎢⎣

p1 p3 p3 p3 . . . p3
p3 p4 p5 p5 . . . p5
p3 p5 p4 p5 . . . p5
...

...
. . .

. . .
. . .

...
p3 p5 . . . p5 p4 p5
p3 p5 . . . p5 p5 p4

⎤
⎥⎥⎥⎥⎥⎥⎦ ; (69)

our goal is to show that Σn+1 has an analogous structure, that is

Σn+1 =

[
Σn p
p� p4

]
(70)

where p = [p3 p5 . . . p5]
�. To this end, express the variable

Xn+1 as

Xn+1 =

[
Xn z
z� u

]
and the matrix An+1 as

An+1 =

[
An 0
b� a

]

where b = [1− a 0 . . . 0]�. Then the related Lyapunov equa-
tion has the form[

Xn z
z� u

]
−
[
An 0
b� a

] [
Xn z
z� u

] [
A�

n b
0 a

]
= In+1 (71)

which can be rewritten as[
Xn−AnXnA

�
n (In−aAn)z−AnXnb

z�
(
In−aA�

n

)
−b�XnA

�
n

(
1−a2

)
u−b�Xnb−2ab�z

]
=

[
In 0
0 1

]
. (72)

The top-left block of (72) admits the solution given by (69).
Then, by inserting this into the top-right block, one then gets
z = p. Finally, by exploiting the former findings, from the
bottom-right block one has u = p4, and hence the solution is
exactly (70). Hence, one can easily observe that the matrix Σ̄n,
obtained by discarding the first row and column from Σn, has
the structure⎡

⎣ p5 p5 . . .
p5 p5
...

. . .

⎤
⎦+ diag{p4 − p5, . . . , p4 − p5} (73)

that is, it admits a rank-one plus diagonal decomposi-
tion, where the vector generating the rank-one matrix is
f̄ = [

√
p5

√
p5 . . .], with

√
p5 = (1 + a2)(1/2)/((1 + a)(1−

a2)(1/2)), while the elements of the diagonal matrix are p4 −

p5 = 1/(1− a2). Now, to complete the proof we need to show
that also the matrix Σn admits a similar decomposition, i.e.,

Σn =

[
f0
f̄

]
+ diag

{
σ2
0 ,

1

(1− a2)
, . . . ,

1

(1− a2)

}
.

This can be done be observing that, for any integer k > 0, it has
to be p3 = f0f̄(k), and so f0 = a/(1− a4)(1/2). Moreover, σ2

0

is easily found by computing σ2
0 = p1 − f2

0 = 1. Finally, since
by comparing the leader dynamics

y0(t) = ay0(t− 1) +w0(t− 1)

with its GFA decomposition

y0(t) = f0x(t) + ỹ0(t)

where both ỹ0(t) and w0(t− 1) are white noise with the same
variance, it has to be that x(t) = (1− a4)(1/2)y0(t− 1).

G. Proof of Proposition 6.3

For n ≥ n0, consider the Lyapunov equation Σn =
ĀnΣnĀ

�
n + In, whose solution can be written

Σn =

∞∑
j=0

Āj
n

(
Āj

n

)�
. (74)

Since Ān is symmetric, for every j the decomposition

Āj
n

(
Āj

n

)T
= UnS

2j
n U�

n

holds, with Sn being the matrix of the singular values of A
and Un a unitary matrix whose columns are the (normalized)
eigenvectors of Ān. Note that one of such singular values is
(1− (1/n))2 and the relative eigenvector is (1/

√
n)1ln, i.e., the

normalized vector of all 1’s in ∈ R
n. The other eigenvalues are

strictly stable. Then we can express Σn as

Σn =Un

⎛
⎝ ∞∑

j=0

S2j
n

⎞
⎠U�

n

=
1l√
n

⎛
⎝ ∞∑

j=0

(
1− 1

n

)2j
⎞
⎠ 1l√

n

�
+ Ũn

⎛
⎝ ∞∑

j=0

S̃2j
n

⎞
⎠ Ũ�

n

=1l
n

2n+ 1
1l� + Ũn

⎛
⎝ ∞∑

j=0

S̃2j
n

⎞
⎠ Ũ�

n (75)

where Ũn and S̃n are obtained from Un and Sn by removing
the parts related to the eigenvalue (1− (1/n))2. Now, take the
averaging sequence (7)

an =
1

n

[
1l�n0 . . .

]
, 1ln ∈ R

n (76)

and apply it to Σn, that is, compute (1/n)1l�nΣn1ln(1/n). Then,
letting n → ∞, the second term on the right hand side of (75)
vanishes, while the first term gives

1l�n1ln1l
�
n1ln

n(2n+ 1)
=

n

2n+ 1
(77)
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which converges asymptotically to a finite value. One can easily
verify that the averaging sequence (76) is the only sequence
converging to nonzero values.

REFERENCES

[1] N. I. Akhiezer and I. M. Glazman, Theory of Linear Operators in Hilbert
Space Vol I. New York: Fredrik Ungar Pub. Co., 1961.

[2] D. Aldous, “Exchangeability and related topics,” in École d’Été de Prob-
abilités de Saint-Flour XIII, vol. 1117, 1985, ser. Springer Lecture Notes
in Mathematics, pp. 1–198.

[3] B. D. O. Anderson and M. Deistler, “Generalized linear dynamic factor
models—A structure theory,” in Proc. of the IEEE Decision and Control
Conference (CDC), 2008.

[4] D. J. Bartholomew, “The foundations of factor analysis,” Biometrika,
vol. 71, no. 2, pp. 221–232, 1984.

[5] P. A. Bekker and J. de Leeuw, “The rank of reduced dispersion matrices,”
Psychometrika, vol. 52, no. 1, pp. 125–135, 1987.

[6] A. Bissacco, A. Chiuso, and S. Soatto, “Classification and recognition of
dynamical models: The role of phase, independent components, kernels
and optimal transport,” IEEE Trans. Pattern Analysis and Machine Intel-
ligence, vol. 29, no. 11, pp. 1958–1972, 2007.

[7] G. Bottegal and G. Picci, “A note on generalized factor analysis models,”
in Proc. 50th Decision and Control Conf. (CDC), Orlando, FL, 2011,
pp. 1485–1490.

[8] G. Bottegal and G. Picci, “Modeling random flocks through general-
ized factor analysis,” in Proc. European Control Conf. (ECC13), Zürich,
Switzerland, 2013, pp. 2421–2426.

[9] R. W. Brockett, “On the control of a flock by a leader,” in Differential
Equations and Topology. I, Volume 268 of Tr. Mat. Inst. Steklova, MAIK
CINauka/Interperiodica, Moscow, Russia, 2010, pp. 56–63.

[10] G. Chamberlain, “Funds, factors and diversification in arbitrage pricing
models,” Econometrica, vol. 51, no. 5, pp. 1305–1324, 1983.

[11] G. Chamberlain and M. Rothschild, “Arbitrage, factor structure and mean-
variance analysis on large asset markets,” Econometrica, vol. 51, no. 5,
pp. 1281–1304, 1983.

[12] V. Chandrasekaran, S. Sanghavi, P. Parrilo, and A. Willsky, “Rank-
sparsity incoherence for matrix decomposition,” SIAM J. Optimiz.,
vol. 21, pp. 572–596, 2011.

[13] A. Chiuso and G. Picci, “Some identification techniques in computer
vision,” in Proc. IEEE Decision and Control Conf. (CDC), 2008.

[14] H. Cramèr, “On some classes of non-stationary stochastic processes,” in
Proc. IV Berkeley Symp. Math. Statistics and Probability, 1961, vol. II,
pp. 57–77, Univ. California Press.

[15] F. Cucker and S. Smale, “Emergent behavior in flocks,” IEEE Trans.
Autom. Control, pp. 852–862, 2007.

[16] M. Deistler, B. D. O. Anderson, W. Chen, and A. Filler, “Modelling
high dimensional time series by generalized factor models, (semi-plenary
lecture delivered at the MTNS 2010 Symposium,” in Proc. Mathematical
Theory of Networks and Systems Symp. (MTNS 2010), Budapest, Hungary,
2010, pp. 323–329.

[17] M. Deistler, B. D. O. Anderson, A. Filler, C. Zinner, and W. Chen,
“Generalized linear dynamic factor models: An approach via singular
autoregressions,” Eur. J. Control, vol. 3, pp. 211–224, 2010.

[18] M. Deistler and C. Zinner, “Modelling high-dimensional time series by
generalized dynamic factor models: An introductory survey,” Commun.
on Inform. and Syst., vol. 7, no. 2, pp. 153–166, 2007.

[19] J. L. Doob, Stochastic Processes. New York: Wiley Classics Library,
1990, Reprint of the 1953 original.

[20] G. Doretto, A. Chiuso, S. Soatto, and Y. N. Wu, “Dynamic textures,” Int.
J. Comput. Vis., vol. 51, no. 2, pp. 91–109, Feb. 2003.

[21] F. Fagnani and S. Zampieri, “Randomized consensus algorithms over
large scale networks,” IEEE J. Select. Areas Commun., vol. 26, pp. 634–
649, 2008.

[22] M. Forni, M. Hallin, M. Lippi, and L. Reichlin, “The generalized dynamic
factor model: Identification and estimation,” The Rev. of Econom. and
Statist., vol. 65, pp. 453–473, 2000.

[23] M. Forni and M. Lippi, “The generalized dynamic factor model: Repre-
sentation theory,” Econom. Theory, vol. 17, pp. 1113–1141, 2001.

[24] J. Geweke, “The dynamic factor analysis of economic time series,”
in Latent Variables in Socio-Economic Models, D. J. Aigner and
A. S. Goldberger, Eds. North-Holland, 1977, pp. 365–383.

[25] P. R. Halmos, “Shifts on Hilbert spaces,” J. für Reine und Angewandte
Mathematik, vol. 208, pp. 102–112, 1961.

[26] P. Hartman and A. Wintner, “The spectra of Toeplitz matrices,” Amer. J.
Mathemat., vol. 76, pp. 867–882, 1954.

[27] C. K. Hemelrijk and H. Hildenbrandt, “Some causes of the variable shape
of flocks of birds,” PLoS One, vol. 6, no. 8, p. e22479, Aug. 2011.

[28] Y. Hu and R. Chou, “On the Peña-Box model,” J. Time Series Analy.,
vol. 25, pp. 811–830, 2004.

[29] A. Jadbabaie, J. Lin, and S. Morse, “Coordination of groups of
mobile agents using nearest neighbor rule,” IEEE Trans. Autom. Control,
vol. AC-48, pp. 988–1001, 2003.

[30] R. E. Kalman, “Identifiability and modeling in econometrics,” in Devel-
opments in Statistics, Vol. 4, vol. 4. New York: Academic Press, 1983,
pp. 97–136.

[31] R. E. Kalman, “Identifiability and problems of model selection in econo-
metrics,” in Advances in Econometrics, W. Hildebrandt, Ed. Cambridge,
U.K.: Cambridge University Press, 1983.

[32] D. N. Lawley and A. E. Maxwell, Factor Analysis as a Statistical Method,
2nd ed. London: Butterworths, 1971.

[33] W. Ledermann, “On the rank of the reduced correlation matrix in multiple
factor analysis,” Psychometrika, vol. 2, pp. 85–93, 1937.

[34] W. Ledermann, “On a problem concerning matrices with variable diagonal
elements,” in Proc. Royal Soc. Edinburgh, 1939, vol. XL, pp. 1–17.

[35] B. Li, M. G. Genton, and M. Sherman, “Testing the covariance structure
of multivariate random fields,” Biometrika, vol. 95, pp. 813–829, 2008.

[36] K. Lin and D. Husmeier, “Mixtures of factor analyzers for modeling
transcriptional regulation,” in Learning and Inference in Computational
Systems Biology, Lawrence et al., Ed. Cambridge, MA: MIT Press,
2010, ch. 7.

[37] A. Lindquist and G. Picci, Linear Stochastic Systems: A Geometric
Approach, 2011, In preparation, to be published.

[38] C. Ma, “Stationary random fields in space and time with rational spectral
densities,” IEEE Trans. Inform. Theory, vol. 53, pp. 1019–1029, 2007.

[39] L. Ning and T. T. Georgiou, “Sparse factor analysis via likelihood and
�1-regularization,” in Proc. 50th IEEE Conf. Decision and Control,
Orlando, FL, 2011, pp. 5188–5192.

[40] L. Ning, T. T. Georgiou, A. Tannenbaum, and S. P. Boyd, “Linear models
based on noisy data and the Frisch scheme,” CoRR, 2013, abs/1304.3877.

[41] R. Olfati-Saber, “Flocking for multi-agent dynamic systems: Algorithms
and theory,” IEEE Trans. Autom. Control, vol. 51, p. 401420, 2006.

[42] R. Olfati-Saber, J. A. Fax, and R. Murray, “Consensus and coopera-
tion in networked multi-agent systems,” in Proc. IEEE, 2007, vol. 95,
pp. 215–233.

[43] D. Peña and G. Box, “Identifying a simplifying structure in time series,”
J. Amer. Stat. Ass., vol. 82, pp. 836–843, 1987.

[44] D. Peña and P. Poncela, “Nonstationary dynamic factor analysis,”
J. Statist. Plann. and Infer., vol. 136, pp. 1237–1257, 2006.

[45] G. Picci, “Parametrization of factor analysis models,” J. Economet.,
vol. 41, pp. 17–38, 1987.

[46] G. Picci and S. Pinzoni, “Dynamic factor-analysis models for stationary
processes,” IMA J. Math. Control and Inform., vol. 3, pp. 185–210, 1986.

[47] I. Pournara and L. Wersnich, “Factor analysis for gene regulatory net-
works and transcription factor activity profiles,” BMC Bioinform., vol. 8,
no. 61, 2007.

[48] C. W. Reynolds, “Flocks, herds and schools: A distributed behavioral
model,” in Proc. 14th Annu. Conf. Computer Graphics and Interactive
Techniques SIGGRAPH 87, New York, 1987, p. 2534, ACM Press.

[49] Y. A. Rozanov, Stationary Random Processes: Holden Days, 1967.
[50] J. Saunderson, V. Chandrasekaran, P. A. Parrilo, and A. S. Willsky, “Diag-

onal and low-rank matrix decompositions, correlation matrices, ellipsoid
fitting,” SIAM J. Matrix Anal. and Applic., vol. 33, no. 4, pp. 1395–1416,
2012.

[51] J. Shen, “Cucker-smale flocking under hierarchical leadership,” SIAM J.
Appl. Math, vol. 68, pp. 694–719, 2007.

[52] G. W. Stewart and J. G. Sun, Matrix perturbation Theory. New York:
Academic Press, 1990.

[53] A. Tahbaz-Salehi and A. Jadbabaie, “Consensus over ergodic stationary
graph processes,” IEEE Trans. Autom. Control, vol. 55, pp. 225–230,
2010.

[54] H. G. Tanner, A. Jadbabaie, and G. J. Pappas, “Flocking in fixed and
switching networks,” IEEE Trans. Autom. Control, vol. 52, pp. 863–868,
2007.

[55] J. J. P. Veerman, J. S. Caughman, G. Lafferriere, and A. Williams, “Flocks
and formations,” J. Stat. Phys., vol. 5–6, no. 121, pp. 901–936, 2005.

[56] D. Venturi, “A fully symmetric nonlinear biorthogonal decomposition
theory for random fields,” Physica D, vol. 240, pp. 415–425, 2011.

[57] T. Vicsek, A. Czirók, E. Ben-Jacoba, I. Cohen, and O. Schochet, “Novel
type of phase transition in a system of self-driven particles,” Phys. Rev.
Lett., vol. 75, p. 12261229, 1995.

[58] L. Xiao, S. Boyd, and S. J. Kim, “Distributed average consensus with
least-mean-square deviation,” J. Parallel and Distrib. Comput., vol. 67,
no. 1, pp. 33–46, 2007.



774 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 60, NO. 3, MARCH 2015

Giulio Bottegal received the Master’s degree in
automation engineering (cum laude) and the Ph.D.
degree in information engineering, both from the
University of Padova, Padova, Italy, in 2009 and
2013, respectively.

Currently, he holds is a Research Fellow (postdoc)
at the School of Electrical Engineering, KTH Royal
Institute of Technology, Stockholm, Sweden. His
research interests include stochastic systems, latent
variables models, and regularization techniques for
system identification.

Giorgio Picci (S’67–M’70–SM’91–F’94–LF’08) re-
ceived the Dr.Eng. degree from the University of
Padua, Padua, Italy, in 1967.

Currently, he is Professor Emeritus with the
Department of Information Engineering, Univer-
sity of Padua, Padua, Italy. He has held sev-
eral long-term visiting appointments with various
American, Japanese, and European universities in-
cluding Brown University, MIT, the University of
Kentucky, Arizona State University, the Center
for Mathematics and Computer Sciences (CWI) in

Amsterdam, the Royal Institute of Technology, Stockholm, Sweden, Kyoto
University, and Washington University, St. Louis, MO. He has been contribut-
ing to systems and control mostly in the area of modeling, estimation, and
identification of stochastic systems and published over 100 papers and edited
three books in this area. He has been involved in various joint research projects
with industry and state agencies.

Dr. Picci is a Fellow of IFAC and a foreign member of the Swedish
Royal Academy of Engineering Sciences. He has been Chairman of the IFAC
Technical Committee on Stochastic Systems, past member of the EUCA
council, Project Manager of the Italian team for the Commission of the
European Communities Network of Excellence System Identification (ERNSI),
and General Coordinator of the Commission of European Communities IST
project RECSYS, in the fifth Framework Program.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues false
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


