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SUMMARY

In this paper, we provide a proof of almost sure exponential convergence to consensus for a general class of
ergodic edge selection processes. The proof is based on the multiplicative ergodic theorem of Oseledec and
also applies to continuous time gossip algorithms. An example of exponential convergence in a non ergodic
case is also discussed. Copyright © 2012 John Wiley & Sons, Ltd.
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1. DEDICATION

Chris Byrnes brought both of us to Arizona State University in the mid-1980s. Our collaboration
started there in 1986 and has continued (although in a somewhat scattered way) until recently. We
owe him a great deal, both scientifically and from a human point of view.

We dedicate this paper to his memory.

2. CONSENSUS FOR RANDOM GOSSIP ALGORITHMS

Consider a finite set of nodes representing say wireless sensors or distributed computing units,
exchanging information for the purpose of forming a common estimate of some physical variable
x. At time t , node i has a local estimate of the variable, denoted by xi .t/ and as communication
with a neighboring node j takes place, the two nodes i and j exchange information on their esti-
mates xi .t/, xj .t/ and update them in some rational way so as to achieve consensus, namely at the
successive time instant xi .t/, xj .t/ are both processed in such a way that the new estimates of the
two nodes will be closer and eventually led to coincide (at least) asymptotically as t !1.

We shall assume that only neighboring nodes can communicate. Stated more precisely, let
G WD .V ,E/ be the graph with vertices V D ¹vi I i D 1, 2, : : : , dº representing the nodes, and
let these nodes be connected by n edges in a set E WD ¹ek D vikvjk º where the pairs .ik , jk/
range in some subset of neighboring pairs .i , j /; we shall assume that, in each (discrete) time
interval, communication can occur only between the two nodes belonging to the same edge. It is
implicit in the preceding description that the communication relation between two nodes is mutual
(i.e., reflexive), so that our graph will be undirected.
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1034 G. PICCI AND T. J. TAYLOR

The communicating edges are chosen according to some stationary random mechanism. We shall
visualize this by introducing a stationary edge process e WD ¹e.t/ I t 2 Zº taking values in E. The
simplest communication scheme occurs when, in each time slot, there is just one (randomly chosen)
couple of neighboring nodes exchanging information. This is what is normally referred to as a
random gossip algorithm, see for example [1–3]. The case when many edges can simultaneously
communicate is also of interest in some applications and will be discussed shortly in Section 8.

The main questions about gossip algorithms are: proving global convergence to consensus; that
is, limt!1 xi .t/� xj .t/D 0 for all i , j s, and estimating the rate of convergence. It is known that,
in some cases, the rate may be very slow and make the scheme of little practical value.

There is a vast and rapidly growing literature on this subject at the boundary of control, commu-
nication and computer sciences, and we shall refer the reader to [4] for a very readable historical
survey and a description of many possible application areas. Recent papers discussing convergence
are [5–7] and [8, 9].

Main results of the paper

As far as we have been able to see, many results in the literature seem to deal with convergence in
L2; that is, convergence of the first two moments. Although this implies convergence in probability,
in general it does not guarantee almost sure (a.s.) convergence; that is, that (almost) all sample paths
of the x process governed by a random gossip algorithm will converge to consensus. In this sense,
a.s. convergence is a ‘practical’ issue. Also, the edge process is normally taken to be a i.i.d. process
or a Markov chain, which does not seem to have a cogent physical justification. Here, based on the
results reported in a preliminary conference version of this paper [10], we instead provide a proof
of a.s. convergence to consensus for an extremely general class of edge selection processes. Our
main convergence result is based on Oseledec multiplicative ergodic theorem [11,12] exploiting the
doubly stochastic character of the updating algorithm. The result may seem to belong to the asymp-
totic analysis of Markov chains in a random environment, as initiated by Wolfowitz, Cogburn et al.,
see [13–16] but in fact turns out to have little to do with this area because, on the one hand, the ran-
dom Markov matrices analyzed here are rather special, namely doubly stochastic and irreducible,
so that the quest for an invariant measure becomes a trivial matter. On the other hand, the rate
of convergence results that we obtain under an extremely general stochastic evolution assumption,
seem to be out of reach by the general Markov chain techniques exposed in these papers.

One more novelty in this paper is the treatment of continuous time gossip algorithms. This will
be dealt with in Section 7.

3. MODELING OF GOSSIP ALGORITHMS

Our notion of gossip algorithms is that while two nodes vi and vj are in communication, they
exchange information and refine their estimates. The mutual information allows them to maneu-
ver their coordinates toward a consensus, and each successive contact enables a further exponential
refinement of this consensus.

We shall model this adjustment in discrete time by a simple symmetric linear relation

xi .t C 1/D xi .t/C p.xj .t/� xi .t//

xj .t C 1/D xj .t/C p.xi .t/� xj .t// (1)

where p is some positive gain parameter modeling the speed of adjustment. For stability, we need
to impose that j1� 2pj 6 1 and hence 0 6 p 6 1. On the whole coordinate vector x.t/ 2 Rd , this
dynamics corresponds to x.tC1/D A.e/x.t/, the d�d real matrix A.e/ depending on the selected
edge e at that particular time instant; specifically, when e D vivj :

A.e/D Id � p
�
1vi � 1vj

� �
1vi � 1vj

�0
(2)

where 1vi denotes the vector that takes the value 1 in the i th entry and zero otherwise. Note that
each matrix A.e/ is a symmetric doubly stochastic matrix. If p ¤ 1=2, the value 1� 2p is a simple
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A.S. CONVERGENCE TO CONSENSUS OF GOSSIP ALGORITHMS 1035

eigenvalue, which is associated to the eigenvector
�
1vi � 1vj

�
, and the codimension one subspace�

1vi � 1vj
�?

is the eigenspace of the eigenvalue 1. Boyd et al. [2] use the value p D 1
2

that makes
A.e/ into a rank one projection. In this case system, (1) is of ‘deadbeat’ type and two communicating
nodes reach consensus in one step.

In general, our gossip algorithm generates stochastic trajectories in Rd according to the random
dynamical system x.t C 1/D A.e.t//x.t/ or,

x.t/D

t�1Y
sD0

A.e.s//x0 , e.s/ 2E (3)

where the ordering of matrices in the product is from largest time index on the left to smallest index
on the right.

4. PARACONTRACTING MATRICES

In the following, the matrix norm will be taken to be the spectral norm (i.e., the largest
singular value).

Definition 4.1
An n� n matrix A is called paracontracting if kAk6 1 and

0¤ x 2 ŒKer.I �A/�? ) kAxk< kxk (4)

where for x 2Rn, kxk denotes Euclidean norm.

The following facts are taken from Nelson and Neumann’s paper [17]

Proposition 4.1
If A 2Rn�n is paracontracting, then

ŒKer.I �A/�? D Im.I �A/ . (5)

If A and B are paracontracting, so is AB and

Ker.I �AB/D Ker.I �A/ \ Ker.I �B/ . (6)

Moreover,

Ker.I �A�A/D Ker.I �A/ . (7)

Note that each A.e/ is paracontracting as it trivially satisfies A.e/x ¤ x H) kA.e/xk < kxk.
It follows from the proposition earlier that any finite product …iA.ei / and hence the right-ordered
product of random matrices

B D B.e/ WD…N
sD1A.e.s//

is also paracontracting. In addition, the subspace ¹x W x D Bxº D Ker.I � B/ is equal toT
s Ker.I �A.e.s///.
For a paracontraction B , the orthogonal complement of the null space Ker.I�B/? is an invariant

subspace ofB . The largest singular value ofB on this invariant subspace is the norm kBjKer.I�B/?k.
This number, which we will denote �.B/, is called the contraction factor of a paracontraction.

Let LV denote the vertex space of G (i.e., the vector space of functions f W V ! R, isomorphic
to Rd ) and similarly, LE the edge space of G (isomorphic to Rn); let 1 2 LV denote the constant
function and 1? denote the subspace of LV perpendicular to 1 under the dot product (i.e., the func-
tions with zero average). Let k � k denote the Euclidean norm on LV . Remember that a Markov
matrix M has rows, which sum to 1; that is, satisfies M1 D 1, hence, has eigenvalue 1 associated
with the eigenvector 1.
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The following lemma is trivial, but we will prove it anyway.

Lemma 4.1
Let G D .V ,E/ be a graph. The subspace span ¹1vi � 1vj W .vivj / 2Eº D 1? iff G is connected.

Proof
Consider the ‘difference’ operator D W LV ! LE defined by Df.e/ D f .vi / � f .vj / if
e D .vivj / 2E (choose an arbitrary assignment of sense for each edge) and letDf WD vec ¹Df.e/ j
e 2 Eº. The rows of the matrix representation of the map f ! Df are precisely the vectors�
1vi � 1vj

�0
with e D .vivj / 2 E. The statement of the lemma amounts to the statement that the

rowspan of this matrix is 1?, which is equivalent to the statement that ker.D/ D span ¹1º. Thus,
ker.D/ is the set of functions in LV for which f .vi /� f .vj / D 0 whenever .vivj / 2 E. But this
set of functions is constant on each connected component ofG, hence, is made of constant functions
exactly when G is connected. �

Let e range on any connected subgraph G0 D .V ,E 0/ with E 0 � E. The product B is also

Markov, hence, has the eigenvector 1 with eigenvalue 1. Each Ker.I � A.e// D
�
1vi � 1vj

�?
when e D .vivj /, so Ker.I � B/ D span ¹1º (is one dimensional) as soon as 1? D
span

®
1vi � 1vj W .vivj / 2E

0
¯
. But by Lemma 4.1, this is the case iff G0 D .V ,E 0/ is connected.

Hence, we have kBxk < kxk for all x 2 1?. Because span ¹1º and 1? are (orthogonal) comple-
mentary invariant subspaces for any finite product of the form B.E 0/ WD

Q
ei2E

0 A.ei /, we can
write the last inequality as kB.E 0,�/ j1? k < 1, for which we shall normally use the shorthand
kB.E 0,�/k1? < 1. In conclusion, we have the following.

Corollary 4.1
Let G0 D .V ,E 0/ with E 0 � E be any connected subgraph of G. Let ¹ei W 1 6 i 6 n0º be an
ordering of E 0, and let � denote a permutation of ¹1, 2, � � � ,n0º. Let B.E 0,�/ D

Qn0

iD1A.e�i /,
where the product is ordered from right to left. Then kB.E 0,�/k1? < 1.

5. CONVERGENCE OF THE GOSSIP ALGORITHM

This section will be the basis of our discrete time results.
Let � D EN be the space of all semi-infinite sequences taking values in E, and let � W �! �

denote the shift map: �.e0, e1, e2, � � � , en, � � � / D .e1, e2, � � � , en, � � � /. Let evk W �! E denote the
evaluation on the kth term. Let � denote an ergodic shift invariant probability measure on�, so that
the edge process e.k/ W ! ! evk.!/ is ergodic. Special cases, which may be helpful to visualize
are, � D product measure so that e.k/ is iid, or a Markov measure defined on cylinder sets by
�.Œe0, e1, � � � , en�/ D �e0Pe0e1Pe1e2 � � �Pen�1en for a transition matrix P with state space E and
stationary distribution � . However, what we shall do works for general ergodic processes.

In both the continuous and discrete time versions of this problem, a controllability-like result
is required for convergence. Lemma 5.1 next is such is a controllability condition. It establishes
a condition under which the (stationary) inhomogeneous Markov chain with time T transition
matrix A.eT / � � �A.e2/A.e1/ has positive probability to reach any element of the vertex set from
any vertex.

Lemma 5.1
Suppose that G D .V ,E/ is connected and let e.t/ W � ! E be a stationary ergodic process for
which the probability pe WD �¹e.0/ D eº is strictly positive on E 0 � E where G0 D .V ,E 0/ is
a connected subgraph of G; that is, 8e 2 E 0,pe > 0. Then, there is a deterministic time T such
that a sample trajectory of the process e restricted to Œ0, T �, visits all edges in E 0 with positive
probability and

� ¹! 2� W kA.e.T // � � �A.e.1//k1? < 1º> 0 .

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control 2013; 23:1033–1045
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Proof
By Corollary 4.1, kA.eT / � � �A.e1/k1? < 1 iff forE 0 D

ST
iD1¹eiº �E, the subgraphG0 D .V ,E 0/

is connected and this in turn happens if and only if E 0 contains a spanning tree. Hence, we just
need to show that for T large enough, there is positive probability that a sample trajectory contains
a spanning tree. Intuitively, if this was not so, the graph could not be connected. A formal proof of
this fact is as follows.

Let f .T / D �
�°
! W

ST
iD1¹e.i/º contains a spanning tree

±�
. Note that f .T / is monotonic

increasing, because the constraint ‘
ST
iD1¹e.i/º contains a spanning tree’ is progressively weaker

as T increases. Clearly f .T / > 0 for all T . Either f .T / D 0 for all T , or there is a T for which
f .T / is positive.

By assumption pe D �.e.1/ D e/; is positive for all e 2 E 0. Let g.T / D �
�°
! W

ST
iD1

¹e.i/º DE 0
± �

. Clearly, 0 6 g.T / 6 f .T /. We will prove that f .T / > 0 for some finite

deterministic T , by proving the same for g.T /.
Consider the indicator function ı.e, �/ W E ! ¹1, 0º, defined by ı.e, x/ D 1 if x D e and zero

otherwise. The time average of the stochastic process ı.e, e.t// satisfies Birkhoff’s ergodic theorem
(see e.g. [18]), which amounts to

�

 ´
! W lim

T!1

1

T

T�1X
iD0

ı.e, e.i//D pe

μ!
D 1.

From this follows �
�°
! W limT!1

1
T

PT�1
iD0 ı.e, e.i// > 0

±�
D 1, which in turn implies

�
�°
! W limT!1

PT�1
iD0 ı.e, e.i// > 0

±�
D 1, where the latter limit is taken in the extended sense

that the sum increases to a positive number or positive infinity. From this, it follows

1D �

 \
e2E 0

´
! W lim

T!1

T�1X
iD0

ı.e, e.i// > 0

μ!

D �

 \
e2E 0

[
T>0

´
! W

T�1X
iD0

ı.e, e.i// > 0

μ!

D �

 [
T>0

\
e2E 0

´
! W

T�1X
iD0

ı.e, e.i// > 0

μ!
,

where the third equality follows from distribution of finite intersection over infinitary unions, and
the second equality from the fact that the mapping T 7!

PT�1
iD0 ı.e, e.i// is monotonic. Now, the

family of sets T 7!
T
e

°
! W

PT�1
iD0 ı.e, e.i// > 0

±
is monotonic increasing, so by sigma additivity

1D lim
T!1

�

 \
e2E 0

´
! W

T�1X
iD0

ı.e, e.i// > 0

μ!
,

although �
�T

e2E 0

°
! W

PT�1
iD0 ı.e, e.i// > 0

±�
D 0 for T small enough. Thus, there is a finite

T for which �
�T

e2E

°
! W

PT�1
iD0 ı.e, e.i// > 0

±�
> 0. But the latter probability is exactly

�
�°
! W

ST
iD1¹eiº DE

0
±�

.

Hence, we have shown that for T large enough, there is a positive probability that a sample
trajectory will visit all edges in E 0 and will therefore contain a spanning tree. �

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control 2013; 23:1033–1045
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Remark 5.1
Tahbaz-Salehi and Jadbabaie [5] offer an alternative controllability condition, that the directed graph
of the Markov matrix EA.e/ should contain a directed spanning tree. This condition is equivalent
to the controllability condition of Lemma 5.1 (which is a version Lemma 4.1 of [10]), subject to our
narrower class of models more specifically aligned to modeling a gossip process: the digraph of the
expectation of our Markov matrix EA.e/ contains a spanning tree iff pe is strictly positive for all
e in the edge set of a strongly connected graph. Indeed, by the Birkhoff theorem,

EA.e/D lim
n!1

1

n

nX
kD0

A.e.k//

a.s., which is equal to
P
e2E A.e/pe by stationarity. In particular, the .i , j /-entry of EA.e/ is pos-

itive iff pe > 0 for the edge e D vivj , so that the matrix EA.e/ is irreducible iff pe is positive on
the edge set of a connected graph, that is, iff pe is positive on a spanning tree.

It is a fact that a power of an ergodic transformation need not be ergodic. The following
elementary lemma describes what happens when this occurs.

Lemma 5.2
Suppose that � is an ergodic �-preserving transformation, and that �T is not ergodic. Then, the
sigma algebra I of �T invariant sets is generated mod null sets by a partition � D

`K�1
iD0 �i such

that
�
�T
��1

�i D�i , �.�i /D 1
K

for 06 i 6K � 1, K divides T and ��1�i D�iC1 mod K. In
addition, �T restricted to each �i is ergodic with respect to the conditional measure �.�j�i /.

Proof
Because �T is not ergodic, it has invariants sets of positive measure less than one. Let K be the
smallest positive power of � , which has the same invariant sets. Suppose that the measurable set
U � � is one such set:

�
�K
��1

U D U and 0 < �.U / < 1. Then, because � i and �K commute,

each set
�
� i
��1

U is a �K-invariant set, as are the result of any set operation performed on these

sets. In particular,
SK�1
iD0 �

�iU is a � -invariant set of positive measure, and hence

1D �

 
K�1[
iD0

��iU

!
6
K�1X
iD0

�
�
��iU

�
DK�.U /,

so that 1 > �.U / > 1
K

. If for some i , the �K-invariant sets U \ � iU ,U=� iU have posi-
tive measure, they must satisfy the same inequality. From the preceding formula, we can obtain
K�.U / > 1 >K�.U /�

P
i<j �

�
� iU \ �jU

�
. As U cannot be a � - invariant set, if �.U / > 1

K
,

it follows that there is a i with 1 6 i 6 K � 1 such that 0 < �
�
U \ � iU

�
,�
�
U=� iU

�
< �.U /.

Thus, �
�
U \ � iU

�
6 �.U / � 1

K
, so that U \ � iU is also a �K-invariant set of measure at least

1
K

less than that of U . Clearly, this process can be iterated a finite number of times to obtain an
�K-invariant set having the requisite properties. Because ��i D �iC1 mod K, the requirement
�T�i D�i impliesKjT . Because each�i has no �T -invariant subsets of positive measure strictly
smaller than 1

K
, �T j�i is ergodic. �

Now, consider the function C W��Z!Rn�n defined as

C.!, t / WD
t�1Y
iD0

A.ei .!//D

t�1Y
iD0

A
�
ev0�

i!
�

which, by stationarity of e, obeys the composition rule C.!, t C s/ D C
�
� t!, s

�
C.!, t / with

C.!, 0/D I . Such a function is called a matrix cocycle.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control 2013; 23:1033–1045
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Theorem 5.1 (Oseledec’s multiplicative ergodic theorem [11, 12, 19])
Let � be a shift invariant probability measure on � and suppose that the shift map � W �! � is
ergodic and that logC kC.!, t /k is in L1. Then, the limit

ƒD lim
t!1

.C.!, t /0C.!, t //
1
2t (8)

exists with probability one, is symmetric and nonnegative definite, and is � a.s. independent of !.
Let �1 < �2 < � � ��k for k 6 d be the distinct eigenvalues of ƒ, let Ui denote the eigenspace of �i ,
and let Vi D

Li
jD1 Uj . Then, for u 2 Vi � Vi�1,

lim
t!1

1

t
log kC.!, t /uk D log.�i / . (9)

The numbers �i are called the Lyapunov exponents of C . Their role is explained by the
corollary next.

Corollary 5.1
Let p ¤ 1

2
. For u 2 Vi � Vi�1, and for every 	 > 0 there is a random constant K� such that

kC.!, t /uk<K�.�i C 	/
tkuk. (10)

Proof
Note that (9) is equivalent to

lim
t!1

1

t
log
kC.!, t /uk

kuk
D log.�i /,

and hence also to

lim
t!1

ˇ̌̌
ˇ1t log

kC.!, t /uk

kuk
� log.�i /

ˇ̌̌
ˇD 0

which is equivalent to

lim
t!1

1

t

ˇ̌̌
ˇlog
kC.!, t /uk

kuk�ti

ˇ̌̌
ˇD 0.

Now, this means that for every ı > 0, there exists an almost sure finite random Nı > 0 such that for
all t >Nı ,

1

t

ˇ̌̌
ˇlog
kC.!, t /uk

kuk�ti

ˇ̌̌
ˇ< ı,

hence, for all t >Nı , ˇ̌̌
ˇlog
kC.!, t /uk

kuk�ti

ˇ̌̌
ˇ< ıt .

Let

kı WD max
06t6Nı

ˇ̌̌
ˇlog
kC.!, t /uk

kuk�ti

ˇ̌̌
ˇ ,

which is a.s. finite by our assumption that p ¤ 1
2

. It follows that for all t > 0 (it only makes sense
to consider nonnegative t ) that ˇ̌̌

ˇlog
kC.!, t /uk

kuk�ti

ˇ̌̌
ˇ6 kı C ıt ,

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control 2013; 23:1033–1045
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1040 G. PICCI AND T. J. TAYLOR

from which it follows that for all t

1

Kı
�tie
�ıtkuk6 kC.!, t /uk6Kı�tieıtkuk

whereKı WD ekı . Now, define 	 D �ieı��i , and note that �ieı��i > �i��ie�ı , so that we obtain

1

Kı
.�i � 	/

tkuk< kC.!, t /uk<Kı.�i C 	/
tkuk.

Because we can solve for ı as a function of 	, we can write K� instead of Kı . �

Thus, the Lyapunov exponents of this matrix cocycle control the exponential rate of convergence
(or non-convergence) to consensus. We can say several things about these Lyapunov exponents just
on the basis of the linear geometry of this problem. This is based on the fact that the matrices
A.e/ are doubly stochastic as are any matrix products of them, C.!, t / in particular. If follows that
the subspace of constant functions on V , denoted R1, as well as the mean zero functions in 1?,
are invariant under the action of this cocycle and of its transpose. Thus, these subspaces are also
invariant under the limiting matrix ƒ of the Oseledec’s theorem, and there is a Lyapunov exponent
associated with the subspace R1 which, it is not difficult to see, is one.

There are also n�1 Lyapunov exponents associated with the subspace 1?, so characterizing these
is now of interest.

For x 2Rn, we shall use the symbol Nx WD 1
n

Pn
iD1 xi . The main convergence result follows.

Theorem 5.2
Let G D .V ,E/ be a connected graph and let e be an ergodic stochastic process taking values in E.
Suppose that pe > 0 for all e 2 E 0, where G0 D .V ,E 0/ is a connected subgraph of G. Let p ¤ 1

2
and assume that the gossip algorithm (1) is initialized at x.0/D x0. Then, there is a (deterministic)
constant j�j< 1 and a (random) constant K� such that

kx.t/� Nx01k<K��
tkx0 � Nx01k (11)

�-almost surely.

Proof
The fact that C.!, t / is a Markov matrix for each t implies that C.!, t /1D 1 and kC.!, t /k D 1, so
the largest Lyapunov exponent is equal to 1. Let .x0�˛1/C˛1 be the orthogonal decomposition of
x0 with respect to the orthogonal direct sum of invariant subspaces Rn D 1? ˚R1. Then, ˛ D Nx0.
Moreover, x.t/D C.!, t /x0 implies that

x.t/� Nx01D C.!, t / j1? .x0 � Nx01/

hence, by the multiplicative ergodic theorem, there exists a � such that kx.t/� Nx01k<K��tkx0 �
Nx01k. The second largest Lyapunov exponent �2 is the greatest lower bound of the set of � for which
this assertion is true. Thus, the rest of the proof amounts to showing that the logarithm of the second
largest Lyapunov exponent is less than zero.

Because the edge process e.t/ is ergodic and pe > 0 for all edges in E 0, it follows from
Lemma 5.1 that there is a deterministic time T , and a positive probability that kC.!,T /k1? < 1.
Let k be the largest multiple of T , which is smaller than t and let 
t WD t � kT . Then, for times
t > T ,

kC.!, t /k1? 6 kC
�
�kT!,
t

�
k1?

Yk�1

jD0
kC

�
�jT!,T

�
k1?

6
Yk�1

jD0
kC

�
�jT!,T

�
k1? .
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Let us consider first the case when �T is ergodic. Then, if log kC.!,T /k1? 2 L
1, the Birkhoff

theorem implies that a.e.

k�1X
iD0

log kC
�
� iT!,T

�
k1? D k

�Z
log kC.!,T /k1?d�.!/C o.k/

�

and limt!1

Pk�1
iD0 log kC

�
� iT!,T

�
k1? D�1 otherwise. Because log kC.!,T /k1? 6 0 always,

and log kC.!,T /k1? < 0 with positive probability, the result then follows from (9), which implies
E log kC.!, t /k1? D log�2.

Suppose, however, that �T is not ergodic. Because � is ergodic, it follows from Lemma 5.2 that
there is a finite partition of � D

`
i �i by disjoint �T -invariant sets ¹�iºK�1iD0 such that K divides

T , ��i D �iC1 mod K and �.�i / D 1
K

for i D 0, � � � ,K � 1. In addition,
�
�T ,�.�j�i /

�
is

ergodic, and OC.!, �/ WD C.!, �T / is a cocycle for �T j�i . Moreover, there is an index, say j , such
that

R
�j

log kC.!,T /k1?d�
�
!j�j

�
< 0, and repeating the earlier reasoning, we have that on �j

the largest Lyapunov exponent � of OC is negative. But, for each nonnegative i < K, there is a time
s.i/ < T such that � s.i/�i D�j . Thus, for ! 2�i ,

C.!, t /D C

�
�

j
t�s.i/
T

k
TCs.i/

!, t � s.i/�

�
t � s.i/

T

	
T

�

� OC

�
� s.i/!,

�
t � s.i/

T

	�
C.!, s.i//,

so that kC.!, t /k1? 6




 OC

�
� s.i/,

�
t � s.i/

T

	�




1?
6K�t=T where K is a constant. �

6. EXCHANGEABLE EDGE PROCESSES

Ergodicity is not necessary for convergence. There is a class of non-ergodic edge processes for
which convergence can be shown quite directly. These are the exchangeable processes. The edge
process ¹e.t/º is called exchangeable if the equality in distribution

¹e.1/, e.2/, : : : , e.n/, : : :º
d
D ¹e.�.1//, e.�.2//, : : : , e.�.n//, : : :º

holds for each finite permutation � of ¹1, 2, : : : , n, : : :º, that is, each permutation for which
#¹t W �.t/ ¤ tº < 1. By this property, any finite sequence of edges of the graph has equal
probability of being selected. For connected graphs, which possess a certain degree of symmetry,
this is a simple and quite natural random communication mechanism.

It is well known [20,21] that any exchangeable process is a mixture of i.i.d. processes in the sense
that the random variables ¹e.1/, e.2/, : : : , e.n/, : : :º are conditionally independent given a certain
� -algebra F and

P.e.i/ 2 Ai , 16 i 6 n jF/D
Y
i

P.e.i/ 2 Ai jF/ (12)

where P.e.i/ 2 A jF/ WD �.A jF/, called the directed conditional measure of the process, does
not depend on i . It is known that the smallest � -algebra for which (12) holds is the tail � -algebra T

of the process. When T is trivial, then e is just an i.i.d. process. Conditions under which T is finite
have been investigated by Finesso and Prosdocimi [22]. In this case, the probability space admits a
finite partition ¹�i I i D 1, : : : ,N º with induced probabilities �i WD �.� j�i /, which are ergodic,
each being the distribution of an i.i.d. process. In general, however, i ranges on an uncountable set.

Hence, for exchangeable edge processes, a similar asymptotic result to Theorem 5.2 holds and
x.t/ ! Nx01 exponentially fast although in this case, the Lyapunov exponent � depends on the
particular set of the partition the process is started from.
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7. CONTINUOUS TIME RESULTS

Our continuous-time model is very similar; we suppose that evolution toward consensus is effectu-
ated by the differential equation Px.t/ D A.et /x.t/, where A.e/ D �c

�
1vi � 1vj

� �
1vi � 1vj

�0
for

e D vivj , c is a parameter that determines the rate of convergence to consensus of the coordinates xi
and xj , e denotes a non-colliding edge set and A.e/D

P
e2eA.e/. Each matrix A.e/ is symmetric,

nonpositive on the diagonal and nonnegative off, and has rows that sum to zero. The value �2c is
a simple eigenvalue associated to the eigenvector

�
1vi � 1vj

�
, and the codimension one subspace�

1vi � 1vj
�?

is the eigenspace of the eigenvalue 0, that is, is the null space of A.e/.
Let ! D .e0, e1, : : : , ek , : : :/ denote the sequence of edge sets representing communication

between nodes, and let L D .l0, l1, � � � , lk , � � � / be the sequence of lengths of time intervals these
edge sets were occupied, and let tk D

Pk
jD0 lj denote the instant at which the continuous time pro-

cess et changes value from ek to ekC1. In the discrete time case, all of the lk can be taken to be 1. In
the continuous time case, they may take real values between 0 and a random positive ‘roof’ function
� W �! RC, which we assume has finite expectation with respect to �. When tn 6 t < tnC1, the
solution of the differential equation is of the form

xt D exp..t � tn/A.enC1//
nY
iD0

exp.liA.ei //x0. (13)

On the set � � R, we may consider the quotient O� by the equivalence relation .!, t / �
.�!, t � �.!//; we may also view the quotient space as the set ¹.!, t / W 0 6 t 6 �.!/º, in which
each point .!, �.!// is glued to the point .�!, 0/. The natural action of R on��R passes to a flow
� t W O�! O�, and the measure

�� D
�� dtR
�.!/d�.!/

is invariant and ergodic under � t , iff � is ergodic under � . The idea here is that there is a continuous
time stochastic process on edge sets, which resides in the edge set e D ev0.!/ for a length of time
�.!/. From time zero up to time t , the edges e0 D ev0.!/, e1 D ev1.!/, � � � , ek D evk.!/ are
occupied for times l0 D t0 D �.!/, l1 D t1 � t0 D �.�!/, � � � , t �

Pk�1
iD0 �

�
� i!

�
if t satisfiesPk�1

iD0 �
�
� i!

�
< t 6

Pk
iD0 �

�
� i!

�
. It is well known that if the distribution of �.!/ is exponen-

tial with respect to the conditional distribution �.�je/, and if � is a Markov measure, then the edge
process is a continuous time Markov chain.

Lemma 7.1
Let G0 D .V ,E 0/ and � be as discussed in Lemma 4.1, and let t D .l1, � � � , lm0/ be strictly posi-
tive. Let B.E 0,� , t/ D

Qm0

iD1 exp .tiA.e�i //, where the product is ordered from right to left. Then,
kB.E 0,� , t/k1? < 1.

Proof
The proof is exactly as in the proof of Lemma 4.1. �

A continuous time matrix cocycle on O� is a function C W O� �R! Rn�n such that C.!, 0/ D I
and C.!, t C s/D C

�
� t!, s

�
C.!, t /.

In the continuous time case, we have

C.!, t /D exp

0
@
0
@t � n.!/X

iD0

�
�
� i!

�1AA �ev0�n.!/C1!�
1
A n.!/Y
iD0

exp
�
�
�
� i!

�
A
�
ev0�

i!
��

,
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where n.!/ is the largest integer n such that t �
Pn
iD0 �

�
� i!

�
> 0. The continuous time analog of

Theorem 5.2 is as follows.

Theorem 7.1
Let G D .V ,E/ be a connected graph and let e be an ergodic continuous time stochastic process
taking values on E. Suppose that the support of the membership function defined by e is all of E.
Let the gossip algorithm (13) be initialized at x.0/ D x0. Then, there is a (deterministic) constant
� < 0 and a (random) constant K such that kx.t/� Nx01k<K e�tkx0 � Nx01k �-almost surely.

8. MULTIPLE GOSSIP AND PACKET DROPS

One may envisage situations where m (1 < m 6 n) edges can exchange information in the same
time slot, see for example [23], although the coordinate pairs xi , xj still evolve according to the
algorithm (1). If there is no packet drop when a node receives more than one call, this setting is
equivalent to simple gossiping on a m-fold Cartesian product graph Gm WD .V m,Em/ where V m

is the m-fold Cartesian product of the set of vertices of the graph G identified by a fixed arbitrary
ordering and Em is the set of admissible m-tuples of edges, e WD ¹e1, e2, � � � , em j ei 2 Eº. The A
matrix governing the m simultaneous adjustments occurring in one time slot will be a product of
the type

A.e/D
mY
kD1

A.ek/ (14)

corresponding to am-tuple of edges e WD ¹e1e2, � � � , emº being selected sequentially in that order by
anm-dimensional stationary edge process em whose i-th component is governed by them-th power
�m of the stationary shift � of e.t/. Theorem 5.2 still applies. Because the product graph has higher
degree, it may be expected that the rate of convergence would be higher than for simple gossiping.
This point, however, has not been investigated.

When packet collision occurs, it is necessary to introduce some consistency constraints in the
model to account for possible conflicts. For example, communication calls from nodes, which are
already busy (or to busy nodes), should result in packet drops and no communication taking place.
In other words, it should not be allowed that in the same time slot, two selected edges belong to the
same node. Formally, the occurrence of edges vivj , vkvh for which either i D k or j D h should
have probability zero or, whenever this happens, the updating step of the xi ’s should be canceled.
One should assume that all adjustment algorithms (1) active in the same time slot, involve distinct
pairs of nodes (and hence distinct edges as well).

Define a subset of edges E 0 � E to be non-colliding iff no two edges e, e0 2 E 0 are inci-
dent on a common vertex. Let E� denote the collection of all non-colliding subsets of edges
E� D ¹E

0 �E is non-collidingº. Hence, the A matrix governing the m simultaneous adjustments
occurring in one time slot will be a product of the type

A.e/D

mY
kD1

A.ek/ (15)

corresponding to a m-tuple of non-colliding edges e WD ¹e1e2, � � � , emº 2 E�. All A.ek/ matri-
ces occurring in the product (15) have the 2 � 2 non-identity block in disjoint pairs of locations
and hence commute. Consequently, it is immaterial how the simultaneous communicating links are
ordered in (15). In this multiple gossip algorithm, each matrix A.e/ is still symmetric and doubly
stochastic. The value 1�2p is an eigenvalue of multiplicitym (both algebraic and geometric), which
is associated to the m orthogonal eigenvectors

®�
1vi � 1vj

�
I vivj 2 e

¯
, and the d�m-dimensional

subspace span
®�
1vi � 1vj

�
I vivj 2 e

¯?
is the eigenspace of the eigenvalue 1. A.e/ has only two

distinct singular values, the largest (of multiplicity d �m) equal to one and the second (of multi-
plicity m) equal to Œ1� 4p.1�p/�1=2. The latter is, in fact, the second largest singular value of any
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of the m factors A.ek/. Hence, as long as e is not the empty set of edges, A.e/ and its elementary
factors have the same contraction factor

�.A.e//D �.A.ek//D Œ1� 4p.1� p/�
1=2 .

In these models, the edge process e selects a fixed deterministic number m of admissible edges
at each time step. They could be rendered more realistic by allowing m to be random. For instance,
a number of vertexes could be chosen at each time step according to some distribution, and each
chosen vertex initiates a call to a neighboring vertex by choosing one of its edges.

In this setting, we may interpret A.e/ as a conditional quantity given that the occurring num-
ber of links is m. This approach leads to a more complicated analysis and we shall not pursue this
generalization here. Naturally, m can be interpreted just as the average number of active links per
time step.

9. CONCLUSIONS

In this paper, we have provided a proof of almost sure convergence to consensus for an extremely
general class of edge selection processes.The proof also applies to continuous time gossip
algorithms. Computational schemes for estimating the Lyapunov exponents (and hence the rate of
convergence) is an issue, which we plan to address in the near future.
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