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Abstract

We give new simple general expressions for the asymptotic covariance of the estimated
system parameters (A; B; C; D) in subspace identi%cation. The formulas can be applied to a
whole class of subspace methods including N4SID, MOESP, CVA, etc. The asymptotic expres-
sions highlight how the conditioning of the estimation problem in/uences the accuracy of the
estimates.
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1. Introduction

In this paper, we shall provide new expressions for the asymptotic covariance of the
estimated parameters (A; B; C; D) of a state space model, obtained by some popular sub-
space identi%cation methods. The expressions are similar but simpler than the asymp-
totic covariance expressions which have so far been published in the literature (Bauer,
1998; Bauer and Jansson, 2000; Jansson, 2000, Bauer and Ljung, 2001). The covariance
formulas in particular involve the inverses of certain conditional covariance matrices
(�x̂x̂|u+) which play an important role in measuring the possible ill-conditioning of the
identi%cation problem, see Chiuso and Picci (1999) and Chiuso and Picci (2001), thus
providing a direct link of possible ill-conditioning of the estimation problem with the
asymptotic variance of the estimates.
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The structure of the paper is as follows:

• In Section 2, we shall introduce notations, review a “sample” Hilbert space frame-
work which provides a convenient tool in the analysis, and discuss the basic ideas
of stochastic realization involved in subspace identi%cation.

• In Section 3, a complementary model is introduced which allows a uni%ed analysis
of various estimation algorithms of the (A; C) parameters of the model. Among
these algorithms, common subspace methods like Robust-N4SID, MOESP and CVA
methods can be accommodated.

• In Section 4, the complementary model is used to derive error expressions for the
(A; C) parameter estimates and the asymptotic variance formula for the (A; C) para-
meters is obtained.

• In Section 5, a Markov estimator of the (B;D) parameters is discussed and an
expression for the asymptotic variance is provided. The estimator is %rst derived
assuming that A; C are known, but the eIect of uncertainty in A; C can be taken into
account at the price of some additional complication.

• Section 6 contains some conclusions.

Unfortunately the proof of the main result (Theorem 4.1) requires a good deal of
concepts and notations which need to be introduced gradually in the course of the
paper. The reader who is only interested in the statement of the result, may just glance
at the de%nition of x̂c in Section 3, understand the (asymptotic) choice of basis de%ned
in Lemma 4.2 and (patiently) keep track of the notations.

2. Subspace identi�cation

We shall assume that the observed input–output data

{ut0 ; : : : ; ut ; : : :} {yt0 ; : : : ; yt ; : : :} ut ∈Rp; yt ∈Rm (2.1)

satisfy the zero-average condition

lim
N→∞

1
N + 1

N+t0∑
t=t0

[
ut

yt

]
= 0

and that the limit for N → ∞ and for all �¿ 0, of the sample correlation

1
N + 1

N+t0∑
t=t0

[
ut+�

yt+�

][
ut

yt

]�
; �¿ 0 (2.2)

exists, and is independent of the initial time t0. A time-series satisfying this assumption
is called (second-order) stationary. 1

1 Also called a quasi-stationary signal.
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In continuous-time, functions admitting an “ergodic” limit of the sample correla-
tion function (2.2), have been studied by Wiener in his work on Generalized Har-
monic Analysis (Wiener, 1930, 1933). It is easy to show that Wiener results hold for
discrete-time signals as well. In particular, the limits of the time averages (2.2) de%ne
a positive matrix function, i.e. a bona-%de stationary covariance matrix function,

lim
N→∞

1
N + 1

N+t0∑
t=t0

[
ut+�

yt+�

][
ut

yt

]�
= �(�) =

[
�uu(�) �uy(�)

�yu(�) �yy(�)

]
; �¿ 0; (2.3)

The function �(�) is called the true covariance of the data.
Now, given the true covariance �, one can formally manufacture a Rp+m-valued

second-order stationary stochastic process say {z(t)} = {[u(t)� y(t)�]�}, de%ned on
the sample space � = (Rp+m)Z+ , having precisely covariance function � and zero
mean. Actually there is a whole equivalence class of such processes all sharing the
same second-order statistics; one can %x a representative assuming say a Gaussian
probability law. The construction goes back to Kolmogorov and we shall not report it
here. The space of elementary random elements � is the space of all possible sample
paths, (Rp+m)Z+ , of the process.
The observed sample (2.1) is an ergodic trajectory of the second-order process z,

the term meaning that the limit (2.3) determines the covariance function (and hence
the probability law in the Gaussian case) of z uniquely. Hence, under the assumption
of second-order stationarity of the data, an essentially unique pair of second-order
stationary stochastic processes (called the “true processes”) exists which produces the
observed trajectory (2.1) according to the classical “urn” scheme of probability theory. 2

In this paper it is assumed that the true processes have a rational spectral density
and hence can be described by a linear stochastic system (in innovation form) of the
type

x(t + 1) = Ax(t) + Bu(t) + Ke(t);

y(t) = Cx(t) + Du(t) + e(t); (2.4)

where {x(t)} is the state process of dimensions n, and {e(t)} is a white noise process
with the meaning of (stationary) one-step prediction error of {y(t)}, given the in%nite
past history of {y(t)} {u(t)} up to time t − 1, and A; B; K; C; D are constant matrices.
Here {u(t)} is an exogenous input and is not modelled explicitly. In the following we
shall make the blanket assumption that there is no feedback from y to u. This implies
that {u(t)} and {e(t)} are uncorrelated at all times. See e.g. Caines and Chan (1976),
Gevers and Anderson (1982, 1981), and Picci and Katayama (1996) for a discussion
of this concept.
Subspace identi%cation is based on the following idea. Since the processes {y(t)},

{u(t)}, {x(t)} satisfy the equations of the linear innovation model (2.4), it is obvious
that the %nite “tail” matrices, Yt , Ut , Xt , constructed at each time t from the observed

2 A rather arti%cial stochastic process to be sure, which nevertheless, is mathematically, a perfectly legit-
imate object.
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sample (2.1) by letting

Yt := [yt yt+1 : : : yt+N ];

Ut := [ut ut+1 : : : ut+N ];

Xt := [xt xt+1 : : : xt+N ];

must also satisfy (2.4), i.e.

Xt+1 = AXt + BUt + KEt;

Yt = CXt + DUt + Et; (2.5)

where Et := [et et+1 : : : et+N ] is the innovation tail. This equation can be interpreted
as a regression model. Hence, if the tail matrices Xt+1; Xt ; Ut , Yt , are given, one can
solve (2.5) for the unknown parameters (A; B; C; D), by least squares.
In the ideal case when in%nitely long sample trajectories are available (N → ∞),

Et is orthogonal 3 to the past data, namely Et ⊥ (Xs; Us) for all s6 t by absence
of feedback (this is only approximately true for N large but %nite). This implies
that, under generic assumptions on the data guaranteeing uniqueness of the solution,
the estimates computed by solving the regression equation coincide, for N → ∞, with
the true parameters (consistency). Hence, in an ideal situation where we have avail-
able the input–output tail matrices at time t, and also a corresponding pair of state
tail matrices at the time instants t and t+1, consistent identi%cation of the parameters
(A; B; C; D) of system (2.4) would be a straightforward matter.
In practice the state trajectory is not given to us. However, it is known that the

state of certain representations, in particular the innovation realization (2.4), can be
constructed from the input–output processes. In practice we only have a %nite input–
output tail sequence {Ut; Yt}t=0; :::;T (where T�N ) and the state at time t needs to be
constructed (in general approximately) from these available data. One can see that the
construction of the state becomes a central step in subspace identi%cation. In particular,
it appears that asymptotic analysis of subspace identi%cation methods needs to be based
on an in-depth analysis of the state construction step.
The problem of constructing the state and state-space models of stochastic processes

is the main concern of stochastic realization theory. Stochastic realization theory pro-
vides procedures for state space construction based on geometric operations on certain
Hilbert spaces of random variables which are linear functionals of the input and output
processes of system (2.4). These spaces will be introduced below.
In general terms, subspace identi%cation with inputs could be seen as consisting

of three basic steps: (i) construction of (a sample estimate of) the state vector of a
state-space representation of the process y, (ii) solution of a multiple linear regression
problem to determine the system matrices (A; B; C; D) of the deterministic part of the
model, (iii) estimation of the stochastic noise parameters K and � from the parameters
obtained in the previous step.

3 “Orthogonality” here is with respect to the inner product (2.7) which is de%ned below.
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In this paper we shall not consider the third step at all and concentrate only on the
estimation of the “deterministic” parameters (A; B; C; D).

2.1. Notations

For −∞6 t06 t6T6+∞ de%ne the Hilbert spaces of scalar second-order random
variables

U[t0 ;t) := span{uk(s); k = 1; : : : ; p; t06 s¡ t};
Y[t0 ;t) := span{yk(s); k = 1; : : : ; m; t06 s¡ t};

where the bar denotes closure in mean square, i.e. in the metric de%ned by the inner
product 〈�;�〉 := E{�;�}, the operator E denoting mathematical expectation. We shall
let P[t0 ;t) := U[t0 ;t)∨Y[t0 ;t) denote the joint past space of the input and output processes
at time t (the ∨ denotes closed vector sum). Similarly, let U[t;T ];Y[t;T ] be the respective
future spaces up to time T

U[t;T ] := span{uk(s); k = 1; : : : ; p; t6 s6T};
Y[t;T ] := span{yk(s); k = 1; : : : ; m; t6 s6T}:

By convention the past spaces do not include the present. When t0 =−∞ we shall
use the shorthand U−

t ;Y
−
t for U[−∞; t);Y[−∞; t), the closed vector sum U−

t ∨Y−
t being

denoted by P−
t (the in%nite joint past at time t). These are the Hilbert spaces of random

variables spanned by the in%nite past of u and y up to time t.
Subspaces spanned by random variables at just one time instant (e.g. U[t; t];Y[t; t],

etc) are simply denoted Ut ;Yt , etc. while for the spaces generated by the whole time
history of u and y we shall use the symbols U, Y, respectively.
All through this paper we shall assume that the input process is “suQciently rich”,

in the sense that U[t0 ;T ] admits the direct sum decomposition

U[t0 ;T ] =U[t0 ;t) +U[t;T ]; t06 t6T; (2.6)

the + sign denoting direct sum of subspaces. The symbol ⊕ will be reserved for
orthogonal direct sum. Various conditions ensuring suQcient richness are known. For
example, it is well known that for a full-rank purely non-deterministic (or linearly
regular see, e.g. Rozanov, 1967 p. 52) process u to be suQciently rich it is necessary
and suQcient that the determinant of the spectral density matrix �u should have no
zeros on the unit circle (Hannan and Poskitt, 1988).

2.1.1. The sample-trajectory framework
Under the natural assumption of second-order stationarity, the sequence of semi-

in%nite tail matrices constructed from data (2.1), can be looked upon as an object
isomorphic to a stationary random process. The de%nitions and the basic facts of this
isomorphism are shortly reviewed in Appendix A. Then, as it is shown in Appendix A,
the vector space span{Yt; Ut | t¿ t0}, linearly generated by the rows of the semi-in%nite
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tail sequences {Yt; Ut | t¿ t0} (here N =∞!), closed with respect to the norm induced
by the inner product of semi-in%nite sequences �; �∈RZ+ de%ned by the limit 4

〈�; �〉 := lim
N→∞

1
N + 1

N∑
t=0

�t�t (2.7)

and the “stochastic” Hilbert space Y∨U of zero-mean second-order random variables
introduced above, are isometrically isomorphic Hilbert spaces. This means that for
operations concerning computations of second-order moments and the relative limits,
working with bona-%de random variables as maps de%ned on a probability space, is
equivalent to working with semi-in%nite real sequences belonging to the isomorphic
Hilbert space span{Yt; Ut | t¿ t0}.
Henceforth it will be convenient to regard the two spaces as being the same object.

We shall therefore denote semi-in%nite real or vector-valued sequences in span{Yt; Ut |
t¿ t0} by boldface lowercase letters, exactly like random quantities in Y ∨ U. This
point of view will turn out to be very convenient later on, since it will allow us
to employ in the statistical setup of identi%cation, exactly the same formalism and
notations used in the ordinary L2 setting of stochastic systems.
From now on we shall denote by boldface characters also 'nite data sequences.

For a (possibly vector-valued) in%nite sequence v we shall normally use the subscript
“vN ” to denote the tail matrix of v obtained by truncation to length N , and append
a superscript “N ” to the corresponding symbol denoting the subspace spanned by the
rows of the (%nite) tail matrix vN .
The symbol (y[�;T ])N will be used to denote the vector (actually a block-Hankel

matrix of dimension m(T − �+ 1)× (N + 1))

yN (�)

...

yN (T )


 ≡



y(�)

...

y(T )



N

and YN
[�;T ] the corresponding (%nite-dimensional) rowspace. Since for N → ∞, (y[�;T ])N

“expands” to the m(T − � + 1) × ∞ matrix of semi-in%nite tails y[�;T ] (which is the
same thing as the m(T − � + 1)-dimensional column random vector y[�;T ]), we shall
agree to say that (y[�;T ])N “tends” to y[�;T ] as N → ∞. Likewise, for the corresponding
rowspaces, we use the notation YN

[�;T ] → Y[�;T ] for N → ∞. “Approximating” spaces
of random variables by vector spaces spanned by the rows of tail matrices is a standard
idea at the heart of subspace identi%cation.
Since the only diIerence between operations on %nite and in%nite sequences is in

the inner product, we shall use a diIerent notation for the inner product. Namely, we
shall denote by E[xy�] the mathematical expectation (true covariance matrix) when

4 The sum in (2.7) converges for all sequences whose elements are made of %nite linear combinations of
the rows of (possibly time-shifted) tails of the given stationary time series.
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x and y are random vectors (or in%nitely long vector-valued data sequences) and by
ÊN [xy�] the sample covariance matrix of the %nite (vector) sequences x; y,

ÊN [xy�] :=
1

N + 1

N∑
t=0

xty�
t ;

so that limN→∞ ÊN [xy�]=E[xy�]. In the same spirit we shall understand that E[x | y]
is the wide-sense conditional expectation

E[x | y] := E[xy�]E[yy�]−1y
when x and y are random vectors, while

ÊN [x | y] := ÊN [xy�]ÊN [yy�]−1y
will denote the corresponding object when x and y are %nite sequences. This is nothing
else but the well-known formula solving the (deterministic) least-squares problem

min
A∈Rn×m

‖y − Ax‖:

Clearly, under second-order stationarity, limN→∞ ÊN [x | y] = E[x | y]. This simple fact
will be used quite frequently in this paper.

2.2. Constructing the state

The construction of the state should be based on the prescriptions of stochastic
realization theory with inputs (Picci and Katayama, 1996; Katayama and Picci, 1999).
In particular, we recall that the state space at time t of the stationary realization (2.4)

Xt := span{xk(t); k = 1; : : : ; n};
is the so-called oblique predictor space

Xt := E‖U+
t
[Y+

t |P−
t ]; (2.8)

where the symbol E‖C[A |B] denotes oblique projection of the subspace A onto B
along the subspace C (Picci and Katayama, 1996; Katayama and Picci, 1999). Note
that this subspace can in principle be constructed using input–output data, although the
complete in'nite past, P−

t , is needed in (2.8).
In identi%cation the in%nite past is never available and the state construction must

be done starting from input–output tails {y(t); u(t)} on a 'nite interval, [t0; T ]. Ob-
viously, since in practice the data are %nite, we should consider %nite length tails
{yN (t); uN (t); t ∈ [t0; T ]}. However since the discussion here is intended primarily to
clarify conceptual issues, we shall pretend below that N = ∞, in other words that
{y(t); u(t)} are true random variables. Dealing with data of %nite length will be the
main objective of the following sections.
Henceforth we shall consider the problem of constructing state-space representations

of the process y where the state is a function of the input and output variables on a
%nite interval [t0; T ] only. These models will be called 'nite-interval realizations. In
general they involve non-stationary parameters.
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In principle y can be represented by a %nite-interval realization involving the same
constant parameters (A; B; C; D) of stationary model (2.4) that one wants to identify.
This is the transient conditional Kalman 'lter realization on the interval [t0; T ] %rst
used in (Van Overschee and De Moor, 1994a, b)

x̂(t + 1) = Ax̂(t) + Bu(t) + K(t)ê(t);

y(t) = Cx̂(t) + Du(t) + ê(t);

x̂(t0) = E[x(t0) |U[t0 ;T ]]; (2.9)

where

x̂(t) := E[x(t) |P[t0 ;t−1] ∨U[t;T ]]: (2.10)

x(t) being a basis for a stationary state space Xt and ê(t) the transient (conditional)
innovation process de%ned by

ê(t) = y(t)− E[y(t) |P[t0 ;t−1] ∨U[t;T ]]: (2.11)

Note that the transient innovation space Êt de%ned by the orthogonal decomposition

P[t0 ;t] ∨U[t+1|T ] = Êt ⊕ (P[t0 ;t−1] ∨U[t;T ]) (2.12)

is precisely spanned by the components of ê(t), i.e. Êt = span{ê(t)}.

Remark 2.1. Contrary to the standard Kalman %lter, the initial state estimate x̂(t0)
is not zero and depends on the future inputs U[t0 ;T ]. This implies that x̂(t) is also
in/uenced by future inputs on [t; T ], in spite of the “causal” look of the state equation
in (2.9). For this reason, the construction of (a basis, x̂(t), in) the state space X̂t :=
E[Xt |P[t0 ;t−1]∨U[t;T ]] of model (2.9), using only %nite input–output data, is apparently
an impossible task. See (Chiuso and Picci, 2001) for a discussion of this point. The
simple strategy based on solving a linear regression problem, which was alluded at in
the beginning of the previous section, cannot be implemented if we work with model
(2.9).

Ideally we would like to construct state subspaces of Y[t0 ;T ] ∨ U[t0 ;T ], leading to
state-space models which are causal in u, as well as in the driving noise (the “transient
innovation” ê(t)). In the next section we shall obtain models of this type.

3. The complementary model

In this section we shall build a special %nite interval realization which permits a
uni%ed analysis of most subspace methods with inputs. This model will also be instru-
mental for the derivation of the asymptotic variances expressions to be given in the
following sections.
The basic idea, inspired by a preliminary orthogonal projection step %rst introduced

in the MOESP-type algorithms (Verhaegen and Dewilde, 1992; Verhaegen, 1994), and
then also used in the “Robust N4SID, and CCA (with %nite data) algorithms, is to
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form the orthogonal complement in P[t0 ;t) ∨ U[t;T ] of the future input space (i.e. to
“subtract oI” the eIect of future inputs) and to study the dynamics of the system
on this subspace. As we shall see, this will lead to a stochastic realization which is
constructible from %nite input–output data, and involves (modulo a change of basis)
the same parameters (A; C) of the steady-state model.
Introduce the orthogonal complement of U[t;T ] in P[t0 ;t) ∨U[t;T ]

F[t0 ;t−1] := (P[t0 ;t) ∨U[t;T ])�U[t;T ]

and similarly

F[t0 ;t] := (P[t0 ;t] ∨U[t+1;T ])�U[t+1;T ]:

Note that at diIerent times we are taking orthogonal complements in a diIerent ambient
space. For later reference we point out the following “constructive” formula whose
proof will be left to the reader.

Lemma 3.1.

F[t0 ;t−1] = E{P[t0 ;t) |U⊥
[t;T ]} := span{p− E[p |U[t;T ]] | p∈P[t0 ;t)}: (3.1)

Sometimes we shall use (P[t0 ;t) |U⊥
[t;T ]) as a shorthand for E{P[t0 ;t) |U⊥

[t;T ]}.
Now assume the true process y admits a (minimal) stationary realization, not nec-

essarily of the innovation type,

x(t + 1) = Ax(t) + Bu(t) + Gw(t);

y(t) = Cx(t) + Du(t) + Jw(t) (3.2)

with state space Xt := span{x(t)} and let Wt := span{w(t)}.
De%ne the “complementary” process

yc(t) := E[y(t) |F[t0 ;t]] (3.3)

which by construction is orthogonal to the future input space, and introduce the “com-
plementary state space” X̂c

t as follows:

X̂c
t := E[Xt |F[t0 ;t−1]] = E[Xt | (P[t0 ;t) |U⊥

[t;T ])]; t = t0; : : : ; T (3.4)

A basis in X̂c
t can be constructed by choosing

x̂c(t) := E[x(t) |F[t0 ;t−1]]: (3.5)

The following lemma will be used below to show that the complementary state space
can indeed give origin to state space models.

Lemma 3.2. Let Et be the transient innovation space (2.12) and let

ŜVt := U[t;T ] �U[t+1;T ]; (3.6)

be the transient backward innovation space of the input process u. Then the following
inclusions hold:

X̂c
t+1 ⊆ X̂c

t ⊕ ŜVt ⊕ Êt (3.7)
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and

E{Yt |F[t0 ;t]} ⊆ X̂c
t ⊕ ŜVt ⊕ Êt : (3.8)

Proof. From the de%nition of backward transient innovation of u we have that

P[t0 ;t) ∨U[t;T ] =U[t;T ] ⊕F[t0 ;t−1]

=U[t+1;T ] ⊕ ŜVt ⊕F[t0 ;t−1]

and since

P[t0 ;t] ∨U[t+1;T ] = (P[t0 ;t) ∨U[t;T ])⊕ Êt ;

we obtain the decomposition

P[t0 ;t] ∨U[t+1;T ] =U[t+1;T ] ⊕ ( ŜVt ⊕F[t0 ;t−1] ⊕ Êt)

and hence

F[t0 ;t] =F[t0 ;t−1] ⊕ ŜVt ⊕ Êt : (3.9)

The %rst statement of the proposition follows by projecting the subspace inclusion

Xt+1 ⊆ (Xt ∨Ut)⊕Wt

(which is a coordinate free version of the state equation in (3.2)) onto F[t0 ;t]. The
second also follows by projecting

Yt ⊆ (Xt ∨Ut)⊕Wt

onto F[t0 ;t].

Obtaining state-space models is now just a matter of choosing bases, a particularly
convenient choice being that given in (3.5).

Proposition 3.1. Let x̂c(t) be the basis de'ned in (3.5). Let also Ŝv(t) be the backward
innovation process, Ŝv(t) = u(t) − E[u(t) |U[t+1;T ]] (a basis for the space ŜVt). Then
the following representation holds:

x̂c(t + 1) = Ax̂c(t) + SB(t) Ŝv(t) + K(t)ê(t);

yc(t) = Cx̂c(t) + SD(t) Ŝv(t) + ê(t) (3.10)

for all t06 t6T . All the terms on the right-hand side are mutually uncorrelated.
The matrix coe9cients are given by SB(t)= (AKu(t)+B), SD(t)= (CKu(t)+D), where

Ku(t) := E[x(t) Ŝv�(t)](E[ Ŝv(t) Ŝv�(t)])−1 (3.11)

and K(t) is the transient Kalman 'lter gain in (2.9).

Proof. Since P[t0 ;t)∨U[t;T ] ⊂ F[t0 ;t−1], it is the same to use the Kalman %lter state x̂(t)
in place of x(t) in formula (3.5). Projecting term by term the conditional Kalman %lter
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equations (2.9) ontoF[t0 ;t], using the decomposition (3.9) and noting that E{x̂(t) | Êt}=
0; E{u(t) | Êt}= 0 we get

E{x(t) |F[t0 ;t]}=E{x(t) |F[t0 ;t−1]}+ E{x(t) | ŜVt}+ E{x(t) | Êt}
= x̂c(t) + Ku(t) Ŝv(t);

E{u(t) |F[t0 ;t]}=E{u(t) |F[t0 ;t−1]}+ E{u(t) | ŜVt}+ E{u(t) | Êt}
=Ku(t) Ŝv(t);

realization (3.10) follows after some rearrangement of terms. The formulas for SB(t)
and SD(t) also follow after some simple algebra.

We shall now show that a basis in the complementary state space X̂c
t can be con-

structed starting from the observed data. We shall do this here for in%nite length
sequences (random variables) and postpone the discussion of the %nite length case to
the next section.
Consider the output predictors based on the complementary past information up to

time t − 1

ŷ(t + k | t − 1) := E[y(t + k) |F[t0 ;t−1]]; k¿ 0: (3.12)

Note that we can decompose the output string at time t + k as y(t + k) = yc(t + k) +
ỹc(t + k) where yc(t + k) = E[y(t + k) |F[t0 ;t+k]] is the complementary output at time
t+k while ỹc(t+k)=E[y(t+k) |U[t+k+1;T ]] is the part of y(t+k) which is predictable
based on future inputs after time t + k. Since U[t+k+1;T ] ⊂ U[t;T ] ⊥ F[t0 ;t−1], we have

ŷ(t + k | t − 1) = E[yc(t + k) |F[t0 ;t−1]]; k¿ 0:

Note that since F[t0 ;t−1] can be computed from the data, this quantity is also com-
putable from the data. Assume that the integer # := T − t is greater or equal than the
order n of true model (2.4), and let

ŷ+t :=




ŷ(t | t − 1)
ŷ(t + 1 | t − 1)

...

ŷ(T − 1 | t − 1)



; ŷ+t+1 :=




ŷ(t + 1 | t)
ŷ(t + 2 | t)

...

ŷ(T | t)



; (3.13)

the vector ŷ+t+1 is called the (one step ahead) conditional shift of ŷ
+
t . By minimality

and by the orthogonality property of the complementary state equations (3.10) we have

row-span{ŷ+t }= span{x̂ck(t); k = 1; : : : ; n}= X̂c
t (3.14)

and changing t into t + 1, the analogous relation results for X̂c
t+1.
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It also follows from (3.10) that the matrices (A; C) are uniquely determined by the
chosen (state vector) bases x̂c(t + 1); x̂c(t), and by y(t), by the formulas

A= E[x̂c(t + 1)(x̂c(t))�](E[x̂c(t)(x̂c(t))�])−1 (3.15)

and

C = E[y(t)(x̂c(t))�](E[x̂c(t)(x̂c(t))�])−1; (3.16)

where we have assumed invertibility of E[x̂c(t)(x̂c(t))�]. Clearly in (3.16) we can
substitute yc(t) with y(t), as this does not change the covariance.
One can show (Chiuso and Picci, 2001), that certain particular choices of basis in

X̂c
t give origin to the (theoretical) state underlying well-known subspace identi%cation
methods like the robust N4SID algorithm (Van Overschee and De Moor, 1994a, b),
Verhaegen’s MOESP algorithm with “shift invariance” (Verhaegen, 1994), and also the
canonical correlation analysis (CCA) method based on a 'nite data window. Following
early observations of Van Overschee and De Moor (1995) the diIerent bases can all
be seen as “canonical” variates obtained by SVD of a correlation matrix between
suitably weighted future outputs and past input–output data. It follows that, provided
the state x̂c is chosen in the appropriate coordinate system, the same formulas (3.15)
and (3.16) describe asymptotically the estimates of (A; C) by the various subspace
methods mentioned above.
The original N4SID method can also be related to a particular choice of basis in

the complementary state space X̂c
t since, as observed in Chiuso and Picci (2001), the

asymptotic estimates of the A and C matrices by N4SID, can be written

A= �x̂′x̂|u+�
−1
x̂x̂|u+ ; C = �ŷx̂|u+�

−1
x̂x̂|u+ ; (3.17)

where x̂ ≡ x̂(t) is the state of Kalman %lter realization (2.9), x̂′ ≡ x̂(t + 1) and

�x̂′x̂|u+ := E[(x̂(t + 1)− E[x̂(t + 1) |U[t;T ]])(x̂(t)− E[x̂(t) |U[t;T ]])�];

�x̂x̂|u+ := E[(x̂(t)− E[x̂(t) |U[t;T ]])(x̂(t)− E[x̂(t) |U[t;T ]])�]:

Clearly formulas (3.17) are the same as (3.15) (3.16), as it follows from the equality

x̂c(t) := E[x(t) |F[t0 ;t−1]] = E[x̂(t) |F[t0 ;t−1]] = E[x̂(t) |U⊥
[t;T ]]: (3.18)

We shall take up the state construction step again in more detail in Section 4 below.
The discussion above concerns estimation of (A; C). Unfortunately a uni%ed treatment

regarding estimation of the (B;D) parameters seems to be not possible. In Section 5,
we shall do some asymptotic analysis of the (B;D) estimates obtained by the so-called
“linear regression” method.

3.1. A 'nite data length complementary model

In this section we shall construct the “%nite-data” version of complementary model
(3.10) starting from real data of %nite duration.
Warning: in this and following subsection, boldface quantities will denote tail se-

quences of 'nite length N (tail matrices with N+1 columns). In particular, the matrices
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of future and past input and output data, like all other tail matrices we shall form with
the data, are of %nite length N . For an in%nite sequence v (possibly vector-valued) we
shall normally use the subscript “vN ” to denote truncation to length N . To be com-
pletely consistent one should append an “N ” to all corresponding symbols denoting
subspaces, but, in order to keep notations simple, we shall refrain from doing that.
The reader should keep in mind that the same symbols U[t;T ]; Y[t;T ]; U[t0 ;t]; P[t0 ;t),
etc. which were used for the “theoretical” subspaces made of in%nite-length sequences
will now be used for the corresponding subspaces spanned by the rows of the relevant
'nite tail matrices.
Let

y+N (t) :=




y(t)

y(t + 1)

...

y(T − 1)



N

; u+N (t) :=




u(t)

u(t + 1)

...

u(T − 1)



N

; (3.19)

u−N (t) :=




u(t0)

u(t0 + 1)

...

u(t − 2)
u(t − 1)



N

; p−N (t) :=




y(t0)

u(t0)

...

y(t − 2)
u(t − 2)
y(t − 1)
u(t − 1)



N

; (3.20)

be the %nite-data tail matrices with N + 1 columns.
It is not diQcult to see that all the subspace manipulations introduced in the previous

section make sense also in the present setting. Everything we did can actually be
repeated verbatim for %nite-length subspaces provided the %nite expectation symbol
ÊN is substituted in place of the ordinary expectation E. In particular, the (%nite)
orthogonal complement of U[t;T ] in P[t0 ;t) ∨U[t;T ], is de%ned as

F[t0 ;t−1] := (P[t0 ;t) ∨U[t;T ])�U[t;T ]

and similarly for F[t0 ;t].
The 'nite-length innovation at time t is de%ned by

�̂N (t) := yN (t)− ÊN [yN (t) |P[t0 ;t) ∨U[t;T ]] (3.21)

and is the %nite-length counterpart of (2.12) with the %nite projection operator ÊN
[ · | · ] replacing the stochastic (in%nite-length) projection E[ · | · ]. Note that, since the
truncation and projection operators do not commute, �̂N (t) is not equal to êN (t). The
'nite-length innovation space is

Êt := span{�̂N (t)}:
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The basic recursion

F[t0 ;t] =F[t0 ;t−1] ⊕ ŜVt ⊕ Êt (3.22)

still holds, the %nite-length backward innovation space ŜVt being the orthogonal com-
plement of U[t+1;T ] in U[t;T ]. The generator of ŜVt , i.e. the 'nite-length backward
innovation is

�̂N (t) := uN (t)− ÊN [uN (t) |U[t+1;T ]]: (3.23)

Consider now the “truncated” stationary innovation model obtained by truncating to
length N all stochastic variables in model (2.4)

xN (t + 1) = AxN (t) + BuN (t) + KeN (t);

yN (t) = CxN (t) + DuN (t) + eN (t): (3.24)

Let us introduce the %nite-length complementary process

ycN (t) := ÊN [yN (t) |F[t0 ;t]]; (3.25)

which is orthogonal to the (%nite-length) future input space U[t+1;T ]. Consider also the
projection of the state, xN (t), of model (3.24) onto F[t0 ;t−1]:

ẑcN (t) := ÊN [xN (t) |F[t0 ;t−1]] (3.26)

here, again, we warn the reader that ẑcN (t) �= x̂cN (t).
Introduce the %nite-length complementary state space X̂c

t as follows:

X̂c
t := span{ẑcN (t)}= ÊN [Xt |F[t0 ;t−1]]; (3.27)

where Xt = span{xN (t)}. Likewise one should remember that all subspaces in this
subsection are of %nite length N . Again, for later reference, we rewrite this as

X̂c
t = E[Xt | (P[t0 ;t) |U⊥

[t;T ])]; t = t0; : : : ; T: (3.28)

Proposition 3.2. Let ẑcN (t) be the basis in the 'nite-length complementary state space
X̂c

t de'ned in (3.26) and let ẑ
c
N (t + 1) be its conditional shift. Let

�̂N (t) := ÊN [eN (t) |F[t0 ;t−1]]: (3.29)

Then the 'nite length complementary process ycN admits the following representation:

ẑcN (t + 1) = AẑcN (t) + B̂(t)�̂N (t) + K̂(t)�̂N (t) + K �̂N (t);

ycN (t) = C ẑcN (t) + D̂(t)�̂N (t) + �̂N (t) + �̂N (t) (3.30)

for all t06 t6T . The matrix coe9cients are given by the expressions B̂(t)=(AK̂u(t)+
B+ KE(t)), D̂(t) = (CK̂u(t) + D + E(t)), where

K̂u(t) := ÊN [xN (t)�̂N (t)�](ÊN [�̂N (t)�̂N (t)�])−1; (3.31)

K̂(t) := ÊN [xN (t + 1)�̂N (t)�](ÊN [�̂N (t)�̂N (t)�])−1; (3.32)

E(t) := ÊN [eN (t)�̂N (t)�](ÊN [�̂N (t)�̂N (t)�])−1: (3.33)
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For N → ∞,
�̂N (t)→ 0 �̂N (t)→ Ŝv(t) �̂N (t)→ ê(t) (3.34)

and the matrix coe9cients of (3.30) converge to those of complementary model
(3.10).

Proof. Denote S[t0 ;t] := F[t0 ;t−1] ⊕ ŜVt . Projecting truncated innovation model (3.24)
onto the subspace F[t0 ;t] =S[t0 ;t] ⊕ Êt one obtains

ÊN{xN (t + 1) |F[t0 ;t]}= AÊN{xN (t) |S[t0 ;t]}+ BÊN{uN (t) |S[t0 ;t]}
+K ÊN{eN (t) |S[t0 ;t]}+ ÊN{xN (t + 1) | Êt};

ycN (t) =CÊN{xN (t) |S[t0 ;t]}+ DÊN{uN (t) |S[t0 ;t]}
+ ÊN{eN (t) |S[t0 ;t]}+ �̂N (t)

and representation (3.30) follows from the equalities:

ÊN{xN (t) |S[t0 ;t]}= ÊN{xN (t) |F[t0 ;t−1]}+ ÊN{xN (t) | ŜVt}
= ẑcN (t) + K̂u(t)�̂N (t);

ÊN{uN (t) |S[t0 ;t]}= ÊN{uN (t) |F[t0 ;t−1]}+ ÊN{uN (t) | ŜVt}= 0 + �̂N (t);

ÊN{eN (t) |S[t0 ;t]}= ÊN{eN (t) |F[t0 ;t−1]}+ ÊN{eN (t) | ŜVt}= �̂N (t) + E(t)�̂N (t);
of which only the second requires some justi%cation. Namely, the %rst term in the right
is zero since F[t0 ;t−1] ⊂ U⊥

[t;T ] and, by de%nition, ÊN{uN (t) | ŜVt} = �̂N (t). Moreover,
from the de%nition of %nite-length innovation space, Êt ⊥ U[t0 ;T ], so that ÊN{uN (t) |
Êt}= 0.
The statements in (3.34) concerning the limit of �̂N (t); �̂N (t), are obvious. That

�̂N (t)→ 0 follows since the %nite truncation eN (t) of the stationary innovation process
will, in the limit for N → ∞, become orthogonal to U ⊃ U[t;T ], because of the
feedback-free hypothesis, and to P−

t ⊃ P[t0 ;t), by de%nition of stationary innovation.
Since F[t0 ;t−1] = span{pN − ÊN [pN |U[t;T ]] | pN ∈P[t0 ;t)} ⊂ P[t0 ;t) ∨U[t;T ], we see that

ÊN [eN (t) |F[t0 ;t−1]]→ 0 as N → ∞:

Hence E(t) → 0 and B̂(t) → AKu(t) + B = SB(t), D̂(t) → CKu(t) + D = SD(t), K̂(t) →
K(t).

4. The state approximation step

From the %nite-data complementary model (3.30) of the previous section, one can
naturally write subspace estimates of (A; C) which are the %nite-length counterpart of
formulas (3.15), (3.16) providing, under a non-singularity assumption of the covariance
matrix E[x̂c(t)(x̂c(t))�], consistent estimates. The only diQculty with these estimates
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is that the %nite-length state variable ẑcN (t) is not directly computable since it involves
the (truncated) unmeasurable state of the stationary innovation model. In practice, an
estimate of ẑcN (t) must be constructed from the available input–output data.
Assume for the moment that the order n of model (3.10) is known. Consider an

estimate, �(t), of the state at time t of model (3.10) based on input–output data of
length N + 1. This estimate will be a certain n × (N + 1) tail matrix which we shall
construct later on as an “approximation” of the state ẑcN (t) of %nite-length model (3.30).
Since �(t) will approximate ẑcN (t) only in a certain basis, which will in general be
diIerent from the particular basis chosen for model (3.30), we shall write

�(t) = TN ẑcN (t) + �̃(t); (4.1)

where TN is an n× n (data-dependent) non-singular matrix, and �̃(t) is an error term.
We shall assume that the state estimate at time t + 1, obeys an analogous relation

�(t + 1) = TN ẑcN (t + 1) + �̃(t + 1)

which means that �(t + 1) is obtained by updating in a suitably “coherent” way the
construction of �(t) implemented at time t. We shall be more precise on this point in
the next section. Then, using complementary model (3.30) we can formally write a
state-space representation of ycN (t) in terms of the %nite-length state estimate as

�(t + 1) = AN�(t) + B̂N (t)�̂N (t) + �x(t);

ycN (t) = CN�(t) + D̂(t)�̂N (t) + �y(t); (4.2)

where

AN = TNAT−1
N ; CN = CT−1

N ; BN = TNB; (4.3)

�(t0) = 0, and the “error terms” are given by

�x(t) := (�̃(t + 1)− AN �̃(t) + K̂N (t)�̂N (t) + KN �̂N (t));

�y(t) := (�̂N (t)− CN �̃(t) + �̂N (t)); (4.4)

where KN := TNK and K̂N (t) := TNK(t). Naturally, we shall look for state estimates
�(t) which also belong to the %nite-length subspace F[t0 ;t−1]. In this case the %rst two
terms on the right-hand side of (4.2) are orthogonal (i.e. %nite-time uncorrelated).
The estimates of the model parameters, AN ; CN , obtained by using the approximate

states �(t) and �(t + 1) are de%ned as the matrices ÂN ; ĈN solving the regression
problem (4.2) in the least-squares sense.

Lemma 4.1. Assume that the state estimate �(t)∈F[t0 ;t−1] and that for N large
enough, the covariance �̂�� is non-singular. Then, the least-squares estimates of the
parameters AN ; CN in regression model (4.2), are given by the formulas

ÂN := �̂�′��̂
−1
�� = AN + (�̂�̃′� − AN �̂�̃� + KN �̂�̂�)�̂

−1
�� ; (4.5)

ĈN := �̂y��̂
−1
�� = CN + (�̂�̂� − CN �̂�̃�)�̂

−1
�� ; (4.6)
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where

�̂�′� := ÊN{�(t + 1)�(t)�}; �̂�̃′� := ÊN{�̃(t + 1)�(t)�};

�̂�� := ÊN{�(t)�(t)�}; �̂�̃� := ÊN{�̃(t)�(t)�};

�̂y� := ÊN{yN (t)�(t)�}; �̂�̂� := ÊN{�̂N (t)�(t)�}: (4.7)

Proof. Project both members of (4.2) onto F[t0 ;t−1]. Since the terms containing �̂N (t)
and �̂N (t) are orthogonal to F[t0 ;t−1], we are left with

�(t + 1) = AN�(t) + (�̃(t + 1)− AN �̃(t) + KN ÊN [�̂N (t) |F[t0 ;t−1]]);

ycN (t) = CN�(t) + (−CN �̃(t) + ÊN [�̂N (t) |F[t0 ;t−1]]):

Formulas (4.5) and (4.6) are obtained by right multiplying the above formulas by
(�(t))� which amounts to taking (%nite) expectations on both members.

4.1. Construction of the state from measured data

Formulas (4.5) and (4.6) provide a rather explicit expression for the estimation
errors of the A; C matrices, but to proceed further in our analysis we need to introduce
a speci%c state estimate. In this subsection we shall review a general state estimation
procedure based on (weighted) canonical correlation analysis, a well-known concept in
subspace identi%cation (Van Overschee and De Moor, 1995). We shall just introduce
a slight variation in the standard procedure which, as we shall argue, yields a lower
error covariance as it eliminates one source of error.
Consider the prediction of future outputs based on the (%nite-length) “complementary

past” subspace F[t0 ;t−1]

ŷN (t + k | t − 1) := ÊN [yN (t + k) |F[t0 ;t−1]]

= ÊN [yN (t + k) | (p−N (t) | (u+N (t))⊥)]; k¿ 0: (4.8)

Note that we can decompose the output string at time t+ k as yN (t+ k)= ycN (t+ k)+
ỹcN (t+k) where y

c
N (t+k)=ÊN [yN (t+k) |F[t0 ;t+k]] is the complementary output at time

t + k while ỹcN (t + k) = ÊN [yN (t + k) |U[t+k+1;T ]] is the part of yN (t + k), predictable
based on future inputs after time t+ k. Since U[t+k+1;T ] ⊂ U[t;T ] ⊥ F[t0 ;t−1], it follows
readily from (3.30) that

ŷN (t + k | t − 1) = ÊN [ycN (t + k) |F[t0 ;t−1]] = CAk ẑcN (t)

+ ÊN [CAk−1K �̂N (t) + CAk−2K �̂N (t + 1)

+CK �̂N (t + k − 1) + �̂N (t + k) |F[t0 ;t−1]]: (4.9)
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Now, introduce

(ŷ+t )N :=




ŷN (t | t − 1)
ŷN (t + 1 | t − 1)

...

ŷN (T − 1 | t − 1)



;

(�̂+t )N := ÊN







eN (t)

eN (t + 1)

...

eN (T − 1)



|F[t0 ;t−1]




(4.10)

(note that here we consider a future history up to time T − 1) and let
ŵ+t := Hs(�̂+t )N ; (4.11)

where Hs is the block-lower triangular Toeplitz matrix of the stochastic subsystem,

Hs =




I 0 : : : 0 0

CK I : : : 0 0

...
. . .

...

CA#−2K CA#−3K : : : I



; # := T − t; (4.12)

so that we can write

(ŷ+t )N = &ẑcN (t) + ŵ
+
t ; (4.13)

where & is the observability matrix &= [C� (CA)� : : : ((CA)#−1)�]�. Note that the
“noise” vector ŵ+t is zero for in%nite data length.
Similarly, letting ŷN (t + k | t) := ÊN [yN (t + k) |F[t0 ;t]] = ÊN [yN (t + k) | (p−N (t + 1)

| (u+N (t + 1))⊥)] and bringing in the conditional shifts

(ŷ+t+1)N :=




ŷN (t + 1 | t)
ŷN (t + 2 | t)

...

ŷN (T | t)



; (�̂+t+1)N := ÊN







eN (t + 1)

eN (t + 2)

...

eN (T )



|F[t0 ;t]




(4.14)

we can write

(ŷ+t+1)N = &ẑcN (t + 1) + ŵ
+
t+1: (4.15)

Here, in accordance with (4.11), we have set ŵ+t+1 := Hs(�̂+t+1)N .
Now, since we are operating with data of %nite length, due to the additive noise

term ŵ+t , we no longer have equality between (%nite-length) predictor space and state
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space as in (3.14). In fact row-span{(ŷ+t )N} will in general be of full dimension
m#= m(T − t). One has to construct a suitable subspace of the (%nite-length) predic-
tor space row-span{(ŷ+t )N}, i.e. an “approximate” state space built from the available
input–output data, which is a “best” approximation of the (unknown) theoretical %nite-
length state space row-span{ẑcN (t)}.
A standard way to solve this problem, is to consider the singular value decomposition

of the (weighted) covariance matrix 5

W ÊN{(ŷ+t )N ((ŷ+t )N )�}W� = [ÛN V̂ N ]diag{Ŝ2N S̃2N}[ÛN V̂ N ]�

= ÛN Ŝ2N Û
�
N + V̂ N S̃2N V̂

�
N ; (4.16)

where W is a non-singular weighting matrix, 6 [ÛN V̂ N ] is an orthogonal matrix and
S̃2N is the diagonal matrix of “small” squared singular values which are declared to
be noise. Deciding how many singular values are declared to be zero and how many
are retained in the %rst piece of formula (4.16) is the order estimation problem which
we shall not discuss in this paper. We shall just assume that the order estimator is
consistent in the sense that the correct number n of (non-zero) singular values is
retained for N large enough.
After separating “signal” from “noise”, the approximate basis in the state space at

time t is taken to be

�(t) := Ŝ−1=2N Û�
N W (ŷ

+
t )N (4.17)

while, at time t + 1 we choose the conditional shift

�(t + 1) := Ŝ−1=2N Û�
N W (ŷ

+
t+1)N : (4.18)

From the viewpoint frequently taken in subspace identi%cation, one might, equivalently,
say that &̂N := W−1ÛN Ŝ

1=2
N is the estimate of the observability matrix & (in the chosen

basis). This is clearly the same thing as saying that �(t) = &̂−L
N (ŷ+t )N is the chosen

basis for the approximate state space. Here we shall always use the left inverse given
by

&̂−L
N := Ŝ−1=2N Û�

N W: (4.19)

Lemma 4.2. Consider the vector of in%nite-length predictors (3.13) and let

WE{ŷ+t (ŷ+t )�}W� = US2U�; S2 = diag{+21 ; : : : ; +2n}; (4.20)

where the singular values are ordered in decreasing magnitude. Assume that the nth
singular value of (4.20) is positive 7 and that the following canonical basis:

x̂c(t) := S−1=2U�W ŷ+t (here N =∞) (4.21)

5 To avoid ambiguities we shall henceforth assume that the singular values are distinct and U is taken
with a positive %rst non-zero element in each column.
6 Which for simplicity will be assumed constant; in reality W = WN is data dependent, but converges

to a %xed non-singular matrix as N → ∞, so the more complicated asymptotics which applies to the data
dependent weighting will in the end give the same results as for a constant weighting.
7 This is generically true. See, however, Chui (1997) and Jansson and Wahlberg (1997) for precise

conditions on the underlying processes.
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is chosen in the state space (3.14) of the true complementary model (3.10). Then,
for data of in'nite length, the approximate basis �(t) coincides with (4.21), which
we shall write as

lim
N→∞

�(t) = x̂c(t): (4.22)

Proof. By consistency of order estimation, for N → ∞ the term V̂ N S̃2N V̂
�
N tends to

zero and the factorization in (4.16) converges to (4.20). Hence S−1=2U�W is the
asymptotic value of Ŝ−1=2N Û�

N W for data of in%nite length (i.e. for N → ∞).

Having %xed the basis in the true model, it is clear that the n× n matrix

T̂ N := Ŝ−1=2N Û�
N W& = Ŝ−1=2N Û�

N US
1=2; (4.23)

de%nes the change of basis which was alluded to in (4.1). Note that T̂ N asymptotically
tends to the identity matrix and hence it may be assumed of full rank provided N is
taken suQciently large. From equations (4.13), (4.14), (4.17), and (4.18) we obtain

�(t) = T̂ N ẑcN (t) + Ŝ−1=2N Û�
N W ŵ+t (4.24)

and

�(t + 1) = T̂ N ẑcN (t + 1) + Ŝ−1=2N Û�
N W ŵ+t+1; (4.25)

where, as required in the preceding discussion, the same matrix T̂ N appears in both
equations.

Remark 4.1. Introduce the “augmented” noise vector

Ŝw+t := SH sÊN







eN (t)

eN (t + 1)

...

eN (T − 1)
eN (T )



|F[t0 ;t−1]




(4.26)

and let SH s be the block Toeplitz matrix Hs of (4.12) bordered with one more block
row and column.
Most standard procedures in subspace identi%cation use an “augmented” predictor

vector ( Ŝy+t )N := [ŷN (t | t−1)� : : : ŷN (T−1 | t−1)� ŷN (T | t−1)�]� with T−t+1 block
rows and row-span{( Ŝy+t )N} in lieu of row-span{(ŷ+t )N}. This leads to an extended
observability matrix Ŝ&N with one extra block in the formula for the state space at time
t, while &̂N is used instead at time t+1. With this choice, we have that ŜTN = Ŝ&−L

N
S& �=

&̂−L
N & = T̂ N , due to errors in the estimation of the observability matrix. Therefore a
further source of errors may be introduced due to the fact that Eqs. (4.24) and (4.25)
now read

�(t) = ŜTN ẑcN (t) + Ŝ&−L
N Ŝw+t (4.27)
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and

�(t + 1) = T̂ N ẑcN (t + 1) + &̂−L
N ŵ+t+1: (4.28)

Here the diIerence between T̂ N and ŜTN should be accounted for in the computation
of the error covariance.

Using formulas (4.24) and (4.25) and comparing with (4.1), we get explicit expres-
sions of the error terms �̃(t); �̃(t + 1) and �̂x(t); �̂y(t). After substituting in (4.4) we
obtain

ÊN [(�̃(t + 1)− AN �̃(t) + K̂N (t)�̂N (t) + KN �̂N (t)) |F[t0 ;t−1]]

= [(KN &̂−L
N )− AN (&̂−L

N 0n×m)] Ŝw+t :

Similarly

ÊN [(�̂N (t)− CN �̃(t) + �̂N (t)) |F[t0 ;t−1]] = �̂N (t)− CN &̂−Lŵ+t

= [(Im 0m×m(#−1))− CN &̂−L]ŵ+t :

In order to work with more compact formulas we introduce the matrices

M̂N := [(KN &̂−L
N )− AN (&̂−L

N 0n×m)];

R̂N := [(Im 0m×m(#−1))− CN &̂−L
N ] (4.29)

for which N → ∞, tend to the limits M and R given by

M := [(K &−L)− A(&−L 0n×m)]; R := [(Im 0m×m(#−1))− C&−L]:

Proposition 4.1. The errors on the system matrix estimates with data of length N ,
can be expressed as

ÃN = ÂN − AN = M̂N SH sÊN [ Se+t �(t)�]�̂−1
�� := M̂N SH s�̂ Se+��̂

−1
�� ; (4.30)

C̃N = ĈN − CN = R̂NHsÊN{e+t �(t)�}�̂−1
�� := R̂NHs�̂e+��̂

−1
�� ; (4.31)

where Se+t := [eN (t)� eN (t+1)� : : : eN (T−1)� eN (T )�]� is the augmented truncated
stationary innovation vector of the true model.

Proof. It follows from (4.5) and (4.6) that

ÃN = ÂN − AN := M̂N ÊN{ Ŝw+t �(t)�}�̂−1
�� ;

C̃N = ĈN − CN := R̂N ÊN{ŵ+t �(t)�}�̂−1
��
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and since �(t)∈F[t0 ;t−1] we may write the %nite expectation term in the %rst formula
as

ÊN{ Ŝw+t �(t)�}= SH sÊN [ Se+t �(t)�] = SH sÊN







eN (t)

eN (t + 1)

...

eN (T − 1)
eN (T )



�(t)�



= SH s�̂ Se+�:

Likewise, we can write ÊN{ŵ+t �(t)�}= Hs�̂e+�.

Remark 4.2. We have chosen to express the estimation errors ÃN ; C̃N in the current,
data-dependent, basis determined by the SVD step of the estimation algorithm. In
other words, both the estimates and the true values A; C are expressed in basis (4.17)
determined by SVD (4.16). It is however immediate to express the estimation errors
in the asymptotic canonical basis of the true system, de%ned by (4.21). In fact, since
the estimates expressed in the asymptotic basis are, respectively, given by the formulas
T̂−1
N ÂN T̂ N and ĈN T̂ N the errors in the asymptotic basis are just

˜̃AN := T̂−1
N ÂN T̂ N − A= T̂−1

N (ÂN − AN )T̂ N = T̂−1
N ÃN T̂ N ; (4.32)

˜̃CN := ĈN T̂ N − C = (ĈN − CN )T̂ N = C̃N T̂ N : (4.33)

4.2. Main result

We now come to the main result of the paper. In this section we shall take the
usual point of view of Statistics, according to which the particular sample trajectory
(2.1) chosen by “nature”, may change “at random” so that we may (and shall) think
of it as a realization of a bona %de random process. Accordingly we shall also think
of the column vectors �t+i ; �t+j; Se+t+i ; : : : ; etc. components of various tail sequences,
as particular sample values of random variables (which we shall here denote by the
same symbols). Each of these variables has been properly de%ned in the course of the
preceding sections, as a function of the sample trajectory (2.1).
We shall assume that in model (2.4) of the true system generating the data, the

innovation process {e(t)} is a martingale diIerence with respect to the +-algebra Et∨U
generated by the random variables {e(s); s¡ t} and {u(t); t ∈Z}, more precisely,
assume for j; k¿ 0, that

E{e(t + k) |Et ∨U}= 0; k¿ 0; (4.34a)

E{e(t + j)e(t + k)� |Et ∨U}= E{e(t + j)e(t + k)�}= �2jk (4.34b)



ARTICLE IN PRESS
A. Chiuso, G. Picci / Journal of Econometrics ( ) – 23

for a positive de%nite matrix �. We shall also need boundedness of the fourth-moment
of {e(t)}. These “noise conditions” are often found in the statistical literature, see e.g.
Hannan and Deistler (1988); they hold, for example, if {e(t)} is an i.i.d. process (strict
sense white noise) with %nite fourth-order moments, independent of u, or if {e(t)} is
Gaussian, independent of u. In the %rst situation we shall also assume that the observed
trajectory (2.1) is an ergodic trajectory of the joint input–output process. For Gaussian
process, second-order ergodicity suQces since it is the same as ergodicity.
The Gaussian distribution with mean 3 and covariance matrix � is denoted N(3; �).

If a sequence of random vectors {zN} converges almost surely to a constant z0 and
is asymptotically normal, i.e.

√
N (zN − z0)

d→N(0; �), where d→ denotes convergence
in distribution, one says that � is the asymptotic variance of {√NzN}. Notation:
�=AsVar(

√
NzN ). The asymptotic covariance of two, asymptotically jointly Gaussian,

sequences is de%ned in a similar way.

Theorem 4.1. Assume that the stationary innovation process, {e(t)}, in model
(2.4) of the true system generating the data, satis'es conditions (4.34) and that
[e(t)� u(t)�]� has 'nite fourth-order moments. Then the vectorized parameter esti-
mates [vec(ÂN )� vec(ĈN )�]� form an asymptotically Gaussian sequence with

AsVar(
√
N vec(ÂN )) = SF



∑
|�|6#

�x̂cx̂c (�)⊗ � Se+ Se+(�)


 SF�; (4.35)

AsVar(
√
N vec(ĈN )) = F



∑
|�|¡#

�x̂cx̂c (�)⊗ �e+e+(�)


F�; (4.36)

AsCov(
√
N vec(ÂN );

√
N vec(ĈN )) = SF

{
�=#−1∑
�=−#

�x̂cx̂c (�)⊗ � Se+e+(�)

}
F�; (4.37)

where F := �−1
x̂cx̂c ⊗ [RHs]; SF := �−1

x̂cx̂c ⊗ [M SH s] and

�x̂cx̂c (�) := E{+�x̂c(t)x̂c(t)�}; �e+e+(�) = E{e+t+�(e+t )�} (4.38)

the operator +� being the �-steps ahead stationary shift of the processes y; u, whereby

+�x̂c(t) = +�E[x(t) |F[t0 ;t−1]] = E[x(t + �) |F[t0+�;t+�−1]]: (4.39)

The understanding here is that F[t0+�;t+�−1] := (P[t0+�;t+�) ∨U[t+�;T+�])�U[t+�;T+�].

Proof. The proof follows a standard line of arguments (Hannan and Deistler, 1988;
Viberg et al., 1997; Jansson, 2000). By elementary manipulations of Kronecker products
we can write the errors given in Proposition 4.1 as, say,

vec(ÃN ) = �̂−1
�� ⊗ [M̂N SH s] · vec(ÊN{ Se+t �(t)�}) := ŜFNwN (t);
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where the matrix ŜFN and the vector wN (t) are

ŜFN := �̂−1
�� ⊗ [M̂N SH s]; wN (t) := vec(ÊN{ Se+t �(t)�}) = ÊN{�(t)⊗ Se+t }:

Lemma 4.3. Under the stated assumptions, wN (t) is asymptotically normal with
asymptotic covariance matrix

AsVar(
√
NwN (t)) =

∑
|�|6#

�x̂c x̂c (�)⊗ � Se+ Se+(�) (†);

where �x̂cx̂c (�) is de'ned in (4.38).

Proof. We have

wN (t) =
1

N + 1

N∑
i=0

[�t+i ⊗ Se+t+i];

where now all quantities in the sum are interpreted as random variables. Since the sum
involves only terms up to t + N , the components of Se+t+i are just the variables of the
true model stationary innovation process. Now by (4.22) we have �t+i → +ix̂c(t) (the
shifted complementary state) almost surely (and in probability) for N → ∞. Therefore

1√
N + 1

N∑
i=0

[�t+i ⊗ Se+t+i]
P→ 1√

N + 1

N∑
i=0

[+ix̂c(t)⊗ Se+t+i]

(in probability). This means that whenever (a function of) the right member converges
in distribution, then the (same function of the) left member will converge to the same
limit in distribution, see e.g. Ferguson (1996, Theorem 6, p. 39). Now x̂c(t) is mea-
surable with respect to Et+i ∨U so that, using (4.34), after some rearrangements, one
obtains

E{ÊN [x̂c(t)⊗ Se+t ]ÊN [x̂
c(t)⊗ Se+t ]

�}

=
1

(N + 1)2

N∑
i=0

N∑
j=0

E{[+ix̂c(t)⊗ Se+t+i][+
jx̂c(t)� ⊗ ( Se+t+j)�]}

=
1

(N + 1)2

N∑
i=0

N∑
j=0

E{[+ix̂c(t)+jx̂c(t)�]⊗ [ Se+t+i( Se+t+j)�]}

=
1

N + 1

#∑
�=−#

(
1− |�|

N + 1

)
�x̂cx̂c (�)⊗ � Se+ Se+(�);

where �x̂cx̂c(�) = E[+�x̂c(t)x̂c(t)�]. The limits in the sum can be taken to be ±# since
� Se+ Se+(�) is zero for |�|¿#.
We can now invoke a version of the central limit theorem, see, e.g., SVoderstrVom

and Stoica (1989, p. 550), to conclude that
√
NwN (t)

d→N(0; P) where the asymptotic
variance P is the matrix in the last member of (†).
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Finally, (4.22) implies that �̂�� → �x̂cx̂c and hence ŜFN := �̂−1
�� ⊗ [M̂N SH s] converges

almost surely (and hence in probability) to the constant matrix SF := �−1
x̂cx̂c ⊗ [M SH s].

From this we easily conclude that
√
NÃN =

√
NF̂NwN (t)

d→N(0; SFP SF�)

which is (4.35).
The proof of (4.36) and of (4.37) is analogous.

Remark 4.3. Formulas (4.35), (4.36) and (4.37) should be compared with the asymp-
totic variance expressions in the literature, notably with those obtained in Bauer and
Jansson (2000) and Jansson (2000). In this respect we highlight the following points:

1. The state covariance matrix �x̂cx̂c (�) appears in place of the joint data covariance
matrix R88(�) of formula (37) in Jansson (2000). Moreover the identity (3.18) al-
ready discussed in Section 3, relates the variance of the estimates with the possible
ill-conditioning of the subspace estimation problem, see Chiuso and Picci (2001).

2. The expressions (4.35), (4.36) and (4.37) can be used for parameter estimates ob-
tained by many subspace methods, namely MOESP, Robust N4SID, and %nite-interval
CCA, by specializing the choice of the weighting matrix W , see Van
Overschee and De Moor (1995, 1996) for the particular expression of W which
applies in each case. This may allow to compare the accuracy of diIerent methods,
given that both �x̂cx̂c and the matrices M and R in general depend on the choice of
the weighting matrix W . The dependence can be seen for instance from the formula
&�x̂cx̂c&� = E{ŷ+t (ŷ+t )�} (Lemma 4.2),where �x̂cx̂c ≡ Ss depends on W (unless W
is chosen to be an orthogonal matrix). A comparison of these methods from the
point of view of relative asymptotic eQciency is however outside the scope of this
paper.

Remark 4.4. For the practical computation of �x̂cx̂c (�) one should be careful not to
confuse the stationary shift +�x̂c(t) with the conditional shift x̂c(t + �) (which is not
stationarily correlated with x̂c(t)). The stationary shift makes it easy to approximate
�x̂cx̂c (�) from %nite I/O data. As seen in the course of the proof, a natural sample
estimate can be obtained by just using the state approximation �(t), computed at time
t, using the formula

�̂x̂cx̂c (�) � 1
N + 1

N−�∑
i=0

�t+i+���t+i ; N → ∞:

Of course we should make sure that the estimate is a positive function, but we shall
not insist on this point here.

Remark 4.5. The asymptotic variance expressions (4.35), (4.36) and (4.37), describe
the errors in a data-dependent basis. However the same formulas provide also the
asymptotic variances of the estimation errors expressed in the asymptotic canonical
basis (4.21) of the true system. We state this formally in the following corollary.
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Corollary 4.1. Exactly the same asymptotic variance expressions (4.35), (4.36) and
(4.37), hold for the errors ˜̃AN ,

˜̃CN , expressed in the asymptotic canonical basis of
the true system.

Proof. This follows from formulas (4.32) and (4.33), the %rst of which can be rewritten

˜̃AN = (I − (T̂ N − I))−1ÃN (I − (T̂ N − I))

= ÃN + (T̂ N − I)ÃN + ÃN (T̂ N − I) + O(‖T̂ N − I‖2)
and the fact that, from (4.23), T̂ N−I=[Ŝ−1=2N ÛN−S−1=2U ]�US1=2=O(1=

√
N ) for N →

∞. In other words, √N [ ˜̃AN−ÃN ]→ 0 almost surely (and in probability) which implies
that

√
N ˜̃AN and

√
NÃN have the same asymptotic distribution, see e.g. Ferguson (1996,

Theorem 6, p. 39). An analogous expansion holds for ˜̃CN .

More generally, it may be worth stressing that, provided of course the estimates
are consistent and asymptotically expressed in the same basis chosen for the true
parameters, knowing the asymptotic variance of the estimates (ÂN ; ĈN ; B̂N ; D̂N ), permits
to compute the asymptotic variance of any smooth function of the true parameters, in
particular of any system invariant. More precisely, let

9 := [vec(A)� vec(C)� vec(B)� vec(D)�]�

denote the true system matrices and let 9̂N denote the estimate of the (vectorized) sys-
tem matrices based on N data points. Assuming that

√
N9̂N is consistent and asymp-

totically normal, i.e. that B̂N ; D̂N have the same kind of asymptotic behavior as ÂN ; ĈN ,
the asymptotic variance of the estimate, g(9̂N ), of any smooth function g(9), can be
computed by a well-known linearization technique, see Ferguson (1996, Theorem 7,
p. 45),

AsVar[
√
Ng(9̂N )] =

9g
99

∣∣∣∣
9
AsVar {

√
N9̂N} 9g99

∣∣∣∣
�

9
: (4.40)

We will see an application of this formula to the estimate of the transfer function, at
the end of the next section.
As suggested by a reviewer, we shall demonstrate the use of the expression of the

asymptotic variance (4.35) for computing the asymptotic variance of certain system
invariants, in particular the eigenvalues of the system.
Assume for simplicity that the “true” matrix A has simple eigenvalues. According

to Stewart and Sun (1990, Theorem 2.3, p. 183), there is an eigenvalue ;i of A such
that the diIerence between the i—the eigenvalue (T̂ N )−1ÂN T̂ N ; ;̂iN , and ;i, satis%es

;̂iN − ;i =
v�i
˜̃ANui

v�i ui
+O(‖ ˜̃AN‖2); (4.41)

where vi and ui are the normalized left and right eigenvectors of A corresponding to
;i. From this it is immediate to see that

√
N (;̂iN − ;i) is also asymptotically normal
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with asymptotic variance

AsVar[
√
N (;̂iN − ;i)] =

1
(v�i ui)2

(u�i ⊗ v�i )AsVar{
√
N vec(ÃN )}(ui ⊗ vi) (4.42)

which in particular implies

AsVar[
√
N (;̂iN − ;i)]6

1
(v�i ui)2

;MAX{AsVar[
√
N vec(ÃN )]}; (4.43)

where ;MAX[ · ] means maximum eigenvalue. Note that (v�i ui)
2 is the square of the

cosine of the angle between the two eigenvectors. This is less or equal to one and
equal to one just in case the matrix A is symmetric (in which case vi = ui).
Formula (4.42) provides a simple and useful estimate for the asymptotic variance of

the eigenvalues of the system.

Remark 4.6. Under slightly more stringent assumptions, guaranteeing that the square
of the entries of the matrix ŜFN := �̂−1

�� ⊗ [M̂N SH s] (or the companion sequence of

estimates F̂N ) converges to the square of the corresponding entries of SF(F) also in
L2, it is possible to show that the asymptotic variances (4.35) are actual limits of the
%nite sample variances, e.g.

lim
N→∞

NE{vec(ÃN ) vec(ÃN )�}=AsVar(
√
N vec(ÃN )); (4.44)

lim
N→∞

NE{vec(C̃N ) vec(C̃N )�}=AsVar(
√
N vec(C̃N )); (4.45)

lim
N→∞

NE{vec(ÃN ) vec(C̃N )�}=AsCov(
√
N vec(ÃN );

√
N vec(C̃N )): (4.46)

In this case the asymptotic variance formulas of Theorem 4.1 describe, with arbitrarily
good accuracy, the ensemble averages computed from a large number, say (M), of
Monte-Carlo simulations where the data are generated by a known true system. For
this known system, the (A; C) parameters can always be brought to the (asymptotic)
canonical basis of (4.21) by standard computations. Of course the “ensemble” sample
variance of the results of M Monte Carlo runs should be computed after subtracting
the “true” known mean values. For example, the right hand side of (4.35), when N is
very large, is the limit for M → ∞ of the average

N
M

M∑
i=1

vec[(T̂ i
N )

−1ÂiN T̂
i
N − A0] vec[(T̂ i

N )
−1ÂiN T̂

i
N − A0]�;

where A0 is the true known A matrix of the simulated system, expressed in the canonical
basis (4.21).

5. The asymptotic variance of (B; D)

Several algorithms have been proposed in the literature for the estimation of the
matrices (B;D), see e.g. Van Overschee and De Moor (1996), Verhaegen and Dewilde
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(1992) and Verhaegen (1994). In this section we shall generalize slightly a standard
procedure which is based on “linear regression on B; D”. The algorithm of Verhaegen
and Dewilde (1992) is a special case of the one described below.
We shall derive the minimum variance (Markov) estimate of (B;D) and the relative

expression for the error covariance, assuming %rst that A; C are known. An expression
for the asymptotic variance which takes into account also the sample variations in the
estimates of A; C can be obtained from these expressions using a linearization technique
similar to that employed in Jansson (2000). The calculations are easy but tedious and
since do not add anything conceptually new we shall omit most of the details.
Let us consider the equations obtained by substituting all in%nite-length (random)

variables in the model (2.4) by the corresponding tail matrices of length N . In the
following, unless otherwise stated, all bold symbols will represent tail matrices with N
columns and for simplicity we shall not use subscripts.
Let ÊN [y+t | u+t ] be the projection of the future outputs onto future inputs at time t.

Here there is no need to chose the same “present” time t as in the previous sections
(in fact, it may be reasonable to pick t = t0), but, just in order to avoid having to
introduce further notations, we shall keep the same meaning of t. The vectors y+t ; u

+
t

are de%ned in (3.19) where they carry a subscript N which has now been dropped.
This projection can be written as

ÊN [y+t | u+t ] = &ÊN [x(t) | u+t ] + Hd(B;D)u+t + HsÊN [e+t | u+t ]: (5.1)

where Hd is the lower triangular block-Toeplitz matrix of the Markov parameters of
the “deterministic” subsystem, namely

Hd = Hd(B;D) =




D 0 : : : 0 0

CB D : : : 0 0

...
. . .

...

CA#−2B CA#−3B : : : D




and where Hs is the lower triangular block-Toeplitz matrix of the Markov parameters
of the “stochastic” subsystem de%ned as in formula (4.12). The third term in (5.1)
is the regression of future innovations {e(t); : : : ; e(T − 1)} on future inputs at time t.
By the feedback-free assumption, it should ideally be zero; in practice, due to %nite
sample length eIects, it is not. It can formally be expressed by the formula

ÊN [e+t | u+t ] = �̂e+u+�̂−1
u+u+u

+
t :

The left-hand side of (5.1) has the form ŷ+t = ÊN [y+t | u+t ] := �̂yu+t where the
regression matrix �̂y can be computed by solving a least-squares problem. Hence Eq.
(5.1) is rewritten as

�̂yu+t = (&�̂x + Hd(B;D) + Hs�̂e+u+�̂−1
u+u+)u

+
t ; (5.2)

where �x is the regression matrix of the (unknown) state on u+. Due to the “suQcient
richness” (or persistence of excitation) of u, (5.2) is immediately seen to be equivalent
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(for N large enough) to the “dual” equation for the coeQcients

�̂y = &�̂x + Hd(B;D) + Hs�̂e+u+�̂−1
u+u+ : (5.3)

Now, Hd(B;D) is linear in the parameters (B;D) so that it can be written in vectorized
form as

vecHd(B;D) = L

[
vec(B)

vec(D)

]
(5.4)

for a suitable matrix L depending on (A; C), and Eq. (5.3) re-stated in vectorized form
is rewritten

vec(�̂y) = [Ikm ⊗ &]vec(�̂x) + L

[
vec(B)

vec(D)

]
+ (�̂−1

u+u+ ⊗ Hs)vec(�̂e+u+): (5.5)

Assuming (A; C) are known, this relation can be interpreted as a linear regression of
the (known) vector vec �̂y on the (known) quantities ([Ikm ⊗ &]; L), with unknown
parameters (�̂x; B; D).
The additive term vec(�̂e+u+) is regarded as a random perturbation vector whose co-

variance matrix, �N , can be computed exactly for %nite N . Under the same assumptions
(4.34) of the previous section, we have

�N := E[vec(�̂e+u+)vec(�̂e+u+)�]

=
1

N + 1

∑
|�|¡#

(
1− |�|

N + 1

)
�u+u+(�)⊗ �e+e+(�); (5.6)

where

�u+u+(�) = E{u+t+�(u+t )�}: (5.7)

By substituting �̂u+u+(�) with �u+u+(�) (the population covariance) we obtain the
asymptotic covariance of the additive noise term in (5.5) by the formula

W0 := AsVar{
√
N (�̂−1

u+u+ ⊗ Hs)vec(�̂e+u+)}

= (�−1
u+u+ ⊗ Hs)

∑
|�|¡#

�u+u+(�)⊗ �e+e+(�)(�−1
u+u+ ⊗ Hs)�:

The following statement easily follows.

Theorem 5.1. Assume (A; C) are known; and let W]
0 =V�V be a square factorization

of the (Moore Penrose) pseudoinverse of W0. Then the formula[
vec(B̂N )

vec(D̂N )

]
=
(
L�V�>⊥VL

)]
L�V�>⊥V vec(�̂y) (5.8)

provides (for N → ∞) the minimum variance linear (Markov) estimate of B;D from
the “dual” regression Eq. (5.5). Here > : V [Ikm⊗&] and >⊥= I −>(>�>)]>� is the
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orthogonal projection onto [col−span(>)]⊥. The asymptotic variance of the estimates
of the B;D parameters is

AsVar

{[ √
N vec(B̂N )

√
N vec(D̂N )

]}
=
(
L�V�>⊥VL

)]
: (5.9)

To obtain realistic expressions for the asymptotic variance one needs to account for
the uncertainty in the parameters A and C. In order to streamline notation, let us de%ne

? :=
(
L�V�>⊥VL

)]
L�V�>⊥V

and denote by ?̂N , L̂N , &̂N and ?N , LN , &N the matrices ?, L, & computed using
respectively the estimates ÂN and ĈN and the true values, AN and CN , converted to
the basis de%ned by (4.23). In the same basis the B and K matrices of the system are
given by BN := TNB; KN := TNK . The estimates provided by formula (5.8) will be
denoted by B̂N ; D̂N . In the following, the subscript N will be used to denote estimates
computed with a data set of length N , expressed with respect to the basis de%ned by
(4.23).
Recall that, by construction, ?̂N L̂N = I and ?̂N (I ⊗ &̂N ) = 0, so that we can write

the estimate vec
(
B̂N
D̂N

)
: ?̂N vec(�̂y)N as[

vec(B̂N )

vec(D̂N )

]
=

[
vec(BN )

vec(D)

]
+ ?̂N (I ⊗ (&N − &̂N ))(�̂x)N

+?̂N (LN − L̂N )

[
vec(BN )

vec(D)

]
+?̂N

(
�̂−1
u+u+ ⊗ (Ĥ s)N

)
vec
(
�̂e+u+

)
:

Note that if AN and CN were known exactly, the two terms containing (&N − &̂N ) and
(LN − L̂N ) would vanish and from this expression one would get back the variance
formula (5.9). Moreover, since these terms are smooth functions of the errors vec(ÃN )
and vec(C̃N ), linearizing ?̂N and (�̂x)N around the true values AN and CN , i.e. sub-
stituting ?̂N =(?̂N −?N )+?N , (�̂x)N =[(�̂x)N − (�x)N ]+(�x)N , etc. and neglecting
higher-order terms which go to zero (a.s. and hence in probability) faster than 1=N for
N → ∞, the error can be expressed as[

vec(B̃N )

vec(D̃N )

]
=?N (I ⊗ (&N − &̂N ))vec(�x)N +?N (LN − L̂N )

[
vec(BN )

vec(D)

]

+?N

(
�̂−1
u+u+ ⊗ Hs;N

)
vec
(
�̂e+u+

)
+ o

(
1√
N

)

and hence as a linear function of vec(ÃN ) and vec(C̃N ) as follows:[
vec(B̃N )

vec(D̃N )

]
= LAN vec(ÃN ) + LCN vec(C̃N ) + LHN vec

(
�̂e+u+

)
+ o

(
1√
N

)
;

(5.10)
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where LAN ; LCN ; LHN are the evaluation at A= AN ; C = CN ; B= BN of

LA :=?N

[(
I ⊗
(

9
9 vec(A) &

))
⊗b vec(�x) +

(
9

9 vec(A)L
)
⊗b vec

(
B

D

)]
;

LC :=?N

[(
I ⊗
(

9
9 vec(C)&

))
⊗b vec(�x) +

(
9

9 vec(C)L
)
⊗b vec

(
B

D

)]
;

LH :=?N
(
�−1
u+u+ ⊗ Hs

)
:

Here ⊗b denotes block Kronecker product.

Theorem 5.2. Introducing the following compact symbols for the asymptotic covari-
ances of (ÂN ; ĈN ) and of (B̂N ; D̂N ), given ÂN = A; ĈN = C,

�(A; C) := AsVar

{[ √
N vec(ÂN )

√
N vec(ĈN )

]}
:=

[
(4:35) (4:37)

(4:37)� (4:36)

]
;

�(B;D) := AsVar

{[√
N vec(B̂N )

√
N vec(D̂N )

]
| ÂN = A; ĈN = C

}
= (L�V�>⊥VL)];

we have

AsCov



[ √

N vec(ÂN )
√
N vec(ĈN )

][ √
N vec(B̂N )

√
N vec(D̂N )

]�


=�(A; C)

[
L�A

L�C

]
+




SF(
#∑

�=−#

�x̂cu+(�)⊗ � Se+ Se+(�))

F (
#∑

�=−#+1

�x̂cu+(�)⊗ �e+ Se+(�))


L

�
H ;

AsVar

{[ √
Nvec(B̂N )

√
Nvec(D̂N )

]}
= �(BD) + [LA LC]�(A; C)

[
L�A

L�C

]

+[LA LC]




SF

(
#∑

�=−#

�x̂cu+(�)⊗ � Se+ Se+(�)

)

F

(
#∑

�=−#+1

�x̂cu+(�)⊗ �e+ Se+(�)

)

L

�
H
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+


LA LC




SF

(
#∑

�=−#

�x̂cu+(�)⊗ � Se+ Se+(�)

)

F

(
#∑

�=−#+1

�x̂cu+(�)⊗ �e+ Se+(�)

)

L

�
H




�

;

where SF = (�−1
x̂c x̂c ⊗ M SH s); F = (�−1

x̂c x̂c ⊗ RHs). These formulas provide complete ex-
pressions for the overall asymptotic covariance matrix of the parameter estimates.

Similar (although a bit less explicit) expressions have been obtained by Jansson
(2000) based on an unweighted least-squares estimator of B;D.

Remark 5.1. Naturally, for assessing the overall quality of the estimates, the most
interesting quantity to consider is just the system transfer function. According to the
general principle discussed in Remark 4.2, the asymptotic variance of the transfer func-
tion can be computed by using the previous expressions for the asymptotic covariance
of the estimates (ÂN ; ĈN ; B̂N ; D̂N ). The result follows by a straightforward linearization,

vec(Ŵ (z)−W (z)) � [W1W2 W1 W2 I ] vec([ÃN C̃N B̃N D̃N ]);
(5.11)

where

W1 := ((zI − AN )−1BN )T ⊗ I; W2 := I ⊗ CN (zI − AN )−1

as explained in the paper Jansson 2000, to which the reader is referred for the details.

6. Conclusions

Using ideas of stochastic realization theory we have derived new asymptotic expres-
sions for the covariance matrix of subspace estimates of the matrices (A; B; C; D; )
of a state-space realization. These expressions provide new insight in the estimation
problem. In particular

1. The variance of the estimates of A; C is seen to be roughly “proportional” to the
inverse of the conditional covariance �x̂x̂|u+ . This relates the statistical accuracy
to the possible ill-conditioning of the computation of the estimates.

2. The inverse of the covariance of the input process appears in the expression of
the variance of the B;D parameters (5.9). This describes the in/uence of the
conditioning of the input process on the estimates of B;D. A poorly conditioned
input Toeplitz matrix �u+u+ is seen to correspond to a “large” additive noise
variance W0 and to poor estimates.

3. The formulas can be used for several estimation algorithms (CVA, N4SID,
MOESP) by specializing the choice of the weighting matrix W as described in
vanOverschee and De Moor (1995).
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Appendix A. The sample-trajectory framework

Let (2.1) be a second-order ergodic 8 trajectory of a bona-%de (m+p)-dimensional
second-order stationary process z = [y�; u�]�. Consider the correspondence

T :

{
a�y(t) �→ a�Yt a∈Rm;

b�u(t) �→ b�Ut b∈Rp;

associating a generic linear combination of the components of the tth random variables
of the processes {y} and {u} to the same linear combination of the rows of the “tail”
matrices made with the present and future after time t of the ergodic trajectory.
This map can be extended by linearity to all combinations of random variables of

the processes {y} and {u}. In fact, the correspondence T seen as a map from the
“stochastic” Hilbert space Y ∨U of zero-mean second-order random variables to the
vector space Span {Yt; Ut; |t ∈Z+} closed with respect to the inner product (2.7), is an
isometry, i.e. it maps random variables into semi-in%nite sequences, preserving their
inner product. It follows from a general theorem on isometric maps on Hilbert spaces
Rozanov, 1967, that T can be extended to an isometric map from the Hilbert space
generated by zero mean second-order random variables of the process {z(t)}, into the
Hilbert space Span {Yt; Ut; |t ∈Z+} generated by the tails constructed with the ergodic
trajectory. We can actually make this map unitary by identifying stationary trajectories
which give rise to the same true covariance.
Hence the “stochastic” Hilbert space of zero mean second-order random variables

and the Hilbert space of a stationary sample function (2.1) of the underlying stochas-
tic process are isometrically isomorphic. This means that for operations concerning
computations of second-order moments and the relative limits, working with bona %de
random variables as maps de%ned on a probability space is equivalent to working with
semi-in%nite real sequences belonging to the Hilbert space Span {Yt; Ut; | t ∈Z+}. For
this reason we shall denote this latter space by the same symbol introduced for sub-
spaces of random variables, and denote also the corresponding elements (semi-in%nite
tail sequences) by boldface letters as done for random quantities. This useful corre-
spondence was introduced and used in Lindquist and Picci, (1996a,b).

8 This is the same thing as a “second-order stationary” or “quasi-stationary” signal, as de%ned in
Section 1.
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