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Abstract

In this paper, we consider a problem of identifying the deterministic part of a closed loop system by applying the stochastic realization
technique of (Signal Process. 52 (2) (1996) 145) in the framework of the joint input–output approach. Using a preliminary orthogonal
decomposition, the problem is reduced to that of identifying the plant and controller based on the deterministic component of the joint
input–output process. We discuss the role of input signals in closed loop identification and the realization method based on a finite data,
and then sketch a subspace method for identifying state space models of the plant and controller. Since the obtained models are of higher
order, a model reduction procedure should be applied for deriving lower order models. Some numerical results are included to show the
applicability of the present technique.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The identification problem for linear systems operating
in closed loop has received much attention in the literature
(Söderström & Stoica, 1989; Van den Hof, 1997; Forssell &
Ljung, 1999). Also, the identification of multivariable sys-
tems operating in closed loop by subspace methods has been
object of active research in the past decade; among early
references using the joint input–output approach, we quote
papers (Van der Klauw, Verhaegen, & Van den Bosch, 1991;
Verhaegen, 1993).

Since the joint input–output approach requires assump-
tions of linearity of the feedback channel and is gener-
ally computationally demanding, several attempts have been
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made to identify directly the plant dynamics without esti-
mating the feedback channel. For example modifying the
N4SID method (Van Overschee & De Moor, 1996), a closed
loop subspace identification method has been derived inVan
Overschee and De Moor (1997). However this approach re-
quires that a finite number of Markov parameters of the con-
troller are known. Several other subspace-based closed loop
identification have been proposed, e.g. (Chou & Verhaegen,
1999; Ljung & McKelvey, 1996). In general, these methods
need some side information on the system and their statis-
tical properties (e.g. consistency) have not been assessed;
see e.g.Bauer (2004)and Chiuso and Picci (2004)for an
up-to-date discussion of these aspects.

In this paper, we study a joint input–output subspace
method for identifying the plant and controller operating
in closed loop, by extending the orthogonal decomposi-
tion based technique inKatayama, Kawauchi, and Picci
(2001, 2002). It is not assumed that all the input signals are
purely non-deterministic (and hence persistently exciting
of arbitrary order) as in the references above, but one of
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the exogenous inputs is allowed to be a purely determin-
istic (p.d.) (or “linearly singular” (Rozanov, 1967)) signal.
First we compute the deterministic component of the joint
input–output process, that is linearly related to the exoge-
nous inputs, by means of an orthogonal decomposition as
in Picci and Katayama (1996). Thereby, the identification of
the closed loop system is reduced to that of obtaining the
plant and controller based on the deterministic component
of the joint input–output process. Based on the realization of
the deterministic component, a subspace method for iden-
tifying the plant and controller is then derived by adapting
some standard subspace method from the literature. In gen-
eral the obtained models will be of higher order, so that a
model reduction procedure should be applied for deriving
lower order models.

The organization of the paper is as follows. In Section 2,
the problem is stated along with the underlying assumptions.
In Section 3, we formulate a joint input–output approach to
the closed loop identification problem and derive the deter-
ministic component of the joint input–output process by the
preliminary orthogonal decomposition. Section 4 considers
the state space realization of the deterministic component,
with special emphasis on the role of input signals in closed
loop identification and on the realization from a finite data.
Section 5 derives some formulas for computing the plant
and controller from overall transfer matrices. In Section 6,
a subspace method of identifying the plant and controller
is briefly sketched, together with a model reduction proce-
dure. Section 7 includes some numerical results and Sec-
tion 8 concludes the paper.

2. Problem statement

We consider the problem of identifying a closed loop sys-
tem shown inFig. 1, wherey ∈ Rp is the output vector
of the plant, andu ∈ Rm the input vector. The effect of
stochastic unmeasurable disturbances, modeling errors, etc.
is described by stationary error (or disturbance) processes
H(z)� andF(z)�, acting additively on the outputs of the
plant and controller, respectively. The transfer matrices of
noise filtersH(z) andF(z) will be assumed square ratio-
nal, minimum phase withH(∞) = Ip and F(∞) = Im.
The (unmeasurable) inputs� ∈ Rp and� ∈ Rm are white
noises with mean zero and positive definite covariance ma-
trices. The measurable input signalsr ∈ Rp and d ∈ Rm
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Fig. 1. Closed-loop system.

may be interpreted as the exogenous reference signal and a
probing input (dither) or a measurable disturbance.

Let the plant be a finite dimensional, linear, time-invariant
(FDLTI) system described by

y(t)= P(z)u(t)+H(z)�(t), (1)

where P(z) and H(z) are the (p × m)- and (p × p)-
dimensional transfer matrices of the plant and the noise
filter, respectively. The control input is generated by

u(t)= d(t)+ C(z)[r(t)− y(t)] + F(z)�(t), (2)

whereC(z) andF(z) denote the(m × p)- and (m × m)-
dimensional transfer matrices of the FDLTI controller and of
the measurement noise filter. The error termF(z)� is added
for increased generality, so the present setup is the same as
in Verhaegen (1993).

The following assumptions are made on the closed-loop
system, exogenous inputs, and noises.

A1. The closed loop system is well-posed in the sense
that(u, y) are uniquely determined by the states of the plant
and controller and by the exogenous inputs and noises. This
generic condition is satisfied ifIp + P(∞)C(∞) andIm +
C(∞)P (∞) are non-singular. For the sake of simplicity, it
is assumed throughout the paper that the plant is strictly
proper, i.e.P(∞)= 0.

A2. The closed loop system is internally stable.
A3: The random processesd, r, �, � are wide-sense sta-

tionary, zero-mean1 andmutually uncorrelated, i.e. d(t),
r(s), �(�), �(�) are uncorrelated for anyt, s, �,� ∈ Z.

We shall realistically model the exogenous reference input
r as a p.d. process, which may not necessarily be “exciting”
enough to allow consistent identification. Insteadd will be
assumed to be a purely non-deterministic process with a full
rank spectral density matrix. We shall comment on these
conditions later on; for the time being, we just remark that a
process of this kind is persistently exciting (PE) of any order.
Under these assumptions,(u, y) are also jointly stationary
second-order processes with zero mean.

The objective of this paper is to obtain state space mod-
els of the plantP(z) and the controllerC(z) based on finite
measurement data{d(t), r(t), u(t), y(t)} by using a sub-
space identification method. The present problem is virtu-
ally the same as the one treated inVerhaegen (1993), but
the approach is quite different. For, as shown below, we em-
ploy the approach based on the orthogonal decomposition
of the joint input–output process into the deterministic and
stochastic components (Picci & Katayama, 1996); the real-
ization technique is then applied to the deterministic com-
ponent to obtain state space realizations of the plant and

1 The assumption thatr is zero-mean (E{r(t)}=0) does not preclude
the sample trajectories ofr to exhibit a non-zero constant component. It
is made for notational convenience only and could be dispensed with by
introducing some extra notations and using lengthier formulas; all results
of the paper hold true ifE{r(t)} �= 0 as well.
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controller, which are easily adapted to finite input–output
data by using subspace methods.

As we have already pointed out, given the current state
of knowledge of subspace identification in the presence of
feedback, there seem to be no reliable closed loop subspace
methods for identifying directly the transfer functionP(z)
(and/orC(z)) from the measured signals, without assuming
some a priori knowledge of certain parameters of the sys-
tem. This is due either to the correlation of the noise and
future inputs due to feedback, and/or to the fact that both
P(z) andC(z)may very well have poles on or outside of the
closed unit disk, which may lead to very unreliable subspace
estimates. Some of these difficulties are analyzed inChiuso
and Picci (2003, 2004). For this reason, if we are to use
subspace methods in the presence of feedback, joint iden-
tification seems, so far, to be a mandatory choice. Clearly,
using the relations (1) and (2), the last of which rewritten as
u(t)−d(t)=C(z)(r(t)−y(t))+F(z)�(t) it would be possi-
ble to do separate identification by prediction error methods.
This however is a different setting than the one we want to
consider.

3. The joint input–output approach

In this section, we shall be concerned with the case where
infinite data are available.

3.1. Joint input–output processes

Define the joint augmented input and output processes as

w :=
[
u

y

]
∈ Rl , v :=

[
d

r

]
∈ Rl and � :=

[
�
�

]
∈ Rl ,

wherel=m+p. It then follows fromFig. 1that these signals
are related by the closed loop system transfer functions as

w(t)= Twv(z)v(t)+ Tw�(z)�(t), (3)

whereTwv(z) is the closed loop transfer matrix defined by

Twv(z) :=
[
Tud(z) Tur(z)

Tyd(z) Tyr (z)

]

=
[

Si(z) Si(z)C(z)

P (z)Si(z) P (z)Si(z)C(z)

]
(4)

and whereSi(z)=(Im+C(z)P (z))−1 is the input sensitivity
matrix. Also,Tw�(z) is the noise model in the closed loop
system matrix; but the identification of the noise model is
not treated in this paper.

Recall that the feedback system is internally stable if and
only if the four transfer matrices in (4) are stable. Since in
(3) v and� are uncorrelated, there is no feedback fromw
to v, and hence we can employ an open loop identification
method to get estimates of the transfer matrixTwv(z) :=
[Twd(z) Twr(z)] using the measurement of the input and
output(v,w).

In order to deal with a well-posed estimation problem of
P(z) andC(z), these transfer functions should be uniquely
obtainable from the overall transfer functionTwv(z) (i.e. at
least in the ideal noise-free case when� = 0). This is some-
times called “a priori”identifiability in the literature. That
P(z) andC(z) are identifiable follows from the formula (4),
which yieldsP(z)=Tyd(z)T −1

ud (z) andC(z)=T −1
ud (z)Tur(z),

where the inverse exists because of the invertibility ofSi(z).
Note that in order that bothP(z) and C(z) be uniquely
reconstructible from the data, in general we need to have
both signals r and d acting on the system. If one of the
two signals is absent, we can still solve forP(z) andC(z)
from either Twd(z) or Twr(z). But in this case, to com-
putebothP(z) andC(z) we need to use a left- or a right-
inverse and we do not have uniqueness of the solution (i.e.
identifiability) anymore. This is so unless we make special
assumptions onP(z) and C(z) (like both of them being
square invertible). For example, ifr = 0, so that we are
allowed to use onlyTwd(z), then we can uniquely obtain
P(z)= Tyd(z)T −1

ud (z). But,C(z) would have to be obtained
by solvingC(z)Tyd(z)=I−Tud(z), which in general yields
a non-unique solutionC(z)= (I −Tud(z))T †

yd(z) depending
on the choice of the right-inverse, so thatC(z) will not be
identifiable.

Similarly, whend = 0, we can writeP(z)= Tyr(z)T †
ur (z)

and, unless the generalized inverse is a true inverse, the so-
lution will not be unique. In this caseP(z) will not be iden-
tifiable. The controller transfer matrixC(z) could instead
be recovered uniquely using the formulaC(z)= Tur(z)(I −
Tyr(z))

−1, where the inverse of the (square) matrix on
the right now exists in virtue of the assumptions we have
made.

3.2. Decomposition of the joint input–output process

Following Picci and Katayama (1996), we introduce the
Hilbert spaces generated by second-order random variables
of the exogenous inputs and of the joint input–output signals,
which are respectively denoted byD = span{d(t) | t ∈ Z},
R = span{r(t) | t ∈ Z}, andW = span{w(t) | t ∈ Z}. The
joint input spaceV spanned byv is then the orthogonal
direct sumV=D⊕R. We also define the Hilbert subspaces
spanned by the infinite past and future ofd(t) at the present
time t as

D−
t = span{d(�) | �< t}, D+

t = span{d(�) | �� t}.

Other subspacesR−
t , R+

t , V−
t , V+

t are defined similarly.
These are all subspaces of the ambient Hilbert spaceH :=
V ∨ W spanned by the observable augmented input and
output processes(v,w) (assumed for the time being, ob-
servable on an infinitely long time interval).

Since there is no feedback fromw to v, the future ofv is
conditionally uncorrelated with the past ofw given the past



866 T. Katayama et al. / Automatica 41 (2005) 863–872

of v (Picci & Katayama, 1996). It is then easy to prove that

ws(t) := w(t)− Ê{w(t) | V−
t+1}

=w(t)− Ê{w(t) | V} = Ê{w(t) | V⊥},

whereÊ{· | ·} denotes the orthogonal projection, and(·)⊥ the
orthogonal complement. This implies thatws(t) ⊥ V for all
t ∈ Z, and hencews(t) coincides with the augmented output
of the feedback system which could be measured when the
reference and dither signals are set identically equal to zero.
The processws defined above is hence called thestochastic
component of w. In the same way, the processes defined by
the orthogonal projections

wd(t) := Ê{w(t) | D}, wr(t) := Ê{w(t) | R} (5)

are called thed- and r-driven deterministic components,
meaning that they are the parts ofw linearly related to the
measurable exogenous inputs only.

Thus, we get an orthogonal decomposition of the output
processw = wd + wr + ws , or
[
u(t)

y(t)

]
=

[
ud(t)

yd(t)

]
+

[
ur(t)

yr (t)

]
+

[
us(t)

ys(t)

]
, (6)

where the above three components are uncorrelated at
all times; in particular we haveE{ws(t)w�

d (�)} = 0 and
E{ws(t)w�

r (�)} = 0 for all t, � ∈ Z. From this orthogo-
nal decomposition, it easily follows that the deterministic
components ofw satisfy the following decoupled equations:

yd(t)= P(z)ud(t), ud(t)= d(t)− C(z)yd(t),
yr(t)= P(z)ur(t), ur(t)= C(z)[r(t)− yr(t)]
and from these relations we can easily see that the transfer
matrices in (4) are determined by the deterministic compo-
nents of the measurable signals.

Let ŵ := wd +wr , the component ofw generated by the
observable inputs(d, r). Suppose now that̂w has a minimal
state space realization of dimensionn of the form2

x(t + 1)= Ax(t)+ B1d(t)+ B2r(t), (7a)

ŵ(t)= Cx(t)+D1d(t)+D2r(t), (7b)

whereA ∈ Rn×n must be a stability matrix, andC :=[
C1
C2

]
, Di :=

[
D1i
0

]
, i = 1,2. It is obvious that thed- and

r-driven subsystems of (7), which are formally obtained by
projecting the state equations ontoD andR respectively,
can be written in the form

xd(t + 1)= Axd(t)+ B1d(t), (8a)

wd(t)= Cxd(t)+D1d(t) (8b)

2 In theD matrix we haveD21= 0, D22 = 0, due to the fact that the
plant P(z) is strictly proper. Furthermore we haveD11 = Si(∞) = Im
andD12 =Dc, the feedthrough matrix of the controller.

and

xr(t + 1)= Axr(t)+ B2r(t), (9a)

wr(t)= Cxr(t)+D2r(t). (9b)

We shall assume that both representations are minimal (i.e.
observable and reachable) and hence both are of the same
dimensionn of the system (7).

Our program now is to construct a (minimal) state space
model of the type (7), starting from “data” consisting of the
input v = (d, r) and outputŵ = (û, ŷ) processes. This is
an abstract prototype of the identification problem we have
posed at the beginning of this paper.

4. Realization of closed-loop system

In this section, we shall construct a state space realization
for the joint “deterministic” input–output process described
in the previous section. The technique will be based on
stochastic realization ideas described inPicci and Katayama
(1996), Katayama and Picci (1999)andVerhaegen (1994).

4.1. Input signals for closed-loop identification

We have allowed the reference input signalr to be p.d. It
is well known that the infinite past and infinite future spaces
of such a process contain the same information, i.e. they sat-
isfy the relationR−

t =R+
t =R so thatR−

t ∩R+
t =R (see e.g.

Rozanov (1967)). This fact forbids a straightforward appli-
cation of the stationary stochastic realization procedure of
Picci and Katayama (1996)andKatayama and Picci (1999).
However, for most p.d. process which are in practice used
to model deterministic input signals, suitably shortfinite
past and future histories are in general different. We shall
henceforth assume that there is a natural numberh>0 such
that the finite past subspaceR[t−h,t) := span{r(t − j) |
j = 1, . . . , h} and the finite future subspaceR[t,t+h] :=
span{r(t + j) | j = 0, . . . , h} are linearly independent, i.e.
R[t−h,t) ∩ R[t,t+h] = {0} and

R[t−h,t) + R[t,t+h] = R. (10)

In fact, we shall denote byh thesmallestinteger for which
this condition holds. The dimension ofR apparently corre-
sponds to the so-calledorder of excitationof the signal as
defined in the literature (Ljung, 1999). For example, ifr is
a sum ofh sinusoidal oscillations of different frequencies

r(t)=
+h∑
k=−h

rk ej�k t , �−k = −�k, �k �= �j , (11)

where therk ’s are pairwise uncorrelated zero-mean random
vectors satisfying cov{r−k} = cov{rk} = �>0, and where
cov{·} denoting the covariance matrix, thenr satisfies condi-
tion (10). Note thatr is just a zero-mean stationary process
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with a pure point spectrum. The processr is of full rank
if the (2h + 1)p × (2h + 1)p covariance matrix�r of the
stacked random vector

r := [r�(−h) r�(−h+ 1) · · · r�(h− 1) r�(h)]�

is nonsingular. In this case it is easy to show that the dimen-
sion ofR is equal to(2h+ 1)p. Sometimes for brevity we
shall refer toh itself as the order of excitation of the signalr.

Regarding the purely non-deterministic componentd, we
shall require that it satisfies the so-calledrichness condition,
D+
t ∩ D−

t = {0}, so that, for eacht we have the direct sum
decomposition

D−
t + D+

t = D. (12)

This is equivalent to the canonical angles between the past
and future subspaces ofdbeing strictly positive and is in turn
equivalent to the spectral density matrix ofd being strictly
positive definite on the unit circle, i.e.�d(ej�)> cI l , c >0
(Hannan & Poskitt, 1988).

By construction, then-dimensional state vector of (7) can
be decomposed asx(t) = xd(t) + xr(t), wherexd(t) and
xr(t) are (componentwise) orthogonal and span the state
spacesXdt andXrt of the models (8) and (9), respectively.
The following observation will be needed later.

Lemma 1. Let T � t . For a stationary minimal model of
(ŵ, v) of the type(7),we have the orthogonal decomposition

x̃(t) := x(t)− Ê{x(t) | V[t,T ]} = x̃d (t)+ x̃r (t), (13)

where x̃d (t) := xd(t) − Ê{xd(t) | D[t,T ]} and x̃r (t) :=
xr(t)−Ê{xr(t) | R[t,T ]}.Whenever a non-zero dither signal
is acting on the system(d �= 0), the covariance matrices of
x̃d (t) and of x̃(t) are positive definite.

Proof. The first statement follows from the orthogonal de-
composition

Ê{x(t) | V[t,T ]} = Ê{x(t) | D[t,T ]} + Ê{x(t) | R[t,T ]},
where in the two terms at the right-hand side we can substi-
tutex(t)=xd(t)+xr(t). The second statement follows from
the richness condition (12) which implies that the covariance
matrix of x̃d (t) must be nonsingular (for the components
of xd(t) belong toD−

t and no nontrivial linear combination
of them can be estimated without error based on the future
D[t,T ]). Then just recall that̃xd(t)+ x̃r (t) is an orthogonal
sum. �

The cased = 0 will be examined separately.

Lemma 2. Consider the r-driven system(9)and assume that
the input process is a p.d. harmonic process of full rank of
the form(11).Thenx̃r (t) defined in Lemma1 has a positive
definite covariance matrix ifT − t <2h+1−n. Conversely,

if T − t�2h+ 1−n, there is a generic set of systems3 (9)
for which the covariance matrix of̃xr(t) is singular.

Proof. See appendix. �

4.2. Realization with finite data

In subspace identification we have finite data and for this
reason we are allowed to work with (sample) covariance
matrices involving only a finite number of lags. In our setting
this is equivalent to having access only to observed random
variables{v(t)} and{ŵ(t)} with t belonging to a certain finite
interval [t0, T ]. Our first concern will be to exhibit a state
space realization in which all random quantities are functions
of the available random dataV[t0,T ]. This realization will
involve the same parameters of the stationary model (7). Let
ŵv(t) := Ê{ŵ(t) | V[t0,T ]} be the projected deterministic
output onto the finite available data space. The following
result is taken fromPicci and Katayama (1996).

Lemma 3. The n-dimensional projected state vectorx̂(t) :=
Ê{x(t) | V[t0,T ]} satisfies the same state space equations of
(7); in fact,

x̂(t + 1)= Ax̂(t)+ B1d(t)+ B2r(t), (14a)

ŵv(t)= Cx̂(t)+D1d(t)+D2r(t), (14b)

x̂(t0)= Ê{x(t0) | V[t0,T ]} (14c)

is a state space realization of the projected deterministic
outputŵv in terms of random variables ofV[t0,T ].

If we could construct the state vectorx̂(t) as a func-
tion of the dataV[t0,T ], we could estimate the parameters
(A,B,C,D) of the model by solving a linear regression
problem. In practice, the integerk := t − t0, which we shall
name theregression horizonof the algorithm, is a user-
defined parameter which should be chosen large enough so
as to satisfy certain conditions which will be discussed be-
low.

Obviously for k → ∞, we havex̂(t) → x(t) and the
model (14) reduces to the stationary realization (7), for
which we know how to construct the state space. Unfortu-
nately, for data in a finite interval, the construction of the
state space is not entirely straightforward. This difficulty can
be fixed in several ways. We shall discuss below a procedure
due toVerhaegen (1994), which uses an orthogonal projec-
tion onto the orthogonal complement, denotedV⊥[t,T ], of the
future inputsV[t,T ] ⊂ V[t0,T ]. This procedure has the merit
of avoiding the computation of oblique projections, which
may lead to numerically ill-conditioned problems.

3 This means that there exists an open, dense set of pairs(A,B2).
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Consider the stacked vectors

ŵ+
t :=




ŵv(t)

ŵv(t + 1)
...

ŵv(T )


 , d+

t :=




d(t)

d(t + 1)
...

d(T )




andr+t is defined similarly. It follows from (14) that

ŵ+
t = 	�x̂(t)+ 
1

�d
+
t + 
2

�r
+
t , (15)

where� := T − t + 1, and where

	� :=




C

CA
...

CA�−1


 ∈ Rl�×n

is the (extended) observability matrix, and


i
� =




Di 0
CBi Di
...

. . .
. . .

CA�−2Bi · · · CBi Di


 , i = 1,2 (16)

are the Toeplitz matrices of the first�−1 Markov parameters
of the system.

Projecting (15) ontoV⊥[t,T ], we get

Ê{ŵ+
t | V⊥[t,T ]} = 	�x̂

c(t), (17)

wherex̂c(t) is thecomplementary state

x̂c(t) := Ê{x̂(t) | V⊥[t,T ]} = x̂(t)− Ê{x̂(t) | V[t,T ]}.
A technical condition which we need in this setting is the
following “consistency condition”

X̂t ∩ V[t,T ] = {0}, (18)

where X̂t := span{x̂(t)}. This condition is essentially
the same consistency condition discussed inJansson and
Wahlberg (1998), and it is equivalent tox̂c(t) having a
positive definite covariance matrix(to show this one can
use the same argument used in the proof of Lemma 1).
Although x̂c(t) does not satisfy state equations of the form
(14), if T − t�n and (18) holds, one can nevertheless
identify 	�, modulo a change of basis, from the orthogonal
projection in (17) and thereby compute the matricesA,C
as inVerhaegen (1994).

Now, providedd �= 0, (18) holds trivially in the stationary
case, wheret0=−∞ (or k=∞) in force of Lemma 1. In fact,
in this case we havêxc(t)= x̃(t). It is shown in the literature
that for a finite regression horizon, the condition (18) can
certainly be satisfied fork andT − t large enough (Bauer
& Jansson, 2000). The following statement summarizes the
discussion above.

Proposition 1. Assumed �= 0. If k and T − t are chosen
larger than the system order n, the consistency condition

(18) holds generically and the observability matrix	� can
be obtained from the orthogonal projection in(17),modulo
a right multiplication by ann× n nonsingular matrix.

Thus when the dither signal is non-zero, the consistency
condition (18) can hold even ifr is not exciting enough, in
particularh could be smaller thann and still we could con-
sistently identify theA,C parameters since Proposition 1
covers in particular the case wherer ≡ 0. However, in case
d = 0 the condition may fail whenk andT − t are chosen
too large since, as we shall see, the two subspaces in (18)
may then have a non-empty intersection, which will be
discussed in the next subsection.

4.3. The case of no dither signal

We discuss what can happen when there is no dither signal
injected in the loop, i.e.d=0. Naturally, we assume that we
are using all “excitation power” of the input signal so that
[t0, T ] ≡ [t − h, t + h]. Taking a smaller interval would be
equivalent to working with a fictitious input signalr̄ with
a smaller number of independent sinusoidal components,
generating a smaller input spacēR := R[t−h̄,t+h̄] ⊂ R.
This means that hereafter we shall havek=h andT − t=h.

Proposition 2. Let d = 0. Assume that the input signal r
is a p.d. full rank harmonic signal persistently exciting of
order h, and that both the regression horizon k andT − t
are chosen equal to h. Then the consistency condition(18)
holds if and(generically) only if h�n.

Proof. SinceV[t0,T ]=R[t−h,t+h] ≡ R, the state of the finite
data model (14) (withd = 0) coincides with the stationary
statexr(t). Therefore Lemma 2 applies and (18) holds in
this case if and only ifn + T − t <2h + 1. Substituting
T − t = h gives the assertion.�

We see that under the conditions of Proposition 2, the co-
variance matrix of̂xc(t) is still invertible and we can iden-
tify the A,C parameters of ther-driven model consistently.
Note however that if we are to identify(B2,D12) in (7), the
signal r should have an order of excitation large enough;
there is a simple argument to get at least a sufficient upper
bound. Observe that, onceA andC have been determined
in a minimal realization, the basis in which the system (7)
is represented is fixed so that the Markov parameters of (9)
determineB2 andD12 uniquely. In fact, these unknown pa-
rameters can be obtained uniquely from the Toeplitz matrix

2

� of (16).
We show how to compute the Toeplitz matrix
2

� . From
(15), we can computeZ := Ê‖Xrt {ŵ+

t | R[t,t+h]}, the

oblique projection ofŵ+
t ontoR[t,t+h] alongXrt , to obtain

the linear relationZ = 
2
�r

+
t , which can be interpreted as

a linear regression in the Markov parameters, so that it can
be solved by using the least-squares method.
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5. Extracting plant and controller models

Assume now that we have estimated the joint model (7).
Then by simple manipulations of the joint state space equa-
tions (7), we can derive state space models for the plant
and controller. The formulas are collected in the following
proposition.

Proposition 3. A (non-minimal) state space representations
of the plant and controller are respectively given by

(19)

and

(20)

Proof. It follows from (7) that the closed loop transfer ma-
trices are expressed as

We see from (4) that the plant and controller are computed
from P(z) = Tyd(z)T

−1
ud (z) andC(z) = T −1

ud (z)Tur(z), re-
spectively. The formulas are easily derived by using standard
operations on the state space models.�

Let xp(t) ∈ Rnp andxc(t) ∈ Rnc be state vectors of the
plant and the controller, respectively and let the state space
models of the plant and of the controller be respectively
given by

xp(t + 1)= Apxp(t)+ Bpu(t), (21a)

y(t)= Cpxp(t) (21b)

and

xc(t + 1)= Acxc(t)+ Bc{r(t)− y(t)}, (22a)

u(t)= d(t)+ Ccxc(t)+Dc{r(t)− y(t)}. (22b)

The following proposition shows that the models in Propo-
sition 3 are not necessarily minimal.

Proposition 4. Let (21) and (22) be minimal realizations
of the plant and of the controller, and assume there are no
pole-zero cancellations in forming the productC(z)P (z).
Then the realizations

(23)

and

(24)

are similar to (19) and (20), i.e. they can be obtained one
from the other by a(nonsingular) change of basis in the
state space. Hence(19) and (20) are non-minimal.

Proof. Follows from the argument inVerhaegen (1993). �

Remark 1. Since the obtained transfer matrices of the plant
and the controller have higher dimension than the true ones,
we shall need to perform a model reduction step in order to
recover lower dimensional models.

Remark 2. As noted earlier, a number of different expres-
sions forP(z) andC(z) can be obtained from the transfer
function Twv(z). One may wonder which of these expres-
sions should provide the most reliable estimates ofP(z) and
C(z). Even if at this stage we do not know an answer to this
question, it should be noted that whenboth input signals
are used for the estimation, all of these expressions come
out from formal manipulations of thesamejoint state space
model, which is the one estimated using the data. For exam-
ple we may insist in using only entries of ther-driven sub-
system transfer matrix, sayP(z)= Tyr(z)T †

ur (z), etc. Since
Tyr(z) andTur represent subsystems of the model (7), which
was estimated using both input signals, there seems to be no
good reason why this estimate should in general be worse
(or better) than the one computed in Proposition 3. What
really seems to matter most is the accuracy in estimating
the overall model (7). However further analysis is needed to
clarify this question.

6. Closed-loop subspace identification algorithm

We briefly discuss a subspace identification method based
on the data measured on a finite interval. Suppose that the
input–output data4 {d(t), r(t), u(t), y(t), t=0,1, . . . , N+
2k−2}, with k >n andN very large, be sample values from
the jointly stationary “true” input–output processes, where
n is the dimension of the “true system”.

As usual, we fix the present timet = k and define the
kl×N block Hankel matrix generated by the past inputs as

V0|k−1 =




v(0) v(1) · · · v(N − 1)
v(1) v(2) · · · v(N)
...

...
. . .

...

v(k − 1) v(k) · · · v(N + k − 2)


 .

The block Hankel matricesW0|k−1 ∈ Rkl×N formed by the
past outputs andVk|2k−1,Wk|2k−1 ∈ Rkl×N formed by the

4 In this section we shall denote measured sample values of a stochas-
tic process by the same symbol of the corresponding random quantity.
Since from now on we shall only work with measured data, this should
cause no confusion.
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future data are defined similarly. We also define the stacked
block Hankel matricesV0|2k−1 andW0|2k−1. The subspace
of RN generated by the rows of the Hankel matrixV0|2k−1
is denoted byV0|2k−1.

The first step of the subspace identification is the prelimi-
nary decomposition ofw into the deterministic and stochas-
tic components based on finite input–output data. This is
performed by computing theLQ decomposition (Verhaegen,
1994; Van Overschee & De Moor, 1996)


Vk|2k−1

V0|k−1

W0|k−1

Wk|2k−1


 =



L11 0 0 0

L21 L22 0 0

L31 L32 L33 0

L41 L42 L43 L44






Q�

1

Q�
2

Q�
3

Q�
4


 , (25)

whereL11, L22, L33, L44 ∈ Rkl×kl are the lower triangular
matrices and whereQ�

i Qj = Ikl�ij . Noting that the rows
of Q�

1 ,Q
�
2 form an orthonormal basis for the rowspace

V0|2k−1, it follows that the (sample) deterministic compo-
nentŴ v

0|2k−1 := Ê{W0|2k−1 | V0|2k−1} is given by

Ŵ v
0|2k−1 =

[
L31 L32

L41 L42

] [
Q�

1

Q�
2

]
. (26)

Let Xt ∈ Rn×N be the string of sample state vectors of the
true model (7), and let̂Xvt be the stringXt projected onto
V0|2k−1. Clearly thetth block rowŴ v

t of Ŵ v
0|2k−1 satisfies

the matrix state space equations

X̂vt+1 = AX̂vt t + [B1 B2]Vt , Ŵ v
t = CX̂vt + [D1 D2]Vt .

It may be noted from Lemma 3 that̂Wv
t corresponds to

(15), the same state-space equation satisfied by the opti-
malWv

t of (7), but with different initial states. Hence, ne-
glecting the difference in initial states, we have the matrix
input–output equation (Verhaegen, 1994; Van Overschee &
De Moor, 1996)

Ŵ v
k|2k−1 = 	kX̂vk + 
kVk|2k−1, (27)

where
k := [
1
k 
2

k]. Clearly, it follows from (25)–(27)
that

Ŵ v
k|2k−1 = 	kX̂vk + 
kL11Q

�
1 = L41Q

�
1 + L42Q

�
2 .

Post-multiplying the above equation byQ2 yields

Ŵ v
k|2k−1Q2 = 	kX̂vkQ2 = L42, (28)

where the first equality of the above equation corresponds to
(17). Assuming that̂XvkQ2 has full rank (Verhaegen, 1994),
we see that Im(	k) = Im(L42). Let the SVD of (28) be
given byL42 = Û �̂V̂ �. Then, the estimate of the extended

observability matrix is given by	k=Û �̂
1/2

. The subsequent
steps of the MOESP-like subspace identification algorithm
for the B,D parameters are well known and will not be
discussed here. The above subspace identification method is
called the ORT method; see alsoChiuso and Picci (2001).

All the identified state space models have higher dimen-
sions than the true ones, so that we need a model reduction
procedure to delete nearly unreachable and/or unobservable
modes. Since the plant and/or the controller may possibly
be unstable, we use a model reduction technique called the
square root (SR) method (Varga, 2001), which can be ap-
plied to unstable transfer matrices.

7. Simulation results

Some simulation results are included to show the applica-
bility of the present technique. Suppose that the plant, con-
troller and two noise models are given byVan den Hof and
Schrama (1993)

P(z)= z−1

1 − 1.6z−1 + 0.89z−2 , C(z)= 1 − 0.8z−1

and

F(z)=1, H(z)= 1 − 1.56z−1 + 1.045z−2 − 0.3338z−3

1 − 2.35z−1 + 2.09z−2 − 0.6675z−3 .

The configuration of the feedback system is the same as the
one shown inFig. 1, whered, � and� are Gaussian white
noises with variances�2

d=0.2,�2
�=0.01 and�2

�= 1
9, respec-

tively. The reference inputr is a sinusoidal signal generated
by r(t)=�

∑30
j=1Aj sin(�j t+
j ), t=0,1, . . . , N+2k−2,

where� is a normalizing constant yielding�2
r = 1, andAj

are Gaussian random numbers withN(0,1), and�j , 
j
are uniformly distributed over(0,�).

Assuming that the orders of plant and controller are
known, third-order state space models are fitted to the input
v and outputw, because the order of the deterministic com-
ponent is three. Then, the identified plants and controllers
are reduced to two- and one-dimensional models, respec-
tively. We take the number of data pointsN = 2000 and the
number of block rowsk = 15, and generated 30 data set,
each with different samples ford, r, � and�. Fig. 2 shows
the estimated poles of plant and controller, where+ and×
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Fig. 2. Estimated poles of plant and controller over 30 runs, where+
and×, respectively denote the true poles of plant and controller.
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Fig. 4. Performance of identification by ORT (◦) and CCA (×).

denote the true poles of plant and controller, respectively.
Fig. 3shows Bode plots of the estimated plant. We see from
these results that the identification result of this simulation
is quite good.

We also consider the effect of the number of data on the
closed loop identification. The performance is measured by
the norm of the estimation error of the plant parameter vector
� := (−1.6 0.89 1 0) ∈ R4, i.e.

IN = 1

M

M∑
i=1

‖� − �̂(i, N)‖2,

where �̂(i, N) ∈ R4, N = 200,500,1000,2000,5000 de-
notes the estimate of� at ith run with dataN, and the
number of runs isM = 30 in each case.Fig. 4 compares
the performance of the identification of plant transfer func-
tion by the ORT method and CCA method (Katayama &
Picci, 1999). This shows the advantage of the present ORT-
based algorithm.

8. Conclusions

In this paper we have developed a subspace method for
identifying the deterministic part, i.e. the plant and con-
troller, of closed loop systems in the joint input–output
framework. It is assumed that one of the exogenous
inputs is purely deterministic and the other is purely

non-deterministic. We have discussed the realization method
based on a finite data and the role of input signals in closed
loop system identification, and derived a subspace method
to identify the plant and controller. Numerical results are
included to show the applicability of the present approach.
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Appendix A. Proof of Lemma 2

Because of stationarity it is enough to prove the statement
for t = 0. It is easy to check that the covariance matrix of
x̃r (0) is positive definite if and only ifXr0∩R[0,T−t]={0}, i.e.
the two subspaces are linearly independent. Now introduce

A(z) := (zI − A)−1B2

and let zk := ej�k , k = 0,±1, . . . ,±h. Since xr(0) =∑h
k=−hA(zk)rk, the spaceXr0 is spanned by the components

of the (n-dimensional) vector

[A(z−h) A(z−h+1) · · · A(zh−1) A(zh)]r =: A r

while R[0,T−t] is spanned by the components of





1 · · · 1
z−h · · · z−h
· · · · · · · · ·
zT−t
−h · · · zT−t

−h







1 · · · 1
z−h+1 · · · z−h+1
· · · · · · · · ·
zT−t
−h+1 · · · zT−t

−h


 · · ·




1 · · · 1
zh−1 · · · zh−1
· · · · · · · · ·
zT−t
h−1 · · · zT−t

h−1







1 · · · 1
zh · · · zh
· · · · · · · · ·
zT−t
h · · · zT−t

h







× r =: Z+r ,

where each block matrix hasp columns. Hence the random
variables generatingXr0 andR[0,T−t] are represented iso-
metrically by the rows of the matricesA andZ+ in the
spaceC(2h+1)p with inner product weighted by the positive
definite covariance�r . It follows thatXr0 ∩R[0,T−t] = {0},
if and only if the rowspaces ofA andZ+ have only the zero
vector in common. Consider first the case wherep= 1, and
assume that there exist two vectorsc ∈ Cn anda ∈ RT−t+1

such thatc∗A= a∗Z+ �= 0, where∗ denotes the conjugate
transpose. Since the rows ofZ+ are linearly independent
(zk �= zj ), c cannot be zero and hence there is a proper ra-
tional function

n(z)

d(z)
:= c∗(zI − A)−1B2,

which (generically) is of degreen satisfying

n(zk)

d(zk)
= a(zk), k = 0,±1, . . . ,±h, (A.1)
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where a(z) = a∗[1 z · · · zT−t ] is a polynomial with de-
greeT − t . This means that the polynomiala(z)d(z)−n(z)
with degreen + (T − t) must have 2h + 1 distinct zeros
{zk, k = 0,±1, . . . ,±h}. Clearly, for this to be possible,
n + (T − t)�2h + 1 must hold. On the other hand, since
all polynomialsa(z)d(z) − n(z) can have at most degree
n+ (T − t), if n+ (T − t) <2h+ 1, the equality in (A.1)
cannot hold, and henceXr0∩R[0,T−t] ={0}. The case where
p>1 can be dealt with similarly.
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