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Abstract

In this paper, we consider a problem of identifying the deterministic part of a closed loop system by applying the stochastic realization
technique of (Signal Process. 52 (2) (1996) 145) in the framework of the joint input—output approach. Using a preliminary orthogonal
decomposition, the problem is reduced to that of identifying the plant and controller based on the deterministic component of the joint
input—output process. We discuss the role of input signals in closed loop identification and the realization method based on a finite data,
and then sketch a subspace method for identifying state space models of the plant and controller. Since the obtained models are of higher
order, a model reduction procedure should be applied for deriving lower order models. Some numerical results are included to show the
applicability of the present technique.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction made to identify directly the plant dynamics without esti-
mating the feedback channel. For example modifying the
The identification problem for linear systems operating N4SID methodYan Overschee & De Moor, 1996a closed
in closed loop has received much attention in the literature loop subspace identification method has been derivedrin
(Soderstrom & Stoica, 1989; Van den Hof, 1997; Forssell & Overschee and De Moor (199 However this approach re-
Ljung, 1999. Also, the identification of multivariable sys- quires that a finite number of Markov parameters of the con-
tems operating in closed loop by subspace methods has beetroller are known. Several other subspace-based closed loop
object of active research in the past decade; among earlyidentification have been proposed, e@h6u & Verhaegen,
references using the joint input—output approach, we quote1999; Ljung & McKelvey, 1995 In general, these methods
papersYan der Klauw, Verhaegen, & Van den Bosch, 1991; need some side information on the system and their statis-
Verhaegen, 1993 tical properties (e.g. consistency) have not been assessed;
Since the joint input—output approach requires assump-see e.gBauer (2004)and Chiuso and Picci (2004fpr an
tions of linearity of the feedback channel and is gener- up-to-date discussion of these aspects.
ally computationally demanding, several attempts have been In this paper, we study a joint input—output subspace
method for identifying the plant and controller operating
* This paper was not presented at any IFAC meeting. This paper was jn closed loop, by extending the orthogonal decomposi-
re_commended for pu_blicgtion in rgvised fq.rm by ”Associate Editor Brett tion based technique ilKatayama, Kawauchi, and Picci
N'Q'gjﬁeus:%irdit:g gﬁt‘iﬁf‘,"” of Editor T. SGderstrom. (2001, 2002)1t is not assumed that all the input signals are
E-mail addresseskatayama@amp.i.kyoto-u.ac.{fi. Katayama), purely non-deterministic (and hence persistently exciting
picci@dei.unipd.it(G. Picci). of arbitrary order) as in the references above, but one of
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the exogenous inputs is allowed to be a purely determin- may be interpreted as the exogenous reference signal and a
istic (p.d.) (or “linearly singular” Rozanov, 196)j signal. probing input (dither) or a measurable disturbance.
First we compute the deterministic component of the joint  Let the plant be a finite dimensional, linear, time-invariant
input—output process, that is linearly related to the exoge- (FDLTI) system described by
nous inputs, by means of an orthogonal decomposition as
in Picci and Katayama (1996)hereby, the identification of () = P(2)u(r) + H(2)<(1), 1)
the closed loop system is reduced to that of obtaining the
plant and controller based on the deterministic component WNere P(z) and H(z) are the(p x m)- and (p x p)-
of the joint input—output process. Based on the realization of dimensional transfer matrices of the plant and the noise
the deterministic component, a subspace method for iden-1It€": respectively. The control input is generated by
tifying the plant and controller is then derived by adapting .
some standard subspace method from the literature. In gen-u(t) =d0+COIr® - yOI+ F@n®, 2)
eral the obtained models will be of higher order, so that a \yhere C(z) and F(z) denote the(m x p)- and (m x m)-
model reduction procedure should be applied for deriving gimensional transfer matrices of the FDLTI controller and of
lower order models. . . the measurement noise filter. The error teffita)y is added

The organization of the paper is as follows. In Section 2, for increased generality, so the present setup is the same as
the problem is stated along with the underlying assumptions. i, \ierhaegen (1993)

In Section 3, we formulate a joint input—output approach to  The following assumptions are made on the closed-loop
the closed loop identification problem and derive the deter- gystem, exogenous inputs, and noises.

ministic component of the joint input-output process by the a1 The closed loop system is well-posed in the sense
preliminary orthogonal decomposition. Section 4 considers that (4, y) are uniquely determined by the states of the plant
the state space realization of the deterministic component,ang controller and by the exogenous inputs and noises. This
with special emphasis on the role of input signals in closed generic condition is satisfied if, + P(00)C(00) and 1, +
loop identification and on the realization from a finite data. ¢ (~0)p(c0) are non-singular. For the sake of simplicity, it
Section 5 derives some formulas for computing the plant js assumed throughout the paper that the plant is strictly
and controller from overall transfer matrices. In Section 6, yroper, i.e.P(c0) = 0.
a subspace method of identifying the plant and controller = A2 The closed loop system is internally stable.
is briefly sketched, together with a model reduction proce-  aA3: The random processek r, i, ¢ are wide-sense sta-
dure. Section 7 includes some numerical results and Sec‘tionary, zero-mean and mutually uncorrelatedi.e. d(r),
tion 8 concludes the paper. r(s), n(x), (o) are uncorrelated for any s, 7, o € Z.
We shall realistically model the exogenous reference input
r as a p.d. process, which may not necessarily be “exciting”
2. Problem statement enough to allow consistent identification. Instehdill be
assumed to be a purely non-deterministic process with a full
We consider the problem of identifying a closed loop sys- rank spectral density matrix. We shall comment on these
tem shown inFig. 1, wherey € R” is the output vector  conditions later on; for the time being, we just remark that a
of the plant, and: € R™ the input vector. The effect of  process of this kind is persistently exciting (PE) of any order.
stochastic unmeasurable disturbances, modeling errors, etcnder these assumptions;, y) are also jointly stationary
is described by stationary error (or disturbance) processessecond-order processes with zero mean.
H(z)¢ and F(z)n, acting additively on the outputs of the  The objective of this paper is to obtain state space mod-
plant and controller, respectively. The transfer matrices of g|s of the plantP (z) and the controlleC (z) based on finite
noise filtersH (z) and F(z) will be assumed square ratio- measurement datéd(t), r(t), u(t), y(t)} by using a sub-
nal, minimum phase witht (co0) = I, and F(c0) = I. space identification method. The present problem is virtu-
The (unmeasurable) inputse R” andy € R™ are white  g|ly the same as the one treatedVierhaegen (1993)but
noises with mean zero and pOSitive definite covariance ma-the approach is quite different. For, as shown belOW, we em-
trices. The measurable input signalss R” andd € R" ploy the approach based on the orthogonal decomposition
of the joint input—output process into the deterministic and
stochastic component®icci & Katayama, 1996 the real-
ization technique is then applied to the deterministic com-
ponent to obtain state space realizations of the plant and

1The assumption thatis zero-mean £ {r(z)} =0) does not preclude
the sample trajectories afto exhibit a non-zero constant component. It
is made for notational convenience only and could be dispensed with by
introducing some extra notations and using lengthier formulas; all results
Fig. 1. Closed-loop system. of the paper hold true iE{r (1)} # 0 as well.
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controller, which are easily adapted to finite input—output  In order to deal with a well-posed estimation problem of
data by using subspace methods. P(z) andC(z), these transfer functions should be uniquely

As we have already pointed out, given the current state obtainable from the overall transfer functidp, (z) (i.e. at
of knowledge of subspace identification in the presence of least in the ideal noise-free case whes 0). This is some-
feedback, there seem to be no reliable closed loop subspac¢imes called “a priori"identifiability in the literature. That
methods for identifying directly the transfer functidi(z) P(z) andC(z) are identifiable follows from the formula (4),
(and/orC(z)) from the measured signals, without assuming which yieldsP(z):Tyd(z)Tlg,l(z) andC(z)zTu:,l(z)Tw (2),
some a priori knowledge of certain parameters of the sys- where the inverse exists because of the invertibility;@f).
tem. This is due either to the correlation of the noise and Note that in order that botlP(z) and C(z) be uniquely
future inputs due to feedback, and/or to the fact that both reconstructible from the data, in general we need to have
P(z) andC (z) may very well have poles on or outside of the both signalsr and d acting on the system. If one of the
closed unit disk, which may lead to very unreliable subspace two signals is absent, we can still solve B(z) and C(z)
estimates. Some of these difficulties are analyzedhiuso from either T,4(z) or T,,(z). But in this case, to com-
and Picci (2003, 2004)For this reason, if we are to use puteboth P(z) andC(z) we need to use a left- or a right-
subspace methods in the presence of feedback, joint ideninverse and we do not have uniqueness of the solution (i.e.
tification seems, so far, to be a mandatory choice. Clearly, identifiability) anymore. This is so unless we make special
using the relations (1) and (2), the last of which rewritten as assumptions orP(z) and C(z) (like both of them being
u(t)—d(t)=C(z)(r(t)—y())+ F(z)n(t) it would be possi- square invertible). For example, if = 0, so that we are
ble to do separate identification by prediction error methods. allowed to use onlyl;,;(z), then we can uniquely obtain
This however is a different setting than the one we want to P(z) =Tyq (z)Tu_dl(z). But, C(z) would have to be obtained
consider. by solvingC (z)Tyq(z) =TI — T,4(z), which in general yields
a non-unique solutiof'(z) = (I — Tud(z))T;d(Z) depending
on the choice of the right-inverse, so th@atz) will not be
identifiable.

Similarly, whend =0, we can writeP (z) =T, (z)TJr (2)
and, unless the generalized inverse is a true inverse, the so-
lution will not be unique. In this casB(z) will not be iden-
o tifiable. The controller transfer matrig'(z) could instead
3.1. Joint input—output processes be recovered uniquely using the formd#z) = T,,, (z) (I —

Ty,(z))~%, where the inverse of the (square) matrix on

Define the joint augmented input and output processes asthe right now exists in virtue of the assumptions we have

made.
w = [M}ERI, V= [d]eR’ and y:= [n]eRl,
y r ¢

wherel=m + p. It then follows fromFig. 1that these signals ~ 3-2- Decomposition of the joint input-output process
are related by the closed loop system transfer functions as

3. The joint input—output approach

In this section, we shall be concerned with the case where
infinite data are available.

Following Picci and Katayama (1996)ve introduce the
w(t) = Ty (v (1) + Ty (2 7(1), (3) Hilbert spaces generated by second-order random variables
of the exogenous inputs and of the joint input—output signals,

whereT,,,(z) is the closed loop transfer matrix defined by which are respectively denoted 5y = sparid(t) | ¢ < 7},

Tud(2) Tur(2) R=3Spanr(t) |t € Z}, and¥ =sSpafw(t) | t € Z}. The
Tun(@) := |:Tyd(Z) Tw(z)] joint input space?” spanned by is then the orthogonal
Si(2) ’ S:(2)C(2) direct sumy” =2 @ Z. We also define the Hilbert subspaces
= ! t 4 P
|:P(Z)Si @ PQ)S (Z)C(Z):| (4) Efne:anp:g by the infinite past and futuredgf) at the present

and whereS; (z) = (I,, + C(z) P(z)) 1 is the input sensitivity

matrix. Also, T,,,(z) is the noise model in the closed loop - _ == I —

system matrix; /but the identification of the noise model is 7y =spaid(v) |t<1}, &, =spand(@) | >1).
not treated in this paper.

Recall that the feedback system is internally stable if and Other subspace®; , ,", v";, 7"} are defined similarly.
only if the four transfer matrices in (4) are stable. Since in These are all subspaces of the ambient Hilbert spéce-
(3) v and y are uncorrelated, there is no feedback fram ¥~ v #" spanned by the observable augmented input and
to v, and hence we can employ an open loop identification output processe&v, w) (assumed for the time being, ob-
method to get estimates of the transfer maffix, (z) := servable on an infinitely long time interval).

[Twa(z) Twr(z)] using the measurement of the input and  Since there is no feedback fromto v, the future ofv is
output (v, w). conditionally uncorrelated with the pastwfgiven the past



866 T. Katayama et al. / Automatica 41 (2005) 863-872

of v (Picci & Katayama, 1995 It is then easy to prove that and

ws(r) = w(t) — E{w(t) | V7, 4} xr(t + 1) = Ax,(t) + Bor (1), (9a)
=w(®) = Elw®) | /)= E{w@) | 77, W (1) = Cxy () + Dor(0). (9b)

whereE{-| -} denotes the orthogonal projection, ard the We shall assume that both representations are minimal (i.e.
orthogonal complement. This implies that(z) L 7 for all observable and reachable) and hence both are of the same
t € Z, and hencey,(r) coincides with the augmented output  dimensionn of the system (7).

of the feedback system which could be measured when the Our program now is to construct a (minimal) state space
reference and dither signals are set identically equal to zero.model of the type (7), starting from “data” consisting of the
The processv; defined above is hence called ttechastic input v = (d, r) and output = (i1, y) processes. This is
component of win the same way, the processes defined by an abstract prototype of the identification problem we have
the orthogonal projections posed at the beginning of this paper.

wa(t) = E{w(t) | 2},  w,(t) == E{w(t) | #) (5)

are called thed- and r-driven deterministic components 4. Realization of closed-loop system

meaning that they are the partswfiinearly related to the In this section, we shall construct a state space realization

measurable exogenous inputs only. T A )
. for the joint “deterministic” input—output process described
Thus, we get an orthogonal decomposition of the output . . : ! :
in the previous section. The technique will be based on
processw = wyg + w, + wy, O

stochastic realization ideas describedinci and Katayama
|:u(t)j| [ud(t)i| |:ur(t)i| |:us(t):| (1996) Katayama and Picci (199@ndVerhaegen (1994)
= + , (6)

y(®) ya (1) yr(0) ys(1)

4.1. Input signals for closed-loop identification
where the above three components are uncorrelated at
all times; in particular we haveE{w(1)w, (1)} = 0 and We have allowed the reference input signab be p.d. It
E{ws(nw, (1)} =0 for all 7, € Z. From this orthogo- s well known that the infinite past and infinite future spaces
nal decomposition, it easily follows that the deterministic of gych a process contain the same information, i.e. they sat-
components ol satisfy the following decoupled equations:  jsfy the relation2” =% =2 so thatZ, N#; =7 (see e.g.

Rozanov (1967) This fact forbids a straightforward appli-
Ya() = P@ua(®), ua®)=d®) = C@)ya®), cation of the stationary stochastic realization procedure of
yr®) = P@u, @), ur(t)=C@Ir)—y (1] Picci and Katayama (199@ndKatayama and Picci (1999)
However, for most p.d. process which are in practice used
to model deterministic input signals, suitably shéirtite
past and future histories are in general different. We shall
henceforth assume that there is a natural numbed such
that the finite past subspac#;_; , = Sparir(t — j) |
Jj=1,...,h} and the finite future subspac® ; n :=
sparir(t + j) | j=0,..., h} are linearly independent, i.e.

and from these relations we can easily see that the transfe
matrices in (4) are determined by the deterministic compo-
nents of the measurable signals.

Letw := wy + w,, the component ofv generated by the
observable input&l, r). Suppose now that has a minimal
state space realization of dimensiomnf the forn?

x(t +1) = Ax(t) + B1d(t) + Bor (1), (7a) Rii—n.1y N Rpr.i+m = {0} and
W(t) = Cx(t) + D1d(t) + Dor (1), (7b) Rir—npy + Rit 140 = R. (10)
where A € R™" must be a stability matrix, and’ := In fact, we shall denote bly the smallestinteger for which

C1 Dbyl . . , this condition holds. The dimension &f apparently corre-
[Cz}’ Di = o |'t™ 1,2. Itis obvious that the- and sponds to the so-calleakder of excitationof the signal as
r-driven subsystems of (7), which are formally obtained by defined in the literatureLfung, 1999. For example, ifr is
projecting the state equations orio and # respectively, a sum ofh sinusoidal oscillations of different frequencies

can be written in the form h

xa(t +1) = Axg(1) + B1d (1), 8a) r=Y né™,  oj=-m o #o), (11)
k=—h

1) =Cxy(t D1d(t 8b -
wy (1) xa(t) + D1d (1) (8b) where ther’s are pairwise uncorrelated zero-mean random

2|n the D matrix we haveDyq =0, D2»=0, due to the fact that the vectors Satl_Sfylng Cq\hk} = COV{rk}' =2> O,. apd Wherg
plant P(z) is strictly proper. Furthermore we hawqy = S; (00) = I cov{-} denoting the covariance matrix, thesatisfies condi-
and D12 = D, the feedthrough matrix of the controller. tion (10). Note that is just a zero-mean stationary process
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with a pure point spectrum. The proceasss of full rank if T —t>2h+1—n, there is a generic set of systefhg9)
if the (2h + 1)p x (2h + 1)p covariance matrix,; of the for which the covariance matrix o, (¢) is singular.
stacked random vector

Proof. See appendix. (I

r=0r'(=hr' (=h+1) - r" =D r (W'
is nonsingular. In this case it is easy to show that the dimen- 4-2- Realization with finite data
sion of Z is equal to(2h + 1) p. Sometimes for brevity we
shall refer toh itself as the order of excitation of the sigmal

Regarding the purely non-deterministic compongnie
shall require that it satisfies the so-calkézhness condition
9 N2, =10}, so that, for each we have the direct sum
decomposition

In subspace identification we have finite data and for this
reason we are allowed to work with (sample) covariance
matrices involving only a finite number of lags. In our setting
this is equivalent to having access only to observed random
variableqv(r)} and{w(¢)} with t belonging to a certain finite
interval [rg, T']. Our first concern will be to exhibit a state
D7+ 9 =9. (12) space realization in which all random quantities are functions

of the available random dat& [, 1. This realization will
This is equivalent to the canonical angles between the pastinvolve the same parameters of the stationary model (7). Let
and future subspacesabeing strictly positive andisinturn W, (t) := E{Ww(t) | ¥ |,,,71} be the projected deterministic
equivalent to the spectral density matrixabeing strictly output onto the finite available data space. The following
positive definite on the unit circle, i.@,(é®) > cI;, ¢ >0 result is taken fronPicci and Katayama (1996)
(Hannan & Poskitt, 1988

By construction, the-dimensional state vector of (7) can Lemma 3. The n-dimensional projected state vector) :=
be decomposed as(r) = x;(t) + x,(¢), wherex, () and E{x@) | ¥ 11,11} Satisfies the same state space equations of
x,(t) are (componentwise) orthogonal and span the state(7); in fact,
spaces?’ ;’ and Z; of the models (8) and (9), respectively.

The following observation will be needed later. x(t +1)=Ax@®) + B1d(t) + Bor (1), (14a)

Lemma 1. Let T >¢. For a stationary minimal model of ¢, (1) = Cx(¢t) + D1d(t) + Dor (1), (14b)
(w, v) of the typg7), we have the orthogonal decomposition

) . _ ) ) 2(t0) = E(x(t0) | V1o, 11} (14c)
B i=x(0) = Ex () | V) =50 + 5@, (19) °
is a state space realization of the projected deterministic

where %(1) = xa(t) = E{xa(t) | Dy} and %,(1) := outputid, in terms of random variables of ;, 7).

xr(t)—E{x, () | Z1:.11}- Whenever a non-zero dither signal
is acting on the systelf@ -~ 0), the covariance matrices of If we could construct the state vectd(r) as a func-

%4(1) and ofx(¢) are positive definite tion of the data’ |71, we could estimate the parameters

] (A, B, C, D) of the model by solving a linear regression
Proof. The first statement follows from the orthogonal de- problem. In practice, the integér:= 1 — 1o, which we shall

composition name theregression horizorof the algorithm, is a user-

defined parameter which should be chosen large enough so
as to satisfy certain conditions which will be discussed be-
low.

Obviously fork — oo, we havex(r) — x(¢) and the
model (14) reduces to the stationary realization (7), for
which we know how to construct the state space. Unfortu-
nately, for data in a finite interval, the construction of the
state space is not entirely straightforward. This difficulty can
be fixed in several ways. We shall discuss below a procedure
due toVerhaegen (1994)which uses an orthogonal projec-
tion onto the orthogonal complement, deno’téff}ﬂ, of the
future inputsy”; 71 C ¥ 1, 71- This procedure has the merit
of avoiding the computation of oblique projections, which
may lead to numerically ill-conditioned problems.

E(x(®) | V) = Elx@) | Dy} + E(x(t) | Ry1),s

where in the two terms at the right-hand side we can substi-
tutex (1) =x4(t) +x,(2). The second statement follows from
the richness condition (12) which implies that the covariance
matrix of x;(t) must be nonsingular (for the components
of x4(¢) belong toZ,” and no nontrivial linear combination

of them can be estimated without error based on the future
211, 11)- Then just recall that, (r) + X, (¢) is an orthogonal
sum. [

The casel = 0 will be examined separately.

Lemma 2. Consider the r-driven systef)) and assume that
the input process is a p.d. harmonic process of full rank of
the form(11). Thenx, (¢) defined in Lemma has a positive
definite covariance matrix if —¢ < 2h+1—n. Conversely 3This means that there exists an open, dense set of E&irBy).
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Consider the stacked vectors

Wy (1) d(1)

Dyt + 1 dir+1
. w(i 2. (ﬂ )

d(T) d(T)

andr," is defined similarly. It follows from (14) that

W= Tk(0) + Piat + e, (15)
wheret := T —t + 1, and where
C
I; = c4 e Ri™n
CA.T_]'
is the (extended) observability matrix, and
D; 0
. CB; D, '
Y. = : . . , i=12 (16)
CATiZBi CB; D;

are the Toeplitz matrices of the first- 1 Markov parameters
of the system.
Projecting (15) onto/ ; 7, we get

Et; | "%[Lt,r]} =Ix°(1), @an

wherex“(r) is thecomplementary state
) = ERO) | V) =20 — EGO) | V)

A technical condition which we need in this setting is the
following “consistency condition”
X0V 1y = {0}, (18)
where 32‘”, := spar{x(¢)}. This condition is essentially
the same consistency condition discussedlamsson and
Wahlberg (1998) and it is equivalent tot“(+) having a
positive definite covariance matrito show this one can
use the same argument used in the proof of Lemma 1).
Although x¢(r) does not satisfy state equations of the form
(14), if T — t>n and (18) holds, one can nevertheless
identify I'r, modulo a change of basis, from the orthogonal
projection in (17) and thereby compute the matriges”
as inVerhaegen (1994)

Now, providedd # 0, (18) holds trivially in the stationary
case, wheregy=—oo (or k=00) in force of Lemma 1. In fact,
in this case we haveé’ (r) =x(¢). It is shown in the literature
that for a finite regression horizon, the condition (18) can
certainly be satisfied fok andT — ¢ large enoughBauer
& Jansson, 2000 The following statement summarizes the
discussion above.

Proposition 1. Assumed # 0. If k and T — ¢ are chosen
larger than the system order, the consistency condition

T. Katayama et al. / Automatica 41 (2005) 863-872

(18) holds generically and the observability matii% can
be obtained from the orthogonal projection {t7), modulo
a right multiplication by am x n nonsingular matrix

Thus when the dither signal is non-zero, the consistency
condition (18) can hold even ifis not exciting enough, in
particularh could be smaller than and still we could con-
sistently identify theA, C parameters since Proposition 1
covers in particular the case where= 0. However, in case
d = 0 the condition may fail whek andT — r are chosen
too large since, as we shall see, the two subspaces in (18)
may then have a non-empty intersection, which will be
discussed in the next subsection.

4.3. The case of no dither signal

We discuss what can happen when there is no dither signal
injected in the loop, i.ed =0. Naturally, we assume that we
are using all “excitation power” of the input signal so that
[t0, T1 = [t — h, t + h]. Taking a smaller interval would be
equivalent to working with a fictitious input signalwith
a smaller number of independent sinusoidal components,
generating a smaller input space := Ris—pivin C 2
This means that hereafter we shall havehs andT —r =h.

Proposition 2. Let d = 0. Assume that the input signal r
is a p.d. full rank harmonic signal persistently exciting of
order h and that both the regression horizon k afid— ¢
are chosen equal to h. Then the consistency cond{ti&)
holds if and(generically only if 4 >n.

Proof. Since? 1, 11=Zi—h.1+n = Z, the state of the finite
data model (14) (with/ = 0) coincides with the stationary
statex, (). Therefore Lemma 2 applies and (18) holds in
this case if and only ifr + T — t <2h + 1. Substituting

T —t = h gives the assertion.[]

We see that under the conditions of Proposition 2, the co-
variance matrix oft¢(r) is still invertible and we can iden-
tify the A, C parameters of the-driven model consistently.
Note however that if we are to identifyB, D12) in (7), the
signalr should have an order of excitation large enough;
there is a simple argument to get at least a sufficient upper
bound. Observe that, ondeand C have been determined
in a minimal realization, the basis in which the system (7)
is represented is fixed so that the Markov parameters of (9)
determineB, and D12 uniquely. In fact, these unknown pa-
rameters can be obtained uniquely from the Toeplitz matrix

P2 of (16).
We show how to compute the Toeplitz matt‘fkf. From
(15), we can computeZ := Eyur{i; | .4}, the

oblique projection ofiv;" onto %, ;1) along 2, to obtain

the linear relationz = ¥2r,", which can be interpreted as

a linear regression in the Markov parameters, so that it can
be solved by using the least-squares method.
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5. Extracting plant and controller models are similar to(19) and (20), i.e. they can be obtained one

from the other by gnonsingulaj change of basis in the
Assume now that we have estimated the joint model (7). state space. Hengd 9) and (20) are non-minimal

Then by simple manipulations of the joint state space equa-

tions (7), we can derive state space models for the plantProof. Follows from the argument ierhaegen (1993) [

and controller. The formulas are collected in the following

proposition. Remark 1. Since the obtained transfer matrices of the plant
and the controller have higher dimension than the true ones,

Proposition 3. A (non-minima) state space representations we shall need to perform a model reduction step in order to

of the plant and controller are respectively given by recover lower dimensional models.
P(z) = A—BiC | B 19 Remark 2. As noted earlier, a number of different expres-
( C 0 (19) ; ;
L 2 sions for P(z) and C(z) can be obtained from the transfer

function T,,,(z). One may wonder which of these expres-
~ sions should provide the most reliable estimate® @f) and
Cy—|A=BIC | Bo— BiDn C(z). Even if at this stage we do not know an answer to this
()= G ] . (20) o . )
1 12 question, it should be noted that whéenth input signals
are used for the estimation, all of these expressions come
Proof. It follows from (7) that the closed loop transfer ma- out from formal manipulations of theamejoint state space

and

trices are expressed as model, which is the one estimated using the data. For exam-
A| B B ple we may insist in using only entries of thalriven sub-
|:Tud(2) Tur(Z):| _ |:C1 Di D12:| ) system transfer matrix, saf(z) = Ty,(z)TJ, (z), etc. Since
Tya(2)  Tyr(2) G| o 0 Ty, (z) andT,, represent subsystems of the model (7), which

was estimated using both input signals, there seems to be no
We see from (4) that the plant and controller are computed good reason why this estimate should in general be worse

-1 -1
from P(z) = Tya(2)T,4 (2) and C(z) = T,;(2)Tur (2), '€ (or etter) than the one computed in Proposition 3. What
spectn{ely. The formulas are easily derived by using standard really seems to matter most is the accuracy in estimating
operations on the state space modelsl the overall model (7). However further analysis is needed to

clarify this question.
Let x, (1) € R" andx.(r) € R" be state vectors of the

plant and the controller, respectively and let the state space

models of the plant and of the controller be respectively ) o )
6. Closed-loop subspace identification algorithm

given by

xp(t +1) = Apxp(1) + Bpu(?), (21a) We briefly discuss a subspace identification method based

(1) = Cpx,p(t) (21b) on the data measured on a finite interval. Suppose that the
input—output dath {d(t), r(t), u(t), y(t),t=0,1,..., N+

and 2k — 2}, with k > n andN very large, be sample values from

Xe(t + 1) = Aexe (1) + Belr(t) — y()), (22a) the jointly stationary “true” input—output processes, where

n is the dimension of the “true system”.
u(t) =d(t) + Cexc(t) + Dcfr(r) — y(H)}. (22b) As usual, we fix the present time= k and define the

The following proposition shows that the models in Propo- ki x N block Hankel matrix generated by the past inputs as

sition 3 are not necessarily minimal. v© vl - u(N-1)
Proposition 4. Let (21) and (22) be minimal realizations Vojk-1= v('l) v(.2) .. U(N)

of the plant and of the controlleand assume there are no : : i :

pole-zero cancellations in forming the produciz) P (z). vk—1) wk) --- v(IN+k—-2)

Then the realizations

The block Hankel matrice®o_1 € RV formed by the

A 0| By
P P kIxN

P(z) = {BcCp A.| 0O 23) past outputs an@y 1, Wijzk—1 € R formed by the

Cp 0 0
and -

A 0 0 41n this section we shall denote measured sample values of a stochas-

_| tic process by the same symbol of the corresponding random quantity.
Cl)= |: ByCp Ac| Be (24) Since from now on we shall only work with measured data, this should
_Dccp Cel D cause no confusion.
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future data are defined similarly. We also define the stacked All the identified state space models have higher dimen-

block Hankel matriced/oj—1 and Wox—1. The subspace  sions than the true ones, so that we need a model reduction

of RV generated by the rows of the Hankel matbigo; 1 procedure to delete nearly unreachable and/or unobservable

is denoted by’ g2x—1. modes. Since the plant and/or the controller may possibly
The first step of the subspace identification is the prelimi- be unstable, we use a model reduction technique called the

nary decomposition ol into the deterministic and stochas- square root (SR) method/drga, 200}, which can be ap-

tic components based on finite input—output data. This is plied to unstable transfer matrices.

performed by computing theQ decomposition\ferhaegen,

1994; Van Overschee & De Moor, 1996 ) )
7. Simulation results

Vij2k-1 Ln 0 0 O )
Vok-1 | | L2 L2 0 O 05 (25) Some simulation results are included to show the applica-
Wok-1 | | Lsx L3z Lzz O Qg ' bility of the present technique. Suppose that the plant, con-

W21 Lai Lag» Laz Lag 07 troller and two noise models are given Ygn den Hof and
Schrama (1993)
whereL11, Lo, L33, Las € R are the lower triangular )
matrices and wher®." Q; = I;9;;. Noting that the rows P() = z  C)=1-08;1
of 01, Q) form an orthonormal basis for the rowspace 1-16:71+08%2
¥ oj2x—1, it follows that the (sample) deterministic compo- gnd

nenth‘Zk_l = E{Wo|2k_1 | 7 oj2k—1} is given by

Pyl H 1 15671 4+ 1.045 2 — 0.333g 3
g _[La Le][of 2 Y T 03514 2092 - 0.667% 2
Ol2k—1 = o5 | (26)

La1 La2 The configuration of the feedback system is the same as the

XN . one shown inFig. 1, whered, n and¢ are Gaussian white
LetX; e R be the string of sample state vectors of the noises with variancezsg =0.2, 0520,01 andg?: %, respec-

2 v . .
”F‘e model (7), and lex;' be the Sfr:ngXCBrOJeCted_ o_nto tively. The reference inputis a sinusoidal signal generated
7 0j2k—1. Clearly thetth block row W/ of Wol2k—1 satisfies byr(t)=p2?0:1Aj sin(cujt+¢j), 1=0.1,... N+2k—2.

the matrix state space equations . o -
P a wherep is a normalizing constant yleldlngg =1, and4;

)?;)+1 = AX't +[B1 B2lV;, W!=CX"+[D1 D3]V, are Gaussian random numbers witi(0, 1), and w;, ¢,
are uniformly distributed ovefO, ).
It may be noted from Lemma 3 tha¥,” corresponds to Assuming that the orders of plant and controller are

(15), the same state-space equation satisfied by the optiknown, third-order state space models are fitted to the input
mal W} of (7), but with different initial states. Hence, ne- v and outputv, because the order of the deterministic com-

glecting the difference in initial states, we have the matrix ponent is three. Then, the identified plants and controllers
input—output equationverhaegen, 1994; Van Overschee & are reduced to two- and one-dimensional models, respec-

De Moor, 1994 tively. We take the number of data poim¥s= 2000 and the
<y o number of block rowsc = 15, and generated 30 data set,
Witak—1 = I X + PicVigak-1, 27) each with different samples fa, r, 1 and &. Fig. 2 shows

the estimated poles of plant and controller, whe¢rand
where ¥, := [P} ¥2]. Clearly, it follows from (25)—(27) P P herand

that
1
Wiioe—1 =Tk X} + ¥ L1101 = L4101 + L1420, . 08
Post-multiplying the above equation I}y yields Zj
N N g
Wiak—102 = I'tX; Q2 = La, (28) T o2
. . . g o >

where the first equality of the above equation corresponds to B o2
(17). Assuming thak} Q> has full rank Yerhaegen, 1994 E o4
we see that "“F’;)F Im(L42). Let the SVD of (28) be 06
given by L4 = U2V . Then, the estimate of the extended 0'8

. L A al/2 -0.
observability matrix is given by, =U 2 / . The subsequent 1
steps of the MOESP-like subspace identification algorithm -1 -05 0 05 1

for the B, D parameters are well known and will not be Real Part

discussed here. The above SUbSp_ace 'dentlﬂf:at_lon method I‘lg—ig. 2. Estimated poles of plant and controller over 30 runs, where
called the ORT method; see al€hiuso and Picci (2001) and x, respectively denote the true poles of plant and controller.
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Fig. 4. Performance of identification by OR®%)(and CCA (x).

denote the true poles of plant and controller, respectively.
Fig. 3shows Bode plots of the estimated plant. We see from
these results that the identification result of this simulation
is quite good.

We also consider the effect of the number of data on the
closed loop identification. The performance is measured by
the norm of the estimation error of the plant parameter vector
0:=(-1.608910¢cRie.

1 M
— E: 0 2
i=

where (i, N) € R* N = 200 500, 1000 200Q 5000 de-
notes the estimate of at ith run with dataN, and the
number of runs isM = 30 in each casedrig. 4 compares
the performance of the identification of plant transfer func-
tion by the ORT method and CCA methoKdtayama &
Picci, 1999. This shows the advantage of the present ORT-
based algorithm.

8. Conclusions

In this paper we have developed a subspace method for% =

identifying the deterministic part, i.e. the plant and con-
troller, of closed loop systems in the joint input—output
framework. It is assumed that one of the exogenous
inputs is purely deterministic and the other is purely

871

non-deterministic. We have discussed the realization method
based on a finite data and the role of input signals in closed
loop system identification, and derived a subspace method
to identify the plant and controller. Numerical results are
included to show the applicability of the present approach.
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Appendix A. Proof of Lemma 2

Because of stationarity it is enough to prove the statement
for t = 0. It is easy to check that the covariance matrix of
X,(0) is positive definite if and only i# 5N Z0,7—1={0}, i.e.
the two subspaces are linearly independent. Now introduce

AR):= (I —A)71B,

and letz; = €, k=0,+1,...,+h. Sincex,(0) =
ZZ:_hA(zk)rk, the spacel’y, is spanned by the components
of the (-dimensional) vector

[A(z—p) A(z—p+1) -+ Alzp—1) A(zp)lr =2 Ar

while %07 is spanned by the components of

1 1 1 1
Z—h Z—h I—h+1 Z—h+1
T—t T—t T—t T—t
Zp Z_p Zoh+1 i

1 1 1 1
Zh—1 Zh—1 Zh Zn

T—t T—t T—t T—t
ip-1 " Zp-1 Zp p

xr=:3%r,

where each block matrix hgscolumns. Hence the random
variables generating’y and Zo,7—, are represented iso-
metrically by the rows of the matricedl and 3" in the
spaceC@*YP with inner product weighted by the positive
definite covariance. It follows thatZ N Zjo0,r—¢ = {0},

if and only if the rowspaces & and 3" have only the zero
vector in common. Consider first the case wheee 1, and
assume that there exist two vecters C" anda € R7 ~/*1
such that*A = a* 3" # 0, wherex denotes the conjugate
transpose. Since the rows @' are linearly independent
(zx # z;), c cannot be zero and hence there is a proper ra-
tional function

MQ) . ror — Ay LB,

which (generically) is of degree satisfying

n(zk)

—_— = , k=0,=%1,...,%h, A.l
a0 a(zy) (A.1)
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wherea(z) = a*[1z --- z' "] is a polynomial with de-
greeT — . This means that the polynomialz)d(z) — n(z)
with degreen + (T — r) must have & + 1 distinct zeros
{zx, k =0,%1,..., +h}. Clearly, for this to be possible,
n+ (T —t)>2h + 1 must hold. On the other hand, since
all polynomialsa(z)d(z) — n(z) can have at most degree
n+ (T —1t),if n+ (T —t)<2h + 1, the equality in (A.1)
cannot hold, and henck&yN 2o ;1 ={0}. The case where
p > 1 can be dealt with similarly.
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