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ON THE STOCHASTIC REALIZATION PROBLEM*

ANDERS LINDQUIST, AND GIORGIO PICCI*

Abstract. Given a mean square continuous stochastic vector process y with stationary increments and a
rational spectral density such that (oo) is finite and nonsingular, consider the problem of finding all
minimal (wide sense) Markov representations (stochastic realizations) of y. All such realizations are
characterized and classified with respect to deterministic as well as probabilistic properties. It is shown that
only certain realizations (internal stochastic realizations) can be determined from the given output process y.
All others (external stochastic realizations)require that the probability space be extended with an exogeneous
random component. A complete characterization of the sets of internal and external stochastic realizations is
provided. It is shown that the state process of any internal stochastic realization can be expressed in terms of
two steady-state Kalman-Bucy filters, one evolving forward in time over the infinite past and one backward
over the infinite future. An algorithm is presented which generates families Of external realizations defined on
the same probability space and totally ordered with respect to state covariances.

1. Introduction. One of the most common models of random phenomena in
control theory is provided by the linear stochastic system

(1.1a) dx Ax dx +B dw,

(1.1b) dz Cx dt +D dw,

where A, B, C and D are constant matrices of dimensions n n, n k, m x n and rn k
respectively, and w is a k-dimensional mean-square continuous stochastic process with
zero mean, stationary orthogonal increments, and w(0)= 0. Here we shall assume that
w is defined on the whole real line R, that is

(1.2) E{w(t)} 0 for all s R, E{w(t)w(s)’} {Itl + Isl- It- sl}I
[35; p. 51], where E{ } denotes mathematical expectation and prime (’)transposition.
(All vectors without prime are column vectors.) For later reference, let //’k denote the
class of all such orthogonal increment processes, the index referring to the dimension;
more generally we shall say that the process is of class /4/’. Moreover, we assume that A is
a stability matrix, i.e. all the eigenvalues of A are situated in the left complex half-plane;
we shall write Re {A (A)} < 0 for short. This assumption will insure that (1.1a) has the
unique solution

(1.3) A(t-’)Bx(t) e dw(r)

on the real line, where the integral is defined in quadratic mean. This is an n-
dimensional vector process. If, in addition, we assume that z(0)= 0, the m-dimensional
process z can be determined uniquely by integrating (1.1b). We shall call x the state
process, w the inputprocess and z the outputprocess. Clearly the state process x is (wide
sense) stationary, i.e. the state covariance matrix

(1.4) P: E{x(t)x(t)’}
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does not depend on t, and it satisfies the Lyapunov equation

(1.5) AP+ PA’ +BB’ O.

(See e.g. [35].) The output process z has stationary increments.
Each w /’k has a unique spectral representation

(1.6) w(t)
e 1

d(to)
ito

[12; p. 205], where dff is an orthogonal stochastic measure such that
E{d(to)d(to)?}=Idto. (Here denotes the complex conjugation and trans-
position.) Then (1.3) may be written

(1.7a) x(t)= ei’t(itoI-A)-lB d(to).

(Indeed, making the substitution (sI-A)-1 (1/s)[! + A(sI-A)-I], (1.7a) is seen to
satisfy (1.1a.) Inserting (1.7a) into (1.1b) and integrating yields

(1.7b) z(t)= I_ ei’-1
W(ito)d(w)

where

W(s)=C(sI-A)-IB+D.
We shall call W the transfer function of (1.1). Relation (1.7b) is a spectral represen-
tation of z; d(to):=W(ito)d(to) being an orthogonal stochastic measure such that

(1.9) E{d(to) d(to))} O(ito) dto,

where is the spectral density given by

(1.10) (s) W(s) W(-s)’.

This is an m m-matrix of rational functions such that (i) each element of is analytic
on the imaginary axis, (ii) is parahermitian, i.e. O(-s)= O(s)’, (iii) O(ito) is nonne-
gative definite Hermitian for all real to, and (iv) (oo)<. Such a is called a spectral
function [3], [4].

In this paper we consider the following inverse problem. Let {y (t); R} be a given
mean-square continuous and purely nondeterministic m-dimensional stochastic
process with zero mean, stationary increments and y(0)= 0. Then there is a spectral
representation

(1 11) y(t)=
e -1

d(o)

[12; p. 205], where d is an orthogonal stochastic measure such that [9]

(1.12) E{df(to) d33(to)’f} (iw) dto.

Here is an m m-matrix of real rational functions satisfying conditions (i)--(iv) above.
Setting R := (oo), we also assume that (v) R -1 exists and that (vi) O(ito) is positive
definite for all real to. The problem is to find representations (1.1) such that the output
process z is equivalent to the given process y in some sense to be specified below. Such a
representation will be called a stochastic realization.

More precisely, the system (1.1) will be called a wide sense stochastic realization of
y if z has the same spectral density as y and a proper stochastic realization if, for each
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6 (-co, co), z(t) y(t), a.s. (In the sequel we shall leave out the "a.s.", hence regarding
such equivalent processes as equal.) Clearly each proper stochastic realization is also a
wide sense stochastic realization, but the converse is not true.

The stochastic realization problem is related to the spectral factorization problem:
Given a rational spectral function , find all matrices W(s) of real rational functions
with all its poles in Re (s)< 0 and satisfying (1.10). Such a function will be called a stable
spectral factor. Let 3{.} denote McMillan degree [8]. Then 6{W} -> 1/23{}; if there is
equality we shall say that W is minimal. We have seen that the transfer function (1.8) of
any wide sense stochastic realization of y is a stable spectral factor of the spectral
density of y. Conversely any such spectral factor W is the transfer function of an
equivalence class of wide sense stochastic realizations. In fact, for any orthogonal
stochastic measure dr such that E{dk(to) dk(to)?} Idto, the process

(1 13) z(/)= fo eia,t_ 1
W(ito) dye(to)

has the same spectral density as y. Since W is a real rational matrix function analytic in
Re (s)0, there is a quadruplet [A, B, C, D] of matrices such that (1.8) holds [8], with
A a stability matrix. Now let x be defined by (1.7a) and w by (1.6). Then w is of class /4/’
and (x, z) satisfy (1.1) as asserted. Note that [A,B, C, D] defines one wide sense
stochastic realization for each w l’k. Since these realizations are equivalent up to
second-order properties of z, in the sequel we shall say that [A, B, C, D] is a wide sense
stochastic realization, thereby referring to the whole equivalence class. To avoid
trivialities we shall assume that the representation (1.8) is chosen so that the dimension
of the matrix A equals 6(W), i.e. we shall only consider quadruplets [A, B, C, D] for
which (A, B) is controllable and (A, C) is observable [8]. We shall call a stochastic
realization minimal if it corresponds to a minimal spectral factor. Hence, the minimal
stochastic realizations are precisely those representations (1.1) which have a state
process of smallest possible dimension, i.e. n 1/26(). In this paper we shall restrict our
attention to such realizations, the basic problem being to find all of them.

Determining all wide sense minimal stochastic realizations [A, B, C, D] is a
deterministic problem which has been studied extensively by, among others, B. D. O.
Anderson [5], Faurre [11] and J. C. Willems [32], the first of whom has named it the
inverse problem of covariance generation. To facilitate its solution we note that the
spectral density of y can be written

(1.14) (s)= Z(s)+ Z(-s)’,

where Z is positive real and rational, and 8(Z)= n [3], [4], [11], [32]. Let

(1.15) Z(s)= H(sI-F)-IG + 1/2R
be a minimal realization [8] of Z, i.e. F, G and H are constant matrices of dimensions
n n, n m and rn n respectively. Hence F is a stability matrix, (F, G) is controllable
and (H, F) is observable [8]. There are computational procedures for determining
(F, G, H, R) from [8], [13], [31], [38], so in the sequel we shall assume that such a
quadruplet is given.

It can be shown [5] that all wide sense minimal stochastic realizations are given by

(1.16) [A,B, C, D] [TFT-’, T(B,,B2)S, HT-’, (R 1/2, 0)S]

A real rational function Z without poles on the imaginary axis is said to be positive real if it has no poles
in Re [s]>0 and Z(ito)+ Z(-ito)’ is nonnegative definite Hermitian for all real to.
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where the nonsingular matrix T and the orthogonal matrix S are arbitrary, R 1/2 is the
symmetric square-root of R, and (B1, BE)are two matrices, n m and n p respectively
(p is arbitrary), such that (P, B1, BE) satisfy the conditions

(1.17a) FP+PF’ + BaB’ +B2B =0

(1.17b) PH’ +BaR 1/2 G,

(1.17c) P is a symmetric, positive definite n n-matrix.

Conversely, any [A, B, C, D] constructed in this fashion is a wide sense minimal
realization. It is no restriction to set T--I and S I in (1.16), i.e. to consider only
realizations of the form

(1.18a) dx Fx dt + B1 du + B2 dv,

(1.18b) dz Hx dt+ R /2 du

where w () W,,+p. In fact, all other stochastic realizations can be obtained from
(1.18) by multiplying (1.18a) by an arbitrary T and transforming w by an orthogonal
transformation. Consequently we shall be working in a fixed coordinate system, thereby
identifying each transfer function (spectral factor) W with one quadruplet
[F, B, H, (R /2, 0)]. Hence the wide sense problem is reduced to determining B
(B1, B2).

The main topic of this paper is the characterization of all proper minimal stochastic
realizations. This is a probabilistic problem. In addition to the input-output map of (1.1)
we need to determine the input process w, which is no longer arbitrary; hence we shall
be looking for quintuplets [A, B, C, D, w]. For an arbitrary representation (1.1), let
(gl, , P) be a probability space on which both y and w are defined, and define H(y) and
H(w) to be the closed linear hulls in L2(, 5, P) of {yi(t); 6 (-, az), 1, 2,. , m}
and {wi(t); 6 (-, ), i= 1, 2,..., k} respectively. Since y is given, H(y) is fixed,
whereas H(w) varies with different choices of representation (1.1). For a proper
stochastic realization we will always have H(y)cH(w). We shall say that
[A, B, C, D, w] is an internal stochastic realization if H(y)= H(w) and an external
stochastic realization if H(y) H(w), adding the attribute minimal as appropriate.
Hence the internal realizations are precisely those proper stochastic realizations which
can be constructed in terms of the given process y, whereas the external realizations
require extending our probabilistic setting with an exogeneous noise generator
unrelated to y. Various aspects of the proper stochastic realization problem have been
studied by Akaike [1], [2], Picci [23], [24] and Rozanov [26], but here we shall give a
complete characterization of all such realizations. (In [21] the internal realizations are
constructed from’basic principles without first assuming that they are defined by models
of type (1.1).) After submitting this paper we have learned about a series of as yet
unpublished papers by Ruckebusch [27]-[29] containing discrete-time counterparts of
some of the results presented here; these papers provide an alternative approach to the
problem.

The outline of the paper goes as follows. Section 2 is devoted to preliminaries and
definitions. In 3 we show that to each proper stochastic realization there is a
representation (1.1) with Re {A (A)} > 0 and z y, the dynamic relations of which
evolve backward in time. These representations, which are an important tool in our
subsequent analysis, are called proper backward stochastic realizations. In 4 and 5 all
internal stochastic realizations are characterized, and it is shown that these are precisely
the proper stochastic realizations for which BE 0. Each internal state process can be
expressed in terms of two steady-state Kalman-Bucy estimates, one filter evolving in
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the forward direction from time =-c and the other in the backward direction from
o. Sections 6 and 7 are devoted to external stochastic realizations. First, in 6, we

construct a system of differential equations in B1 and B2 which generates families of
wide sense stochastic realizations, totally ordered with respect to state covariances. In
7 this result is interpreted in terms of proper stochastic realizations and a complete

characterization of all such realizations is provided.
This paper extends the results reported (without proofs) in our short note [20].

2. Preliminaries and definitions. Let the function A" R"" R"" be given by

(2.1) A(P)=FP+PF’+(G-PH’)R-I(G-PH’)’,

and define the set ={P[P’ P; A(Ja)-_< 0} of symmetric n x n-matrices, where Q _>- 0
(Q >0) means that Q is nonnegative (positive) definite. Also introduce the subset
o {PIA(P) 0}.

In the following theorem we collect some facts from Anderson [5], Faurre 11] and
Willems [32].

THEOREM 2.1. The set is closed, bounded and convex, and there are two elements
P, and P* in o such that

(2.2) P,<-P<-P* forallP.
Moreover, is the set ofall solutions Pof (1.17), ando is the set of all such solutions for
which BE O.

Each P can be interpreted as the covariance matrix (1.4)of the corresponding
stochastic realization (1.18). Consequently, there is a minimum-variance (P,)and a
maximum-variance (P*) wide sense stochastic realization, and for these realizations we
have B2 0.

For each P , define the feedback matrix

(2.3) F=F-(G-PH’)R-IH,
the significance of which will be made clear below. Let the feedback matrices cor-
responding to P, and P* be denoted F, and F* respectively. It can be shown that
Re{A(F.)}<0 and Re {A (F*)} > 0 [32, p. 260], [11, p. 53]. Consequently, for each
matrix N, the Lyapunov equation

(2.4) FM+MF, +H’R-1H+N 0

has a unique solution M.(N), which is positive definite whenever N is nonnegative
definite. In fact, since (F, H) is controllable, so is (F, H). (See e.g. [36].) LikewiSe

(2.5) -F*’M MF* +H’R-1H +N 0

has a unique positive definite solution M*(N) for each N_->0. Furthermore, define

+ {P ]P>P,} and

_
{P [P< P*}. Since (ito) > 0 for all real to, P, < P*

[32, p. 360], and consequently / and

_
are nonempty.

THEOREM 2.2. Let II and II be the unique solutions of the n n-matrix differential
equations

(2.6) fl(t) A(II(t)); II(0) 0

and

(2.7) 1-I(t) A(rI(t)); II(0) 0

respectively, where A is given by (2.1) and A by

(2.8) 7k(P)=F’P+PF+(It’-PG)R-I(H’-PG)’.
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Then II(t)- P. and fi(t) (p.)-i as t- oo. Moreover, the matrix P P, + [M.(N)]-1
belongs to + if and only ifN >- O. Likewise, P P* [M*(N)]-1 belongs to

_
if and

only ifN >-_ O. Finally, P* P, [M.(0)]-1 [M*(0)]-1.
Various versions of this theorem can be found in [7] and 11]. It provides us with a

procedure to determine all elements in + CI _: First compute P. and P*. Then
varying N over the nonnegative cone will generate the other elements in / CI _. The
corresponding wide sense stochastic realizations [F, B, H, (R 1/2, 0)] can then be
obtained by determining B (B1, B2) from

(2.9a) BI (G PH’)R -1/2,

(2.9b) BEB -A(P),

which is merely (1.17) reformulated.
In 6 another method for generating wide sense stochastic realizations is presen-

ted, which is formulated directly in terms of B, the unknown quantity in
IF, B, H’, (R 1/_, 0)]. Hence the intermediate step of determining P will be eliminated.
Define to be the set of all B (B, B2) given by (2.9) as P ranges over . Let 0,
and

_
be defined analogously in terms of 0, / and _. The set 0 consists of all

B with B2 0 (Theorem 2.1). In particular, let B. and B* be the unique elements in
0 corresponding to P. and P* respectively.

All stochastic processes in this paper will have finite second order moments. Given
a k-dimensional vector process r/ of this type, defined on some probability space
(, ,, P), and a subset I of (-oo, oo), letH(r/) be the closed linear hull in L2(,, o, P)of
the stochastic variables {r/i(t); tel, i= 1,2,..., k}. (We write H,(r/) if the set !
contains only the point t.) If s is ax/-dimensional stochastic vector such that i H(r/),
i= 1,2,..., l, we shall misuse notations slightly by writing sOpHs(r/). For
L2(’, ’, e), let/{srIH(r/)} be the projection of sr onto H(r/), i.e. the wide sense
conditional mean in the terminology of Doob 10]. (We shall sometimes write
instead of/{srlH,(r/)}.) For simplicity let H(r/), H- (r/) and H,+ (r/) denote
Ht-o,o(*l) and Htt.oo(r/) respectively. Moreover, set rh0-) r/(t + -)- r/(t), and define
H-(dr/) and H,+ (dr/) to be respectively H (rh) and H (rh). Note that if r/(0)= 0
(which is often the case with the processes studied in this paper), we have Ho (dr/)=
H(n).

As mentioned in 1, any mean-square continuous stochastic vector process
{(t); R} with stationary increments and /(0)= 0 has a rpresntation of the form

(2 10) rt(t)= I e’’t- 1
d(to)

12; p. 205], where d is an orthogonal stochastic measure, called the stochastic spectral
measure of r/. If, in addition, r/ is purely nondeterministic, it has an absolutely
continuous spectral distribution [9], i.e.

(2.11) E{d(o) d(o)’} S(ito) do

where S is the spectraldensity of /. If E{r/(t)} 0for all t and S I (identity), r/is said to
be of class V. The spectral decomposition (2.10) defines an isometric correspondence
between H(r/) and L2(R, S(ito)do) under which /(t) corresponds to (e i’‘- 1)/ko;
hence to any real random variable s H(r/) there corresponds an (essentially) unique
g L2(R, S(ito) dto) such that

g(o) d(o).
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In fact, the system of functions {(e io’- 1)/ito; R} is complete in L2(R, S(ito) do)[ 12;
p. 204]. Hence we have the following lemma which we shall need below.

LEMMA 2.3. Let and ’1 be mean-square continuous and purely nondeterministic
stochastic vector processes, defined on the whole real line R, with (jointly) stationary
increments and such that (t)H(q) ]’or all R. Let S(ito) be the spectral density
of q, and assume that (0)= O. Then there is a matrix-valued function K such that
((e i’’- 1)/ito). K(iw)6Lz(R,S(iw) dto) for all R and such that

(2.12) :(t) I_ e’’-1K(io) d
If, in addition, and *1 are both of class

(2.13) K(s)K(-s)’=I..

The last statement follows from d K(ito) d and the fact that both sc and r/have
identity spectral densities.

3. Forward and backward stochastic realizations. Let {x(t); t R} be an n-dimen-
sional wide sense Markov process, i.e.

(3.1) J{x(s)ln-[ (x)} {x(s)lx(t)} for s -> t,

or equivalently

(3.2) i{x(s)ln (x)} {x(s)lx(t)} for s _-< t.

In addition, assume that x is purely nondeterministic and (wide sense) stationary. It is
well-known 11 that such a process can be described as the solution of a system of linear
stochastic differential equations of the type

(3.3) dx Ax dt +B dw,

where A and B are constant matrices, Re {A(A)}< 0, and w is a vector process of class
such that2 H+t (dw)+/-H- (x) for all R. [In fact, A being a stability matrix implies

that (3.3) has the solution (1.3), and consequently H-(x)H-(dw)_LH+(dw).]
Moreover, the covariance matrix P:=E{x(t)x(t)’} satisfies (1.5). The model (3.3) is
clearly unsymmetric with respect to time, x(t) being orthogonal to future increments of
w, but not to past ones. Hence we shall call (3.3) the forward representation of x.

We shall now show that x has a backward representation also, i.e. a model (3.3) with
Re{A(A)}>0 and H-(dw)+/-H(x)for all tR. To this end first observe that the
forward representation (3.3)can be integrated between and s to yield

(3.4) x(s)= eA(S-t)x(t)+ eA(S-’)B dw(r),

where the two terms are orthogonal if and only if s => t; in this case it can be seen that
(3.4) is precisely the orthogonal decomposition

(3.5) x(s)= #,{x(s)ln-; (x)}+[x(s)-{x(s)lH? (x)}].
We shall use a symmetric argument to determine the backward representation. More
precisely, for s -< t we shall derive a backward version of (3.4) from the decomposition

(3.6) x(s)= l,{x(s)lH (x)}+[x(s)-l.{x(s)lH (x)}].

2 "Ha +/- HE" means "Ha and HE are orthogonal".
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In view of the Markov property (4.2) and the standard projection formula 11 the first
term in (3.6)can be written

{x(s)lH+t (x)} E{x(s)x(t)’}E{x(t)x(t)’}-ix(t)
(3.7)

P eA’(t-s)P-ix(t) e-PA’P-(s-t)x(t),
where we have used (3.4) to evaluate E{x(s)x(t)’}. From (3.7) it is clear that

(3.8) (t) ePA’P-ltx(t)
is a wide sense backward martingale with respect to the family {Ht+ (x)}, i.e.

(3.9) /{:(s)ln,+ (x)} :(t) for s -< t,

and using (3.3)we obtain

dsc eeA’P-I’[(AP + PA’)p-lx dt +B dw],

which, because of (1.5), may be written

(3.10) dsc ePa’P-tB(dw B’e-lx dt).

LEMMA 3.1. Let {x(t); R} be the solution on (-c, o) o[ (3.3), and let P be the
covariance matrix of x. Then the vector process ff, defined by

(3.11) dff=dw-B’P-lxdt; if(0)= 0,

belongs to class /T, and H- (dff is orthogonal to H? (x) for all R.
Proof. Inserting (1.6) and (1.7a) for w and x in (3.11) yields

(3.12) O(t) | T(ko) d(o).

where

(3.13) T(s)= I-B’p-I(sI-A)-IB.
Consequently O is a zero-mean, mean-square continuous vector process with sta-
tionary increments and spectral density T(s)T(-s)’ and such that O(0) 0. Then, to see
that O is of class 4/’, it just remains to show that

(3.14) T(s)T(-s)’=L

To this end first note that

T(s)T(-s)’= I-B’p-I(sI-A)-IB-N(s)P-’B,(3.15)

where

(3.16a)

(3.16b)

N(s)= T(s)B’(-sI-A’)-B’(-sI-A’)--B’p-(sI-A)-BB’(-sI-A’)-.
In view of (1.5)we may write

BB’=(st-A)P+P(-s-A’)

which inserted into (3.16b) yields

(3.17) N(s) -n’P-(st- A)-IP.
Now (3.15) and (3.17) together yield (3.14). To show that H- (d)+/-H (x), take
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ll -< t2 -< t3 and form

(3.18) E{[ff,(t)- ff,(t2)lx(t3)’}
ito

e-it3N(ito) dw.

Here we have used (3.12), (1.7a) and (3.16a) to obtain (3.18). But (e -i’’ -e-i’a)/iw is
the Fourier transform of the indicator function Xt,, t of the interval (a,/3) and, in view of
(3.17), N(iw)is the Fourier transform of-B’P-1 atpxto.oo" Hence Parseval’s Theorem
yields

E([ g,(tl)- ,(t2)]x(t3)’} B’P-1 X(tl-t3,t2-t3)(t)X(o,oo)(t) eAt dtP,

which is zero whenever tl, t._<-t3. [i

Consequently, in view of (3.7)-(3.11), (3.6)can be written

(3.19)
X(S) e-PA’P-I(s-t)x(t)+ e -PA’P-s [(s)-- sc:(t)]

e-PA’P-l(s-t)x(t)+ e-PA’P-I(s-z)B d (r),

which is the backward counterpart of (3.4). Since Re {A(-PA’p-1)} >0 and H- (dff)_L
Ht+ (x) for all R,

(3.20) dx -PA’p-lx dt + B d,

obtained by differentiating (3.19), is a backward representation of x. In [22], [30] it was
shown that, for arbitrary w and ff of class W, the solutions on (-o, c) of (3.3) and
(3.20) have the same second-order properties. Here we have demonstrated that, for the
particular choice (3.11) of , these systems actually represent the same wide sense
Markov process. We record this observation in the following theorem.

THEOREM 3.2. Let {x(t); R} be a vector-valued, wide sense stationary, purely
nondeterministic, wide sense Markov process with covariance matrix P. Then x has a
forward representation (3.3) with Re {A (A)} < 0 andH (dw)_L H-/ (x) for all R, and
a corresponding backward representation (3.20) with H- (d) _1_H (x) for all R. The
processes x, w and are related as in (3.11).

In 1 we only considered stochastic realizations for which Re {A (A)} < 0, i.e. with
the state process x written in the forward form. From what has been said above, it is
clear that we will get an isomorphic theory by reversing time. In particular, let us
consider representations of the type

(3.21 a) d$ A dt +B d,,

(3.21 b) dE CY dt +D d,
where Re {A (A])} >0 and H-/(dw)_l.H (x) for all t6 R. We shall call (3.21) a proper or
a wide sense backward stochastic realization of y, depending on whether the solution
of (3.21)on (-, o) equals y or has the same spectral density as y. Equation (3.2 la) has
the unique solution

(3.22) 2(/)= eA(t-)J dl(’t’)

on (-c, c), and by the procedure used in 1 we obtain

(3.23) z(t)= |
e
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where

(3.24) ff’(s) (sI- fi,)-lB + ;.
If (3.21) is a backward stochastic realization of y, we must have

(3.25) W(s)W(-s)’= (s),

i.e. W is a strictly unstable spectralfactor of . Conversely, each such spectral factor W
is the transfer function of an equivalence class of wide sense backward stochastic
realizations; to see this proceed as in 1. If W is minimal, we shall say that the
realization (3.21) is minimal; only such representations will be considered in
the sequel.

Consider the problem of determining all strictly unstable minimal spectral factors
(3.24) of . Since W(-s)W(s)’ (s)’, this problem is equivalent to finding all stable
minimal factors W(-s)of (s)’. Given the representation (1.14)--(1.15), we have

(3.26) (s)’= Z(s)+ Z(-s)’,

where Z is the positive real matrix function Z’, i.e.

(3.27) (s) G’(sI F’)-IH + 1/2R.
Consequently we have reduced the problem to the one considered in 1. In fact, all
stable factors

(3.28) ff’(-s) (?(sI + fi)-’(-/)+/

of (s)’ are given by

(3.29) [-fi,-/, ,/]--[TF’T-1, T(-JI,-B2)S, G’T-1, (R 1/2, 0)S]
where T is any nonsingular n n-matrix, S is any orthogonal matrix of appropriate
dimension and (B1, BE) satisfy

(3.30a) F’P +PF /B1B +BEB O,

(3.30b) PG JIR1/2 H’,

(3.30c) P is a symmetric, positive definite n n-matrix.

This the dual spectral factorization problem considered by Anderson [6] and Faurre
11 ]. As in the forward setting it is no restriction to take T I and S =/, i.e. to consider
backward stochastic realizations of the form [-F’, (/1,/), G’, (R 1/2, 0)] only; then/5
in (3.30) is the state covariance matrix.

Let , be given by (2.8)and define ={P=P’I(P)<-_O} and 0
{P IA(P)= 0}. By Theorem 2.1, the set is closed, bounded and convex, and there
are two elements/5, and/5, in 0 such that/5, __< p _</5, for all P . Moreover, is
the set of all solutions P of (3.30), and o is the set of all such solutions for which BE 0.
Let be the set of all solutions B (B_, BE) Of (3.30a)-(3.30b) as P varies over , and
let/, and/* be the elements in B corresponding to/5, and/5, respectively. As
expressed by the following lemma (which is essentially the same as one found
in [11]) there is a one-one correspondence between and as well as between

and .
LEMMA 3.3. The set of matrices (P, B1, BE) given by

(3.31a) /5 p-,
(3.3 lb) (/1,/2) P-(B, BE)
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is a solution of (3.30) if and only if (P, B1, B2) is a solution of (1.17). In particular,
p-, (p,)-l,/5, (p,)-l,/, (P*)-IB* and * (P,)-B,.

Proof. Pre- and postmultiplying (1.17a) by p-1 and premultiplying (1.17b) by p-I,
it is seen that P is a solution of (1.17) if and only if (3.31 a) is a solution of (3.30) with
(B, B2) given by (3.31b). The rest of the statement then follows trivially from
(3.31). [-l

Lemma 3.3 defines a bijective mapping between the sets @ and @. This raises the
question whether to each proper minimal stochastic realization with transfer function W
there is a unique proper backward minimal stochastic realization whose transfer
function is the dual spectral factor W, and vice versa. In general this is not true, for a
spectral factor may correspond to many proper minimal stochastic realizations
(Theorem 7.1). However, we shall see that if, in addition, we require that the two
realizations have the same state space, i.e. Ht()= Ht(x), for all t R, there is such a
one-one correspondence under mild conditions on B, and that the input processes are
related as in Lemma 3.1. Of course, taking (3.31) and (3.11) as the starting point, the
families of forward and backward proper minimal stochastic realizations are seen to be
bijectively related regardless of any condition on B.

THEOREM 3.4. Let (F, G, H, R) be defined as in 1. To each proper minimal
stochastic realization of y of the form
(3.32a)

(3.32b)

dx Fx dt + B1 du + B2 dr,

dy H’x dt + R 1/2 du,

with state covariance matrix P, them is one and, if B2 has linearly independent columns,
only one proper backward minimal stochastic realization of the form
(3.33a) d -F’Y dt +B da +2 dO,

(3.33b) dy G’ dt + R 1/2 dt,

with state covariance P, such that (3.31) holds andHt() Ht(x)for all R. Conversely,
to each realization (3.33) there is one and, if B2 has linearly independent columns, only
one realization (3.32) such that (3.31) holds andHt(x) Ht() for all R. The stochastic
processes in the two realizations are related in the following way

(3.34) .(t)=P-lx(t),
(3.35a) dr7 du Bp-lx dt; (0) O,

(3.35b) dO dv Bp-lx dt; O(O) O.

The relations (3.31), (3.34) and (3.35) define a bi]ective mapping between the families
(3.32) and (3.33) offorward and backward stochastic realizations.

Proof. The backward representation (3.20) corresponding to (3.32a) is

(3.36a) dx -PF’P-ax dt + B1 da + B2 dO,

where, according to Theorem 3.2, ti and 0 are given by (3.35). Then (3.32b)and (3.35a)
together yield

dy (HP+ R 1/2B )p-ix dt + R 1/2 d,

which, in view of (1.17b), is the same as

(3.36b) dy G’P-lx dt + R 1/2 dti.

Now let be defined by (3.34). Then Hi(Y) H(x) for all t R and has the covariance
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matrix (3.31 a). Moreover, (3.34)applied to (3.36)yields (3.33) with B given by (3.31 b).
Secondly, consider an arbitrary proper backward minimal realization

(3.37a) d; -F’; dt + B1 d +B2 d,

(3.37b) dy G’ dt +R 1/2 d

with B given by (3.3 lb) and Ht() Hi(x) for all R. Due to the last condition, there is
a nonsingular matrix S such that x(t)= S;(t); since x and are stationary, S is constant.
Set T= p-1S. Then in view of (3.34), .(t) T;(t). Hence (3.37) can be written

(3.38a)

(3.38b)

dY TF’T- dt +T dfi + TBz d,
dy G’T-, dt + R /2 d.

Since . and have the same covariance matrix P, we must have TPT’ P. Hence, in
view of (3.38), (3.30) holds also with (P,F’,B, G’) exchanged for
(TPT’, TF’T-1, T;, G’T-1); in particular, (3.30b) yields T(fiG’- ;IR1/2) H’, which
together with the original (3.30b) gives us TH’ H’. We also have TF’T-1 F’. To see
this, form /{;(s)lHt+ (;)} for all s-< by using first (3.33) and then (3.38); we get
e-F’(s-t)(t) and e-rV’r-’-t)Y,(t) respectively. Hence (F’)iH’=T(F’)iT-aH’=
T(F’)H for i= 1, 2,..-, n, and since (H, F) is observable we must have T= L
Therefore . Then comparing (3.33b) and (3.37b), we see that a a, and hence
(3.33a) and (3.37a) yield 5 iS, for the columns of B are linearly independent. Hence
(3.33) and (3.37) are identical. Finally, the converse statement is obtained in the same
way starting out with the backward realization (3.33).

4. The minimum- and maximum-variance realizations. The proper stochastic
realizations corresponding to P. and P*, the minimum and maximum elements of the
set , will play an important role in what follows. Therefore we shall begin by providing
an interpretation of these.

Consider an arbitrary proper minimal stochastic realization of the form (3.32) and
with state covariance P. It is not hard to see that such a realization exists; we postpone
the proof of this to 7 (Theorem 7.1). It is well-known [35] that, for each fixed T R, the
estimate

(4.1) ;(t; T)= {x(t)lHtr.,](dy)} (t >-- T)

is generated by the Kalman-Bucy filter
(4.2a) d; F; dt + K(t- T) dvr; /(T; T)= 0 (T-< < co),

where {vr(t); 6 [T, co)} is the transient innovation process, defined by3

(4.2b) dvr R-a/2(dy -Hi dt); vr(max {0, T})= 0.

The matrix function K, called the Kalman-Bucy gain, can be determined from the
matrix Riccati equation

(4.3a) " FZ+ZF’- KK’ +BB’; (0) P,

(4.3b) K H’R-x/2 +B.

Our choice of initial conditions in (4.2b) and (4.5b), which are otherwise arbitrary, is to insure that
ua(0) 0 (ffa(0)= 0) for negative (positive) T.
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In the same manner, given an arbitrary proper backward minimal stochastic
realization of the form (3.33), it can be seen that

(4.4) b(t, T)= ,{(t)lHt.r(dy)} (t <= T)
is given by the backward Kalman-Bucy filter
(4.5a) db=-F’bdt+K(T-t)dJT; b(T, T)=0 (-oo < t-< T),

where {Jr(t); (-o0, T]}, defined by

(4.5b) dJr R-1/2(dy G’b dt); vT-(min {0, T})= 0,

is the transient backward innovation process, introduced in [17]. Here K is given by
the dual matrix Riccati equation

(4.6a) X F’E +YF- KK’+ BB’; ,(0) P,

(4.6b) / ,GR-1/2-B1.
Note that both vr and Jr are normalized orthogonal increment processes 17], so

(4.2) and (4.5) can be regarded as a pair of "nonstationary stochastic realizations" of y.
We shall now demonstrate that the steady-state versions of these representations are
indeed proper stochastic realizations in the sense of this paper.

THEOREM 4.1. There is one and only one proper stochastic realization (3.32) with
state covariance matrix P,, namely

(4.7) dx, Fx, dt + B, du,, dy Hx, dt + R 1/2 du,,

and it is the steady-state Kalman-Bucy filter in the sense that, ]’or each t R, x,(t), u,(t)
and B, are the limits in mean square o]’ (t, T), vr(t) and K(t-T) respectively as
T-oo. The innovation process u, satisfies
(4.8) H- (du,) H[ (dy)

,for all R, and the projection of the state x(t) o]’ any stochastic realization (3.32) onto

H- (dy), being given by

(4.9) #{x(t)ln-; (dy)} x,(t),
is invariant with respect to the particular realization.

THEOREM 4.2. There is one and only one proper stochastic realization (3.32) with
state covariance P*, namely

(4.10) dx*=Fx* dr+B* du*, dy=Hx* dt+R 1/2 du*,

and it is the forward counterpart (in the sense of Theorem 3.4) of the backward stochastic
realization

(4.11) d, -F’$, dt +;, da,, dy G’$, dt + R 1/2 d,

where ,(t), a,(t) and , are the limits in mean square of b(t; T), Jr(t) and ,(T-t)
respectively as T--> oo. Then x* and u* are given by

(4.12) x*(t) P*,(t),
(4.13) du* da, -’ *-B,P x, dt; u*(0)= 0

and B, by Lemma 3.3. The backward innovation process t, has the property

(4.14) H (dti.) H[ (dy)
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]’or all t R, and

(4.15) /{(t)lH+ (dy)} ,(t)
]’or the state process of any backward stochastic realization (3.33).

Before proving these theorems a few remarks are in order:
(i) It is well-known that

(4.16) E{[x(t)- (t; T)][x(t)- :(t; T)]’} Y.,(t- T),

where Y_. is given by (4.3); the stationarity of x insures that (4.16) depends on the
difference t- T only. Likewise, set E{(t; T)(t; T)’} H(t- T). Then

(4.17) Y_,(t) P n(t).

Inserting (4.17) into (4.3) and applying (1.17) it is seen that II satisfies (2.6) and that

(4.18) K G IIH’)R /.

Hence K(t)B, as oo by Theorem 2.2. The corresponding dual results are analo-
gous. Consequently one could base the proofs of Theorems 4.1 and 4.2 on Theorem 2.2,
but instead we shall offer a self-contained proof which is more direct. Note that (4.18)
together with (2.6), and its dual counterparts, imply that the filters (4.2) and (4.5) are in
fact invariant with respect to the particular realization which provides the process x(Y).

(ii) The choice of (3.33) as the standard form for the backward stochastic realiza-
tions rather than (3.36) is motivated by the dual spectral factorization problem.
Relation (4.15) provides an additional justification for this choice. As in (4.9), the left
member of (4.15) is invariant with respect to variations in the state process 2. On the
other hand, were we to project the state process x of (3.36) onto the future space
Ht+ (dy), we would have

(4.19) {x(t)lH (dy)} P(e*)-lx*(t),
which does not enjoy the same invariance properties. Indeed the natural setting for the
process x is the forward, and not the backward, realization problem.

Proof of Theorem 4.1. For each fixed tR the process {so(z); -=>-t}, where
so(z) X(t;-z), is a uniformly integrable wide sense martingale [10], and therefore
(t; T) tends to a limit x,(t) in mean square as T-oo. Moreover,

(4.20) :(t, T)= .{x(t)lntr,o(dy)}-, J.{x(t)l/T<_tntr,o(dy)}
in mean square [10], and hence (4.9) holds (a.s. for each t), for /._tHEr.,l(dy)=

(dy). Then ur tends to a limit process u,. Since uT- has normalized orthogonal
increments, the same must hold for u,; hence u, is of class/4/. In view of (4.20), II(t) and
K(t), as given by (4.17) and (4.18), tend to limits; let us call these IIoo and Koo
respectively. Consequently, x, and u, must satisfy

dx, Fx, dt + Koo du,, dy Hx, dt + R 1/2 du,,

which is a proper minimal stochastic realization of y with state covariance Iloo. Thus
Ho . But since (4.16) is nonnegative definite for all t R, (4.17) implies that P => Iloo,
and this holds for all P , for the realization (3.32) is arbitrary. (By Theorem 7.1 there
is a proper stochastic realization for each P e .) Therefore IIo P,, and consequently
Ko- B,. Given P,, the matrix B, is uniquely determined by (2.9a). Moreover, as we
shall see in 5, u, is uniquely determined as a causal function of y through relations
(5.10b) and (5.12). Hence there is only one proper stochastic realization (3.32) with
P P,, and moreover H- (du,)cH (dy). Since, in addition, H- (du,) H- (dy),
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(4.8) holds. Also, since x, is uniquely determined, the limit (4.20) is. independent of the
choice of state process x. 71

Proo] o[ Theorem 4.2. The statements concerning (4.11), (4.14) and (4.15)
follow along the same lines as in the proof of Theorem 4.1, just reversing time.
Then the statements concerning (4.10), (4.12) and (4.13) are a consequence of
Theorem 3.4. [:]

5. Internal stochastic realizations. Consider an arbitrary proper stochastic realiza-
tion (3.32) and its backward counterpart (3.33). The following lemma describes the
relationship between the two input processes w and ff and the output process y.

LEMMA 5.1. Let (w, ) be the pair of input processes defined above. Then the
following relations hold for all R.

(i) H- (dy) H- (dw) and H+t (dy)H (d),
(ii) H(y) H(w),
(iii) H- (d,)c H- (dw) andH(dw) H- (dff),
(iv) H(ff): H(w).
Proof. Relations (i) and (ii) are trivial consequences of (1.1b) and (1,.3) and (3.21b)

and (3.22), recalling that z y. To obtain (iii), insert first (1.3) and then ,f P-ix, as
given by (3.22), into (3.11). Then (iv)is proven by letting t-->0o in the first of relations
(iii) and t-->-0o in the second.

Since the input process w is of class /’, (i) implies that the future increments of w
are orthogonal to the past increments of y, i.e. H+, (dw)_L H- (dy) for all R. In the
same manner it can be seen that H- (dff,)_LH+t (dy) for all t. It follows from Theorem
5.5 below that the innovation process u, and the backward innovation process t, are
the only input processes to satisfy relations (i) with equality; they satisfy (4.8) and (4.14)
respectively. The only thing we can say about the future space of u* is that H+t (du*)c
H- (dy), which follows from Theorem 5.5. Hence we have again detected a certain lack
of symmetry between the minimum- and maximum-variance realizations.

We shall now consider those realizations for which the converse of relation (ii)
holds.

DEFINITIONS. The proper forward or backward stochastic realization
[A,B, C,D; w] of y is said to be internal if H(w)=H(y). If H(w)H(y), the
realization is said to be external.

For an internal stochastic realization, the input process w can be expressed in terms
of the output y. Therefore, if x is the state process, x(t) H(y) for all (-0o, 0o). In
view of Lemma 5.1 (iv), the backward counterpart of any internal (forward)realization
is also internal. Hence, in the sequel, we shall restrict our attention to forward
realizations, and only consider backward ones when there is an interplay between the
forward and backward settings. We now turn to the characterization of the set of
internal realizations.

THEOREM 5.2. A proper stochastic realization of y is internal if and only if it has a
square transfer function W, i.e. W(s) is m x m.

Proof. The proof consists of two parts. First we show that H(w) H(y) if and only if
W has a left inverse. Secondly we show that W has a left inverse if and only if it is m m.

(i) Assume that w(t)s H(y)for all t s R. Then there is a representation

e O,t_ 1
(5.1) w(t)= | K(ito) d(oa)

d-

satisfying the conditions of Lemma 2.3. Therefore, since the stochastic spectral measure
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is unique, dff K(ito) d. But

(5.2) d W(iw) db,

for y z satisfies (1.7b), and consequently

(5.3) d, K(iw)W(iw) dff.

Postmultiply (5.3) by dfff, take expectation, and note that E{dff dCvf} I do to see that

(5.4) K(s) W(s)= I

by analytic continuation. Hence W has a left inverse. Conversely, assume that W has a
left inverse K. Then (5.3) holds,,and, in view of (5.2), we have (5.1). Hence w(t) H(y)
for all R, and therefore H(w)= H(y) (Lemma 5.1 (ii)).

(ii) An rn k rational transfer matrix W(s) has a left inverse if and only if
p{ W} k, where p stands for rank, defined with respect to the field of rational functions
[34; p. 162, Thm. 5.5.3]. Therefore it remains to show that p{W}= k if and only if
k m. To this end, apply Sylvester’s inequality [34; p. 40] to (1.10) to obtain

p{ W(s)} + p{ W(-s)’}- k _-< p{q} _-< min [p{ W(s)}, p{ W(-s)’}],

which can be written

(5.5) 2p{ W}- k _-< rn -< p{ W},

for p{tP} m. Consequently, if p{ W}= k, we have k m. Conversely, if k m, (5.5)
implies that p{ W} k. [3

COROLLARY 5.3. A proper minimal stochastic realization in the standard form
(3.32) is internal if and only if B2 O.

Proof. The transfer function of (3.32) is

(5.6) W(s) H(sI- F)-I(B, B.)+ (R ’/e, 0),

which is square if and only if B2 0. [:]
Consequently the internal stochastic realizations in standard form are precisely the

representations of the type

(5.7a) dx Fx dt +B du,

(5.7b) dy Hx dt + R 1/2 du

among which we have the minimum-variance realization (4.7) and the maximum-
variance realization (4.10).

THEOREM 5.4. There is a one-one correspondence between the family of internal
realizations (5.7) and the set o of solutions of the algebraic Riccati equation A(P) 0.
The input process u of (5.7) is given by

(5.8) u(/)= fei,o,_ 1 w_l(io)) d)3,
J_

where W is the transfer function of (5.7).
Proof. Each stochastic realization (5.7) has a state covariance matrix P which

belongs to 0, since B2 0. (Theorem 2.1). Hence it remains to show that to each
P e 90 there is one and only one proper stochastic realization (5.7) and that u is given by
(5.8): To each P e 0 there is one and only one spectral’factor of the form (5.6), namely
the square factor

(5.9) W(s) n(sI F)-IB + R 1/2,
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for B is uniquely determined by (2.9a). Since R is nonsingular, (5.9) has an inverse
W-1. First define u by (5.8). Then d33 W(ioo)da, which transformed to the time
domain yields (5.7). Secondly, let u be the input process of a proper stochastic
realization with transfer function (5.9). Then d3 W(ioo) d, and hence u is given by
(5.8).

The internal realization (5.7) can be inverted in the time domain also by rewriting it
in the form

(5.10a)

(5.10b)

dx Fx dt + BR-1/2 dy,

du R-1/2(dy- Hx dt)

where, in view of (2.9a),

(5.11) F=F-BR-1/2H

is the feedback matrix (2.3). Once there is a solution of (5.10a), u is given by (5.10b).
For the two extreme realizations, corresponding to P, and P*, such solutions are
immediate, namely

(5.12) x,(t) er*(t-)B,R -1/2 dy(’r)

and

(5.13) x*(t) er*t-gB*R -1/2 dy(r)

respectively. In fact, all eigenvalues of F, (F*) have negative (positive) real parts. (See
2.) Then u, and u* can be determined from (5.10b).

Other internal stochastic realizations can now be handled by integrating stable
modes over the past and unstable over the future, provided that the matrix F has no
eigenvalues on the imaginary axis. However, since P, < P* [32, p. 260], no such
eigenvalues occur for 0-realizations [33, p. 630; Remark 19]. In fact the solution is
surprisingly simple.

THEOREM 5.5. Consider an internal stochastic realization (5.7). Let II/(II-) be the
projection operator onto the invariant subspace spanned by the eigenvectors corresponding
to eigenvalues of the feedback matrix (5.11) with positive (negative) real parts. Then

(5.14) x(t) II-x,(t) + H+x*(t),
where x, and x* are given by (5.12) and (5.13). The input process u is given by

du R-1/2[dy- HH-x,(t) dt-HH+x*(t) dt].

The proof of Theorem 5.5 is based on the following lemma.
LEMMA 5.6 (J. C. Willems). LetP o, and let H/ and H- be defined as in Theorem

5.5. Then II/ + H- I and

(5.16) P= H-P, + II+P*.

Moreover, with F, and F* defined as above,

(5.17) II-F,H- H-F, and H+F*II+ II+F*.
In view of the fact that P* P, > 0 and (H, F) is observable (see 1), this result is

an immediate consequence of Theorem 6 and Lemma 8 in [33].
Proof of Theorem 5.5. Let P be the state covariance matrix of the stochastic

realization (5.7). Hence P0 (Corollary 5.3). Since (II-)2= II- and H-H+=0, we
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have II-P H-P, from (5.16). Consequently, in view of (2.9a) and (5.11),

(5.18a) II-B H-B,,
(5.18b) II-F II-F, II-F,II-,
where in the last relation we have also used (5.17). Hence, premultiplying (5.10a) by H-
and using (5.18), it is seen that II-x(t) satisfies the differential equation

(5.19) d II-F,: dt + II-B,R -1/2 dy

on (-, o). But II-x,(t), too, satisfies (5.19)on (-o, ). To see this, use (5.17).
Therefore, since (5.19) has a unique solution on (-c, ), we must have II-x(t)=
II-x,(t) for all t R. In the ame way we show that II+x(t) H+x*(t). Hence, (5.14)
follows from II++H-- I (Lemma 5.6). Then insert (5.14) into (5.10b) to obtain
(5.15).

It follows from (5.12) and (5.13) that x,(t) H- (dy) and x*(t)H (dy) for each
R. Therefore, (5.14) decomposes x(t) H(y) into two components, one in H- (dy)

and one inH (dy). In view of (4.8) and (4.14), we can acquire symmetry between past
and future by using (4.12) to rewrite (5.14) in the form

x(t) H-x,(t) + II+P*$,(t).

Consequently, the state process of any internal stochastic realization can be expressed
in terms of the steady-state forward and backward Kalman-Bucy estimates, x, and ,,
and therefore it can be constructed from a linear combination of the filters (4.2) and
(4.5), by taking the limit in quadratic mean.

6. Families ot totally ordered stochastic realizations. Considering minimal sto-
chastic realizations in the standard form (3.32) leaves only the matrix B (B1, B2) and
the input process w () to be determined, the parameters (F, G, H, R) being given.
This section will be devoted to studying the set of feasible matrices B, defined in 2;
finding w will be the topic of 7.

It was shown in 4 (Theorem 4.1) that

(6.1) B,= lim K(t),
too

where K is the Kalman-Bucy gain function. This fact together with the following
theorem provide us with a means to determine B, directly without first having to obtain

TI-IEOREM 6.1 (Kailath-Lindquist). Let (K, (2) be the unique solution on [0, oo) of
the system of matrix differential equations
(6.2a) / -O0’H’R -1/2", K(0)= GR

(6.2b) O (F- KR-a/2H)O; O(O) OR-1/z.

Then K is the Kalman-Bucy gain function. The filter covariance function H, defined in
4 (Remark (i)), satisfies

(6.3) fl 00’; II(0) 0.

Note that, although different realizations (3.32) yield different Riccati equations
(4.3) [but the same filter (4.2)], the non-Riccati algorithm (6.2) is invariant over ,
depending only on the known quantities (F, G, H, R). If needed, P, can be determined
as the limit of II(t) as oo (Theorem 2.2), where H is generated by either (2.6) or (6.3).
The system (6.2)-(6.3) is precisely the algorithm derived in [17] by using the transient
backward innovation process (4.5b) and in [16] by factoring the matrix differential
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equation (4.3). A dual non-Riccati algorithm generating the backward Kalman-Bucy.
gain K and the backward filter covariance II can be derived analogously by using the
forward innovation (4.2b)or alternatively from (4.7) by applying the technique of [16];
formally it can be obtained by merely exchanging (F, G, H, R) for (F’, G’, H’, R) in
(6.2).

It can be seen that K(t) approaches B, from outside of . In fact, as one can see by
comparing (2.9a) and (4.18), K(t)is related to II(t) as B, to P,, and, in view of (6.3), H is
monotonely nondecreasing starting out with 0a at 0; hence H(t)=<P, for all t.
Here we shall show that there are equations similar to (6.2)whose trajectories, with the
proper initial conditions, lie entirely inside . These equations will consequently
generate families of wide sense stochastic realizations. Again the basic idea is to
eliminate the need of going via the auxilliary quantity P.

THEOREM 6.2. Let [F, Bo, H, (R 1/2, 0)] be an arbitrary wide sense minimal sto-
chastic realization of y in standard form, and let 0 --, B(0)= [BI(0), B2(0)] be the unique
solution on (-c, o) of the system of matrix differential equations

(6.4a) dB---21= BzBH’R-/2

dO

(6.4b) dB---2= (F- BR-a/-H)B2
dO

with initial condition B(O)= Bo. For each 0 (-, c), let P(O) be the unique solution of
the Lyapunov equation

(6.5) FP + PF’ + B(O)B(O)’= O.

Then, ]’or each 0 (-c, ), IF, B(O), H, (R 1/2, 0)] is a wide sense minimal stochastic
realization o]" y with state covariance matrix P(O). This family of realizations is totally
ordered in the sense that P(O2)<-P(O)
and ifBo YJ+, B(O)--) (B*, O) as 0 - -. The function 0 - P(O) satisfies the differential
equations (6.7) and

(6.6) d__P= -BzB,
dO

and also conditions (iii) and (iv) o]" Lemma 6.3 where here Po may be any point on the
trajectory {P(0); -c < 0 < }.

The proof of this theorem is based on the following lemma.
LEMMA 6.3. Let A be defined by (2.1). Then, for each Po , the matrix differential

equation

dP
(6.7) d- A(P(0)); P(0)= P0

has a unique solution on (-c, ), such that (i) P(O) for all 0(-, c), (ii)
P(O2)<-_P(OX) for 0102, (iii) if Po-, P(O)P. as 0-, and (iv) if Poe+,
P(O) --, P* as 0 --) -c.

Proof. First note that (6.7) can be replaced by the system

(6.8a) dP= U(O)A(Po)U(O)" P(0)= Po,
dO

(6.8b)
dU
d--- r(o)u(o); u(o)= I,
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where F(0) is the feedback matrix (2.3) corresponding to P(O). To see this, reformulate
(6.7) to read

dP
d-- (F- GR-1H)p+ P(F- OR-1H)’ +PH’R-HP+ GR-G,

and use the differentiation technique employed by Kailath in [15], i.e. observe that

d2P F(O)o+ dPdO2 (0)= A(Po),

and integrate to obtain (6.8).
Clearly the Riccati equation (6.7) has a unique solution locally in the neighborhood

of 0 0. In fact, at least for small 0, P(O)= Y(O)X(O)-I, where the n x n-matrix valued
functions X and Y satisfy a system of linear differential equations such that X(O)-1

exists for sufficiently small 0 [8, p. 156]. Since Poe , A(P0)-< 0, and hence, in view of
(6.8a), the condition

dP
(6.9)

dO

holds along this trajectory. Consequently, (6.7) implies A(P(0))-< 0, i.e. the trajectory is
contained in the bounded (Theorem 2.1)set . Hence the solution can be extended to
the whole real line, for P(O) will never leave . Since A is locally Lipschitz, this solution
is unique. This also proves (i), and (ii) is a consequence of (6.9).

To prove (iv) we use an argument similar to that in Willems [33, p. 631 ]. In view of
the fact that A(P,)=< 0, S(0):= P(O)-P, is the solution of

dS
d- F,S +SF+ SH’R-1HS; S(O) Po- P,.

Since S(0)> 0 (for Poe +)and dS/dO <=0 (by (6.9)), S(0)> 0 for 0 =<0. Consequently
S-1 exists on (-o, 0]. Let M, be defined as in Theorem 2.2, and define V := S
M,(0). It is easy to see that V satisfies

dV
d- -FV- VF,

on (-c, 0]. Since Re {A (-F,)} > 0, V(O)O as 0-, and hence S(O)[M,(O)]-l=
P*- P, (Theorem 2.2). Therefore P(O) P* as 0 -* -. This proves (iv). The proof of
(iii) is analogous; just exchange substar (,) by superstar (*) everywhere and (-c, 0] for
[0, c). (Now S(0) < 0 for 0 => 0.)

Hence, given any P0 in / f’)_, we may construct a trajectory -c extending
from P* through P0 to P, so that - is a totally ordered set of matrices P satisfying
(1.17). The only difference between (2.6)and (6.7)is the initial conditions (0 ); the
differential equation is the same. Its critical points are precisely the elements of 0, one
of which (P,) is locally stable in the forward direction and another of which (P*) is stable
in the backward direction (cf. [33]). Note, however, that (6.2) and (6.4) are not exactly
the same, although they are derived from the same differential equation. A dual
(backward) version of (6.1) can be obtained by factoring (2.7), with II(0) , as above.

Proof of Theorem 6.2. Let P0 be the state covafiance of the initial realization
[F, Bo, H, (R 1/2, 0)], and let {P(0); -c < 0 < c} be the trajectory through Po defined by
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Lemma 6.3. Define B(O)as

(6.10a) B(O) [G- P(O)H’]R -/2,
(6.10b) B2(0) U(O)(Bo)2,
where U is given by (6.8b). Then (6.6) and (6.4a) follow from (6.8a) (for A(Po)
-(Bo)2(Bo)) and (6.4b) is a consequence of (6.8b) and (6.10). A local Lipschitz
condition insures uniqueness. In view of (6.6)and (6.7), we have Bz(O)Bz(O)’=
-A(P(0)), which together with (6.10a)yields (6.5). Since Re {A (F)}< 0 and (F, B(O))is
controllable (for (F, Bo) is), (6.5) has a unique positive definite, symmetric solution [8].
This fact together with (6.5) and.(6.10a) insures that (P(O), B(O)) satisfies (1.17), and
consequently [F, B(O), H, (R /2, 0)] is a wide sense stochastic realization with state
covariance P(O). By Lemma 6.2, P(O)satisfies conditions (ii)-(iv), and obviously the last
two conditions hold for any Po on the trajectory {P(0);-oo < 0 < oo}. Finally, the fact
that B(O) tends to B,(B*) as 0 oo(0 -oo) under the stated conditions, follows from
conditions (iii)and (iv)and (6.10a). Since dP/dO->O, (6.6)implies that B2(0)-->0 as

In the next section we shall interpret Theorem 6.2 in terms of proper stochastic
realizations.

7. External stochastic realizations. The following theorem gives a complete
characterization of all proper minimal stochastic realizations.

THEOREM 7.1. Let

(7.1 a) dx Fx dt + B du +B2 dr,

(7.1 b) dy Hx dt + R I/ du

be a proper minimal stochastic realization of y, and let Wl(s) and W2(s) be defined by

(7.2a) Wl(s) n(sI F)-IB1 +R 1/2,

(7.2b) Wz(s) H(sI- F)-IBz.
Then

(7.3) W(s)= [Wl(s), We(s)]
is a minimal stable spectralfactor of the spectral density dp ofy, and the inputprocesses are
given by

(7.4a) v(t)= I; eit-1 W2(_ioo),dp_l(ito)d(to)+z(t

(7.4b) u(t)= I_ eit-- 1
Wl(_ito),dp_l(ito)d(to)

1
j_

e
W (iw) W2(iw) d(w)

where z is a mean-square con6nuous, purely nondeterministic stochastic vector process
with stationary increments, zero mean, spectral density

(7.5) (s): I- W2(-s)’-(s)W2(s),
and z(0)= 0. Moreover, (iw)> 0 for all real o and H(z)&H(y); we shall call z the
exogeneous input component. Conversely, for each minimal stable spectral factor (7.3)
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of , there is a minimal proper stochastic realization (7.1) with u and v given by (7.4), z
being an arbitrary stochastic vector process with all the properties prescribed above.

Proof. It was shown in 1 that, with (7.1) given, (7.3) is a minimal stable spectral
factor of ; this result is restated here for completeness only. To see that u and v .are
given by (7.4), first decompose v as

(7.6) v(/) {v(t)lH(y)}+ z(t).

Then H(z)_L H(y). Given the properties of v and y described in 1, it is easy to see that
the first term in this decomposition is a mean-square continuous, purely nondeter-
ministic vector process with stationary increments, so the same must hold for z; in
addition, z has zero mean and z(0)= 0. Hence, since

(7.7) d(w) W,(iro) da,(w),

where dr/, is the stochastic spectral measure of the innovation process u, and W, is the
transfer function of (4.7), and in view of Lemma 2.3, (7.6)can be written

o(t) 1Z(iw) dt/,(ro) + d,(w),

for some Z to be determined. Let q denote the spectral density of the process z. Clearly
there is a representation

(7.9) d(w) T(iw) dl(w),

where d/2 is the stochastic spectral measure of a process of classs such that
H()&H(y), and T(s) is a spectral factor of (s). en (7.8) can be written

(7.10a) d Z(iw) d, + T(iw) d.
erefore, inserting (7.7) and (7.10a) into

(7.11) d W(iw) da + Wz(iw) d,

which is (7.1) rewritten in terms of spectral measures, and solving for dfi, we obtain

(7.lOb)

where

(7.12)

and

dfi X(ioo) dfi. + Y(ioo)T(io) dl2,

X(s)= w (s)W,(s)- w;’ (s)W(s)Z(s)

(7.13a) Y(s)= W-1 (s) W2(s),

for the matrix R being nonsingular insures that WI has an inverse. Since both () and (*)
are vector processes of class W, the coefficient matrix function of (7.10), i.e.

IX(s) r(s)T(s)]K(s)=
I_Z(s) T(s) J’

satisfies relation (2.13)of Lemma 2.3, i.e.

(7.14a) X(s)X(-s)’ + Y(s)T(s)T(-s)’Y(-s)’= I,

(7.14b) X(s)Z(-s)’ + Y(s)T(s)T(-s)’= O,

(7.14c) Z(s)Z(-s)’ + T(s)T(-s)’= I.
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Then inserting (7.12) into (7.14b) and applying (7.14c), we have

(7.13b) Z(s)= W2(-s)’W (-s)’,

which inserted into (7.12)yields

(7.13c) X(s)= Wa(-s)’W (-s)’.

To obtain this, we have used the fact that

(7.15) ,I,(s)= W(s)W(-s)’ + w.(s) W(-s)’.
Now (7.10) together with (7.7) and (7.13) yield (7.4), and (7.13b) and (7.14c) give us
(7.5), for T(s)T(-s)’= (s). By using the matrix inversion lemma [14, p. 124], we can
see that

(7.16) ,I,(s) [1 + w.(-s)’W-’ (-s)W-i’ (s)W(s)l-.
Hence (ito)> 0 for all real w.

Secondly, assume that a minimal stable spectral factor (7.3)is given; from it we can
determine a quadruplet [F, (B1, B2), H, (R 1:., 0)]. Let z be an arbitrary mean-square
continuous process with stationary increments, zero mean, and spectral density (7.5),
and such that z(0)=0 and H(z)lH(y). Since z has a rational spectral density, it is
purely nondeterministic [9]. Define u and v by (7.4). Then the corresponding stochastic
spectral measures dt and dr3 are given by (7.10)with X, Y, Z and T defined by (7.13)
and (7.9). Straightforward calculations using (7.15) show that X, Y, Z and T satisfy
(7.14), and consequently (o") is a process of class 7#’. Finally, with the help of (7.15), we
can see that dt and d3 thus defined satisfy (7.11) (the z-components cancel), and
therefore (7.1) is a proper stochastic realization of y. [1

Theorem 7.1 provides us with an alternative proof of the "only if" part of Corollary
5.3. (Theorem 5.5 gives an alternative proof of the "if" part.) In fact, since (ito)> 0 for
all real to, the exogeneous input component z is never identically zero. Therefore,
unless B2 0, the output of (7.1) contains a component orthogonal to H(y):

We are now in a position to interpret Theorem 6.2 in terms of proper minimal
stochastic realizations. Consider an arbitrary such realization

(7.17) dx=Fxdt+(Bo)l duo+(Bo)2dvo, dy=Hxdt+R 1/2 duo
with exogeneous input component Zo having spectral density o(S). Let To(s) be a
square spectral factor of o(S) and define

(7.18) /x(t) I e’"- 1
ito

Ta’ (ito) do (to).

(Since o(ito)> 0 for all to, To(s) has an inverse.) Then,/z e /4/’k, where k is the number
of columns of (B0)2. Let be the sigma-algebra generated by {y (t), / (t); e R} and
form the probability space (f, , P) on which (7.17) is defined. Then (7.17) gives rise to
a family of proper minimal stochastic realizations

(7.19) dxo=Fxodt+Bl(O)duo+B2(O)dvo, dy=Hxodt+R 1/2 duo,

which are defined on the same probability space (lI, , P) and which are totally ordered
in the sense that the state covariance function P(0) E{xo(t)Xo(t)’} is monotonely
nonincreasing in 0. In fact, for each 0e [-oo, oo], define W(s; O) and W2(s; 0) by
inserting [BI(0), B2(0)], generated by (6.4), into (7.2), and let

(7 20) Zo(t) I et- 1
ito

To(ioo) dl(to),



388 ANDERS LINDQUIST AND GIORGIO PICCI

where To(s) is a square spectral factor of

(7.21) W0(s)= I- W2(-s; O)’dP-l(s)W2(s; 0).

(We may for example take all To to be minimum phase.) Then define uo and vo by
inserting W(s; 0), W2(s; 0) and zo into (7.4). Hence xo(t), uo(t) and vo(t) belong to
H(y,/z) for all and all 0. If B0 -, the family (7.19) will contain the steady-state
Kalman-Bucy filter (4.7); if B0e /, it will contain the maximum-variance model
(4.10). Finally, if B0 30, (7.19) will only contain one realization, (7.17) itself.
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