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The Circulant Rational Covariance Extension
Problem: The Complete Solution
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Abstract—The rational covariance extension problem to de-
termine a rational spectral density given a finite number of
covariance lags can be seen as a matrix completion problem to
construct an infinite-dimensional positive-definite Toeplitz matrix
the northwest corner of which is given. The circulant rational
covariance extension problem considered in this paper is a modifi-
cation of this problem to partial stochastic realization of periodic
stationary process, which are better represented on the discrete
unit circle rather than on the discrete real line . The corre-
sponding matrix completion problem then amounts to completing
a finite-dimensional Toeplitz matrix that is circulant. Another
important motivation for this problem is that it provides a natural
approximation, involving only computations based on the fast
Fourier transform, for the ordinary rational covariance extension
problem, potentially leading to an efficient numerical procedure
for the latter. The circulant rational covariance extension problem
is an inverse problem with infinitely many solutions in general,
each corresponding to a bilateral ARMA representation of the
underlying periodic process. In this paper, we present a complete
smooth parameterization of all solutions and convex optimization
procedures for determining them. A procedure to determine
which solution that best matches additional data in the form of
logarithmic moments is also presented.

Index Terms—Bilateral ARMA models, circulant matrices, co-
variance extension, generalized entropy, moment problems, peri-
odic processes, reciprocal processes.

I. INTRODUCTION

T HE rational covariance extension problem or the partial
stochastic realization problem has been studied in various

degrees of detail in a long series of papers [1]–[6], [17], [21],
[22], [30], [41]. In a formulation suitable for this paper, it can be
stated as follows. Given a sequence of numbers,
with real and the rest possibly complex, such that the Toeplitz
matrix

...
...

...
. . .

...
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is positive definite, find an infinite extension
such that, with , , the series

expansion

(2)

converges for all to a positive spectral density that
takes the rational form

(3)

where and are symmetric trigonometric polynomial of the
form

(4)

of degree at most . In [21] and [22], it was shown that there ex-
ists a for each assignment of , and in [1] it was finally proved
that this assignment is unique and smooth, yielding a complete
parameterization suitable for tuning. Consequently, the rational
covariance extension problem reduces to a trigonometric mo-
ment problem, where, for each , the remaining problem is to
determine a unique such that

(5)

In [3] and [4], a convex optimization procedure to determine
these was introduced, a result that has then been generalized
in several directions [5]–[7], [9], [10], [17], [19], [23], [24].
The rational covariance extension problem can be seen as a

matrix completion problem to construct an infinite-dimensional
positive-definite Toeplitz matrix with in its northwest
corner, which moreover satisfies the rationality constraint (3).
There is an large literature on band extension of positive-defi-
nite Toeplitz matrices, starting with the work of Dym and Go-
hberg [16] and surveyed in the books [25], [43], dealing with
the maximum-entropy solution corresponding to .
The circulant rational covariance extension problem, consid-

ered in this paper, is a modification of this problem to partial sto-
chastic realization of periodic stationary process, which, as we
shall explain in detail below, are better represented on the dis-
crete unit circle (the integers modulo ) than on the dis-
crete real line . The corresponding matrix completion problem
then amounts to completing a finite-dimensional Toeplitz ma-
trix that is circulant. An important motivation for this problem is
that its solution is a natural approximation of the solution to the
ordinary rational covariance extension problem that turns out to
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involve only computations based on the fast Fourier transform
and seems to lead to an efficient numerical procedure.
Circulant matrices are Toeplitz matrices with a special circu-

lant structure

...
...

...
. . .

...

(6)

where the columns (or, equivalently, rows) are shifted cyclically,
and where here are taken to be complex num-
bers [14], [26]. In the circulant rational covariance extension
problem we consider Hermitian circulant matrices

(7)

which can be represented in form

(8)

where is the nonsingular cyclic shift matrix

...
...
...
. . .

. . .
...

(9)

The pseudo-polynomial

(10)

called the symbol of , will play important role the following
analysis.
Hermitian circulant matrices appear naturally in the con-

text of periodic stationary stochastic processes. To see this
consider a zero-mean stationary process , in general
complex-valued, defined on a finite interval of the
integer line and extended to all of as a periodic stationary
process with period ; i.e., such that
almost surely. Processes of this kind can naturally be defined on
the group of the integers with arithmetics modulo , and
in this setting stationarity can be seen as propagation in time of
random variables under the action of a (finite) unitary group.
We shall write the string
as a -dimensional column vector and only consider
stationary processes of full rank, whose covariance matrix

(11)

is positive definite, where denotes transpose conjugate. Let
be the wide sense conditional mean of

given all . Then the error process

(12)

is orthogonal to all random variables ; i.e.,
, , where is the Kronecker

function and is a positive number, or, equivalently,

(13)

where denotes the identity matrix. Interpreting (12)
in the arithmetics of , admits a linear represen-
tation of the form , where is a circu-
lant matrix with ones on the main diagonal. Following Masani
[38], is called the (unnormalized) conjugate process of .
Therefore, setting and , we see
that a full-rank stationary periodic process admits a normalized
representation

(14)

where is Hermitian and circulant. Since
, is also positive definite and the covariance

matrix (11) is given by

(15)

which is circulant, since the inverse of a circulant matrix is itself
circulant. Therefore, if

(16)

is precisely the Hermitian circulant matrix

(17)

In fact, a stationary process is full-rank periodic in , if and
only if is a Hermitian positive definite circulant matrix [11].
We are now in a position to state the main problem of this

paper. Supposing that only the covariance lags
are available for , how do we complete the matrix (17)
with the entries so that it is circulant and
the covariance matrix (11) of a stationary periodic process
with a spectral density of the rational form (3). We would like
to parametrize the set of all solutions to this problem.
This can be seen as a generalization of modeling of reciprocal

processes about which there is a large and important literature
[20], [28], [29], [32], [33], [35]–[37]. A first step in this direc-
tion was taken in [11], where the circulant matrix in (15) is
required to be banded of order ; i.e.,

(18)

For example, a banded matrix of order takes the form

...
. . .

. . .
. . .

. . .
. . .

. . .
...

. . .
. . .

(19)



2850 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 58, NO. 11, NOVEMBER 2013

In this case, it follows from (14) that admits a bilateral AR
representation

(20)

for all , which can also be written

(21)

in terms of the symbol

(22)

of , where represents the forward shift. These models are
representations of stationary reciprocal processes of order
; see [11], where they are determined by solving a max-
imum-entropy problem.
In this paper, we show that for each choice of banded circulant

matrix of order at most , there is an unique banded circulant
matrix of order such that

(23)

If the corresponding symbols are and , respectively,
then, by (14) and (15), such a solution corresponds to a bilateral
ARMA representation

(24)

or, equivalently,

(25)

We have therefore a complete parameterization of such repre-
sentations, and hence of the completions of , in terms of the
. However, as explained in Remark 5, (23) has to be inter-

preted with some care. If is singular, then so is , and there
is zero cancellation between and , leading to a model
of lower order.
In Section II, we review basic facts about circulant matrices

and harmonic analysis on and set up notations. The main
results on the complete parameterization of the circulant ra-
tional covariance extension problem are presented in Section III,
where we also consider the circulant rational covariance exten-
sion problem as an approximation procedure for the ordinary ra-
tional covariance extension problem. In Section IV, following
[5], [6], [17], [18], [24], we show how the parameter can be
determined from logarithmic moments computed from data.

II. PRELIMINARIES

Most of the harmonic analysis of stationary processes on
carries over naturally, provided the Fourier transform is under-
stood as a mapping from functions defined on onto com-
plex-valued functions on the unit circle of the complex plane,
regularly sampled at intervals of length . We shall
call this object the discrete unit circle and denote it by .

This Fourier map is usually called the discrete Fourier trans-
form (DFT). Next we shall review some pertinent facts and at
the same time setup notations.

A. Harmonic Analysis on

Let be the primitive th root of unity; i.e.,
, and define the discrete variable taking the

values running
counterclockwise on the discrete unit circle . In particular,
we have (complex conjugate).
The discrete Fourier transform maps a finite signal

, into a sequence of complex
numbers

(26)
It is well known that the signal can be recovered from its DFT
by the formula

(27)
where plays the role of a uniform discrete mea-
sure with total mass one on the discrete unit circle . In the
sequel, it will be useful to write (27) as an integral

(28)
where is a step function with steps at each ; i.e.,

(29)

In particular, we have

(30)

where equals one for and zero otherwise. To see this,
note that, for

In particular, if is the DFT of ,

(31)

This is Plancherel’s Theorem for DFT.
It is sometimes convenient to write the discrete Fourier trans-

form (26) in the matrix form

(32)
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where ,
, and is the nonsingular

Vandermonde matrix

...
...

...

...
...

...

(33)

Likewise, it follows from (27) that

(34)

i.e., corresponds to . Consequently,
, and hence and .

B. Circulant Matrices

As pointed out above, a Hermitian circulant matrix (7) can be
represented in the form (8), where is the nonsingular
cyclic shift matrix (9), which is itself a circulant matrix with
symbol . Clearly, , and

(35)

Consequently,

(36)

and the condition (36) is both necessary and sufficient for to
be circulant. (Clearly, what is said in this section holds for circu-
lant matrices in general, but in this paper we are only interested
in the Hermitian ones.)
As before setting , we have

(37)

In view of (26), it then follows that ,
from which we have

(38)

where is the symbol (10) of the circulant matrix .
An important property of circulant matrices is that they are

diagonalized by the discrete Fourier transform. More precisely,
it follows from (38) that

(39)
i.e., the circulant matrices are simultaneously diagonalizable by
the unitary matrix . Hence, the inverse is

(40)

and, since

we have

Consequently, is also a circulant matrix with symbol
. In general, in view of the circulant property (8) and

(35), quotients of symbols are themselves pseudo-polynomials
of degree at most and hence symbols. The coefficients of the
corresponding pseudo-polynomial can be determined
by Lagrange interpolation. More generally, if and are
circulant matrices of the same dimension with symbols
and , respectively, then and are circulant
matrices with symbols and , respec-
tively. In fact, the circulant matrices of a fixed dimension form
an algebra – more precisely, a commutative *-algebra with the
involution * being the conjugate transpose – and the DFT is an
algebra homomorphism of the set of circulant matrices onto
the pseudo-polynomials of degree at most in the variable

.

C. Spectral Representation of Periodic Stationary Stochastic
Processes

Let be a zero-mean stationary process defined on
. Let be the covariance lags

, and define its discrete Fourier
transformation

(41)

which is a positive real-valued function of . Then, as seen from
(27) and (28)

(42)

The function is the spectral density of the process . In fact,
let

(43)

be the discrete Fourier transformation of the process . The
random variables (43) turn out to be uncorrelated, and

(44)

This can be seen by a straightforward calculation noting that

(45)

Then, we obtain a spectral representation of analogous
to the usual one, namely

(46)

where

(47)
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It is interesting to note that

(48)

obtained from (44) is just the expected value of the periodogram

(49)

widely used in statistics.

D. Modifications for Skew-Periodic Stochastic Processes

A process satisfying the condition

(50)

is called a skew-periodic stochastic processes of period . Such
processes occur in the theory of reciprocal processes [34]. It is
still periodic of period , but to enforce the property (50) we
need to exchange (29) for

(51)

Then, since

and

which introduces the extra constraint . Conse-
quently, a circulant covariance extension theory of skew-pe-
riodic stochastic processes would require exchanging (29) for
(51) in the derivations below. Since then extra linear constraints
will be introduced, the theory would have to be modified to a
considerable extent. This will be left for another paper.

III. COMPLETE SOLUTION TO THE CIRCULANT RATIONAL
COVARIANCE EXTENSION PROBLEM

Given and with a positive defi-
nite Toeplitz matrix (1), find a spectral density of the rational
form (3) satisfying the moment conditions

(52)

This moment condition can also be written as an underdeter-
mined system of linear equations

(53)

in the variables , ,
where the coefficient matrix is a Vandermonde matrix of full
rank. Note that it is consistent with (52) to define negative mo-
ments by setting , so that the pseudo-polynomial

(54)

is the symbol of a banded Hermitian circulant matrix

(55)

of order . We would like to find a rational extension
replacing the zeros in to obtain a

Hermitian circulant matrix

(56)

that is positive definite. In terms of stationary periodic pro-
cesses, this corresponds to the covariance matrix (11).
If for the moment we forsake the rationality condition, we see

that the class of positive semidefinite Hermitian completions
of is completely parameterized by the pseudo-polynomials

(57a)

such that (57b)

and (57c)

Indeed, this is immediate from (39), from which we also see that
is singular if and only if for some .
However, in the circulant rational covariance extension

problem we are not interested in parameterizing all circulant
extensions (56) but only those which have a rational symbol

(58)

or, equivalently, are of the form (23) with and banded cir-
culant matrices of order at most . This is a complexity con-
straint of the same type as in the original rational covariance
extension problem. In fact, if , such representations are
more parsimonious containing at most parameters. This
is a proper subclass of (57), since, in view of (8) and (35), ra-
tional symbols (58) can also be written as pseudo-polynomials
(57a). Note that the number of parameters in is equal
to the number of given covariance data. The significance of this
will be clear from Theorem 1 below.
We now proceed to solve the circulant rational covariance ex-

tension problem in terms of the symbols, and then interpret the
results in terms of matrices. We begin with positive definite ex-
tensions and then turn to the boundary case where is singular.

A. Circulant Rational Covariance Extension in Terms of
Symbols

Let be the finite-dimensional space of symmetric trigono-
metric polynomials (4), and define to be the positive cone
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Moreover, let be the interior of the dual cone of all
such that

for all (59)

[31], where the notation is motivated by the fact that, by
(31),

(60)

It can be shown that if and only if . In fact, if
is a polynomial spectral factor

of , i.e., , then it is easy to see that

(61)

where is the Toeplitz matrix (1) of and
.

Next, define the cone

(62)
Clearly, , and
the corresponding open dual cones satisfy

(63)

Theorem 1: Let . Then, for each ,
there is a unique such that

(64)

satisfies the moment conditions (52).
For the proof, which is given in the appendix, we need to

consider a dual pair of optimization problems. First consider the
primal problem to maximize the generalized entropy

(65)

subject to the moment conditions (52). The corresponding La-
grangian is then given by

(66)

where are Lagrange multipliers, and where is
defined as in (4) with . Since the dual functional

is finite only if , where
denotes the closure of , we may restrict the Lagrange
multipliers to that set. Therefore, for each , con-
sider the directional derivative

which equals zero for all variations if and only if

Inserting this into (66) we obtain

where

(67)

and the last term is constant. Hence, we may take (67) as the
dual functional.
It will be shown below that is strictly convex, so a sta-

tionary point in , if it exists, would have to be a unique min-
imizer of . For , we write as a
sum of real and imaginary parts and define the partial differen-
tial operators

(68a)

(68b)

in the standard way; see, e.g., [27, p. 1]. It is immediately seen
that

and (69)

(The differential operators (68) are often called Wirtinger
derivatives.) From this, we readily obtain

(70)

Setting (70) equal to zero yields the moment conditions (52).
Then the proof of the following theorem follows directly from
Theorem 1.
Theorem 2: Let and . Then the

problem tomaximize (65) subject to themoment conditions (52)
has a unique solution, namely (64), where is the unique op-
timal solution of the problem to minimize (67) over all

.
From (70) we have the Hessian

(71)
which is Hermitian and positive definite, showing that is
strictly convex.
Next, we establish that the solution to the circulant rational

covariance extension problem depends smoothly on the param-
eters and . To this end, for each fixed , we
define the moment map componentwise given by

(72)
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and, for each , the map sending to
.

The proof of the following theorem is given in the Appendix.
Theorem 3: The maps and are homeomorphisms.
In particular, we have established a complete smooth param-

eterization of all solutions to the circulant rational covariance
extension problem in terms of .
Finally, we show that the map can be continuously ex-

tended to the boundary of , as can be seen from the fol-
lowing extension, proved in the Appendix, of the family of dual
solutions.
Theorem 4: Let . Then, for each
, the dual problem to minimize (67) over
has a unique minimizer , and satisfies the moment

conditions (52). If belongs to the boundary of , then
so does .
Consequently, we have established a complete parameteriza-

tion of all solutions to the circulant rational covariance exten-
sion problem in terms of .

B. Circulant Rational Covariance Extension in Terms of
Matrices

Next, we reformulate the optimization problems in terms of
circulant matrices. To this end, we define the circulant matrix

(73)

with symbol (64) and the banded numerator matrix

(74)

of degree at most with symbol (4). Since for all
and is analytic in the neighborhood of each ,
by the spectral mapping theorem [15, p. 557] the eigenvalues of

are just the real numbers , ,
and hence

(75)

Consequently, the primal functional (65) may be written

(76)

and the moment conditions (52) as

(77)

or, equivalently, as

(78)

Consequently, the primal problem amounts to maximizing
over all Hermitian, positive definite

matrices subject to (77) or (78). For the special case this

reduces to the primal problem presented in [11], except that
in [11] there is an extra condition insuring that is circulant.
However, it was shown in [12] that this condition is automati-
cally satisfied and is therefore not needed.
In the same way, by (60) the dual functional (67) can be

written as

(79)

where

(80)

and is the banded circulant matrix (55) formed from
.

Consequently, given , it follows from Theorem
1 that, for each Hermitian, positive-definite circulant matrix
that is banded of degree at most , there is a unique given by

(81)

where is the unique solution of the problem to minimize

(82)

over all such that the Hermitian, circulant
matrix

is positive definite. For the maximum-entropy solution corre-
sponding to this reduces to an optimization problem that
is different from the one presented in [11].
Since

we have

and

for , and therefore

(83)

where we have used the fact that

as only for . Setting (83) equal to zero yields
the moment conditions. Likewise,

(84)
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showing that the Hessian is a Toeplitz matrix. This is the matrix
version of (71).
Remark 5: We note that all solutions (81) corresponding to

positive definite are positive definite. To parameterize all so-
lutions for which we need to apply Theorem 4. Indeed,
there is a complete parameterization of all circulant rational co-
variance extensions in terms of nonzero positive-semidefinite
. If is singular and the corresponding optimal solution of

the dual optimization problem (82) is positive definite, then
is singular. If is singular, then so is , and then there is a can-
cellation of roots in the pseudo-polynomials and leading to
a rational function of lower degree and hence a solution
(81) with and banded of order at most .
In [11], it was observed that the condition that the Toeplitz

matrix , defined by (1), is positive definite is a necessary, but
not a sufficient, condition for feasibility of the circulant banded
covariance extension problem. This can now be understood in
the more general setting of moment problems discussed above.
In fact, the Toeplitz condition is equivalent to ,
whereas, by Theorem 2, is required for feasibility.
Since , it follows that the Toeplitz condition
cannot be sufficient in general. However, as proved in [11], fea-
sibility is achieved for a sufficiently large . This can also be
seen from the following result.
Proposition 6: The feasibility set as .

In particular, for any , there is an such that
for .

Proof: As , the set be-
comes dense on the unit circle, and therefore .
Consequently, , and the convergence is mono-
tone in the sense of (63). Therefore, since is an open set,
there is an such that any will sooner or later end up
in and remain there as increases.

C. Some Computational Considerations

For each choice of , the Hessian of can be computed
explicitly in terms of as the Toeplitz matrix

...
...

...
. . .

...

(85)

where are the coefficients in the pseudo-
polynomial and

(86)

as can be seen from (71) or (84). Therefore Newton’s method
can be used to find the unique minimizer of the dual problem.
The gradient (70) at the point is , where

(87)

and consequently a Newton step amounts to solving the Toeplitz
system

(88)

Clearly, and can be computed by the discrete Fourier
transform.

D. Approximation Procedure for the Ordinary Rational
Covariance Extension Problem

Given a and a , the ordinary rational covari-
ance extension problem amounts to finding the unique
satisfying the moment conditions

(89)

We would like to approximate the solution of this problem
by the unique solution of the circulant rational covariance
extension problem

(90)

where is the measure (29) corresponding to .
Theorem 7: Let and a . Moreover, for any

, where is defined as in Proposition 6, let be
the unique solution of (90), and let be the unique solution of
(89). Then as .

Proof: Let be the map sending to as in
(89); i.e., . Given , define with
components

(91)

for each . Since (90) is a Riemann sum converging to
(91) as in the measure tends to but is kept fixed,
there is for each an such that for
all . Consequently, since ,
and the map is a diffeomorphism [7, Th. 1.3], as

.

IV. DETERMINING FROM LOGARITHMIC MOMENTS

We have shown that the solutions of the circulant rational
covariance extension problem are completely parameterized in
a smooth manner by the numerator trigonometric polynomials

, or, equivalently, by their corresponding banded
circulant matrices . Next, we show how can be determined
from the logarithmic moments

(92)

In the setting of the classical trigonometric moment problem
such moments are known as cepstral coefficients, and in speech
processing, for example, they are estimated for design purposes.
Now consider the problem of finding the spectral density ,

or, equivalently, the circulant matrix , that maximizes the en-
tropy gain

(93)
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subject to the two sets of moment conditions (52) and (92). Such
a problem was apparently first considered in the usual trigono-
metric moment setting in an unpublished technical report [40]
and then, independently and in a more elaborate form, in [5],
[6], [17], [18].
Defining

(94)

where , , and is real, the Lan-
grangian for this optimization problem can be written

(95)

where are Lagrange multipliers and
, and and are the corresponding trigonometric poly-

nomials (4). For the dual functional
to be finite, and must obviously be restricted to the closure
of the cone . Therefore, for each such choice of ,
we have the directional derivative

(96)

and hence a stationary point must satisfy

(97)

which inserted into (95) yields

where

(98)

and where we have used the fact that . Accord-
ingly, we define the bounded subset

(99)

of the cone . Note that, for

(100a)

(100b)

Consequently, if there exists a stationary point
, (97) will satisfy both the moment condi-

tions (52) and (92).

Fig. 1. Poles of true AR model.

A proof of the following theorem, which is a circulant version
of Theorem 5.3 in [6], will be given in the Appendix.
Theorem 8: Suppose that and are

complex numbers. Then there exists a solution that min-
imizes over all , and, for
any such solution

(101)

satisfies the covariance moment conditions (52). If, in addition,
, (101) also satisfies the logarithmic moment con-

ditions (92) and is an optimal solution of the primal problem
to maximize the entropy gain (93) given (52) and (92). Then

, and the solution is unique. In fact, is strictly
convex on .
Consequently, solving these optimization problems will

always lead to a spectral density with the prescribed covariance
lags , provided . However, we have
not prescribed any condition on the logarithmic moments

, as such a condition is hard to find and would
depend on . If the moments and
come from the same theoretical spectral density, the optimal
solution (101) will also match the cepstral coefficients. In prac-
tice, however, and will be estimated
from different data sets, so there is no guarantee that does
not end up on the boundary of without satisfying
the logarithmic moment conditions. Then the problem needs
to be regularized, leading to adjusted values of
consistent with the covariances .
We shall use a regularization term proposed by Enqvist [17] in

the context of the usual rational covariance extension problem.
More precisely, we consider the regularized dual problem to find
a pair minimizing

(102)
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Fig. 2. Bilateral AR approximation: (top) spectrum for and true
spectrum (dashed); (bottom) errors for and .

for some , or in circulant matrix form

(103)

This functional will take an infinite value for ,
since then for some , and hence the minimum will
be in the interior. Then, for

(104)

at the minimum, where

(105)

Fig. 3. Poles and zeros of true ARMA model.

and hence the moments (52) and (92) are matched provided
one adjusts the logarithmic moments to

, the latter of which are consistent
with . Modifying the analysis in [17, p. 188–196]
to the present setting it is easy to see that (103) is a monotoni-
cally nonincreasing function of , and that the solution tends as

to a where , i.e., the maximum entropy
solution.
Computing the Hessian of , we notice that

(106a)

is the same as (71). Moreover,

(106b)

(106c)

Since is strictly convex (Theorem 8), then so is , so the
Hessian is positive definite. Newton’s method can then be used
as in Section III-C to determine the unique minimizer.

V. NUMERICAL EXAMPLES

To illustrate our results we include some numerical examples
generously provided by Masiero; for more details and further
examples, see [39]. We shall apply our methods to covariance
and logarithmic moments computed from truemodels, and com-
pare the spectra thus obtained with the true spectra.
Our first example illustrates the use of circulant rational co-

variance extensions to approximate ordinary rational covariance
extensions as proposed in Section III-D. Given an AR model of
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Fig. 4. Bilateral approximations with true spectrum (dashed): (left) bilateral AR with and ; (right) bilateral ARMA with and
using both covariance and logarithmic moment estimates.

order with poles as depicted in Fig. 1, we consider bi-
lateral approximations of degree eight for various choices of
. In Fig. 2, the top picture depicts the spectral density for

together with the true spectral density (dashed line),
and the bottom picture illustrates how the estimation error de-
creases with increasing .
In our second example we start from an ARMA model with

poles and three zeros distributed as in Fig. 3. Then, for
various , we approximate this model by circulant maximum
entropy solutions of degree and compare them to a
bilateral ARMA representations of degree computed by
the combined covariance and cepstral procedure of Section IV.
In Fig. 4, the left plot depicts the bilateral AR solution for

and the right plot the bilateral ARMA solution for
, both together with the true spectrum. This illustrates the

advantage of bilateral ARMAmodeling as compared to bilateral
AR modeling, as a much lower value on provides a better
approximation, although is smaller.

VI. CONCLUSION

In this paper, we have presented a complete parameterization
of all solutions to the circulant covariance extension problem.
We have shown that determining these solutions involves only
computations based on the fast Fourier transform, potentially
leading to efficient numerical procedures. This also provides a
natural approximation for the ordinary rational covariance ex-
tension problem.
The circulant rational covariance extension problem is an in-

verse problem with infinitely many solutions in general, but by
matching additional data in the form of logarithmic moments a
unique solution can be determined.
For many applications, like image processing [13], [42], it

will be important to generalize these results to the multivariable
case. For scalar this should be straightforward, but we have
chosen to consider only the scalar case in this paper in order to
keep notations reasonably simple and not blur the picture.

APPENDIX

Proof of Theorem 1: Consider the moment map
defined by (72) for an arbitrary

. This is a continuous map between connected
spaces of the same (finite) dimension. Therefore, if we can
prove that is injective and proper, i.e., for any compact

the inverse image is compact—then,
by Theorem 2.6 in [8], it is a homeomorphism, implying in
particular that the system of moment equations
has a unique solution in .

Lemma 9: The moment map is
injective.

Proof: From (67) we have the gradient (70) and the Hes-
sian (71), which is positive definite. Therefore, is strictly
convex, and any stationary point is a solution to the moment
equations (52), which must be a unique if it exists. Hence,
is injective.
It remains to show that there exists a solution to the moment

equations (52).
Lemma 10: Suppose the Toeplitz matrix is positive def-

inite; i.e., . Then, for any compact , the
inverse image is bounded.

Proof: Suppose satisfies the moment equations
for some . Then

where is a constant. Now, let
be the stable polynomial spectral factor of , i.e.,

. Then , where
is the Toeplitz matrix of and . If

is restricted to the compact subset , the eigenvalues
of are bounded away from zero. Hence, for some

, and consequently
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Consequently, , where , is also
bounded, and hence so is .

Lemma 11: The moment map is
proper.

Proof: Let be a compact subset of , and let
be a sequence in converging to . Since
is bounded (Lemma 10), there is a convergent sequence in
the preimage of the sequence converging to some limit .
We want to show that . The only way this can
fail is that belongs to , the boundary of . We
observe that

and consequently, since

which requires that for all . However, can only
belong to if some equals zero. Hence,

, as required.
This concludes the proof of Theorem 1.
Proof of Theorem 3: We have already proven above that
is a homeomorphism. It remains to prove that is. For

this we need two more lemmas.
Lemma 12: For each fixed , the map

is injective.
Proof: Suppose that for some

. We want to show that . To this
end, since

we have

where

and, consequently, for all , as claimed.
Lemma 13: For each fixed , the map

is proper.
Proof: The proof follows the same pattern as that of

Lemma 11. Hence, let be a compact subset of , and
let be a sequence in converging to . Since

is bounded (Lemma 10), there is a
convergent sequence in the preimage of the sequence

converging to some limit . In order to ensure that

, we must demonstrate that . To
this end, note that

and consequently, since and

Since for all , this requires that for all .
Hence, , as required.
The map is a continuous map between connected spaces

of the same dimension . Noting that (71) is positive def-
inite, the continuity follows from the inverse function theorem
applied to the equation . Then, since is injec-
tive and proper, it follows from Theorem 2.6 in [8], that it is a
homeomorphism.

Proof of Theorem 4: Let be a sequence in
converging to . Then there is a positive
constant such that for and

. For each , let be the unique mini-
mizer of

as prescribed by Theorem 2. Then

(107)

which, in particular, can be written

(108)

for , where . Now suppose that the sequence
is unbounded. Then there is a subsequence, which we shall

also denote , for which and . For
each such , there is an such that

(109)

To see this, we follow the lines of the proof of the
Proposition 2.1 in [7] to note that, since has a
minimum on the compact set
due to the fact that , we have .

Then

where the second term is nonnegative and can be deleted.
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Next, let be arbitrary. Then, by optimality,
. Since as , there

is a positive constant such that

which together with (109) yields

(110)

Then, comparing linear and logarithmic growth, we see that
the sequence is bounded, contrary to hypothesis. Conse-
quently, there is a convergent subsequence (for convenience
also indexed by ) such that , and, since ,
(107) implies that . Hence, setting , .
Since for , it follows from
(108) that is finite for all . Therefore, if
for some , then must also be zero, so the roots cancel.
Hence, taking limits in (107), we obtain

showing that is the required minimizer satisfying the moment
conditions.

Proof of Theorem 8: We begin by showing that the sublevel
set is compact for each . The sublevel set
consists of those for which

where

Since is a bounded set that is bounded away from zero,
there is a positive constant such that and a
such that for all . Hence, in view of the
estimates leading to (109)

and therefore, comparing linear and logarithmic growth, it fol-
lows that the sublevel set is bounded. Since it is also
closed, it is compact, as claimed.
Since thus has compact sublevel sets, there is a minimizer

. Then clearly is a minimizer of , and hence, by
Theorem 4, satisfies the moment conditions (52). If

, then the minimizer must satisfy the stationarity
condition , , and hence, by (100b),
also satisfies the logarithmic moment conditions (92). Since

for all

and for all satisfying the moment
conditions (52), solves the primal problem. By Theorem
1, .

It remains to prove that the optimal solution is unique if
. To this end, we form the direc-

tional derivative

and the second directional derivative

with equality if and only if . Then, however,

since the pseudo-polynomial has no constant term, as
. Therefore, choosing , it follows from

Theorem 1 that

which is a contradiction. Consequently,

for all ; i.e., the Hessian of is positive definite, and
hence is strictly convex. Therefore, uniqueness follows.
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