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ABSTRACT 

We study acausal realizations of stationary (or stationary-increment) processes. In 
particular, we characterize the family of models whose corresponding spectra1 factors 
have a fLved zero structure. Acausal models with a fKed zero structure are related to 
each other by a certain group of state-feedback transformations which is naturally 
parametrized by the solution set of a homogeneous algebraic Riccati equation. Each 
feedback transformation reflects some of the eigenvalues of the generator matrix A of 

the representation to a mirror image with respect to the imaginary axis. Dually, 
acausal models with a fixed “pole structure” are parametrized by a dual Riccati 
equation and by a corresponding family of output injection transformations. From a 
general standpoint the results of this study clarify the role played by dual pairs of 
Riccati equations in spectra1 factorization and may be relevant to other problem areas 
than stochastic modeling. One natural application of the concepts discussed in the 

paper is to stochastic balancing. Balancing of models with an essentially arbit- 
rary eigenvalue location can be accommodated very naturally in this framework. A 
balancing algorithm involving the solution of a dual pair of Riccati equations is 
discussed. 
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1. INTRODUCTION 

It is well known that every n-dimensional second order (wide-sense) 
stationary Markov process can be represented as the solution of a stochastic 
differential equation of the form 

&(t) = AX(t) dt + Z%&(t), t E R, (1.1) 

where dw is a vector (wide-sense) Wiener process, say of dimension p, and 
the matrices A, B have appropriate dimensions [B, 91. 

From standard spectral representation theory (see, e.g., [29, Chapter 1, 
Example 8.4]), it follows that Equation (1.1) admits stationary solutions if and 
only if the rows of the rr X p matrix (i WZ - A)-iB are square-integrable 
functions of i W. This is equivalent to the absence of poles of the function 
s + (sZ - A)-‘B on the imaginary axis. Equivalently, the purely imaginary 
eigenvalues of A, if any, must be “uncontrollable” for the pair (A, B). 

When eigenvalues on the imaginary axis are present, it is well known that 
they must be simple roots of the minimal polynomial of A. These eigen- 
values, necessarily even in number (say 2k), then give rise to a sum of k 

uncorrelated sinusoidal oscillations with random amplitude, the so-called 
purely deterministic component of the process. This component of the 
stationary Markov process x obeys a fixed undriven (i.e., deterministic) linear 
differential equation of the type X = A,, X, which is the restriction of (1.1) to 
the purely imaginary eigenspace of A. The initial conditions are random 
variables independent of the driving noise dw. 

For the purely deterministic dynamics of x the statements of this paper 
either become empty or apply only in a very trivial sense. In order to avoid 
overburdening the exposition with uninteresting particularizations and repeti- 
tions we shall henceforth assume that the purely deterministic part of x has 
been subtracted. This is really no loss of generality. 

We shall then restrict ourselves to purely nondeterministic processes and 
to representations (1.1) for which 

(1) (A, Z?) is a controllable pair, 
(2) B is full column rank. 

Such representations of x will be called minimal. From the discussion above 
it is immediately seen that there are stationary solutions r of the differential 
equation (1.1) (which are automatically purely nondeterministic Markov 
processes) if and only if A does not have eigenvalues on the imaginary 

. 
axis, i.e., 

Reh(A) ZO. (1.2) 
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When Re A( A) < 0 [respectively, Re h(A) > 01, the representation (1.1) 
is called j&wart-l or causaZ [backward or anticuusuZ]. It is well known [18] 
how to compute a backward representation starting from a forward one or 
vice versa. The two representations (in particular the relative A-matrices) are 
related by a linear state-feedback transformation. 

Traditionally the causality of a representation, i.e., the condition 
Re h(A) < 0, has been regarded as being equivalent to stationarity. Instead, 
as we shall see, stationarity permits a whole family of representations (1.1) of 
the (same) process X, where A can have quite an arbitrary spectrum. 

In the next section we shall study and classify the family of all such 
minimal representations of a stationary p.n.d. Markov process X. It will be 
shown that the relation between two arbitrary representations is still a 
state-feedback transformation and that the feedback can be computed by 
solving a homogeneous Riccati equation. 

Before entering into this, we need to say how the stochastic differential 
equation (1.1) has to be interpreted in the general situation where 
Re A( A) # 0, but the eigenvalues may otherwise be arbitrarily located in the 
complex plane. 

By decomposing [w” into a direct sum of the stable and antistable 
manifolds for A and choosing a new basis accordingly, the model (1.1) can be 
decoupled in the form 

dx_(t) = Lx_(t) dt + B^_ d?&(t), (1.3a) 

dx+(t) = i+x+(t) dt + B^+ dw(t) (1.3b) 

with Re h( A_) < 0 and Re h( 2,) > 0. 
Now (I.3a) and (1.3b) are interpreted as forward and backward stochastic 

differential equations with stationary solutions 

x_(t) = It e’--)B^_ dw(T), 
--co 

( 1.4a) 

x+(t) = - 
/ 

+Ped-(t-‘)B”+ dw(7). 

t 
( 1.4b) 

More generally, we shall consider dynamical models of a purely nondeter- 
ministic stationary-increment process {y(t)}, y(t) E R”, with a rational 
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incremental spectral density matrix Q(s). It is well known (e.g., [2I]) that any 
such process’ can be represented in the form 

dx =Axdt + Bdw, 

dy = Cxdt + Ddw, 

(1.5a) 

(1.5b) 

where A, B, C, D are real matrices of appropriate size and dw is a 
p-dimensional wide-sense Wiener process defined on the real line. Models of 
the type (1.5) are called “stochastic realizations” of dy. Again, in the 
literature only forward or causal [backward or anticausal] realizations are 
considered where Re A(A) < 0 [Re A(A) > 01. Here we shall instead con- 
sider the problem of classifying all realizations of dy with an arbitrary 
causality structure. In accordance with what has been explained above, we 
shall just assume that Re h(A) # 0. Clearly, if (1.5) is a stochastic realization 
of dy, the transfer function 

W(s) = D + C(sZ - A)-‘B (1.6) 

is a “factor” of the (incremental) spectral density matrix Q(s) of dy, i.e., 

W(s)W( -s)’ = Q(s). (1.7) 

Any solution of (1.7) f o minimal McMillan degree 6[W 1, i.e., such that 
S[W] = +6[@], is called a minimal spectralfactor [l]. 

From the spectral factorization equation (1.7) it follows that a minimal 
spectral factor is naturally defined only up to right multiplication by a 
constant orthogonal matrix. For this reason two input Wiener processes dw,, 
dw, differing by left multiplication by a constant (say p X p) orthogonal 
matrix will be identified. 

Throughout this paper we shall always consider realizations for which 

(1) (A, B, C) is a minimal triplet, 

(2) 
[ 1 i has independent columns. 

This is no loss of generality [21]. 

’ As usual in the engineering literature, stationary-increment processes are really integrated 

versions of the signals of interest and are, strictly speaking, only defined up to a fxed additive 

random vector, say yO. A precise choice of this additive term is immaterial, as only the 

increments of y enter in the formulas. The equivalence class of processes y, with respect to 

choice of y,, is denoted dy. 
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With this convention, models (1.5) whose transfer function W is a 
minimal spectral factor are minimal stochastic realizations of dy in the sense 
that the state process x has dimension equal to +a[@], i.e., the smallest 
possible dimension in the family of all realizations of the form (1.5) [l, 211. 

1 .l. Background on Geometric Theory 

For the purposes of this paper, it will be natural to consider also 
coordinate-free representations of dy, by assigning to each model (1.5) the 
n-dimensional space 

X = {a’x(O) 1 a E R”] (1.8) 

of random variables.’ This space is a subspace of the ambient space H(dw) 
of the model (1.5), defined as the closure of the linear hull of the random 
variables {w,(t) - ~~(7); i = 1,2,. . . , p; t, T E rW} in the topology of the 
inner product ( &,q) = E{&}, w h ere E{*} stands for mathematical expecta- 
tion. The ambient space H(dw) is naturally equipped with the shift {U,; 
t E R} induced by d w, a unitary group of operators on H(dw) such that 
Ut[wi(r) - w,(a)] = wi(r + t) - w,(a + t) for all i = 1,2, . . . , p and 
t, T, (+ E R. All random variables of the stochastic system (1.5) belong to 
H(dw), and moreover the processes x and dy are stationary with respect to 

IV,], i.e., U,xi(T>=xi(T+t) for all i = 1,2,...,n and t,TE R, and 
U,[ yi(r) - yi(cr)] = yi(r + t) - yi(a + t> for all i = 1,2,. . . , m and t, T, (T 
E R. 

Defining the past and future output spaces as 

H-= closure{a’[ y(t) - y(s)] 1 a E R”, t, s < 0) 

and 

H’= closure{a’[ y(t) - y(s)] 1 a E R”, t, s > 0) 

respectively, it is easy to show and well established in the literature [2O, 21, 41 
that each X, defined as in (1.8), is a minimal Markovian splitting subspace 

for HP and H+, i.e., in particular renders H and H+ conditionally 
orthogonal given X. Moreover this property captures the concept of the 

“All random variables considered here are zero-mean and belong to the L2 space of the 
underlying probability space {a, &, ~1 of the process. 
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stochastic state space model of dy in a coordinate-free way. A fundamental 
difference from deterministic realization theory is that in the stochastic case 
there are in gneral many nonequivalent state-space models. In fact, even 
models of least complexity (minimal models) may be infinitely many. 

Stochastic realizations such that3 

XcH:=H-vH+ (1.9) 

are called internal. For these realizations the state space is constructed by 
using only random variables contained in the subspace 

H := H(dy) = closure{a’[ y(t) - y(s)] 1 a E R”, t, s E IF!} 

spanned by the process dy. It follows that for internal realizations the 
ambient space can be chosen equal to H. For dy is p.n.d., and H(dy) can be 
generated by some vector Wiener process. From this it is easily seen that 
internal realizations correspond to left-invertible (full-rank) spectral factors 
[18]. In general, however, H is only a proper subspace of the ambient space. 

Minirnulity of a Markovian splitting subspace X is understood in the 
sense of subspace inclusion. For finite-dimensional subspaces this coincides 
with the notion of minimality in the sense of smallest possible dimension. Any 
choice of basis x(O) := [x,(O), . . . , x,(O)] ’ in a minimal Markovian splitting 
subspace X, imbedded in its ambient space H(dw) equipped with the shift 
induced by dw, defines a stationary Markov process x(t) := tJ,x(O), t E R, 

serving as a state process of minimal dimension for dy. Different choices of 
basis in the same X produce state processes which differ merely by a 
constant (deterministic) similarity transformation. Different choices of the 
Wiener process dw generating the ambient space H(dw) will lead to 
different dynamical models (i.e., realizations) of dy. As we shall see, the 
choice of the Wiener-process generator has to do with the causality structure 

of the realization. 
Basically the computation of (minimal) Markovian realizations of dy can 

be reduced to solving the (minimal) spectral factorization problem for Q(s). 
Given a minimal spectral factor W(s) of Q(s) with a minimal representation 
as in (1.6), unless W is left-invertible there is however some arbitrariness 
involved in the choice of the ambient space to produce an actual realization 

’ In the sequel, given hvo subspaces A and B, we shall write A V B to denote the closure 

of (a + p / a E A, p E B). To stress that the sum is direct we write instead A + B or, if it is an 

orthogonal direct sum, A CB B. 
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of dy. In particular it may be possible to have minimal representations of dy 
with the same transfer function but with different Wiener processes as inputs. 
For processes with a rational spectrum this arbitrariness can be eliminated by 
choosing once and for all a suitably restricted “universal” ambient space 
which contains just one possible choice of ambient space H(h) for any 
minimal analytic (or coanalytic) spectral factor [21]. Once the universal 
ambient space is fixed, a one-to-one correspondence between minimal ana- 
lytic (or coanalytic) spectral factors and minimal Markovian splitting sub- 
spaces X is established. The family of all minimal Markovian splitting 
subspaces for dy, restricted in the above sense, is denoted by2 

Traditionally the spectral factorization problem only regards minimal 
analytic (or connalytic) spectral factors. This restriction leads to forward 

(i.e., cuusul) realizations or to the corresponding backward or anticausal 
models. Acausal realizations are obtained from a more general type of 
spectral factorization where the poles of the factors are not restricted to the 
right or left half plane. 

Once Q(s) is known in rational form, say 

(a(s) = Z(s) + Z( -s)‘, Z(s) =J + C(sZ - A)-lG (1.10) 

with A asymptotically stable, the so-called positive-real lemma equations of 
Yakubovich, Kalman, and Popov provide an explicit parametrization of all 
minimal (analytic) spectral factors W(s) in terms of symmetric positive 
definite matrices, solutions of a certain linear matrix inequality related to the 
decomposition (1.10) [l, 2, 9, 10, 181. 

Although the validity of the positive-real lemma as a way of characterizing 
positivity of a quadratic functional (or of a rational convolution operator) can 
be generalized considerably and has in particular been shown to be indepen- 
dent of any stability assumptions on A (this is really classical Riccati theory 
and goes back to 1331 and [23]), it must be stressed that the specific role 
played by the positive-real lemma in spectral factorization, namely as a tool 
for parametrizing the family ?Y of minimal spectral factors, is not immedi- 
ately generalizable to the nonanalytic setup.4 To our knowledge, this problem 
has never been seriously addressed before. Below we shall also discuss the 
related question of parametrizing families of acausal realizations of the 

4 For example, if A is not taken to be stable, an additive decomposition of the spectral 

density Q(s) of the form (1.10) may not even exist, and the linear matrix inequality cannot even 

be written in terms of the parameters of the decomposition (1.10). 
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process dy by means of symmetric solutions of a suitably generalized 
positive-real lemma. 

1.2. Application to Balancing 
Stochastic balancing has been introduced, for discrete-time models, in [5, 

61. The original definition of a balanced model requires a rather “ad hoc” 
simultaneous diagonal structure of a pair of covariance matrices which can be 
computed as the maximal and minimal solution of a certain Riccati equation. 
The definition is given in terms of matrices, and no direct statistical interpre- 
tation is evident. It has been argued in the work of Desai and Pal that this 
structure provides a convenient starting point for a heuristic stochastic model 
reduction technique based on discarding “small” singular values (for a survey 
of this circle of ideas one may consult [3]). This notion of balancing and its 
applications to model reduction has been object of much interest in recent 
years [26, 12, 15-171. In regard to stochastic model reduction by “truncated 
balancing” (as discussed in the literature), we would however venture to say 
that at the present state of knowledge, it is not yet clear whether the method 
really lies on firm theoretical grounds. 

It is trivial to do balancing for stable systems, but (even deterministic) 
models where A is not necessarily a stable matrix pose conceptual problems. 
Computational techniques have been suggested, e.g., the so-called LQG 
balancing [14, 251, to deal with the case of unstable systems. This seems 
however also hard to motivate directly, as it is not clear what kind of 
system-theoretic properties of the transformed model one is actually trying to 
achieve by the LQG procedure. 

In this respect we shall see that acausal modeling has a natural application 
to balancing of unstable systems. 

In Section 5 of this paper we will interpret stochastic balancing of a 
finite-dimensional stochastic system of the type (1.5) as the problem of 
selecting a special basis in the state space (the Markovian splitting subspace 
X associated to the model) in such a way that the coupling between past and 
future histories of the process dy is reflected in a canonical “Hotelling-like” 
structure in the state space. This will lead to a representation-independent 
notion of stochastic balancing, which can be described purely in geometric 
terms. Then we shall deal with the problem of computing the balancing 
transformation for a model with arbitrary pole locations, i.e., a possibly 
unstable model [we shall still place the restriction (1.2) on the poles of the 
system, however]. 

By taking the point of view of stochastic realization theory we may view 
any “physical” model like (1.5) just as a particular stochastic realization of the 
output signal dy. In this sense technical problems related to the stability of A 
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become irrelevant, as getting a specific location of the eigenvalues of A is 
merely a matter of choosing an appropriate representative in the equivalence 
class of all possible acausal stochastic realizations of the output process. 

That balancing of (not necessarily stable) state-space models of random 
signals should be related to understanding the equivalence class of all 
possible (minimal) acausal state-space representations of the signal is an idea 
that is also contained in the work of S. Weiland [32]. Weiland’s work is 
exposed in the style and terminology of the (deterministic) “behaviourist” 
school. Our setup is different, and the final results don’t quite seem to agree. 
In particular, it seems a bit artificial that a Riccati equation eventually pops 
up in the balancing theory of [32]. Indeed, ‘t 1 IS well known that the family of 
all minimal acausal state-space models of a given deterministic L2 signal 
(behavior) is described essentially by the action of the full feedback group on 
a particular state-space representation, and by this action the eigenvalues of 
A can be placed anywhere except on the imaginary axis. So there cannot be 
eigenvalue flipping with respect to the imaginary axis taking place in the 
deterministic (behavioral) context. The phenomenon of eigenvalue flipping is 
related in a very essential way to spectral factorization and the associated 
solution set of a Riccati equation. These tools play instead a very natural role 
in the stochastic setup. Stabilization by a certain pole flipping feedback, 
computed via the solution of a Riccati equation, is incidentally exactly what is 
done by “LQG balancing.” 

2. ACAUSAL MODELS OF STATIONARY MARKOV PROCESSES 

The following is the central result of this section. 

THEOREM 2.1. Let x be a stationary Murkov process admitting a mini- 
mal representation (1.1). Then 

dx(t) = Fx(t) dt + Gdv(t) (2.1) 

is also a minimal representation of x if and only if F, G, and dv are generated 
by the transformation 

F = A + BB’Q, (2.2) 

G = BV, (2.3) 

du(t) = dw(t) - B’Qx(t) dt, (2.4) 
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where V is a p X p orthogonal 
algebraic Riccati equation 

A’Q + 
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matrix and Q is a symmetric solution of the 

QA + QBB’Q = 0. (2.5) 

Proof. Sufficiency: Let Q = Q’ b e a solution of the Riccati equation 
(2.5), and define F, G, and dti by (2.2) etc. Substituting (2.2) and (2.4) into 
Equation (1.11, it is seen that the process x(t) can be represented as in (2.1). 
What needs to be checked is that (2.1) is a minimal representation of x in the 
sense defined above. 

Trivially, (F, G) IS controllable and G has independent columns. Hence to 
prove sufficiency we just need to show that v is a (wide-sense) Wiener 
process. Note that the process r is thereafter represented as the solution of a 
bona fide linear stochastic differential equation (2.1) with (I?, G) a control- 
lable pair. Stationarity of x then implies Re h(F) # 0. 

To show that v is a (wide-sense) Wiener process, define K(s) := I - 
B’Q(sZ - A)-lB, so that the spectral measures (Fourier transforms) dG and 
dC of the stationary increment processes dv and dw in (2.4) are related by 
dC(io) = K(iw)d&(iW). The p recess dv is wide-sense Wiener iff K(i w) is 
a unitary matrix. Set K := B’Q; the following lemma characterizes the 
matrices K which make K(s) an all-pass function, i.e., a solution of the 
spectral factorization equation 

K(s)K( -s)’ = I. (2.6) 
LEMMA 2.1. Let the pair (A, B) be controllable, and consider the 

square rational matrix K(s) := 1 - K(sZ - A)-lB. Then (2.6) holds if and 

only if 

K = B’Q, (2.7) 

with Q a symmetric solution of the homogeneous Riccati equation 

A’Q + QA + QBB’Q = 0. 

Proof. We write the rational matrix K(s)K( -s>’ as 

K(s)K( -s)’ = I + [ -K ,.I[” 0” -““‘I-‘[ ;,]> 
sl + A’ 
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which shows that K(s) solves (2.6) if and only if the (Hamiltonid triple 

g::= [-K B’],!+= [$ “-“d,],39:= [[‘I (2.8) 

provides a (nonminimal) realization with state space of dimension 2n of the 
n X p zero transfer function. Now, the corresponding controllability and , , 
observability matrices are seen to have the form 

I 

B AB + B + ... A’B + AB + .*a +B + ... 
LX= 

K’ -A’K’ (A’)%’ 

and 

B’ 
-B’A’ + . . . +B’ 

B’( A’)” + . . . +B’A’ + . . . +B’ 

I 

. . . 

. . . I=: 

respectively. Moreover, by controllability of the pair ( A, B ), it follows that 
the dimension of the controllable subspace Z$ = im 9’ is 

dim% = rank9 > rank9, = n, (2.91 

while the dimension of the unobservable subspace ZnO = ker B is 

dimzn, = 2u - rank @ < 2n - rank @* = n. (2.10) 

Hence, dim & < n < dim q. Therefore, the transfer function associated to 
the triple (2.8) is zero (equivalently, S$ c Z$,J if and only if g = ZZ& and 
hence dime = dim SF& = n. In this case, being the observability submatrix 
~9~ of full column rank n = rank 8, there must exist a unique n X n matrix 
Q such.that b, + B,Q = 0, . i.e., we can write the unobservability subspace as 

ZF& = im 
[ 1 6. (2.11) 
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Also, the equality q = s?& implies that the controllability subspace can be 
written as 

q = ker[ -Q I], (2.12) 

or, equivalently, Ye, - QS, = 0. Conversely, it is clear that if (2.11) and 
(2.12) hold for some square matrix Q, then e = z&. Now, recall that the 
unobservability subspace P$, associated to the pair (F’, M) can be character- 
ized as the maximal &-invariant subspace contained in ker 8, while the 
controllability subspace g for the pair (&, L&“> is the rninirnal &-invariant 
subspace containing im B. Also, note that, in view of (2.9) and (2.10), 
maximality of S?$, and minimality of q are automatically guaranteed by the 
form of (2.11) and (2.12), respectively. Then the four conditions 

k3Y’no = 0, (2.13) 

d%, =%a (2.14) 

and 

q:‘9 = 0, (2.15) 

diq cg (2.16) 

are necessary and sufficient, alone, to characterize the subspaces 

and zc = ker[ -Q I], 

respectively. Equations (2.13)-(2.16), together with (2.11) and (2.12X yield 

the equivalent set of equations 

-K + B’Q = 0, (2.17) 

-A’Q = Q(A + BB’Q), (2.18) 

which are exactly (2.7) and (2.5) in the statement of the theorem, and 

K’ - QB = 0, (2.19) 

- QA = (QBB’ + A’)Q. (2.20) 
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However, we observe that if Q solves these four equations, then Q’ is also a 
solution. Thus, by uniqueness, we conclude that necessarily Q = Q’ and we 
can disregard (2.19) and (2.20) as redundant. 

Lemma 2.1 clearly proves sufficiency. Necessity follows by subtracting 
(1.1) from (2.1) and rearranging the difference as 

Gdv = Bdu: - (F - A)x(t) dt. (2.21) 

Since both representations are minimal, G and B are full column rank. On 
the other hand, by standard arguments in semimartingale representation 
theory (see e.g., [I9]>, the quadratic variations GG’ and BB ’ in the identiry 
(2.21) coincide. Therefore G = BV with V an orthogonal p X p matrix. 
Since Vdv is indistinguishable from dv, we may rewrite (2.21) as 

B(dv - dw) = (F -A)+) dt. (2.22) 

Now multiply from the left by a left inverse, BmL, of B, and set K := 
BmL(F - A). Using (1.1) to eliminate x from (2.221, one obtains a relation 
between the spectral measures (Fourier transforms) d6 and d6 of dv and 
dw, ofthetype di?(iw) = K(iw)d&(i~),where K(s) := Z - K(sZ - A)-‘B. 
The process dv is wide-sense Wiener, and hence K(s) must be all-pass. 
Invoking Lemma 2.1, we see that K must be related to a solution of the 
homogeneous Riccati equation (2.5) by the formula (2.7). 

On the other hand, if we multiply (2.22) from the right by x(t)’ and take 
expectations, recalling that x(t) has a positive definite variance matrix, we see 
that 

Im(F-A) CImB (2.23) 

From this inclusion BBmL(F - A) = F - A = BZ? ‘Q readily follows. This 
concludes the proof of the theorem. n 

It may be worth noticing that the homogeneous Ricccati equation 
(2.5) relates to spectral factorization of the spectral density matrix of the 
process x, i.e., 

@Js) = (sZ - A)-lBB’( -sZ - A’)-’ 

= (sZ - F)-‘GG’( -sZ - F’)-l. (2.24) 



1010 GIORGIO PICCI AND STEFANO PINZONI 

In this respect Theorem 2.1 is not the standard way of parametrizing the 
solutions of the spectral factorization equation in stochastic modeling, where 
one keeps the pole structure of the factors fixed, and describes instead the 
different zero structure of the factors. The result describes instead the 
geometry of the poles of the different factors. For, assuming Re A( A) < 0 
and recalling that B has independent columns, it is easy to check via the 
positive-real lemma equations that the spectral density matrix of a stationary 
Markov process admits just one stable minimal degree spectral factor (up to 
right multiplication by an orthogonal matrix). For a problem of this kind there 
is no “zero fhpping” taking place at all. 

Let JZ” denote the set of all A-matrices representing a given Markov 
process x. To study this set we introduce the following notations: 

n,(Q) := A'Q + QA + QBB'Q, (2.25) 

BA := {Q = Q’ I n,(Q) = O}. (2.26) 

By Theorem 2.1 we can write &” = A + BB’&. Further, let Qi, Q& E ~9’~ 
and let A, := A + BB’Q,; then the following identity is well known (e.g., 

1301): 

%tQz) - %(QJ = %i(Q;? - QI)- (2.27) 

The identity implies that the solution sets @A corresponding to different 
A-matrices mereiy differ by translation. This observation is stated below and 
will be used repeatedIy in the folIowing. 

LEMMA 2.2. Let F = A + BB’Q, tvith QO E hj3,; then 

in the sense that P E CLT~ if nnd mly if there is a Q E @;, such that 

P = Q - Q,,. 

Proof. If P is a difference of two elements of @A as in the statement of 
the lemma, then use (2.27) to check that P E c;“. Conversely, note that 
A = F + BB ‘( -Q,,) with - Q. 6 @F. Rewriting (2.27) with A set equal to 
F, Q2 = P, Ql = -QO (both in L?~), and A, = A, it follows that !L!,(P + 
Qo> = 0, i.e., P + Q. E ~9~. II 
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Clearly, Jy; should be independent of the particular starting matrix A. 

This in fact follows immediately from (2.28) of Lemma 2.2 above, as 

A + BB’&, = F + BB’&,. (2.29) 

The following result describes how the feedback transformation (2.2) 
changes the eigenstructure of the starting matrix A. It appeared in 1271 at 
about the same time of the publication of Scherer’s paper 1301, where a 
slightly more general result of the same type is given (Theorem 2). 

We shall say that A has unmixed spectrum if none of the eigenvalues of 
A do occur in opposite pairs, i.e., -a(A) n a( A) = 0. Under this condi- 
tion it is well known that the Lyapunov equation AP + PA’ + BB ’ = 0 has a 
unique symmetric solution P = P’ (this condition is not necessary, however, 
for the existence of solutions; compare [34, 281). If in addition (A, B) is a 
controllable pair, the solution P is nonsingular (see e.g., [ll]). 

THEOREM 2.2. Let (A, B) be controllable, and assume that A has 

unmixed spectrum. Then there exists a one-to-one correspondence betwen the 

solution set @‘A of the algebraic Riccati equation (2.5) and the family of 

A-invariant subspaces of A. The correspondence is the map assigning to each 

Q E &‘A its kernel 

Q ++ Ker Q. (2.30) 

Moreover, for every solution Q = Q’ of (2.5) the feedback law (2.2) leaves 

unaltered the restriction of A to the A-invariant subspace Ker Q, while it 

renders the map, say A,, induced by A on the quotient space [W”/Ker Q 
similar to -A\. 

In particular, the eigenvalues of the map induced by A on the quotient 

space R”/Ker Q are reflected into a symmetric set with respect to the 

imagina y axis. 

The feedback law (2.2) hence “flips” some of the eigenvalues of A with 
respect to the imaginary axis. In fact, it is easy to see by purely algebraic 
arguments that an arbitrary A (not necessarily with unmixed spectrum) can 
be transformed by (2.2) into a matrix with spectrum in the left half plane. For 
in the basis of (1.3a), (I.3b) the Riccati equation (2.5) has a block-diagonal 
solution Q := diag{O, Pz’}, where P, is the negative definite solution of the 
Lyapunov equation 

ASP2 + Pzi%+ + B^+i?+ = 0. (2.31) 
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(2.32) 

has all the eigenvalues in the left half plane. 
It follows from standard theory (compare e.g., [33, 231) that under 

controllability of (A, B), the algebraic Riccati equation (2.5) possesses a 
maximal and a minimal solution (with respect to the usual semidefinite 
ordering of matrices), denoted Q+, Q_, respectively. The gap Q+ - Q_ is 
positive definite, and its inverse 

P := (Q+- Q_)-’ (2.33) 

solves either of the Lyapunov equations 

A_P + PA’_ + RR’ = 0, (2.34) 

A+P + PA’+ - RR’ = 0, (2.35) 

where 

A_= A + BB’Q_, A+= A + BB’Q+. (2.36) 

It follows by Lyapunov theory that Re h( A_) < 0 and Re h( A,) > 0, 
respectively. These classical results are actually extremely easy to prove in the 
present context, for the homogeneous Riccati Equation (2.5). We shall 
actually implicitly rederive them in the course of justifying the following 
theorem, which tells how to compute the variance of the Markov process x 
starting from a general acausal representation (1.1). 

THEOREM 2.3. The linear feedback laws (2.2) corresponding to the 
maximal (minimal) solution Q+ (Q_ > of th e R iccati equation (2.5) transform 
the Markovian representation (1.1) into the backward (forward) 
differential-equation model of x with antistable (stable) infinitesimal genera- 
tor matrices A+ (A_) given by Equation (2.36). Moreover, the inverse P of 
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the gap matrix defined in (2.33) is equal to the variance matrix of the process 

x, namely, P = Ex(t)x(t)‘. 

Proof. We proceed in three steps. 

(1) Let A _ E SST% have stable eigenvalues, and let P be the positive 
definite solution of the Lyapunov equation (2.34). Trivially, P-l E BAm, and 
the matrix A+ := A _ + BB ’ P-’ has only unstable eigenvalues (in fact, A+ 
yields the backward, or anticausal, representation of x). So it is obvious that 
all solutions Q E @A_ of the Riccati equation a,-(Q) = 0 are positive 
semidefinite and, dually, all solutions Q E &A, are negative semidefinite. 
Therefore, 

mm @A_= 0, max gA,= 0. (2.37) 

(2) Let now Q + , Q ~ E &A be as in the statement of the theorem, and let 
A+, A_ be defined as in (2.36). From Lemma 2.2, @A = @A- + Q_ and also 
65” = Ba+ + Q+. Hence maximal and minimal elements exist for the sets on 
both sides of these equalities and 

mm 6YA = Q-, max@A=Q+, (2.38) 

as claimed. 
(3) ,From the definition of A+ 

Therefore 
and Lemma 2.2, BA+= CYST- P-l. 

min BA,= -P-l, max @A-= P-i (2.39) 

In particular, max &A _ - min &?- = P- ‘. Since the set @’ is just the translate 
of @AA- by a futed symmetric matrix, 

max &A - min @‘A = max @*_- min .&-= P-l, (2.40) 

and the matrix in the second member of this equality is clearly the inverse of 
the variance of x. 

This concludes the proof. W 
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3. ACAUSAL MARKOVIAN REPRESENTATIONS 

Our first concern in this section will be to characterize the family of all 
minimal realizations 

dx = Axdt + Bdw, 

dy = Cxdt + Ddw 

(3.la) 

(3.lb) 

of the stationary-increment process dy, with the same state process x. 

Since B 
[ 1 is of full column rank, it follows that the increments of dw are 

function: of the joint history of x and dy so that H(dw) = H(dy) V H(x). 
Hence any other realization with the same x process must be driven by a 
Wiener process dv such that H(du) = H( dw). In particular, any such dv 

must have the same dimension p as dw (the integer p is in fact just the 
multiplicity, or rank, of the joint process [x, dy 1’ [.%I>. 

Theorem 2.1 has in the present setting the following analog. 

THEOREM 3.1. The stochastic system 

dz = Fzdt + Gdv, 

dy = Hzdt + Jdv 

(3.2a) 

(3.2b) 

is a minimal stochastic realization of dy with the same state process x of the 

realization (3.Q i.e., z(t) = x(t) a.s. for all t E [w, if and only if 

(F,G, H,J, dv), and (A, B,C, D, dw) are related by the transformation 

F = A + BB’Q, (3.3a) 

[?I = [:]v: (3.3b) 

H = C + DB’Q, 

dv(t) = dw(t) - B’Qx( t) dt, 

(3.3c) 

(3.3d) 

where V is a p x p orthogonal matrix and Q is a symmetric solution of the 
homogeneous algebraic Riccati equation, 

A’Q + QA + QBB’Q = 0. (34 
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Proof. The idea of the proof is that we are really characterizing the 

family of acausal representations of the same joint process 
[1 

z . We shall 

hence write (3.1) and (3.2) respectively as 

where 

[$I =.,[;]dt+.,dw, 

[$] =F[j]dt+Bdv, 

SC:= B 
[ 1 D ’ 

F 0 
9-t:= H o’  

[ 1 g::= G. 
[ 1 I 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

Necessity: Let (3.1) and (3.2) be two minimal realizations, and assume 
that X=Z. By comparing the two representations for the joint process we 
obtain 

i?dv =Bdw + (d-F) 
[ 1 ; dt, (3.9) 

from which (3.3b) readily follows (as both .I? and ~8 have independent 
columns), and by arguing as in the proof of (2.23), Theorem 2.1, one obtains 
im(& - st) c im ~8, that is, 

irn[cIi] Cim[;], (3.10) 

which is the same as saying that there must be a matrix K such that 

A-F= -BK, C-H= -DK. (3.11) 

Now, identifying (without loss of generality) the Wiener processes dv and 
Vdv, we can rewrite the relation (3.9) as dv = dzc; - Kx(t) dt, which, using 
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(3.la) and Lemma 2.1, leads to the conclusion that (F, G, H, J, dv) must 
indeed be given by (3.3). Sufficiency follows by paraphrasing the sufficiency 
proof of Theorem 2.1. n 

As we shall comment below, the stochastic realizations obtained by the 
“pole-flipping” family of feedback transformations (3.3) all have the same 
zeros. This may be roughly taken to mean that the zeros of the corresponding 
spectral factors are left invariant by the transformation and coincide with the 
zeros of the fixed reference minimal spectral factor 

W(s) = C(sZ - A)-‘B + D. (3.12) 

A more precise statement requires a brief digression on the notion of zero 
dynamics and will be reported below. 

3.1. Relation with the &T-O Dynamics 

In this subsection we shall assume that the spectral density of the process 
dy is coercive, i.e., there is a c > 0 such that @(i W) 2 cl for all o E R; in 
particular, R := Q(w) > 0. This is the same as DD’ > 0 in any minimal 
realization, and by suitable postmultiplication by an orthogonal matrix we may 
even assume D of the form D = [ R112 01, where R112 is the symmetric 
square root of R. This permits us to rewrite the realization (3.1) in standard 

f of-m as 

dx=Axdt+Bldw,+B,dw,, 

(3.13) 
dy = Cxdt + R1’2 dw, 

with dw, and dw, uncorrelated Wiener processes of dimensions m and 
p - m, respectively. Eliminating the noise dw, produces a state repre- 
sentation 

dx = rx dt + B,R-“2 dy + B, dw, (3.14) 

in feedback form, where I is the numerator matrix 

I- ZE A - B R-‘12C 1 (3.15) 

Now it is well known [33] that coercivity of @ guarantees absence of 
eigenvalues of r on the imaginary axis. The representation (3.14) can 
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therefore be given a meaning by integrating unstable modes backward in time 
and stable modes forward in time, in complete analogy with the meaning of 
an acausal differential equation for the state process x as was stipulated in 
the beginning of this paper. 

We shall call (3.14) the inverse dynamics of the realization (3.13). The 
inverse dynamics can be defined also for more general systems than those 
which can be brought to standard form, at the price of some additional 
complications which we prefer to avoid here. It can be seen as a way of 
exhibiting the decomposition of the state space into an internal component, 
which is a subspace made up only of functionals of the output process dy, 
and an external component, which is instead made up of functionals of the 
external noise dw,. 

A related concept of zero dynamics 5 in the stochastic framework has 
been discussed in [2I] and in a recent paper [22]. In the last reference it is 
shown that the unreachable subspace (I I Bz)’ of (I, B,), denoted 9*, is 
just the coordinate space of the internal subspace X n H of X, in the sense 
that X n H = {a’x(O) 1 a EY*) and that the eigenvalues of r’lus are the 
so-called invariant zeros of the system (A, B, C, [ R1/‘, 01) or, equivalently, of 
the spectral factor W(s), transfer function of the realization (3.13). 

While the “internal” subsystem (r, B,R-1/2) restricted to F is related 
to the internal subspace and to the invariant zero structure, the “external” 
dynamics (r, B,, dw,), restricted to the complementary subspace LZ* := 
(I? 1 I?,), generates the external portion of the state space, EXH ’ [21, 
Section 11.31, and the “assignable” zeros of the realization (3.13). In this 
sense two realizations with state process admitting the same inverse dynamics 
will certainly have the same zero structure. 

Our interest in the inverse-dynamics representation of r comes from the 
fact that (3.14) is invariant under the feedback transformation (3.3): 

COROLLARY 3.1. Two minimal acausal realizations of the stationay- 
increment process dy with the same state process x have the same inverse 
dynamics (and hence the same zero structure). 

Proof. A simple coordinate-free proof could be given by noting that the 
same x implies the same state space X and hence the same internal and 
external components of X. 

An alternative proof can be obtained by comparing the inverse dynamics 
of two realizations like (3.1) and (3.2), related by the eigenvalue flipping 

5 The “zero structure” or, better, the zero dynamics, of a deterministic state-space system is 

a concept discussed in many places in the geometric-control literature; see e.g., [35, 13, 241. 
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feedback (3.3). Without loss of generality we may assume V = Z in (3.3b). 
Then, with obvious notation, we obtain 

I, := F - G,R-“‘ZZ = A - B,R-1’2C + B,B;Q = F + B,B;Q, (3.16) 

where Q is a solution of (3.4). Using this expression, the inverse dynamics of 
(3.2) can be written 

dx = I’,xdt + G, dv, = rxdt + B, dv, + B,B;Qxdt. (3.17) 

Now, premultiplying (3.3d) by [0, B,], we get B, dv, = B, dw, - 
B, BLQx dt, which, substituted into (3.17), yields the same inverse dynamics 
of (3.1). n 

Realizations of the form (3.1) related by a “pole-flipping” feedback can 
then be said to “have the same zeros.” In particular, two minimal internal 
(i.e., corresponding to a square spectral factor) realizations will have the same 
numerator matrix F and the same matrix B. Also, note that the inverse of a 
square spectral factor W(s) = C(sZ - A)-lB + D is given by W(s)-’ = 
-C(sZ - T)-IBD-’ + D-l. 

4. FIXED POLE DYNAMICS AND THE ACAUSAL 
POSITIVE REAL LEMMA 

Our goal in this section will be to obtain a result “dual” to Theorem 3.1, 
i.e., a parametrization of all minimal acausal stochastic realizations of the 
form (3.1) where now the pole dynamics is kept fixed. Much in analogy with 
the causal or analytic situation, the parametrization can be given in terms of 
solutions of a certain linear matrix inequality which in certain cases reduces 
to an algebraic Riccati equation. Concerning the notion of “pole dynamics” 
used in this context, we will say that two minimal realizations described by 
the quadruples (A, B, C, D) and (F, G, H, J> “have the same pole dynamics” 
if A = F and C = H. 

4.1. Pole Dynamics and Uniform Choice of Basis 
We shall comment briefly on the significance of “having the same pole 

dynamics, ” in a stochastic setup. This algebraic condition is intimately related 
to the notion of a uniform choice of basis in the family of minimal splitting 
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subspaces 2, which will be recalled below. This notion will also be useful for 
understanding stochastic balancing, to be discussed in Section 5. 

We shall need to introduce the forward and backward predictor spaces, 

X_ and X,, defined as 

x_:= EH-H+ x, := EH’H-. (4.1) 

These two subspaces are minimal splitting and are the smallest and the 
largest element in the family 2 with respect to a natural partial order 
(denoted +), defined in terms of the (cosines of the) angles that each X 
makes with the future space H+; se [21, Section 61. 

Consider a minimal acausal realization (3.1). By minimality the com- 
ponents of the n-vector x(O) must form a basis in the relative splitting 
subspace X. Now, we recall from [20, 211 that two families of bases, say 
{x(O)} and (X(O)}, for the family3 [ i.e., each vector x(O) is a basis in one X 
and similarly for each X(O)] are called uniformly ordered (or, for short, 
uniform) respectively in the forward or in the backward sense, if whenever 
X, + X, and xi(O) are bases in Xi (i = 1,2>, there holds 

EXlx,(0) = Xl(O) (4.2) 
or 

EX2F,(0) = Z2(0), (4.3) 

respectively, the vectors X<(O) being bases in the corresponding subspaces Xi 
(i = 1,2>. 

It readily follows from the definition that for any basis x(O) in a forward- 
uniform family, and, respectively, for any X(0) in a backward-uniform family, 
we have the “invariant projection” property 

E"-x(O) = r_(O), (4.4a) 

EX+F(0) = X, (0)) (4.4b) 

where x_ (0) is the basis relative to the forward predictor space X_ in the 
first family and X+ (0) is the basis relative to the backward predictor space 
X, in the second family. 

A forward-uniform choice of bases in F establishes a lattice isomorphism 
between 2 and the corresponding family of state covariance matrices .P := 
{P = Ex(O)x(O)’ 1 x(O) a basis in Xl, the latter set being endowed with the 
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natural partial order of positive semidefinite matrices. This is equivalent to 
saying that X, < X, = P, < P,. In a backward-uniform choice the ordering 
of the corresponding state covariance matrices_ L? :E {p = E?(O>!i(O)’ 1 X(O) a 
basis in X} is reversed, namely, X, + X, a P, < P,. 

In particular, the bases x- (0) in X_ and x+ (0) in X, in a forward- 
uniform choice will have the smallest and, respectively, the largest state 
covariance matrices P_ and P, in 9. For a backward-uniform family it will 
instead happen that P_ is maximal and P+ is minimal. 

The most useful properties of uniform bases are summarized below. 

PROPOSITION 4.1 [21]. rf {x(O)] is a forward-uniform family of bases in 

SF’, then for each x(O), th e corresponding dual basis X(O), uniquely defined in 
X by the condition 

ET(O)?(O)’ = I, (4.5) 

defines a backward-uniform family in STY. 

PROPOSITION 4.2 [21]. All causal realizations corresponding to a 
forward-uniform family of bases are described by the same (A, C) pairs. 
Likewise, all anticausal realizations corresponding to a backward-uniform 

-- 
family of bases are described by the same (A, C). 

The only backward-uniform family of bases we shall encounter in the 
following will be made of dual bases of a forward family. 

Note that dual pairs (x(O), X(O)) are related by the transformation 

X(0) = Pi%, (4.6) 

so that the covariance matrices of dual pairs are related by matrix inversion, 
i.e., letting P = Ex(O)x(O)‘, 

p = E?(O)?(O)’ = P-l, (4.7) 

as follows immediately from (4.5). 
Proposition 4.2 ties together uniform bases and invariance of the pole 

dynamics (A, C), at least for special causality structures of the corresponding 
realizations. By invoking the causal-anticausal decomposition (1.3) the result 
can actually be shown to hold also in the general case of an arbitrary causality 
structure. Namely: All realizations corresponding to a uniform family of bases 
are described by the same (A, C) pairs. 

As this observation will not be needed anywhere else in the following, we 
shall content ourselves with mentioning it without providing any proof. A 
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complete justification would require the introduction of some more apparatus 
and distract the reader from the main objectives of the paper. 

In a uniform family the bases x_ (0) and 1c+ (0) are essentially the 
“forward and backward steady-state Kalman filter” estimates of any x(O). The 
first vector is computed as x_(O) := Ex-x(O), while the second can be readily 
obtained by first going to the dual basis, as follows. 

First, compute r+(O) by projecting X(0) := P-lx(O) onto X,, i.e., 
X+(O) := Ex+Pplx(0), and then go back to the “primal,” i.e., let x+(O) = 
Pil!i+(O). Note that the projection of x(O) onto X, is not invariant in a 
forward uniform basis. 

Once x+ (0) and (by a dual argument) X_(O) are computed, they can be 
used to generate two dual families of uniform bases in %‘, say z(0) and Z(O), 
by setting z(0) := EXx+(0) and Z(0) := EX?_(0). It is immediate to check 
that z(0) and Z(0) are indeed dual bases and are related by the transforma- 
tion Z(0) = P-‘z(O), where P = Ez(O)z(O)‘. Hence, 

PROPOSITION 4.3. An arbitrary basis x(O) in a minimal splitting sub- 
space X can be uniquely extended to the whole family Z in a uniform way (in 
either the forward or the backward sense). 

4.2. A Generalized Positive-Real Lemma 
In this subsection we shall describe the family wA,c of all minimal 

spectral factors of a spectral density matrix Q(s) having a fmed arbitrary pole 
dynamics described by the (observable) pair (A, C). As announced, the main 
result will be a parametrization of %& in terms of the solution set of a 
certain linear matrix inequality, much in the spirit of the well-known 
parametrization obtained for analytic spectral factors. There are some non- 
trivial difficulties to be solved in the process of obtaining this generalization, 
and some of them will be discussed at the end of the section. 

THEOREM 4.1. Let W(s) be a minimal spectral factor with minimal 
realization 

W(s) = ; ; (-+I 
of the m x m spectral density matrix Q.(s), i.e., let Q(s) = W(s)W( -s)‘. 
Then the family of all minimal spectral factors V(s) of Q(s) with pole 
dynamics described by the matrix pair (A, C), i.e., 
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is parametrized by the set .F of symmetric solutions, C = C’, of the following 
linear matrix inequality: 

_qC) := 
As + CA’ + BB’ 

Cc + DB’ 

CC’ + BD’ > 0 1 DD’ ” (4.8) 
in the sense that, for each such V(s), 

[ I ‘; [G' J’] =2(X) (4.9) 

for some C E 9, and, conversely, given any 2 E 9, a full-rank factorization 
of .2(E) as in (4.9) yields a minimal spectral factor V(s). This corre- 
spondence is one-to-one, provided spectral factors which differ by right 
multiplication by a constant orthogonal matrix are identified. 

Zf R == Q,(m) is nonsingular (and hence > O), the parameter set 
9 coincides with the set of symmetric solutions of the algebraic Riccati 
inequality 

A(c) := AZ + XA’ - (X’ + BD’) R-‘(CC + DB’) z 0. (4.10) 

In this case, if the state-space realizations of W(s) and V(s) are written in 
standard form, i.e., 

[:I=[*]> rFl=[q-q~ (4.11) 

with D, and J1 square m X m and nonsingular, then the parametrization is 
described by the equations 

G, = (CC’DLT + B,)(J,‘D,y, 

G,G’, = R(Z), 

111; = DID;> 

(4.12a) 

(4.12b) 

(4.12~) 

establishing a correspondence 
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which is one-to-one provided that matrices G, and J, differing only by right 

multiplication by square orthogonal matrices are identified. 

The proof of this theorem requires a preliminary observation relating the 
minimality of realizations of the spectral matrix Q(s) to the minimality of 
realizations of the factors. Although the result is probably well known, for 
completeness we shall provide a proof. 

LEMMA 4.1. Consider the rational matrix W(s) with state-space 
realization 

W(s) = ; ; . 
[-t-l 

Then the spectral density matrix Q(s) := W(s)W( -s)’ has the Hamiltonian 
realization 

Assume the realization A B [+I is minimal. Then W(s) is a minimal 
c U 

spectral factor of Q(s) if and only if G z is a minimal realization 

of Q’(s). 
[+I 

Proof. It is immediate to check that 

iqsz -dz?-ld? +LB 

= [c DBq[sz;A s;+““n’,]-‘[ y,] + DD’ 

= [c DB’] 
(sZ - A)-l (sZ - A)PIBB’(sZ + A’)-’ 

0 (sZ + A’)-’ 1 
. 

[ 1 
BD’ + DD’ 

-C’ 

= C(sZ - A)-‘BD’ + C(sZ - A)-‘BB’( -sZ - A’)-+? 

+ DB’( -sZ - A’)-?’ + DD’ 

= [C(sZ - A)-‘B + D][ B’( -sZ -A’)-?’ + D’] 

= W(s)W( -s)‘. 
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The statement about minimality is then a direct consequence of the 
definition of a minimal spectral factor. n 

Proof of Theorem 4.1. Let X E 9 be a symmetric solution of the LMI 

(4.8), and let 5 be a full-column-rank matrix satisfying the factorization 
[ I 

equation (4.9). Nlotice that all such full-rank “square roots” of 5?(Z) differ by 
right multiplication by orthogonal matrices, so that there is just one equiva- 
lence class of factors attached to each Z. 

It is then a standard calculation to check that the rational matrix 

V(s) = ; 7 
H-1 

is a spectral factor of a(s). In fact, in view of the identity 

we have 

V(s)V( -s)’ = [C(sZ - A)-’ 1 I] [F] [G’ , J’] [ ( -” -zAf)-‘cr] 

. ( -sZ - A')-k' 1 Z 1 
= [C(sZ - A)-' 1 I] [;][B’ 1 D’] . [ ( -‘I -zA”-‘c’ 

= W(s)W( -s)‘. 

Minimiality of V(s) f 11 o ows immediately, as the McMillan degree 6[V ] is 
exactly half of the degree of a. 
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Conversely, let 

V(s) = E 7 
[+I 

be another minimal spectral factor of Q(s). Then it follows from Lemma 4.1 

that there are two minimal Hamiltonian realizations of the spectrum Ca(s>, 
i.e., 

and 

so the two realizations must be related by a similarity transformation. In fact, 
the similarity transformation is unique. Hence there exists a unique invertible 
matrix S such that 

[~][~I = [~][~I~ (4.13) 

The matrix S is determined by the set of relations X@ = 52@S, k = 
0, 1, . . . ) and by the full-column-rank property of the “observability” matrices 
it can be obtained as 

where the superscript -L denotes left inverse. Note that the first column 
blocks of these compound matrices coincide, since 
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so that S has the special form 

s= 
z SE [tl 0 s, ’ 

with S, invertible. Because of this particular structure of S the similarity 
equations (4.13) yield -&A’ = -A’S, and -Sac’ = -C’, i.e., A = 
SirAS; and C = CSg , respectively. We then obtain CAk = CAkS;, k = 

0, 1, . . . , and, recalling the observability of the pair (C, A), we conclude that 
S, = I. The remaining similarity equations become 

GG’ = AS,, + S,, A’ + BB’ (4.14a) 

[ = AS;, + S;, A’ + BB’ (by symmetry)], 

GJ’ = BD’ + S,,C’, (4.14b) 

[JG’ = DB’ + CS;, (by symmetry)], 

JG’ = DB’ + CS,,, (4.14c) 

J]’ = DD’. (4.14d) 

Now by uniqueness of the similarity transformation, S,, = S;,. Denoting S,, 
by 2, we may rewrite Equations (4.14) in compact form as 

This shows that to every spectral factor V(s) with the same pole structure as 
W(s) there corresponds a unique solution C of the LMI (4.81, satisfying the 
factorization equation (4.9). 

The particularization to spectra which are nonsingular at infinity, 
i.e., R := @(a) = DD’ > 0, follows from a standard block-diagonalization 
argument. n 

REMARK 1. This result seems to be more general than the various 
“unstable” versions of the positive-real lemma, e.g., [lo, Theorem 9.51, that 
have appeared in the literature so far. To our best knowledge all the existing 
versions of the positive-real lemma are stated in terms of a rational represen- 
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tation of q’(s) deduced from an additive decomposition of the spectrum of 
the type 

B(s) = Z(s) + Z( -s)’ 
A c 

with Z(s) = c 

H-1 
;R * 

However, as we shall see in an example below, not always does the spectrum 
CD(s) admit an additive decomposition with Z(s) having the same pole 
dynamics (A, C) of an arbitrary minimal spectral factor W(s). In other 
words, the equation W(s)W( -s>’ = Z(s) + Z( -s)’ may fail to have a 
solution Z(s) in the general case of an arbitrary pole location of W(s). 
Therefore it is better to describe the spectral function @ in terms of a 
reference factorization of the type W( s)W( -s>’ as done in the statement of 
Theorem 4.1. For this reason Theorem 4.1 covers situations where the 
existing versions of the positive-real lemma are not applicable. Consider for 
instance the following example. 

EXAMPLE. Let 

2s 1 0 1 
W(s) := 1 + -&y = L---L 0 -1 1 

1 1 1 

be a minimal spectral factor of 

4s2 
Q(s) = W(s)W( -s) = 1 - 

( s2 - 1)2 . 

There is no additive decomposition Q(s) = Z(s) + Z( -s) with Z having the 
same poles as W(s). Such a Z should in fact have the form 

1 0 ci 

Z(s) E 0 -I c2 = ; + I-II (Ci + c2)s + (Ci - E2) 

11; 
s2-1 ’ 
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so that 

2(c, - Es) 4s2 
Z(s) + Z( -s) = 1 + s2 _ I #l- 

(s2 - 1)2 
= @a(s) 

for all Ci and Es. Therefore no such additive decomposition can exist. Thus, 
for this spectral function there is no “acausal” positive-real lemma parametriz- 
ing the spectral factors V(s) having the particular choice of pole dynamics of 
the example. On the other hand it is relatively easy to compute say all square 
( = scalar) factors of this type, which must look like 

1 9 g1 

V(s) = 0 -1 g, . I-H 1 I _i 

These factors are indeed four, corresponding to the four distinct solutions of 
the algebraic Riccati equation obtained from (4.10) with the equality sign. 

In general there is an additive decomposition of Q(s) with Z(s) having 
the same pole dynamics of a spectral factor W(s) if and only if the Lyapunov 
equation Ax + x A’ + BB ’ = 0 is solvable. 

REMARK 2. The parametrization of all spectral factors V(s) is described 
by the factorization equation (4.9). If A has unmixed spectrum, there is a 
unique solution to the Lyapunov equation AC + XA’ = GG’ - BB’ [the 
(1, I)-block equation of (4.9)], and the solution C ~9 parametrizing V(s) is 
determined by the matrix G alone. Necessarily, such a 2 satisfies also the 
equation XC’ = GJ’ - BD’ [the (1,2> block]. In case A does not have 
unmixed spectrum, the Lyapunov equation has many solutions, but only one 
of these solutions solves also the second equation. 

4.3. From Spectral Factors to Acausal Realizations 
Now that the relation between all minimal spectral factors with the same 

pole dynamics has been described, we would like to study how the corre- 
sponding realizations of dy are related. In the Fourier domain these realiza- 
tions can be seen as “shaping filter” representations of the type dQ = Wd&, 
where dt2 is the Fourier transform of a suitable Wiener process associated to 
W. It is well known however that there is in general an inherent nonunique- 
ness of the process dw asociated to nonsquare, or, more precisely, to 
non-left-invertible factors. Many dw’s can serve as “input” processes in a 
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“shaping filter” representation of dy in this case [21]. The general formulas 
describing the all-pass filters relating the input noise processes of different 
realizations involve “exogenous” Wiener processes uncorrelated with dy. We 
shall here restrict to a particular case where exogenous noise is not needed. 

Assume R := Q(m) nonsingular, and consider the problem of describing 
the input processes dv associated to the family of all minimal square acausal 
realizations of dy, with the same pole dynamics of a fixed “reference” 
realization (A, B, C, D, dw), not necessarily square. The family of minimal 
realizations to be described will hence be internal minimal realizations of dy, 

in which case we have H(du) = H(dy) = H(x) and the multiplicity of the 
joint process [x, dy]’ is equal to m, the dimension of dy. 

Let our reference minimal realization (A, B, C, D, dw) be written in 
standard form, with D partitioned as D = [ R1j2 01: 

dz =hdt + B,dw, + B,dw,, (4.15a) 

d =Czdt+R”‘dw Y 1’ (4.15b) 

and correspondingly let (A, G, C, R ‘1’ dv) define an internal stochastic , 
realization 

dx = Axdt + Gdv, 

d =Cxdt+R1”dv Y 

(4.16a) 

(4.16b) 

of the same process dy, with the same pole dynamics (A, C). Note that the 
driving Wiener process in (4.151, d w = [ dw’, dwh ] has been written in a 
partitioned form congruent to the standard form of D = [R1/’ 01, as ex- 
plained above, so that both dv and dw, are m-dimensional. 

Now, by subtracting (4.16) f rom (4.151, we obtain the equations 

d(z -x) =A(z -x)dt + B,dw, - Gdu + B,dw,, (4.17a) 

0 = C( z - x) dt + W2( dw, - dv), (4.17b) 

which, introducing the numerator matrix r := A - GRp’12C, can be further 
elaborated into a stochastic realization 

d(z-r)=T(z-x)dt+(B,-G)dw,+B,dw,, (4.18a) 

dv = RV2C( z - x) dt + dw, (4.18b) 
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of the stationary-increment process dv, in terms of the Wiener process dw, 

with state process z - x. In the Fourier domain this is equivalent to 

d$(iw) = ([Z,O] + K1”C( iwZ - I)-l[( B, - G), Ba]) d&(iw) 

(4.19) 

relating the spectral measures d& and d6. Now, for dv to be a (wide-sense) 
Wiener process, it will be necessary and sufficient that the m X p rational 
matrix L(s) := [I 0] + R- ‘/2C(iwZ - I)-IL, with L := [(B, - G) R2], be 
an all-pass function, i.e., 

L(s) L( -s)’ = I. (4.20) 

We shall now state a lemma, which in some sense is a dual to Lemma 2.1, 
giving a necessary and sufficient condition for this to happen. 

LEMMA 4.2. Let (H,r)b e a ire o f d b servable pair, and let Z denote the 

set of symmetric solutions Z = Z’ of the homogeneous Riccati inequality 

TZ + ZT’ + ZH’HZ < 0. (4.21) 

Consider the m x p rational matrix L(s) := J + H(sZ - T)-lL, where 

] = [I O] and L = [L, L,] are conformably partitioned. Then L(s) is all- 

pass, i.e., (4.20) holds, if and only if there is Z E Z such that 

L, = -ZH’, 

L,L’, = - (rz + zr’ + ZH’HZ). 

(4.22a) 

(4.2213) 

In fact, f the matrix L is taken off 11 u co umn rank, the set of all such all-pass 1 
functions L(s) is in one-to-one correspondence with x. 

Proof. Writing L(s) as 

II [;I 
and computing L(s)L( -s)‘, one readily finds 

L(S)L( -s)‘=z+ [H Ll,[sz;r -“I-I[ _L;I,], 
sz + r’ 
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which shows that L(s) solves (4.20) if and only if the (Hamiltonian) triple 

g::= [H L’1],&% [; !%,I, JZ’ := [ _L;I,] (4.23) 

provides a (nonminimal) realization with state space of dimension 2n of the 
m X m zero transfer function. Now, the same argument as in the proof of 
Lemma 2.1 leads to the equivalent statement 

for a unique square n X n matrix Z. Then the very definition of z& as the 
maximal subspace such that 

g’& = 0, (4.24) 

-@+%O =‘%I3 (4.25) 

leads to the set of equations 

(4.26) 

(4.27) 

where A is some square n X n matrix. Writing down explicitly (4.27) yields 
(4.22) and (4.21). The symmetry of Z also follows, for if Z solves these 
equations, then Z’ is also a solution. Thus, by uniqueness, we conclude that 
necessarily Z = Z’, and this concludes the proof. n 

This lemma provides a procedure for generating the input processes for 
the family of all minimal internal acausal stochastic realizations of dy, with 
the same pole dynamics (A, C) of th e reference realization (4.15). 

THEOREM 4.2. Let dy be a stationary-increment process admitting the 

minimal realization (4.15). Denote for short R-l/“C by H. Then the minimal 

internal realizations of dy, with the same pole dynamics of (4.15), are 
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precisely all stochastic systems of the form (4.16) where G and dv are 
obtained by the following transformation: 

(1) G = B, + XH’; 
(2) dv is the output of the all-pass filter (4.18) with r = A - GH, the 

matrix G being defined as above; 

and where 2 is any symmetric solution of the algebraic Riccati equation 

AC + XA’ - (B, + CH’)( B; + Hz) + BB’ = 0. (4.28) 

In fact, the correspondence between internal realizations with pole dynamics 
described by the pair (A, C) and the set of symmetric solutions of (4.28) is 
one-to-one, provided, as usual, that all matrices [G’R”‘]u, with U an 
arbitrary m X m orthogonal matrix, are identified. 

The transformation can be interpreted as output injection on the stochas- 
tic system (4.15), in the sense that, denoting the numerator matrix of (4.15) 
by rl := A - B,R-1/2C = A - B,H, the family of all pairs (r, G> desctib- 
ing internal realizations (4.16) of dy with fixed pole dynamics (A, C) is 
described by the formulas 

r = r1 - CH’H, G = B, + ZH’ (4.29) 

where 2 ranges on the set of symmetric solutions of the Riccati equation 

r,z + cr; - CH’HC + B,B; = 0 (4.30) 

equivalent to (4.28). 

Proof. Sufficiency: Let IX be a symmetric solution of (4.28), and G and 
dv be as in the statement of the theorem. Let also V,(s) := R1” + C(sZ - 
A)-lG, and Z,,(s) be the transfer function of the system (4.18) correspond- 

ing to C. Then 

dc = L,(iw) , 

and by Lemma 4.2 L, is all-pass, so that dv is a wide-sense Wiener process. 
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Now, it is not hard to check that W(s) = V,(s)L,(s). Since by assump- 
tion we have the representation A 

dc = W(iw) g1 i [ 1 2 
it follows readily that dij = V,(iw) di?, so that the output of the system with 
transfer function V, and input dv is indeed the process dy. Therefore we 
have obtained an internal realization. The rest is easy. n 

REMARKS. 

(1) If the reference realization (4.15) is already internal, i.e., B, = 0, 
then Theorem 4.2 is the exact dual of the “pole-flipping” result of Section 2, 
Theorem 2.1. In this case the output injection transformation (4.29) “flips” 
the zeros of the spectral factor W(s) = Ri/’ + C(sZ - A)-lB with respect 
to the imaginary axis. The eigenstructure of the numerator matrix I of the 
factor V,(s) corresponding to a solution of the homogeneous equation 

is then described by the dual version of Theorem 2.2 obtained by exchanging 
Q with -2, A with I’, and B with H’. 

(2) Some analogy with “pole flipping” remains even in the nonhomo- 
geneous case when B, # 0. The “zero-flipping” picture of the internal case 
now holds on a restricted subspace, namely the largest r;-invariant subspace 
orthogonal to the columns of B,. This subspace, denoted (ri 1 B2)’ is in 
fact the state space of the zero dynamics of W(s). On this invariant subspace 
the Riccati equation (4.30) induces a homogeneous equation. The exact 
mechanism of “zero-flipping” for nonsquare spectral factors is studied in 
detail in [22]. 

(3) The minimal solution 2, of the Riccati equation (4.30) corre- 
sponds to the numerator matrix I- with an antistable zero structure [i.e., 
Re A((r_) > 01, and the maximal solution Xc, to a stable zero structure [i.e., 
Re h(T+) < O]. This difference from the situation encountered in Section 2 
(Theorem 2.3) is of course due to the sign diversity in the quadratic term of 
(4.30). Note that the coercivity of Q(s) guarantees that no r has eigenvalues 
(zeros) on the imaginary axis and that the gap C + - E_ is positive definite. 

(4) Assume A has unmixed spectrum. Then all symmetric solutions of 
(4.30) can be written as X = P - II, where P is the (unique, by the unmixed 
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spectrum assumption) solution of the Lyapunov equation 

AP + PA’ + BB’ = 0, 

and II solves the Riccati equation 

AII + IIA’ + (c” - IIC')R-'(C - IIC')' = 0, (4.31) 

where c = DB’ + CP (this is an invariant quantity not depending on C). 
Observe that (4.31) looks like th e s an ar a e t d d lg b raic Riccati equation encoun- 
tered in stochastic realization theory [2; 21, Section 71 with the notable 
difference that A is not asymptotically stable in general, so that II can no 
longer be interpreted as the state variance matrix of a minimal realization. In 
fact, both P and II will be indefinite in the general case of acausal models. If 
A is stable, one may recognize (4.28) as being precisely the algebraic Riccati 
equation describing the steady-state Kalman filter associated to the model 
(4.15). In this case P = Ex(t)x(t) and it is well known that the minimal and 
maximal solutions, usually denoted by P_ and P,, of (4.31) are the state 
covariance matrices of the two “extreme” realizations of dy corresponding to 
the forward and backward steady-state Kalman filters of (4.15). These realiza- 
tions are well known to correspond to the minimum-phase [Re MI’) < 01 and 
maximum-phase [Re h(I) > 0] spectral factors respectively. In particular it 
follows from this discussion that Z+ = P - P_ and Z_ = P - P,, so that 

xc,- x_= P+- P_. 

(5) There is a slight generalization of the identity (2.27) (compare [30]) 
which holds for the nonhomogeneous quadratic function R,(Z) : E + rC + 
I%r’ - l%H’HC + B,B;, namely 

A,(C) - A,(C,) = %,,(c - %I, (4.32) 

where fir$A> is the homogeneous function r, A + Art, - A H’HA. Letting 
9r denote the set of symmetric solutions of the Riccati equation A,(C) = 0, 
from the identity (4.32) it follows, pretty much by the same argument used in 
Section 2, that 

(4.33) 

where Zr, is the set of symmetric solutions of the homogeneous Riccati 
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equation firD(A) = 0, Z& is any particular solution of R,(C) = 0, and 
r, = r - &, H’H. From this it is easy to obtain information on the maximal 
and minimal elements of 9r in the general case where A is not necessarily 
stable (and in fact need not have unmixed spectrum). For instance letting & 
equal to Z+ and C. _ , and arguing as in the proof of Theorem 2.3, it is seen 
that C + - 2 _ = P, - P_, even in this more general situation. n 

5. STOCHASTIC BALANCING 

Assume that a model of the form (3.11, perhaps coming from the 
description of a certain “physical” engineering problem, is given. As stressed 
in the introduction, we shall take the point of view of interpreting the model 
just as a particular realization of the output process cly. Without much loss of 
generality we shall also assume that the stochastic realization corresponding 
to the model is minimal, i.e., X is a mi nimal Markovian splitting sub- 
space. This roughly means that there are no degrees of freedom spent for 
unnecessary modeling of intermediate variables of the model which are 
actually white noise. 

We shall start our discussion by attaching to each random variable 5 in X 
a pair of indices which quantify “how well” 5 can be estimated on the basis of 
the past or future history of the output process. We shall then define a choice 
of basis in X which has some “canonical” desirable properties in this respect. 
Initially our discussion will be completely coordinate-free. 

For a random variable 5 E X we define the numbers 

rl+(C) := 
IIEH+5112 llEH-E1? 

11511” ’ 
77-(5) := ,l# ) (5.1) 

called respectively the future and the past relative efficiency of 5. The 
numbers 7 f ( 5 > are nonnegative and < 1, and in the statistical literature are 
sometimes also referred to as the “percentage of explained variance” (of the 
random variable being estimated). Clearly, the larger v*( E>, the better (in 
the sense of smaller estimation error variance) will be the corresponding 
estimate E” ‘e. 

The relative efficiency indices have also a direct system-theoretic inter- 
pretation in terms of the observability and constructibility operators associ- 
ated to X [20, 211, defined respectively as 

U:X+H+, UC := EH+& (5.2) 

Z?:X+H-, @ := EH-,$. (5.3) 
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In terms of U and g the indices r~+( 5 > and 77-C 5) may be interpreted as 
the relative “degree of observability” or the relative “degree of constructibil- 
ity” of 5 E X. 

Recall that the observability and constructibility operators, introduced in 
geometric realization theory [2O], pl a a somewhat similar role to the observa- y 
bility and reachability operators in deterministic systems theory in character- 
izing minimality of a state space. In fact the splitting property of a subspace X 
can be shown to be equivalent to a factorization of the Hankel uperator 
W := EH-I fJ+ : H+ + H- through the space X, as [20] 

w = kw*, (5.4 

a fundamental characterization of minimality being that X is a minimal 
splitting subspace if and only if the factorization (5.4) is canonical, i.e., SF and 
U are both injective operators. Equivalently (in the finite-dimensional case>, 
8* =EX!,+ is surjective. Hence, for a minimal splitting subspace, both the 
constructibility and the observability Gramians, F*F and 8*@, are invert- 
ible maps X + X. 

It follows that in a minimal splitting subspace X there are two distinct 
orthonormal bases of eigenvectors, say (El,. . . , 6:) and ((1,. . . , 6;) in 
which the operators b*@ and g’*g diagonalize, i.e., 

U*U = diag{h:,..., A,+}, l&Ah:> .*. > h,+> 0, (5.5) 

@*%T= diag{hc,...,h,}, 1 >, A,3 -+. >A,>O, (5.6) 

the statistical interpretation being that the states in X can be ordered in two 
different ways: according to the magnitudes of their future or their past 
relative efficiency indices. It is in fact immediate from the definition (5.1) 
that, in the ordering according to the index q+, the “most observable” states 
are just those which lie parallel to the vector (:, having maximal index 

V+(E) = A:, while the “least observable” states 5 are those parallel to the 
direction C, having the smallest possible relative efficiency v+( c> = A,+. Of 
course, a completely similar picture corresponds to the ordering induced by 
past relative efficiency. 

Assume for a moment that H+ n H- = 0 (which will be the case if, say, 
the spectrum of the process is coercive [21]). Then a direction of “very 
observable” states in X, being at a small relative angle with the future 
subspace H +, will generally form a “ large” angle with the past subspace H- 
and hence give rise to projections onto H- of small relative norm, i.e., to 
small v_ ( 5 ). The opposite phenomenon is of course to be expected in case a 
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direction “very close” to H- is selected. The idea of balancing in the 
stochastic framework has to do with a choice of basis which, roughly 
speaking, is meant to “balance” the two sets of efficiency indices. There is 
here a substantial difference from the deterministic case, however, in that we 
have now a whole family of minimal X which needs to be considered 
simultaneously for the choice of a balanced basis. For this reason the 
stochastic procedure will necessarily be somehow less obvious and transpar- 
ent than in the deterministic case. 

In order to analyze the effects of choosing a particular basis, say x(O), in a 
minimal splitting subspace X, we shall introduce the linear map T,(,, : R” + 
X, defined by TIC,, a := a’x(0). Note that if R” is equipped with the inner 
product (a, b)P := a’Pb, where P is the covariance matrix of x(O), then Tx~,,~ 
becomes an isometry. From this observation it is not hard to check that I’,..,,) 
has the following properties: 

LEMMA 5.1. Let P be the covariance matrix of the basis x(0) in X. Then, 

q$, = p- lTx*(o), T?(O) = T,&‘, (5.7) 

where X(0) is the dual basis of x(O). 

Proof Let 5 = a’x(0) and 71 = b’x(O) be arbitrary random variables in 
X. Then ( 5,~) = b’Pa = (b, T&,T,(,, a), where the last inner product is 
ordinary Euclidean inner product in R”. It follows that T&,~Tl~o~a = Pa for all 
a E R”, which proves the first identity. The second descends from expressing 
71 = b’?(O) in the dual basis and using a similar argument, now with q 
written as 77 = Tr(,,,Z, thus obtaining T&+‘~~o~a = a and hence I’$,, = TZ& 
This proves the lemma. n 

Obviously the efficiency indices (5.1) can be expressed in terms of the 
coordinates a, b, once a specific basis has been chosen. In particular the 
expressions for the numerators will be quadratic forms described by certain 
symmetric positive definite matrices which we shall call, respectively, observa- 
bility and constructibility Gramians (relative to that particular basis). Pro- 
vided they are expressed in dual bases, the two Gramians have a particularly 
simple expression that will be given in the proposition below. Recall (Proposi- 
tion 4.3) that a basis in an arbitrary X can be extended, together with its dual, 
tot he whole family of minimal splitting subspaces S? in such a way as to form 
a uniform basis. 

PROPOSITION 5.1. Let x(O) be a basis in the minimal splitting subspace 
X, and Z(O) be its dual basis. Then the constructibility and observability 
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Gramians relative to the bases x(O) and X(O) respectively, are given by 

(5.8b) 

where P_ and Pi are the covariance matrices of x_ (0) and X + (0) in the 
uniform basis induced by x(O). 

In particular the two Gramians do not depend on the particular minimal 
splitting subspace X and are invariant over 2. 

Proof. The formulas follow from the orthogonality of any minima1 
splitting subspace to the so-called “junk” spaces N-, N+ (the subspace of 
H- orthogonal to the future and, respectively, the subspace of H+ orthog- 
onal to the past); se e.g., [21, Corollary 4.91. This leads to the identities 

the first of which, in view of (4.4a), can be rewritten as E$ = a’x_(O) and 
immediately leads to (5.8a). The second follows by a similar computation, 
using the dual invariant projection property (4.4b). W 

Note that in the forward basis induced by x(O), the expression of the 
observability Gramian would instead be 

(5.10) 

which is no longer invariant. 
The invariance of the two Gramians with respect to the particular state 

space of the realization, pointed out in the proposition above, clarifies the 
system-theoretic meaning of the notion of balanced realization, originally 
given by Desai and Pal [5] in terms of covariance matrices. 

THEOREM 5.1. There is a choice of basis S?(O) := [ tl, . . . , 21’ in X, such 
that both the constructibility and observability Gramians are represented by a 
diagonal matrix. In fact, there is a diagonal matrix 2, with positive entries 
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such that, in the uniform basis induced by 30) in 2, one has 

g+=+=, (5.12) 

where *% is the constructibility Gramian relative to the basis x^(O) and 

a*@ is the observability Gramian relative to the dual basis of g(O). 
If the numbers a, are all distin_ct, this choice of basis is unique up to sign, 

i.e., for any other basis f(O)_ := [ tl,-. . . , f]’ leading to a diagonal structure 
of the form (5.12), one has & = -I=(~, k = I,..., n. 

Proof. Let x(O) b e any basis in X. The proof of this theorem consists in 
showing that there exists an n X n nonsingular matrix T such that-in the 
new uniform basis induced by i(0) := TX(O), the covariance matrices P_ and 
P; ’ will have the diagonal structure of (5.12). 

The following relations between transformed dual bases will be needed in 
the proof: 

i?(O) = p^-'2(O) = p^-‘TE(0) = T-*?(O). (5.13) 

Note that the last equality descends from P^ = TPT*. 
Now using (5.131, it is readily seen that in the new (uniform) basis, the 

two Gramians P-= T&~~*~Tx~O~ and F+= T&,~B*BTz~,,~ are transformed 
into 

p^p= TP_T”, ;,= p”;l = T-*F,T-‘, (5.14) 

in other words, P- and P, transform in the same way under change of 
coordinates. The simultaneous diagonalization of P_ and P;’ can then be 
obtained by a simple modification of the well-known result for deterministic 
systems (see e.g., [ll]). The diagonalization procedure can be organized in 
the following algorithm. 

ALGORITHM 5.1 (Computing the balancing transformation T) 

1. Compute a square factorization of P_, i.e., let P_ = RR’, where R is 
square nonsingular, e.g., a Cholesky factor. 

2. Do a singular-value decomposition of R’P+R, i.e., compute the 
factorization R’P,R = UC”U’ where U is an orthogonal matrix and IF,’ is 
diagonal with positive entries ordered by magnitude in the decreasing sense. 

3. Define T := Z$‘/‘U’R-‘. The matrix T is the desired basis transfor- 
mation matrix. 
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4. Check: Compute 

Tp_T* = ~1/2U’R-1p_R-‘U~1/2 = 2, 

The proof of uniqueness can be found in the literature. See e.g., [6, 
Theorem l] and [7]. W 

Note that in view of (5.8a), (5.8b), and (5.12), the numbers {a;, . . . , CT,“} 
can be computed directly as the (ordered) eigenvalues of the ratio P_ P;‘. 

The following statement, which elucidates the meaning of the elements of 
Z as the (nonzero) singular values of the Hankel operator of the process dy, 
will be reported here for completeness. It has been known for a long time 16, 
261. The proof in the present setup is particularly simple. 

PROPOSITION 5.2. The entries of 2 = diag{q,, . . . , o$ are invariants 
of the process dy, equal to the nonzero singular values of the Hankel 
operator E-U. 

Proof. One just needs to notice that {of, . . . , q2} are the eigenvalues of 
the operator %?*@?cF’*@‘, since 

and by (5.7) T,(,,T&, = I. On the other hand, the squares of the nonzero 
singular values of W are the nonzero eigenvalues of W* E-U, and it follows from 
the factorization (5.4) that the nonzero eigenvalues of W*W are indeed equal 
to those of %F*GY@*U. n 

The Hankel singular values coincide with the canonical correlation coeffi- 
cients of the past and future spaces of the process dy. Relations between this 
concept and stochastic realization theory are discussed in several places in the 
literature, see e.g., [26]. 

In conclusion, in our setup the concept of stochastic balancing is seen as a 
natural generalization of the deterministic idea of balancing for stable 
systems. In the geometric setting presented in this paper, however, the 
“statibility” (better, causality) of the model does not enter at all, as the choice 
of a particular state vector x(O) has obviously nothing to do with the choice of 
a particular causality structure of the corresponding realization. The particu- 
lar causality structure of the model influences instead the computation of the 
“balancing” basis transformation l;(O) = TX(O) of Theorem 5.1. 
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In order to compute the transformation matrix T, knowledge of the 
minimal and maximal state covariance matrices P_ and P, is required. The 
computation is (at least conceptually) straightforward if the original model is 
already in causal form, as in this case to compute P_ and P, one needs to 
find just the minimal and the maximal solutions of the algebraic Riccati 
equation (4.28). 

Finding these matrices in the general situation will involve solving a 
combination of Lyapunov and Riccati equations. One possible procedure is 
illustrated below. 

ALGORITHM 5.2 (Algorithm for computing P- and P+) 

Input data: Th e matrices (A, B, C, D), with A satisfying (1.21, R := 
DD’ invertible, and (A, B, C> a minimal triple. 

1. Compute the minimal solution Q_ of the algebraic Riccati equation 
AQ + QA’ + QBB 'Q = 0, 

2. Do state feedback: A_ := A + BB 'Q- , [then Re A( A _ > < 01 and 
C_:= C + DB’Q_. 

3. Solve the Lyapunov equation A_ P + PA’_ + BB’ = 0 to find the 
variance matrix P. 

4. Find the maximal solution x+ of the Riccati equation A-x + xA’- 
- (BD’ + XL)(DD’)-l(BD’ + XL)’ = 0, and compute P_ from C+= 
P - P_. 

5. Set H_:= R-‘/2Cp, and compute B_:= B, + l%+HI_ and F_ 
:= A_ - BP H_ [output injection formulas (4.2911, obtaining a realization of 
the minimum-phase spectral factor W_(s). 

6. Solve the Lyapunov equation l? A + AF- + H’H_ = 0. The solu- 

tion is A = (C+- C-)-l. 
7. Compute P+= P_+ A-’ (see the remarks following Theorem 4.2). 

This scheme is mostly of pedagogical value and has no pretense of being a 
practical computational procedure. There are indeed various possible short- 
cuts to eliminate some of the intermediate steps in this rather long chain of 
computations. The details will be discussed elsewhere. 

It is a pleasure to thank Professor Harald Wimmer for many helpful 

discussions in the early stage of preparation of this manuscript. 
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