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Stochastic Realization of Gaussian Processes 

Abstmct-A Gaussian stochastic procesc Qt) with known covariance 
kernel is given: we investigate the generation of Q r )  by means d 
Markovian  schemes of  the type 

dxt = F ( t )  x g t  + dwt 

Y t  = H ( r )  xy. 

Such a generation of Ut)  as  the  ‘‘output of a linear dynamical  system 
driven by white noise” is possible under certain finiteness  conditions. 
In fact, this  was  shown by Kabnan in 1965. We emphasize  the  proba- 
bilistic  aspects and obtain an intrinsic characteriution of the slate of 
the process as the  state of an externally desaiied stochastic I/O map. 
ReolizPtions of Q r )  can be constructed with respect to any increasing 
family of u-fields; in particular, when the family of u-fiilds is induced 
by the process itself, the driving white noise reduces to the  innovation 
process  of Qr). The  corresponding  realization has been  referred to as 
the “innovation  representation” of ut). 

INTRODUCTION 

T HIS WORK  is concerned with some  probabilistic  aspects 
of a classical problem known as the “covariance factor- 
ization problem.” 

It can be viewed as an  attempt to answer, at  least partially, 
some  questions raised in a famous paper by Kalman [ 141. 

A  conceptually interesting problem was posed  by Kalman in 
that  paper, namely ‘‘. - to formulate  the realization theory of 
stochastic processes in an intrinsic way as is now possible for 
deterministic systems * .” 

At the present state  of research in  the field, it  seems that we 
have achieved a  fairly good knowledge of “how to compute” 
realizations.  There is, in  fact, an extensive literature on the 
subject,  notably  due to the work of Anderson [3]  -[SI, 
Faurre [ 91, and Kailath and Geesey [ l o ] ,  [ 111.  Yet,  it does 
not seem completely clear how to interpret these results, es- 
pecially as to what kind of “stochastic  inputs”  one should 
apply to  the dynamical  systems in  “state space form” of the 
above procedures. Some progress has  been made recently  by 
Akaike [ 11, [2],   who first investigates the  concept of state 
for  stochastic systems,  getting  probabilistic insight into old 
problems like ordering of covariances etc. This paper is, in a 
sense,  a continuation and  a  generalization of his work. 

I. THE IDEA OF A “STOCHASTIC STATE SPACE” 

In  this  section, we shall investigate in some depth  the  central 
issue of the realization  problem for a  (Gaussian) stochastic 
process,  namely, the  axiomatic characterization of the idea of 
state  in  terms of an external, or “input-output,” description 
of the  interaction  between  the process  and  some given flow of 
information. 

As it will appear,  a very natural way to attain  this objective 
is to  approach  the problem from a  probabilistic standpoint, 
i.e., to  start  with  the  external  description having the  form of a 
conditional probability  measure. 
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A “concrete”  theory, based on effective (experimentally 
measureable) descriptions of the process,  like cross covariance 
kernels, will follow quite easily by  the peculiar. properties of 
Gaussian measures. For  clarity of exposition, we postpone  it 
t o  Section 111 after some concepts have been clarified and 
useful  representation theory  introduced. 

Somewhat loosely stated,  the problem is the following. 
Given a  probability  space (8, (?, 2) and an Rm-valued centered- 
Gaussian stochastic process ( y t ) r E T ,  with  time interval T C. 
R ,  is it possible. to express yr as an instantaneous  function of 
a Markov process? 

Lets  E T, we define  the u-fields 

y s =  n U { y t ; t < s + h ) ,  thepastofy’  (1.1) 

ys = u { y t ;  t 2 s), the  future.  (1.2) 

The  information  structure available to us will, in general, be 
different  than  just  the u-fields of events  relative to ( Y r )  (and 
this is actually the case in  many classical estimation problems). 

The  information flow we m u m e  we are  provided with will 
be any incrqasing family of sub u-fields of (?, ( 8 t ) t E T .  We in- 
terpret 8, as our  state of knowledge about ( y t )  at  time s and 
we refer to this u-field simply  as “the past at  time s.” 

Consider the family of conditional probabilities 

h > O  

P(A I fd,), A E ys (1.3) 

each P(* I %,), s E T, can be interpreted as a  mapping from 
the  “past space” (8, %,,PI into  the set of all probability 
measures over the  future 3,. (This  mapping  represents the 
probabilistic  analog to the  deterministic 1/0 description.) 

The idea of splitting  u-field introduced by McKean [ 171 is 
the  appropriate  approach  to  the problem. 

Definition 1.1: 5, is said to be  a splitting  u-field if 3’ and 
8, are conditionally  independent given 5,, Le., 

P ( A  n B  I 5,) = P ( A  I 5 , ) ~  I 5,) (1.4) 

for all A E yS, B E 3,. 
Equivalent  definitions are [ 161 

P ( A  18, V S , ) = P ( A  I Ss), V A  €9, (1.5) 

or 

P(B I 3’ V 5,) = P(B 1 S,), V B E 8,. (1.6) 

The  definition is not vacuous,  in fact  both 8, and 9’ are 
splitting u-fields. Of course, they are too large for  our  pur- 
poses,,  and to  construct a  meaningful theory we have to look 
for splitting u-fields which are as small as possible. Before dis- 
cussing this point, however, we have to decide what  kind of 
information has to be used to build up  our  state variables. 
In other words, we have to decide whether we prefer a state 

become clear in  Section 11. 
‘The reason for conaidering  such  a  “right continuous”  u-field will 
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constructed over the past  (Le.,  measurable with respect to 8,) 
or over the  future (9,-measurable) or even over some mixture 
of both.  The  question may seem meaningless since, in the 
deterministic  context, we are used to  thinking of the  state 
exclusively as a function of the past input  paths  but, in the 
stochastic case, there are problems  where  a different philos- 
ophy might be more  natural  (think of some class of smoothing 
problems, for  example). 

In this paper, we shall concentrate  on  the  first alternative 
only.  For an example of a different possibility, we quote  the 
paper of Akaike [ 11 where  a Markovian realization of a 
Gaussian process is provided, whose state space is constructed 
using the  future of the process. 

Definition 1.2: 5, is splittingover the past if 5, C 8,. 
If 5, is splitting over the  past  then  (1.5) can be rewritten as 

P ( A  I 8,) = P ( A  I 5,), v A € 9, (1.7) 

and we see that 5, contains all the relevant information  about 
the past 8, which is needed to  determine  the  probability of 
future events  in ys. 

There  exists  a  minimal splitting u-field over the  past.  To see 
this,  consider the u-field induced by all random variables 
P ( A  I 8,) with A varying over ?js, 

9, = u { P ( A  I a,), A E 9,). (1.8) 

Since all P(A I 8,) are ?,-measurable 

P ( A  I 8 , ) = P ( A  I 9,), V A  €9, (1.9) 

and  in  fact 9, is the smallest u-field for which  this property 
holds. 9, is (essentially) unique  moduloP-null subsets. 

The following properties of 9, are almost  immediate. 
Proposition 1.3: a) All sub u-fields of 8, which are “greater 

than” 9, are splitting,  i.e., . 

3, 2 5,1 9, implies P ( A  I 8,) = P ( A  I 5,), V A  E 9’ 
(1.10) 

and vice versa. b) 9, includes what past and future have in 
common, 

9, 2 fl93, (1.11) 

and  for all B E 9’ n 8,, P ( B  I 9,) is either equal to 0 or 1 
(zero-one law). c)  The  intersection of any  collection of u- 
fields splitting over the past is again splitting. 

Property  a) follows directly  from  the definition of 9, and 
(1.9);  c) is a trivial consequence of a), and b) is proved in 
.McKean [ 171. Q.E.D. 

The  notion of a splitting u-field has  deep connections  with 
that of sufficient u-field known in statistics.2 It  is not possible 
to  go into details here,  but  the  connection should  already be 
selfevident from  the  fact  that  our search for a  minimal  split- 
ting field is nothing else but a data  reduction problem. 

By (1.9),  the two conditional  probability measures P(* 1 $3,) 
and P(* 1 9,) coincide over (a, 9’). Thus  a  minimal  splitting 
field 9, represents the smallest sub u-field of 3, providing 
exactly  the same amount of information  about  the  future 
paths of the process (u t ) ,  as 8, (in  other words, 9, has the 
same meaning as a  minimal sufficient u-field). 

yesian context,  the two ideas are seen to  coin- 
properly rephrasing the  theory of  sufficient 

cide [ Z O ] .  

Notice also that  the above is the  fundamental idea at  the 
roots of Nerode’s construction [ 181 in the deterministic 
theory. 

For a Gaussian process, the  conditional law P(* I 8,), on 
%’, depends upon  the past  only through  the family of con- 
ditional  expectations E ( y ,  I s,), t 2 s .  This property under- 
lies the following basic fact. 

Proposition 1.4: In the Gaussian case, the minimal  splitting 
u-field is induced by the family of conditional  expectations 
E ( y ,  I 8,). t > s ,  i.e., 

9, = u { E ( y ,  I 8,), t > s } .  (1.12) 

A  proof can be obtained by paraphrasing McKean [ 17,  pp. 

Let us define the Gaussian space3 H (  y,), as the closure in 
L2(S2,8, P) of the linear span over the  random variables 

344-3451. 

E ( u ,  I 8,) t 2 s, 
- 

~ ( Y , ) = s p { ~ ( y f I % , ) ,   t > s ,   i = l * * *  m}. (1.13) 

Of course, we may construct a  whole  family of such spaces, 

Let us consider H (  Y,), T 2 s. Then,  for  any  random variable 
corresponding to each s E T.  

x, E H (  9,) we have 

E ( x ,  I 93,) = E(x, I 9,). (1.14) 

In  fact,  (1.14) is true  for  the generators E(yf I B,), t > 7, 
since 

E ( E ( y f  I 8,) I 8,) = E ( y f  1 %,)=E(y f  1 9,) (1.15) 

by  (1.9), and 

E(yf I 9,) = E ( E ( y f  I 8,) I 9,) (1.16) 

because of 8,2  8,1 9,. 
We come now to  the  fundamental result of this  section. 
Theorem 1.5: For each 7 2 s ;  the minimal  splitting field 

9, is conditionally  independent of 8,, given 9,. In  other 
words 

P(r I 8,) =P(r I T,), v r E T, (1.17) 

or,  what is the same E(p, 1 8,) =E(p, I 9,) for  any  random 
variable q, in L2(a2, 9,, P). 

Proof: Actually, the  theorem is an immediate conse- 
quence of (1.14). Consider the Gaussian space of (centered) 
%,-measurable random variables H(8,). For  any x, E H (  9,), 
fs E H(8,)  we can write 

E(x7f.v 1 9s)  = E [E(x,fs I 8s) I 9s1 
= E [ E ( x ,  I !?,)f, I ?,I 
= E ( x ,  I 9,) E(f, I 9,) (1.18) 

but [ 19 p. 281 this implies that 9, and 8, are  conditionally 
independent given 9,. Q.E.D. 

Theorem 1.5 says that  the family of minimal  splitting u- 
fields ( y t : ) , E T  enjoys a Markovian property. Again, it is 
interesting to  notice  that a similar result was proved in the 
theory of sufficient u-fields by assuming a special structure 
for  the  conditional law (belonging to  the so-called “expo 

t o  Neveu’s  monograph [ 191. 
)For the  fundamental  facts  about Gaussian spaces, we refer 
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nential family”  which  includes Gaussian distributions)  but 
independent of observations [ 221 . 

The splitting field 9, is a “coordinate free” representation 
of the  state of the process at  time s. Since the idea of state 
in system theory is customarily associated with real numbers, 
we should discuss how  one could give a numerical  pamm- 
eterization of 9,. As there may be many  such parametriza- 
tions,  our first concern will be to select the  more efficient 
ones. 

Definition 1.6: A family of $,-measurable real random 
variables ( X ; ,  * * * , x,“), N <= x : : ( n ,  $,, P)p R consti- 
tutes a parameterization of 9, if the family (x:, i = 1 - * N )  
induces i?,, i.e., 

u {(x:, i =  I ; * *  ,N)} = 9,. (1.19) 

Condition  (1.19) says that  the X:, i = 1 * - * N ,  have to be 
constant  exactly over the  atoms of 9, (the smallest  subsets of 
52 in 9, which  are different  from 9). This suggests the possi- 
bility of defining an equivalence relation over 52 whose equiva- 
lence classes coincide with  the  atoms of 9,. Then  the (x f ) ,  
would  be  a complete system of invariants for this  equivalence 

As for  the choice of a coordinate system, the process of 
parametrizing 9, is inherently nonunivocal.  Indeed,  for  a 
given parametrization, we can construct  infinitely  many 
others.  The way to  do this is described by the following 
proposition  (which is a standard  statement of measure theory). 

Proposition 1.7: Let X C  RN be  the image set of the 
family ( X ; ,  * ,x,”) and  the trace over X of the Borel 
u-field $ N  over RN; then a family of %,-measurable random 
variables (zf , - e ,  zf), zf:(52, $, P) + R with image set 
X’ C RM and a-field X ’  = $M f7 X‘ is another parametriza- 
tion of 9, if and  only if there exists  a  measurable  bijectivity 
(a o-isomorphism) ~p mapping (X, X )  onto (X‘, r ‘ )  such  that 

[201. 

. .  
2; = cp’(xf, - * ’ , x ! ) ,  i =  I ;**  , M. (1.20) 

Definition 1.8: A parameterization is said to be canonical 
if it can be reduced (by a-isomorphism) to  one  with painvise 
independent random variables. 

Let ( X ; ,  * - ,x ,” )  be a  canonical parameterization  with 
independent  random variables. Then no one of the x: can be 
expressed as a function of the  others and  hence  eliminated. 
In fact, if we could  express,  say, x i  as  a function of x:, * - * , 
x,  3 
N 

x; = $ ( x : ; . . , x y )  (1.21) 

with $ a Borel function,  then, obviously, xf would  be d e  
pendent  on x,’ * - * x,” (in the probabilistic  sense) and moreover 

u { ( x f ) } ~ a   { ( x i ,  i = 2 ; * * , N ) )  (1.22) 

which means,  that 9, can  be induced  by a smaller family than 
( x ; ,   x : ;  e -  ,x?) .  This property is preserved under u- 
isomorphism. 

Proposition 1.9: We can find canonical parameterizations in 
H (  P8) (i.e., constituted  by Gaussian random variables). 

Proof: Take  a complete  set of linearly independent ele- 
mentsinH(9,),xf,i=1,2;..,N,(N(=). Then,by( l . l3 )  

for  allt 2 s .  By(1.23) 

P,=u { ~ ( y f I  B,), i =  1 * * . m , t > s }  

C o ( x j ,  j = l * * * N }  (1.24) 

and since each xi is ?,-measurable 

Y,>a { x i ,  i =  1 * - * N } .  (1.25) 

These two relationships  show that (xf  -x,”)  is actually 
a parameterization of !?”. 

On the  other  hand, a complete system of linearly  indepen- 
dent  elements of a  Hilbert  space can be orthogonalized. The 
orthogonalization is expressed  by  a  measurable  mapping which 
is easily seen to  define a bijective transformation. 

Notice now that  orthogonal  elements  in H(9 , )  are indepen- 
dent  by Gaussianess, and so we get the conclusion. Q.E.D. 

We might wonder  whether a more efficient  parametrizatio 
exists if we allow random variables other  than Gaussian. 
For  example, we can find canonical parametrizations in 
L2(52, ?,, P) (this  notation is abbreviated to L2( 9,) in the fol- 
lowing), ie. ,  with  “nonlinear”  transformations of Gaussian 
variables. Do these  parameterizations have fewer elements 
than  the “linear” one?  The answer is NO. 

In fact, consider A (b), the algebra generated  by the con- 
stant mapping 1 and the  elements of H (  9,). A ( y,) is dense in 
L2(?,) [ 19, p. 1431 and can be constructed  starting  from 
generators (xf - - x!) forming a complete  orthogonal 
system  in H( 9,). A (9,) cannot be generated  by “less than 
N” generators since this would imply  that  at least one ele- 
ment in (x: - * x?) can be  expressed as a  polynomial  in the 
others. But  this contradicts  independence. Thus Proposition 
1.9  defines the  “natural” class of state variables for  our 
realization  problem. 

Since the  scope of this  paper is to examine realizations witF 
a  fmite-dimensional state  space, we state this here as an as- 
sumption, with the  intention  to discuss it in  Section 111, 
where we will  give the corresponding conditions  on  the covari- 
ance  kernel of the process. 

Assumption I .lo: H(Y,)  is finite dimensional for each s E 
T. 

We can now describe the t ime evolution of the family of 
minimal splitting fields by  means of the  “stochastic process” 
Xy = (x: * * X,N) ,ET,  whose random variables are  constructed 
by taking, at  each  instant t ,  a  canonical parametrization of 
9, (Le., a basis in  the finite-dimensional Hilbert space H(f’r)). 
We stress that, by Proposition 1.7,  these parameterizations  are 
merely  defined up to an arbitrary nonsingular transformation 
of the  state space X,. 

An obvious  consequence of Theorem 1.5 is the following. 
Proposition 1.11 : If we define  the  stochastic process X, = 

(x: - x?), t E T by taking  a basis in H( 9,) at  each  instant 
of time t E T, then X ,  is a Markov process over {a, (&), P} 
with  instantaneous  state space (X,, X , )  

X,=RN, X , = $ N ,  N=dimH(9,)  (1.26) 

and positive definite variance matrix P ( r )  

P ( t )  = [ E  xf X ~ I  iZl . . . N .  (1.27) 
j =1  . . . N 

Given an arbitrary choice of basis (x: * x,”) .in H( y,), 
we can also express the generating  family (E(y :  I $,), i = 
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1 . * . m , t > s ) a s  

N 
E ( y f  I 8,) = hii( t ,  s) xf, i = 1,  * , m (1.28) 

for all t 2s. If  we collect  the  coefficients hii( t ,  s) into a  m X 
N matrix H ( t ,  s), then  (1.28) assumes a  more compact  form 

j = 1  

E ( y ,  1 8 s )  = H ( t ,  X) X,, t > X. (1.29) 

This factorization of E ( y ,  I 8,) could also have been derived 
directly  from  the  splitting  property E ( y ,  I 8,) = E ( y t  I 9,) = 
E ( y ,  1 x,), of which it represents  a “coordinate  dependent” 
version. 

Proposition 1.12: Every vector [E  X, for which 

H ( t , s ) f = O  v t > s  (1.30) 

IS necessarily the  zero vector. 
Proof: Since H (  7,) is the smallest Gaussian space contain- 

ing all random variables E ( y f  I %,), i = 1 * * * m, t > s, no 
vector u in H (  !?,) different  from  zero can be orthogonal to 
every E ( y j  1 8,). On the  other  hand, if some E EX, has the 
property  (1.30),  the vector 

(1.31) 

whose coordinates are given by 7) = P - ’ ( s ) [  is orthogonal  to 
~ ( y f  I 8,), i = 1 * * m, t > s. In fact 

= hii( t ,  s)[j (1.32) 
i 

which is zero  for all i and t > s  by assumption. Hence u has 
all coordinates  equal  to  zero  and  consequently [ = 0. Q.E.D. 

We remark that  the  proposition just proved asserts that  the 
N columns, hl ( e ,  s), - * - , h ~ ( - ,  s), of H ( * ,  s); hi(*,  s):(s, +-) + 

Rm are linearly  independent (Rm-valued)  functions. 
For t E T we may express yr as  a  sum of orthogonal compe  

nents 

Yr = ELY, I 8,) + W t  (1.33) 

where W r  is a Gaussian random variable orthogonal  to (inde- 
pendent  of)  the past H(8,). It  represents the  “part of yt” 
which is  not coupled  with 8,. Moreover, sinhce E ( y ,  I B j )  E 
H (  !?r), there,, exists  some m X N matrix H ( t )  for which 
E ( y ,  I 8j) = H ( t ) x ,  with respect to some basis x j  in H (  Tr). 
Thus (1.33) can be rewritten as 

A 

yr = H ( t )  X t  + W y .  (1.34) 

Putting s = t in (1.29)  and comparing with  the preceding 
formula, we see that H ( t )  = H ( t ,  t ) ,  if the basis is the same, or 

&t) = ~ ( t ,  t )  T ( t )  (1.35) 

for some  nonsingular (N X N )  matrix T ( t )  in  the general case. 
Definition 1.1 3: If there  exists  a Markov process x j  in 
{a, (!?I,), P }  with  instantaneous  state space (X,, x,), (Xj a 
finite-dimensional  Euclidean  space) such  that  the family of 
conditional laws P ( *  I a,), s E T, relative to a Gaussian process 

(yr ) tET and  to  an increasing family of u-fields ( 8 r ) r ~ ~ ,  
can be  factored  according to  the diagram 

(X,, X,) 
that is, if 

P ( A  I 8,) = ?,(A, xs), V A E 3’ (1.37) 

for some  (Gaussian) transition probability P,(A,  [) on 
( ~ ‘ x X , ) ,  then we say that  the triple 

A 

{x,, ( X A ) ,  k ,  , 9 1 9  s E T (1.38) 

is a realization of y relative to  the family ( B j ) .  
Then: 

i) the o-field induced by x,, 5,, is necessarily splitting over 

ii) the  conditional mean E ( y  18,) has  a representation of 
the  past; 

the  form 

E ( y ,  I8,)=~(t,s)x,, v t > s  (1.39) 

with ( H ( t ,  s)), t >s, (m X N )  matrices; 

of the process X, plus  “noise,” i.e., 
iii) we can write Y t  as a  sum of an instantaneous  function 

Yr = H ( t )  Xt + Wr (1.40) 

where W r  1 $r. 

The  justification of the above statements is conceptually 
Fther simple and will be omitted. We also remark that a 
P,(*, l )  satisfying (1.37)  is uniquely  defined as soon as 
E ( y ,  1 8,) can befactored in theform  (1.39). This means that, 
the possibility of assigning a factorization of the  conditional 
means E ( y ,  I 8,) of the  type  (1.39) ishequivalent to  the exist- 
ence of (Gaussian) probability laws P,(., [) on 9’, [ E X,, 
satisfying (1.37) V [ xs(o). 

Indeed, by  taking P J . ,  [), defined  by the covariance kernel 

A(t ,  7) - H ( t ,  s ) P ( s ) H ’ ( T ,  s), P ( s )  =  EX,^', (1.41) 

for t ,  7 > s (here A is the covariance of y),  and mean 

5 u t ( w ) a , ( d w , I ) = H ( t , s ) h ,  R t > s  (1.42) 

we may easily check that  (1.41)  and  (1.42) coincide with  the 
(conditional) covariance and mean of P(* I 3,). 

Therefore,  any realization (1.38) uniquely  defines  a factor- 
ization of the  type  (1.39) and vice versa. 

We may  hence  legitimately call also  the  triple 

{xs, (X,, x,), W(t, s))r>sI, s E T (1.43) 

a  realization o f  ( y , )  relative to ( B j ) .  

said to be 
Definition 1.14: A realization of ( y j )  relative to (at)  is 

i) reachable at  time s, if x, is a  canonical  parameterization 
of the  induced  splitting field 5,; 

‘9(93 is the  set of all probability measures over (a, 9.3. 
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ii) Observable a t  time s, if H ( t ,  s)[ = 0 for some [ E X, and right and left  discontinuities,  i.e., the u-fields 
all t 2 s implies that = 0. 

Remarks: Since there  is a positive probability  for  the values 
of a Gaussian random variable to fall into any given Borel sub- 
set of R with positive Lebesgue measure, the image of the 
mapping x,:(S2, $,, P )  +X, with xf E H(5, )  is a  vector sub- 
space of X,. Its dimension  equals the  number of independent 
components of x,. Thus if a  realization is reachable at time s, 
x, is onto  as in the  deterministic  theory. 

Observability at time s means that  the mapping E * P,(., E) 
is one to one; Le., for  each law determining the  future evolu- 
tion of the process, there  corresponds exactly one value of 
the parameter e. This  intuitively agrees with  the,following 
property, consequence of ( 1.12). 

Proposition 1.15: For  any realization {x,, (X,, x,), 
( H ( t ,  S))r> ,}, which is observable at time s, x, is a  paramet- 
rization of the minimal splitting field 9,. 

The proof can be obtained  from ii) and (1.39),  by reversing 
the arguments used in  the proof of Proposition 1.12. 

Summing up Propositions 1.1 1 and  1.12, we have the final 
result of this section. 

Theorem 1.16: Every Gaussian process satisfying assump 
tion  (1.10) has a  realization  which is both reachable and ob- 
servable at each instant of time s € T.  For  such a minimal 
realization 

h 

{ Ps, ( i s ,  rs), (g(t, S ) ) t >  SI, s E T (1.44) 

x^s is a  canonical parameterization of the minimal splitting field 
9,. Any two minimal  realizations can be obtained  one  from 
the  other by means of a  (nonsingular) transformation of basis 
in H(9, ) .  

11. GENERALIZED HIDA-CRAMER REPRESENTATION 
Let us consider any increasing family of u-fields (f3r)rET. 

As we already noticed,  the process (yr)rET can be split up 
additively 

y r = Z r + W t ,  t E T  (2.1) 

into  the  sum of a component Zy = E ( y r  1 8,) which is 8,- 
measurable  and  a component Wy = Y r  - Z t  independent of 
!&. In this section, we shall deal  only with  the  part  of (yr) 
coupled with (Br). Notice that 

u { z , ,  s<t}L$r ,  V t E T  (2.2) 

so we may, without loss of generality, assume that  the u-field, 
incuded by the original process (yr) up  to  the time t ,  is a sub 
u-field of Br for all t and  forget about  the process ( W r ) .  

Our main concern will be to derive a kind of representation 
of the  “input” family (Br) by  means of a process with  orthog 
onal  increments  (the innovation  process of (!&)). We shall see 
that this can be done  for  any family (Br) in an essentially 
unique way. Moreover we shall exploit this representation  for 
expressing ( Y t )  as the  output of a causal linear dynamical sys- 
tem driven by the above innovation process representative of 
(%I. 

This representation generalizes the so called Hida-Cramer 
representation [ 13 1 ,  where  a process (yr) is considered evolv- 
ing in time as a function of its own past. 

The behavior of the family (Br) as a function of time is im- 
portant  in  what follows. At  a point t E T, (3,) may have both 

$ r - =  V %, Br, Bt+= n 3, (2.3) 

may all be different. In order to work  with a  more manage- 
able object, we will modify (Br) in  such a way as to obtain a 
right continuous family. We define 

8r=n B,, (2.4) 

s< r s> r 

s> r 

in this way % r 1 8 r ,  and (9 r) has right limit equ? to % r  
everywhere. We shall always work with  the family ($  r) here- 
after, and this will dispense us from  the use of the  hatted 
symbol. 

Let us take any  bounded interval ( t o ,  t l  ] C T and define 
the Hilbert spaces’ 

H = H(%, 1 0 H(Bro (2.5) 

Hr =H(Br) 0 H(Bro), t o  < t < t l  . (2.6) 

We recall that Hr is the Gaussian space of all gr-measurable 
random variables independent of 8,. Then Hr C H  for all 
t < t l  and we may  define  a  family of projection operators 
from H onto Hr 

Pr :H- - - - tHr ,  t o  < t < t l .  (2.7) 

The family ( P r )  is constructed  in  such a way that 

i) Pt is right continuous  on t o  < t < t l  ; 
ii) lim Pr = 0 (the  projection over { 0 ) ) ;  

iii) Pr, = I  (the  identity). 

These properties are standard consequences of the right 
continuity of (8,) (actually iii)) is true by definition). 

(Pt)ro < r <  rl is a so-called resolution of the  identity over H. 
Any resolution of the  identity defines, in an unique way,  a 
spectral  measure P defined on  the Borel field over [ t o ,  t l  1, 
with values that  are  projections over subspaces of H. The de- 
fining  relationship for P is the  natural  one, i.e., 

t + ro 

P ( ( a , b l ) = P b -   P a ,  t o  < a < b < r l .  (2.8) 

Let us consider the  bounded self-adjoint operator 

A =J0” s dP,. (2.9) 

As  we know,  the  spectrum of A ,  u(A) coincides with  the 
support of the  spectral measure P (the  complementary iF 
[ t o ,  t l  ] of the  union of all open sets having 0 measure, see 
e.g., Halmos [ 121). Moreover,  each jump  point  for Pr in 
[ t o ,  t ] is an eigenvalue of A .  These properties can be inter- 
preted in terms of u-fields (Br). 

a) Any point t E [ t o ,  t1 ] for which the  information flow is 
strictly increasing, i.e., 

3r-h C %t+h (strict inclusion) (2.10) 

for all h > 0, belongs to the  spectrum. 

(A point of jump t is such  that Br- # %r). 
b) Every point of jump for (a,) is an eigenvalue of A .  

If HI is a Hilbert  subspace of H then H, H 8 H, is the ortho- 
complement of HI in H, i.e., H = H, @ H, . 
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Suppose A is a cyclic  operator in H.  Then  there  exists some 

Sp { A ” z ,  ~ > o } = H  (2.11) 

z is called a cyclic vector for A .  For  any cyclic z ,  condition 
(2.1 1 ) implies that 

z E H for which 

- 
sp { P , z ,  to < t   < t l }   = H .  (2.12) 

Formula  (2.12) has a very important probabilistic meaning. 
Let us define  a stochastic process ( z , )  on [ t o ,   t l  ] by putting 

Z t  = P t z ,  to < t < tl . (2.13) 

Then ( Z t )  is a right  continuous  orthogonal  increments  pro- 

In fact, 
cess spanning  the  Gaussian  space H .  

E(z t  - ~ 8 ) ~ s  = E(P(s ,  t ]  z ’ *  P,z) = 0 (2.14) 

shows that ( z , )  has orthogonal  increments and formula  (2.12) 
that ( Z t )  generates H .  

The variance function of ( Z t )  is 

F ( t )  = E Z ;  = (Ptz ,   P tz )  = (Ptz, Z )  (2.15) 

(we use probabilistic and vector space symbols jointly in order 
to stress the probabilistic  meaning of the  latter)  and coincides 
with  the  distribution  function of the measure 

p z ( A )  = ( P ( A ) z ,   z ) ,   A :  Bore1 setin [ t o ,  t l  1 .  (2.16) 

The  support of pz is precisely the  support of the spectral 
measure P (this is a classical argument:  for  any  open A ,  p z ( A )  = 
0 - P ( A ) z  = 0, but P ( A ) z  = 0 implies P ( A )  = 0 since P ( A )  
A “ z   = A ” P ( A ) z  and ( A n t )  span the space). Thus since ( Z t )  
jumps a t  t if and only if F ( t )  jumps  there  [7 p. 4251  and has 
zero  increment  in  the same  intervals as F ( t ) ,  we conclude  that 

i) ( z , )  jumps  exactly  at  the  jumping  points of (3,); 
ii) ( z , )  has a strictly increasing variance (i.e., it is noncon- 

stant)  for all t E o(A),  Le., iff the family (Br) is strictly 
increasing. 

Since H is spanned by the vectors (A”z ,  n = 0, 1 , 2 ,  .) we 
can show that  any x E H can be represented  in an essentially 
unique was as 

x = cp(A)z (2.17) 

where cp E L 2 ( p z ) .  By definition of cp(A) as Jcp(s) dP, and 
(2.17), we can also get the  representation of x as a  “stochastic 
integral” 

t l  

x = lor1 d s )  dP, z =lo d s )  dz, .  (2.18) 

(Of course the last member  in  (2.18) can also be defined di- 
rectly by means of a classical procedure [ 7, p. 4261 .) 

If the vector x in (2.18) belongs to  the subspace Ht then 
P,x = x and 

PtX = Jot V ( S )  d z ,  = lor’ c~(s) d z ,  = X (2.19) 

so that Ifi cp2(s) d p z  = 0 which implies cp(s) = 0, p, - a s .  for 
all s > t .  Actually, it  is more  accurate to denote explicitly 
the kernel function cp corresponding to x E H, as cp(t, s). By 

the last remark, cp(t, s) = 0 ,  s > t .  As we have seen, the repre- 
sentation in (2.18), Le., cp, is unique (in L 2 b z ) )  for a given 
cyclic vector z .  But there  may be many cyclic z’s. 

Let us take two of such vectors z l ,   z 2  and  denote by ( z l  ( t ) )  
and ( z 2  ( t ) )  the corresponding orthogonal  increments processes. 
Then,  for  any to < t G t l  

r 
~1 ( t )  = q ( t ,  S) dz2 (s) (2.20) J0 

and since P,zl ( t )  = z 1  (7) V t 2 7 ,  we have 

ioT 9 0 ,  s) d z z ( s )  = (~(7, s) d z 2 ( s )  (2.21) loT 
which implies cp(t, s) = (~(7, s) as.  V t 2 7 2 s 2 t o .  

In conclusion, cp does not  depend  on t .  Since for  any cyclic 
z supp p z  = supp P, all measures corresponding to  cyclic vec- 
tors are equivalent (i.e., mutually absolutely continuous). 
This implies 

cp(s) > 0, pzz - as. (2.22) 

By repeating the above argument with z2 in place of 2 1 ,  

we can easily show that l/cp(,)> 0 pz, - as .  and  square  inte- 
grable (with respect to pzl).  

We summarize all the above discussion in the following 
proposition. 

Proposition 2.1: Let ($ t )  be  any increasing right continuous 
family of a-fields on to  < t G t l  and  let A in (2.9) be a cyclic 
operator. Then there exists an orthogonal  increments process 
(Zt) t ,<t<t ,  with  the following properties. 

a) ( Z t )  is a process continuous in  mean  square from  the  right, 
generating the family $ , 8 $ ;o, t 2 t o .  

b) ( z , )  has a strictly increasing variance at the  point s iff 
($,) is strictly increasing at s. In particular ( z , )  has  a jump at 
times iff the family ($,) jumps  at s. 

c) Every random variable x E H,, t l  2 t > to has  a unique 
representation as 

t 

x = Io cp(t, s) dz ,  (2.23) 

with dt, *) E L Z ( p z ) ,  q ( t ,  s) = 0,s > t .  
d) Every other  orthogonal  increments process ( W t ) t , < t < t ,  

with property a) (and  thus with the  properties b) and  c)) 
can be obtained  from ( z , )  by  means of an invertible “scale 
factor” q 

t 

W t  = lo q ( s )  dz,  (2.24) 

with q E L 2 ( p z ) ,  q ( s )  > 0, pz - as., l / q  E L z ( p , ) .  The 
(equivalence class of)  orthogonal  increments process(es) ( z t )  
( ( W t ) )  is the innovation process of (3,) over the interval 

A  cyclic operator has  a spectrum of multiplicity  one [ 121. 
In general, the self-adjoint operator A will have multiplicity 

( t o  G t G t l ) .  

8, with  respect to  the Gaussian measure P, and ii) 8, V B2 = 8. 
‘ I f  3, c 3, then 8, & 8 8 8, is such  that, i) 8, is  independent of 
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greater than  one.  The  intuitive meaning of this  fact is that 
the family (% t )  has a “rate of growth” with time, which is 
faster than  that corresponding to  the family of a-fields in- 
duced  by  a single (Gaussian) orthogonal  increments process. 
In  other words, to carry the  information flow corresponding 
to (Bt), one  innovation process is not enough and we have to 
use many.  The  minimal number M of orthogonal  increments 
processes, possessing property  a) of the preceding Proposition, 
is said to be the multiplicity of the family (8 r ) .  It can be 
shown that M coincides  with the spectral  multiplicity of A .  
There is no place to give details here;  the  fundamental  mathe- 
matical facts can be found in [8, vol. 11, p. 9091.  The  sto- 
chastic interpretation is more  or less classical if for (8 t ) ,  we 
take  the past of the process ( y t ) ,  i.e., the family defined  by 
(l . l)(see 161, [131,  [15l,and  [211). 

Theorem 2.2:  For any  right continuous family of o-fields 
( g t )  on to < t < t l  , there  existsM(<m)orthogonal  increments 
(Gaussian) processes ( z :  , * - * , z r )to< r < t ,  , such  that M 

Al) Each ( z : )  is right continuous in mean square and 

u { z : ; n =  1 * * * M , ~ Q t } = 8 t 8 % t ~  (2.25) 

Az) ( z i  , . a ,  z y )  are mutually  orthogonal, i.e., E z f z f  = 0 if 
for all to < t < t l  . 

i # j f o r a l l t , s E [ t o , t l ] , a n d  

M 
H , = ~ { z ~ ; n = l . . . M , s < t ) = $ ~ { z ~ ; s < t }  

n=1 

M 
= $ H,(z”). 

n=l 

B) The Borel measures p n ,  n = 1 * * M ,  defined by 

(2.26) 

(2.27) 

can  be ordered by absolute  continuity,  in  the sense that pl >> 
pz * >> p ~ .  More precisely, if we denote by S, the  support 
of pn, we have the inclusion property 

s u p p P = s 1  ZsZ ‘ * * > s M .  (2.28) 

the  symbol P j o y t ;  then  the difference yr  - P j o y t  belongs to 
H ,  for all t > t o ,  and  in  virtue of Theorem 2.2, we can write 

M t  
Y t  = ProYr + lo cPn(t, 8) d z :  (2.31) 

1 

where all elements in the  sum are pairwise orthogonal. 
If y is vector  valued, say Y t  = ( v i ,  * - * , y y )  then  the pre- 

ceding formula is valid for each component separately. We 
may introduce  vector  notations 

w(t, s) = [cp$)(t, SI], i = 1 * * m ,  n = 1 * * M  (2.32) 

and rewrite (2.31) as 

t 
Y r  = P r o y j  + W ( t ,  S) dz, ,  t 2 t o .  (2.33) I. 

This formula is the  fundamental result of this section.  It 
says that every Gaussian process  can be represented as the out- 
put of a causal linear dynamical system whose input is the 
(generalized) innovation process of any increasing family  of 
o-fields  with  respect to which  the  process is adapted. 

The  random variable yr  appears as the sum of two  (orthog- 
onal)  terms. 

i) A “free evolution”  term Proyt  =E(y , l fBto) ,  t 2 t o ,  which 
depends only upon  the past history (i.e., the  8ro-measurable 
part) of the process. 

Let a = inf { t ,  t E T }  be the  left  endpoint of the interval T .  
Then 8, may or may not be the trivial o-field (52, @}. If it is, 
then lim Proyt = 0 for all t ,  and the effect of the  “remote 

past” over the present is zero. Taking  limits in (2.33) as to 3- a ,  
we obtain y t  expressed as a stochastic integral (a  “forced re- 
sponse”) over the  entire past history of (% t ) .  If $ a  is not 
trivial then,  two possible situations may occur: 

1) a > -00. In this case we extend ( $ t )  to all t E (-=) a )  
by putting  it  equal  to  the trivial o-field. The  extended family 
turns  out  to  introduce a jump  at a,  which implies that Z t  has a 

t o l a  

This means that z i ,  i = 1, - * , M have increasing variance at 
t i m e s i f f s E S j , i =  1 .-*M. 

C) Every random variable x E H ,  has a unique representa- 
tion as the  orthogonal sum in H t  

jump at the same  time. By means of this  transfer of singulari- 
ties, the  problem is reduced to  the previous one and the “free 
evolution” term disappears  as soon as we take to < a in (2.33). 

2) Q = -=. The preceding trick fails to work  and we have 
to take  into  account  the  part of yr which depends  upon  the 
infinitely  remote past. This contribution, i.e., the  projection 

cPn(t,s) d z : ,  t o  Q t < t i  (2.29) P-myr = E ( y r 1 8 - , )  is commonly referred to as the “determin- 
istic part’’ of y (in case 3r = 8 t ) .  

where cp,(t, a )  E L2(p,)  t o  Q t Q t l ,  q n ( t ,  s) = 0, s > t V n  = ii) A  “forced  response”  individuated by  the impulse  re- 
1 ... I I  sponse matrix W ( t ,  s) (which is zero for s > t) .  There is a 

t 
q n ( s ) d z : ,   n =  1 ‘“M, to  < t < t l  (2.30) 

dwr = Q(t)  dz j .  (2.34) 

This indeterminacy disappears if we agree to “normalize” (Zt) 
in some way. 

with qn E L Z ( p n ) ,  qn > O  &,-as. and l/qn EL2(Pk),Pk being 
the Borel  measure  (eauivalent to un) induced by the variance In* STATE EQUAT1oNs A SToCHAsTIC PRocESS . -  . ..- 
of w : .  The  representation  theory we have just developed is a  very 

Let ( y t ) t E T  be any Gaussian process adapted to (!Bt) (i.e., natural  starting  point  for discussing the  structure of input- 
yr is Bj-measurable for each t € T). We take  the  projection of state  and  state-output  equations which were obtained  at a 
y over H ( 8  to ) for all t > t o .  Let us denote this projection by rather  abstract level in Section I. 
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In the following, we shall always make  the assumption that 
we can choose 8, as the trivial u-field (Le., ( Y r )  is a  “purely 
nondeterministic” process). The assumption is not  an essential 
one  and can be removed at  the price of additional  complexity 
in  some of the formulas. As a rule, N will always denote a 
(finite)  natural  number.  Let us first recall the following funda- 
mental  property of the  representation (2.33). 

Proposition 3.1: For all t 2 s 2 t o ,  the following formula 
holds: 

By (1.29), the first member of (3.1) can be written as 
H ( t ,  s)xs, with x, = (x,’ * - * x:) random variables spanning 
H(9, )  C H( $s). This  last  inclusion  relationship implies that 
xs has a representation 

xs = ios r(s, 0) d z ,  + Pt,xs (3.2) 

for some matrix r of dimension (N X M )  whose ijth  entry be- 
longstoL’(pj),j= 1 * . * M f o r a l l i = l  e . . ~ .  

By comparing  (1.29), (3.1),  and (3.2) we get immediately 
the factorization  property 

w(t, 0) = H ( t ,  s)r(s, 0) (3.3) 

which holds (a.s. with  respect to U )  for all t 2 s 2 u > a.  

is easy to see that  the linear operator (N X N matrix) 
If for xs we take a  canonical parametrization of y, then it 

P ( ~ )  =EX& = r(s, U )  dF(u)r’(s, U )  (3.4) 
Jas 

is positive  definite. The last symbol  on  the right  side  repre- 
sents a (N X N )  matrix with entries 

Positive definiteness of P(s)  entails  that  the rows of r(s, *) 
have to be  linearly independent as elements of the  function 
space ~ ‘ ( ( a ,  S I ,  P I )  X * * X ~ ’ ( ( a ,  SI ,  pM). 

Theorem 3.2: The Gaussian process ( y t )  admits a  minimal 
realization  with  respect to ( B t )  which at time s has dimen- 
sion N ,  if and  only if the kernel W ( t ,  u)  can be factorized as 
W ( t ,  u) = H ( t ,  s)I’(s, u) for all t 2 s 2 u > a,  where 

H ( * ,  s) : [s, m) --f R m X N  is a matrix whose column  functions 

are  linearly independent 
r(s, .) : (a, SI +RNX’ is a matrix whose rows 

[rll(s, - rlM(s, 91, . - , wNl(s, e), - . , rm(s, 9 1  
(3.7) 

be long toL’ ( (a , s ] ,~ l )X  ... XL’((a,s],p~)andarelinearly 
independent as members of this  space. 

Proof: The necessity was discussed before the  state- 
ment of Theorem  3.2.  Sufficiency follows straightforwardly 
by defining x, through  (3.2)  (with t o  = a )  and by check- 
ing that  the resulting factorization of E ( y r l $ s )  which is 
of the  form  (1.29) satisfies the observability  and  reachability 
conditions. Q.E.D. 

The above  result is the  stochastic analog of Kalman’s factor- 
ization  criterion [ 231. 

Clearly, our result is not  stated in  such form so as to allow 
for a  direct  check of the  condition.  It  is, in fact, plausible to 
think  that  the original data describing the  interaction of ( y r )  
and ( B r )  will, in general, be in the  form of a cross covariance 
kernel rather  than a Hida-Cramer representation (which  has to 
be obtained via “spectral factorization” procedures). 

Let (ut )  be any process inducing the increasing family ( $ r )  
(there may be infinitely many such processes, e.g., the innova- 
tion of ($ t )  is one) and  taking values in RP. We assume that 
the (m X p )  cross covariance kernel 

A(t, 7) =E(ytui), t ,  7 >  (I (3.8) 

constitutes  the original description of our problem. 
Proposition 3.3: The process ( Y r )  admits a  realization  with 

respect to ( $ t )  which  at time s has minimal dimension  equal 
to N if and  only if A(t,  7) factorizes according to 

A(t,  7) = H ( t ,  s)Q’(s, 7), t 2 s 2 7 (3.9) 

where 

the  matrix H ( * ,  s) has N columns which are linearly indepen- 
dent  (Rm-valued)  functions over [s, m); 

the  matrix Q(s,  e )  has N linearly independent (RP-valued) 
column  functions over (a ,  SI . 

Proof: Let 

u t = [ * U ( t , u ) d z , , ,  t > a  (3.10) 

be the Hida-Cramer representation of (ut )  with  respect to 
(9 t ) .  Since ( U t )  induces (8 t )  the kernel U(t ,  U )  = [u&,  u)] 
has the following canonical  property [ 131 : any vector f in 
L 2 ( ( a ,  S I ,  pl) X - * * X L’((n,  S I ,  p ~ )  for which 

~ t U ( f , ~ ) f ( ~ ) d z , , = O ,  V t E ( a , s ]  (3.11) 

is necessarily the zero vector, i.e., fi(u) = 0 a.s. &, on (a,  SI ,  
i = 1 . - * M  (this  means  that  the rows of U(s,  .) span the  space; 
an immediate consequence of the  spectral  representation 
theorem). 

Necessity is proved as follows. Let us take a minimal factor- 
ization of ( Y t )  of the  form  (1.29).  Then 

= H ( t ,  s) r(s, U )  dF(o)U‘(.r, u), t 2 s 2 7 (3.12) 

which is valid for ail 7 in (a,  s j . The integral in  the last mem- 
ber of (3.12) is defined in a similar way as in (3.4); it is an 
N X p matrix which we shall denote by Q’(s, 7). All that we 
have to show is &at the  columns of Q(s, -) are  linearly inde- 
pendent (RP-valued) functions  on (a ,  s ]  . 

IT 
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Suppose  they  were not, Then we could  find N nonzero real 
numbers,  say (ai, j = 1 * ‘ N )  such that 

where q i ( s ,  e) denotes  the jth column of Q(s, *). 

(3.13)  can be explicitly  rewritten as 
Taking into account  the  definition of Q(s, -), we see that 

f o r a l l i = l - . . p a n d f o r a l l - r E ( a , s ] .  Inshor t , there i sa  
linear  combination  of  the  columns of r’(s, *), let us call it f ,  
for which (3.1 1) is true.  Then f has to  be the  zero  element  in 
L 2 ( ( a ,  s], p1) X * * X L 2 ( ( a , s ] ,  p ~ )  which is contradicted by 
Theorem  3.2. 

Sufficiency: In  Section  I, we proved that E(y,l%,) has  a 
factorization  of  the  form  (1.29)  which is both reachable  and 
observable.  Let Psyt = M ( t ,  s)xs be  such  a  factorization  with 
M ( t ,  s) of dimension ( m  X N ‘ ) .  

Repeating  the preceding  calculations, we end up with  a  fac- 
torization of A(t, 7) of the  form 

A(t,  7) = M ( t ,  s)R’(s ,  7), t > s > 7 (3.15) 

where R‘(s, e) is (N’  X p )  and, by reachability,  has N’  linearly 
independent  columns  on (a ,  s ]  . 

If  we compare  (3.9)  and  (3.15),  by  standard  linear  algebra, 
we see that  the  columns of H(. ,  s) and M(., s) must  span iso- 
morphic  vector  spaces  and  hence be related  through  a  non- 
singular  transformation. 

Thus N = N ‘  and 

M ( t ,  s) = W r ,  s)T(s) ,  V r > s  

R’(s, 7) = T-’(s)Q’(s ,  T), V 7  Q s (3.16) 

for  some  nonsingular T(s). Q.E.D. 
We believe that  the above  result is important in that  it shows 

that  a “time-varying” state space is possible  and  provides  some 
insight into  it. 

Corollary 3.4: Suppose A(t ,  7) factorizes ‘%mifody”, i.e., 

A(t, 7) =A(f)B’(T) ,  t > 7 (3.17) 

where A ( . )  and B ( - )  are  matrices with N linearly independent 
columns on every  subinterval  of (a, OD) (this  happens,  for  ex- 
ample, if the  entries of A and B are  analytic  functions of t ) ;  
then  the dimension of a  minimal  realization is N and is inde- 
pendent of time. 

In  fact,  for all s, we may put H ( t ,  s) = A ( t )  for t > s and 
Q ( s ,  7) = B(T) for 7 < s. 

In  Section  I, we proved that  the process (x,) defined by 
taking a basis in H( 9,) at  each  instant of time is Markovian 
with  respect to  the family ( g t ) .  This  means that  the  condi- 
tional  expectation E(x,l%,) has to depend  upon x, only, and 
moreover,  by  Gaussianess,  this  dependence  has to be linear, 
i.e., 

E(x,l%,) = @ ( t ,  s b s  (3.18) 

for  some  (in  general,  nonsquare)  matrix @ ( t ,  s). 
Proposition 3.5: @(T, s), defined  for all 7 > s by  formula 

(3.18), is a  homomorphism  of X, into X, satisfying the  fol- 

lowing conditions: 

@ ( f ,  7)@(7,  S) = @ ( f ,  S), f > 7 > S (3.19) 

@ ( t ,   t )  = I ,  t E T (3.20) 

H ( t , s ) = H ( t , 7 ) @ ( 7 , S ) ,  t > T > S  (3.21) 

r(7, U) = ~ ( 7 ,  s)r(s, u), 7 > s > u (3.22) 

the last relationship  holding a.s. on (a,  s 1 . 
decomposition of x7 

Proof: The first assertion  follows  from  the  orthogonal 

x7 =I7 F(7, U) d z ,  + (P(7, s)xS (3.23) 

and  by  taking  scalar  products  with  vectors  of If( 9,). 

(3.20)  follow from 
The  Properties (3.19)-(3.22) are fairly obvious,  (3.19) and 

E(x,l%,) =E(E(x,l9,)l%,) = E ( @ ( t ,  7)~7l%js) (3.24) 

(3.21) is a  consequence of 

P$Y, =E(E(Y,l%T)I%$) = w ,  7)@(7, SIX, (3.25) 

and the usual  relationship PSyt = H ( t ,  s) x, (where we took  the 
same basis as in (3.25)). 

Finally,  (3.22)  follows  by  comparing 

E(x~l !Bs)=~sI ’ ( t ,  o l d z , ,  t 2 s (3.26) 

with 

E ( x r l % , ) = b ( f , s ) x j s = @ ( f , r ) ~ ’ ~ ( s , u ) d z u .  (3.27) 

Q.E.D. 

One  consequence  of  the  preceding  relationships is the  pop- 

a 

ular  factorization  of  the  “impulse-response”  kernel as 

W ( t ,  u) = H ( t ) b ( t ,  u)G(u) (3.28) 

where G(u) is a (N X M )  matrix  with  the  property  that r(s, 
u) = @(s, u)G(u) for all s > u. 

Up to now we have not been  worrying too  much  about  a 
precise  characterization  of the Markov process (x,). Now, to 
go any  further  in  the derivation  of state  equations, we have 
to assure  ourselves that  the “Markov  semigroup” @ ( t ,  s) is 
“strongly  continuous.” As we will recognize in a  moment 
this is equivalent to  the right  continuity  (in mean  square) of 

Thus we are  compelled to  find  conditions ensuring the pos- 
sibility of choosing  the bases x, in If(%,) for  each  time t ,  in 
such  a way so as to  obtain a right continuous  dependence on 
time. 

Proposition 3.6: There  are  (minimal)  factorizations  (3.9) 
where H ( * ,  s), s E T ,  intended as a  family of matrix  functions 
on t > s, is right  continuous V s E T ,  i.e., 

(x,). 

lim H ( t , s + h ) = H ( t , s ) ,  v t > s  (3.29) 
h+O 

if and  only if for  each t E T there is a  choice  of  basis x, in 
H( 9,) which  defines  a right continuous Markov  process.  More- 
over, if (3.29)  holds,  then  the  two-parameter  semigroup @ ( t ,  
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s), defined  by (3.1 8), is right continuous at the diagonal t = s 
of T X T and hence nonsingular V t in a  right  neighborhood of 
each points E T .  

Proof:  Let us fix t > s, then E(y t [$ , )  considered as a 
function of s on ( a ,  t )  is a  right continuous  stochastic process 
since %, is. 

From  the  factorization 

valid for all t > s + E and  from  (3.29) passing to the limit (in 
mean square) as E 4 0, we conclude  that x,+€ + x,. 

Conversely if ( x t )  is right continuous, by a similar argument, 
we easily conclude  that  (3.29)  holds. 

In order  to prove the second part of the  theorem, we reason 
as follows. By right continuity of (Xt), there has to exists 
some h > 0 such  that dim H( 9t) is constant  and  equal  to dim 
H( 9,) for all t in [s, s + h ) .  Let t vary over the interval [s, 
s + h ) ,  where dim H( Y t )  is constant.  It is trivial that if (X,) is 
right continuous  at s, then  the covariance P ( t ,  s) = E(xtX1) is 
right continuous  at t = s and thus 

P ( t ,  s) = @ ( t ,  s )P( s )  -P(s )  as t 4 s. (3.3 1) 

Since P(s )  is nonsingular, (3.3  1) implies 

l im@(t,s)=Z (3.32) 
t h  

that is, @ ( t ,  s) is (right continuous  and) nonsingular  in  some 
right neighborhood of s. By (3.19), we can  show that @ ( t , s )  
is actually nonsingular V t in [s, s + h ) .  Q.E.D. 

Let us agree to call a  realization of ( y t ) ,  with  respect to a 
right continuous family (%?), right continuous, if H ( t ,  s) can be 
chosen (in  its equivalence class defined modulo right multipli- 
cation by  a  nonsingular matrix T(s)) at each  time s, in such 
a way as to satisfy (3.29), and (consequently) x, can be 
selected for each s E T in such a way as to form a  right contin- 
uous Markov process. We have the following rather obvious 
proposition. 

Proposition 3.7: Right continuous minimal  realizations  are 
equivalyt  under right continuous changes of bases in H( Y t ) ,  
i.e., if H ( t ,  s), 2, and H ( t ,  s), x, both  define minimal realiza- 
tions, then 

B(t, s)2, = H ( t ,  s)xs, t 2 s > a  (3.33) 

V t and s if and only if 

k(t, s) = H(t ,   s )T( s )  

2, = T-’(s)x,  (3.34) 

with T ( * )  a right continuous (nonsingular) matrix  function. 
Hereafter, we shall assume that  the cross  covariance A(t, 7) 

has  a  minimal (i.e., of the smallest possible dimension) factor- 
ization of the  form  (3.9) which 

i) has  a finite dimension for all s E T ,  
ii) is right continuous (Le., satisfies (3.29)) for all s E T.  

Then we may show  that T can be partitioned  in  at  most a 
countable  number of subintervals [ t k ,   t k + l ) ,  k = 0, 1, 2 * * * 

with a = t o  < t l  < t2  * - * where the dimension of the minimal 
state  space, dim H( Y t ) ,  is constant  and has  a finite  nonzero 
jump  through each point t k .  

Over each  subinterval [ t k ,   t k + l ) ,  @ ( t ,  s) is square,  and  non- 
singular for all values of t and s, ( t  2 s). Of course @ depends 

on  the choice of basis on H( 9,) and H( 9,). Let us examine 
what kind of dependence we have. 

Let x r̂ = T(t )xr  and 2, = T(s)x,  be different bases on H( 9 t )  
and H( 9,). By the Markov property 

E(2tI 9,) = $ ( t ,  s ) ~ ,  (3.35) 

as in (3.18),  and, by  some  simple  algebra, we see that  the 
transformation rule for @ ( t ,  s) is expressed  by 

8(t, s) = T - ’ ( t ) @ ( t ,  s ) ~ ( s )  (3.36) 

where, of course, fk+l  > t 2 s 2 t k .  
Note  that, if we take 

T ( t )  = @ ( t ,  t k ) ,  T(f) = @(s, t k )  (3.37) 

where t and s are as before, we define a right continuous 
change of basis by  means of which @ ( t ,  s) transforms  into 
the  identity  matrix.  Thus we have the following, 

Proposition 3.8: By a right continuous change of basis we 
can obtain 

@ ( t ,  s) = z (3.38) 

over all subintervals of T of constant dimension.  Correspond- 
ingly, we may  express Y t  as a function of the Markov process 
(x,) as 

(3.40) 

where G k ( . )  and H k ( ’ )  are suitable  matrices. 

(3.21)  and  (3.22)  for a @(T, s) reducing to the  identity. 
Proof: The  proof relies on  the special form  taken by 

By taking tk+l > 7 2 s 2 tk  we observe that 

H ( t , s ) = H ( t , T ) ,  v 7 , s  in [ f k , f k + l )  (3.41) 

r(7, u) = r(s, u), V 7, s in [ t k ,   t k + l )  (3.42) 

for all t and u, 
These formulas tell us that H ( t ,  s) does not depend on s and 

likewise r(s, u). H(., s) and r(s, a )  propagate  with the variable 
s by simple restriction  or extension of the respective domains. 
If  we let 

Gk((T) = r(s, a), fk+l > s  2 f k  (3.43) 

and 

H k ( f )  = H ( f ,  s), fk+l  > s 2 f k  (3.44) 

then  (3.43) defines G k ( u )  on (a,  t k + l )  with the same analytical 
properties possessed by r(S,  u). The  function H k ( * )  is also de- 
fined  by (3.44) over [ t k ,  + =), in  particular, if t € [ t k ,   t k + l )  
we have H k ( t )  = H ( t ,  t ) .  Hence (3.39)  and  (3.40) follow. 

Q.E.D. 
Remarks: If  we assume N = dim H( Y t )  constant everywhere 

over T ,  then  the above representation  holds  for all times,  and 
we can compute  the cross covariance in (3.12)  without worry- 
ing about  the  proper choice of time domains. It is immedi- 
ate  that we can get a “uniform”  factorization  for A(t, 7) 
of the  form  (3.1 7). In particular, the  restriction of A ( * )  
to [s, 00) can  be identified  with H(*, s) which now has  constant 
rank as s varies for  the obvious  reason that it is independent  of 
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s. Thus  Corollary 3.4 actually gives a necessary and sufficient 
condition  for  the  state space to be time invariant. 

Notice that (3.39) can be given the differential form 

d x t  = G k ( t ) d z t ,  f E [ t k ,   t k + l )  (3.45) 

which has to be associated with an “initial condition” x tk  re- 
sulting  from the evolution over the (k - 1)th interval. Here 
the  temporal evolution of the  state ( x t )  is that of an  orthog- 
onal  increments process obtained  from  the  innovation ( z t )  by 
a very simple kind of transformation. 

This very particular kind of Markov process can be  trans- 
formed  through changes of basis on H( Y t ) .  

What we have to  keep in mind, however, is that if we de- 
sire a  differential equation  for x t  we have to take  “smooth” 
transformations T ( t ) .  

Theorem 3.9: All state-space descriptions of ( y t )  which  are 
of the  type 

d x ,  = F(t )x ,d t  t K ( t ) d z t  (3.46) 

(3.47) 

with F ( t )  square  and  measurable  and K ( t ) ,  J ( t )  matrices of the 
same dimension as G k ( f )  and H k ( t )  in (3.39),  (3.40), can be 
obtained  from  this  representation  by means of an absolutely 
continuous change of basis T ( t )  on M Y t ) ,  t E [ t k ,   t k + l ) ,  and 
moreover, 

F ( t )  = k ( f ) T - l ( t )  

J ( f ) = H k ( t ) T - l ( f ) .  (3.48) 

Proof (sketch): Indeed, if we perform  an  absolutely con- 
tinuous  transformation of basis of the  form .̂ r = T ( t ) x t ,  then 
we end up  with a differential  equation  for 2t of the  type 
(3.46) plus a state-output  equation like (3.47) where the new 
matrices  are precisely given by (3.48). 

Conversely, we may solve (3.46) on [ t k ,   t k + l )  and  obtain an 
explicit  expression for xt  involving the  “fundamental  matrix” 
solution of 

dqt ,  s) = F(t )@(t ,  s) w s ,  s) = I .  (3.49) 

Then we use T ( t )  given by (3.37). Q.E.D. 

IV. CONCLUSION 
We feel that  our  approach to the  stochastic realization  prob- 

lem is the  natural  one, since it enables us to develop our  for- 
malism in a quite general time-varying setting. 

.It should also be pointed  out  that  the realization of a  process 
with  respect to its  own past o-field ( % t )  (starting  from an auto- 
covariance kernel) is just a special case of the general problem 
considered here. This special realization leads to  the so-called 
innovation  representation of y t  [ 1 1 I .  

Actually,  the raison d’&e for  the work reported  here is to 
develop the probabilistic  framework for  studying  the problem 
of equivalence  between  realizations constructed with  respect 
to different o-fields. This  should  provide further insight into 
various “recursive estimation” problems. 
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