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Abstract 

In this paper we study stochastic realization of stationary processes with exogenous inputs in the absence of feedback and 
we briefly discuss its application to identification. In particular, we derive and characterize the family of minimal state-space 
models of such processes and introduce a very natural block structure which is generically minimal. This model structure leads 
very naturally to ‘subspace’-based identification algorithms which have a simpler structure of those existing in the literature. 

Zusammenfassung 

Dieser Artikel untersucht stochastische Realisierungen von stationaren Prozessen mit exogenen Eingangen in Abwesen- 

heit von Riickkopplungen. Weiters werden Anwendungen auf die Identifikation kurz diskutiert. Im besonderen wird die 

Familie minimaler Zustandsraummodelle solcher Prozesse abgeleitet und charakterisiert, und es wird eine sehr natiirliche 
und minimale Blockstruktur eingefiihrt. Diese Modellstruktur Rihrt auf nattirliche Weise zu auf Unterraumen basierenden 
Identifikationsalgorithmen, die eine einfachere Struktur als die in der Literatur vorhandenen Algorithmen aufweisen. 

RbumC 

Dans cet article nous Ctudions la realisation stochastique de processus stationnaires avec des entrees exogenes dans des 
conditions d’absence de retour vers l’entree et nous discutons brievement ses applications au probltme de l’identification. 
En particulier, nous derivons et caracterisons la famille des modtles d’espace d’etat minimum pour ce type de processus, 
et introduisons une structure par blocs tres naturelle, qui est generiquement minimale. Cette structure de modeles conduit 
tres naturellement h des algorithmes d’identification bases sur les “sous-espaces”, qui ont une structure plus simple que ceux 
existant dans la littirature. 
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1. Introduction 

A number of recent papers [ 12,19,29-321 concerns 

identification of state-space models by geometric 
methods based on ideas from stochastic realiza- 

tion theory. In these so-called ‘subspace methods’, 

the state space of the model is first constructed by 
geometric operations on the vector spaces generated 

by the observed data (projection of the future onto 

the past, etc.). Singular-value decomposition tech- 

niques are then applied to find well-conditioned bases 

in the state space which generically correspond to 

balanced canonical forms for the state-space model to 
be identified. Using the state estimates constructed in 

this way the system matrices can then be computed 
directly in balanced canonical form thus avoiding the 

difficult structure-selection problem inherent in the 

classical approaches to multivariable identification. 
Now, while subspace-methods identification of 

‘purely stochastic’ systems (i.e. of signals or time 

series) seems to be reasonably well-understood, see 

e.g. the book [3], the influential paper [29] and the 

subsequent discussions in [ 161, for signals which are 

driven by ‘inputs’ or, better, exogenous variables, 

the picture looks still a bit unsatisfactory, as various 
algorithms are given in the literature [20,32,30], 
some of which require a rather complicated analysis 

to motivate [30]. The assumptions on the input signal 
are different (sometimes assumed to be a white-noise 

process, a ‘deterministic’ known signal, etc.) in par- 

ticular the sharp distinction made in the literature 
between ‘deterministic’ inputs and other ‘stochastic’ 

signals in the model may be puzzling for the user. 
How is he going to decide in practice if an input 
signal is ‘stochastic’ or ‘deterministic’? 

What seems to be needed is an abstract geometric 
procedure for solving the stochastic realization prob- 
lem with inputs in a probabilistic setup (similar to 

what is available in the literature for processes or time 

series, see e.g. [13, 14,16, 171). This is a conceptual 
prerequisite to subspace-based identification methods 
and it seems to us that only a better understanding of 
realization theory would eventually make possible the 
understanding of and a comparison between the differ- 
ent methods and algorithms existing in the literature. 

Modeling of processes influenced by exogenous in- 
puts, or in more precise terms, geometric realization 
theory of processes with exogenous inputs, is not dis- 

cussed in the literature in a satisfactory way. So far 
only the white-noise input case is treated in [28] but 

the setting of [28] is very much coordinate-dependent 

and not geometric in spirit. 

The purpose of this paper is to provide some ba- 

sic ideas for realization of processes with exogenous 

inputs and to show how this theory translates very 
naturally into subspace-based identification methods 

which are simple and easy to understand. The theory 

and the proposed methods are based on the assump- 
tion of absence offeedback from y to u which some- 

how is equivalent to the declaration of ‘determinstic’ 

input signals. The motivations and a precise statement 
of the feedback-free condition are discussed in Sec- 

tions 2 and 3. 
In Sections 4 and 5 we derive by a ‘canonical’ ge- 

ometric procedure the family of minimal state-space 

models of such processes and introduce a very natural 

block structure which is generically minimal. Using 
this model structure the identification problem with 

exogenous inputs can be split into two completely sep- 

arate subproblems of identification of two, suitably de- 

fined, ‘stochastic’ and ‘deterministic’ components of 

the signal y. The algorithms resulting from this model 

class have therefore a convenient modular structure 
which is not evident in any of the papers appeared so 

far. 
The stochastic identification subproblem is ex- 

actly of the standard ‘time-series’ type (no inputs) 
and can of course be attacked by, e.g., the method 

of [29]. The other ‘deterministic’ identification prob- 
lem can be solved by the ‘deterministic’ methods 

presented in [20,32] or suitable variants of them 
which will be briefly discussed at the end of this 

paper. 
In the last section some hints for a possible numer- 

ical implementation are given. 

1.1. Background and notations 

Letu:= {u(t)}andy:= {y(t)}bejointlystationary 

(wide sense) discrete-time vector processes with zero 
mean and finite variance of dimensions p and m and 
let % and ?P denote the (infinite-dimensional) Hilbert 
spaces of scalar finite variance random variables ob- 
tained first by taking all finite linear combinations 

{C aLu(tk) I ak E Rp, tk E Z} and {C +(tk> I ak E 

(w”, tk E z}, respectively, and then closing the two 
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vector spaces with respect to the norm induced by 

the scalar product (t, q) = E{ t;~}, where E{.} de- 

notes mathematical expectation. The spaces f& and 

Y are commonly denoted by @Zii{~(t) 1 t E Z} and 

span{y(t) 1 t E Z}. They contain all linear functionals 

(i.e. all linear scalar statistics) of the ‘history’ of the 
processes u and y. The infinite past and future sub- 

spaces at time t are defined as 

after subtracting the projections onto X. Since c1 = 

Excr + Ex’ a, (1.1) is actually the same thing as 

(E%,fi - Exp) = (E%J?) = 0 

for c( E d, /3 E 9?. (1.2) 

The following proposition is taken from [ 131. 

Proposition 1.1. Thefollowing statements are equiv- 
alent: 

Yf- := span{y(s) 1 s < t}, 

and 

(i) dlL+lX, 

(ii) $?LJzIX, 

(iii) (dVX)_L~~~ 

!&+ :=span{u(s)~s~t}, 
(iv) E.“pvx/I = Ex/I for p E B, 

(v) (~vx)exI% 

Y; := span{y(s) 1 s 2 t}, 

respectively. Note that, according to a widely accepted 

convention, the present is included in the future only 

and not in the past. 

(vi) E-‘/3 = E~“Exfl for p E 99. 
(Here V 8 X is the orthogonal complement of 
X in %?). 

Normally, all linear operations on the data will be 
time-invariant. By stationarity we could then fix the 

present instant of time to an arbitrary value say t = 
0 and then propagate everything in time by the ac- 

tion of the shzjit operator o, where o(Caku(tk) + 
CbLy(tk)) := Ca$(tk + 1) + Cbky(tk + 1). By 
stationarity, the shift is a norm preserving linear oper- 
ator which can naturally be extended to the space of 
all joint linear functionals (statistics) of u and y. 

2. Feedback-free processes 

Following Granger [lo] and subsequent work by 

Caines, Chan, Anderson, Gevers etc. [4,2,7,8], we 
shall say that there is no feedback from y to u if the 

future of u is conditionally uncorrelated (which is the 
same as independent in the Gaussian case) from the 
past of y given the past of u itself. In our Hilbert space 

setup this is written as 

In what follows, the symbols V, + and 6E will denote 
vector sum, direct vector sum and orthogonal vector 

sum of subspaces, the symbol d’ will denote the or- 

thogonal complement of the subspace d with respect 
to some predefined ambient space, usually Y V Y. 

The orthogonal projection onto the subspace & will 
be denoted by the symbol E(. IA!) or by the short- 
hand Ed. The notation E(zI&) will be used also when 

z is vector-valued. The symbol will then just denote 

the vector with components E(zk I d), k = 1, . 

&; iYt- I cl/-. (2.1) 

From condition (iii) in Proposition 1.1, written for 

d = at’, the feedback-free condition is seen to be 
equivalent to Y~-IYl%- and hence, from (iv), to 

E[Y; I@]= E[Y; I%[], so that 

The notation dL%]X means that the two subspaces 
d and g are conditionally orthogonal given a third 

subspace X, i.e. 

E[y(t)l%] = E[y(t)142f;1] for all t E Z, (2.2) 

which yields the well-known equivalence between ab- 

sence of feedback (from y to U) and causality of the 
estimator E[ y( t ) I%!]. This equivalence is discussed for 

example in [25]. 

(~(-E~a,p-E~/3)=0 foraE&‘, BEG. (1.1) 

It also follows from the equality between causal and 
non-causal estimates that 

When X = 0, this reduces to the usual orthogonal- At) := v(t) - ~bW%~J = v(t) - Eb(tWl 
ity &LB. Conditional orthogonality is orthogonality = Eb@)l@l, (2.3) 
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so that ys(t)-L% for all t, i.e. the ‘causal estimation er- 
ror’ is uncorrelated with the whole history of the input 
process U. We shall call the process ys the stochastic 
component of y (this corresponds to the ‘stochastic 
component’ ys of [30]). Similarly, the stochastic pro- 
cess y, defined by the complementary projection 

yu(t) := ‘qy(t)l~l, t E a 

is named the deterministic component of y. 
To avoid confusion with time indexing in the no- 

tations we shall denote by @ the Hilbert subspace of 
T V Y linearly generated by { ys(t) 1 t E Z} and by 
Y the Hilbert subspace of Y linearly generated by 
{vu(t) 1 t E Z}. Note that not only we have Y V % = 

@ $42, but in virtue of causality, 

for all t, where Yl- is the past space of the process ys at 
time t. We stress that the stochastic and ‘deterministic’ 
components in the decomposition 

r(t) = Ys(t) + YU(l) (2.4) 

are completely ancorrelated, i.e. E[y,(t)y,(z)‘] = 0 
for all t, z E Z. 

If there is no causality (or equivalently if there is 
feedback from y to U) the very notion of ‘input’ loses 
its meaning since, as shown, e.g., in Ref. [7] the vari- 
able u(t) is then also determined by a dynamical rela- 
tion involving its own past and the ‘output’ process y 
which is now playing the role of an exogenous vari- 
able to determine U. Correspondingly, as it has been 
argued in several places in the literature, identifica- 
tion in the presence of feedback (and of course in the 
absence of any other specific information on the feed- 
back loop) is essentially equivalent to identification 
of the joint process [y’, u’], in the sense of time-series 
identification. 

3. Stochastic realization 

State-space modeling of the joint stationary process 
(y, U) is a well-understood problem which has been 
treated in several places in the literature. The geo- 
metric approach is based on the idea of Markovian 
Splitting Subspaces. Any such subspace !Zt^, makes 
the joint past and future spaces Y(/I- V qtm V X; and 

Y*+ v Yf’ v XT conditionally uncorrelated given the 
present X, at time t, i.e. 

Y~-v~~-v~t^,IY*+v~~vx,fI~‘,. (3.1) 

This concept embodies the coordinate-free idea of 
a stochastic state space of the joint process in the 
sense that any state equation representation of the joint 
process corresponds to a Markovian splitting subspace 
and conversely, see e.g. [14]. 

To get models useful in identification, one should 
moreover look for state spaces which are minimal 
(i.e. of minimal dimension) and can be constructed 
from (in fact are contained in) the data space Y V %!. 

An important example of such a minimal Marko- 
vian Splitting subspace is the forward predictor 
space 

XT’- := EIYl+ V %$+IYt- V ?!I!-]. (3.2) 

This state space leads to state equations of the Kalman- 
filter type for (y, u), the well-known (forward) imro- 
vations representation. From the conditional orthog- 
onality (2.1) we get the following decomposition of 
the joint predictor space of (y, u). The justification is 
easy and will be omitted. 

Lemma 3.1. For a feedback-free process, the joint 
predictor space (3.2) is equal to the vector sum 

X;‘- := EIYt+lYr- V4Tdt-] V E[%!r+14?l-]. (3.3) 

Note that E[et’ l%t-] is the (forward) predictor 
space for the input process alone. This state space 
carries information only about the dynamics of the 
process u, which we are not interested in. In identi- 
fication, one is actually interested in obtaining only 
dynamic models of the ‘output’ process y expressing 
y(t) as a causal functional of past input and output 
values. 

Thus, we need to study realization of the output 
y with respect to the joint information flow Yt- V 

at-. This in turn means that we need to understand 
the structure of the state spaces (splitting subspaces) 
which make the future of the process Yl’ conditionally 
orthogonal to the available past information Y*- V 92-, 

see [22, 171. A natural candidate for this role is again 
the predictor space 2 Xt”- := E[Yt’IYt-V4?!-] which 

’ Note the different notation than in (3.2). 
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appears in the vector-sum (3.3). This is generated by 

the projections 

E[y(t + k) 1 ?Y- v at-1 = E[y(t + k) 1 @t- e3 e-1 

= E[y(t + k) 1 q-1 + E[y(t + k) 1 t2-] (3.4) 

for all k 20. We define now the predictor spaces 
j;,“- and 2I’/- for the stochastic and deterministic 

components y,, yU 

(3.5) 

where the symbols @ and C& refer to the stochastic 
and deterministic components of the process y. 

From the decomposition (3.4) we immediately have 
the following result. 

Lemma 3.2. For feedback-free processes the predic- 

tor space X, +I- satisjies the inclusion 

xfi- (-2:/- &$,f’-, 
I (3.6) 

where the orthogonal direct sum in the second mem- 
ber of (3.6) is a (in generalnon-minimal) Markovian 
splitting subspace for C&’ and CV- V +2-. 

The inclusion in (3.6) cannot in general be replaced 

by equality. For it can be checked in simple examples 
that for arbitrary subspaces d, 8, V the projection 

E[dlBI $ w] is not the same as E[dl98] $ E[&Qel%‘]. 
We shall not give here a formal proof of the last 

statement in the lemma since it will be evident later on 
that there are Markovian state-space models of y with 

state space the direct sum on the right-hand member 

of (3.6). This direct sum may however correspond to a 
redundant description of the process for other reasons 
which will be clarified in the next section. 

Recall that a well-known necessary and sufficient 
condition for ys to admit a finite-dimensional state- 

space model is that the relative predictor space J?:‘- 

be finite-dimensional. In fact fi := dim[J?T’-] will 

then be the dimension of any minimal state-space 

model of ys. The particular realization having as state 

space the predictor space fT’- will have the form 

xs(t + 1) = Ax,(t) + &e,(tX 

YJt) = GxAt) + e,(t), 

(3.7a) 

(3.7b) 

where e,(t) is the one-step prediction error of the pro- 
cess ys based on its own past @!-, i.e. the (forward) 
innovation process of y,. 

Proposition 3.1. The innovation of the process y, is 
the conditional innovation of y given observations 
of u up to the present time, i.e., 

e,(t) = y(t) - E[y(t) I 4~1, Y(S - 1); s Gtl 

= Y(t) - E[y(t) l@t,5, V q-1. (3.8) 

Proof. Follows from the chain of equalities, 

v(t) - E[y(t) w& v q-1 

= u(t) - Qy(t) lJ& @ @-I 

= (y(t) - E[y(t) IT;, 1 - my(t) Pm 

= Ys(t) - E[Ys(O + Yu(t) I%1 

= Ys(f) - E[Ys(Q l$l. 0 

This observation essentially settles the question of 

modeling the stochastic component. 

4. Realization of the deterministic component 

State-space modeling of the deterministic compo- 
nent y, may be based on the same principle of con- 

structing splitting subspaces for the future of the pro- 

cess y, and the past of the input process u as discussed 

in the previous sections. However this approach leads 
to state-space models which are driven by white noise 

and ‘include’ also the dynamics of the process u, which 
is not interesting for identification and we do not want 
to appear explicitly in the model. For example, it was 

shown in [22] that one may choose as state space for y, 
the predictor space ,??[@,+I%~-], but that this choice 
leads to an innovation model for yU where the state 

process is driven by the forward innovation process 
of U. This model in general includes as a cascade sub- 

system a state-space innovation representation for U. 

In order to construct (non-Markovian) state-space 
descriptions of yU driven directly by u and therefore 
not involving the particular dynamics of the input pro- 
cess, a generalization of the standard theory of stochas- 
tic realization is necessary. 
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We shall call a model of the type 

x(t + 1) =-4x(t) + Bu(t), (4.la) 

yu(t) = Cx(t) + Du(t), (4.lb) 

a deterministic realization of yU in terms of u. Mod- 

els of this kind in general have a state space of 
smaller dimension than those obtained by the standard 

(Markovian) stochastic realization procedure unless, 
of course, u is white noise. As usual a realization 
is called minimal if the dimension of the state vec- 
tor is as small as possible. For minimal realizations 
it must necessarily hold that (A,& C) is a minimal 
triplet. If A has all eigenvalues inside the unit circle 

(I&4)] < l), both x(t) and yU(t) can be expressed as 
functionals of the infinite past of U. For this reason 
realizations with this property will be called causal. 

In order to discuss geometric realization of yU in 
terms of u we shall now introduce a technical assump- 
tion of ‘sufficient richness’ of the input process which 
could probably be relaxed considerably without essen- 
tially affecting the validity of the results to be given 
in this section (except for some lack of uniqueness in 
the representation formulas). The assumption will per- 
mit however a straightforward derivation of the state- 

space formulas with a minimum amount of technical 
complications. 

Assumption 4.1. For each t the input space q admits 
the direct sum decomposition 

An analogous condition (namely al- n at' = 0) is 
discussed in [ 161 where it is shown that it is equiva- 
lent to strict positivity of the spectral density matrix 
of u on the unit circle, i.e. @,(ej”) > cl, c > 0, or to 
all canonical angles between the past and future sub- 
spaces of u being strictly positive (or, in turn, to all 
canonical correlation coefficients between past and fu- 
ture of the input process being strictly less than one). 
A slightly stronger version of this condition is found 
in [26, Chapter II, Section 71. 

The oblique projection of a random variable q E %! 
onto et_ along @;’ will be denoted by Z&+ [q]%J. 
Clearly, if u is a white-noise process, this is the ordi- 
nary orthogonal projection onto 9&-. 

The following two lemmas are instrumental for the 

basic geometric realization procedure presented be- 
low. 

Lemma 4.1. Under Assumption 4.1 there is a unique 
transfer function P’(z) = C,‘” Wkzek, analytic in 
{IzI > l}, such that 

h(t) = 2 6_ku@). (4.3) 

Proof. Clearly by Assumption 4.1 u is a purely non- 

deterministic process and since the past of y, is in- 
cluded in that of U, y, is also purely non-deterministic. 
It follows that I?(z) is just the transfer function of the 

Wiener filter yU(t) = E[y(t)l@~;,], namely, 

I@(z) = [@P(z)G(l/z)-T]+G(z)-l, 

where G(z) is the outer (or minimum-phase) spectral 
factor of !BU and the symbol [.I+ means ‘analytic part’, 
see e.g. [26, Chapter II]. It is evident that I@(z) is 
analytic and, because of non-singularity of QU on the 
unit circle, unique almost everywhere. 0 

We shall call a subspace X, c at- an oblique split- 
ting subspace for the pair ($‘, al-) if 

Elle:[Yu(t + k) I q-1 = qq[Ydt + k) I %I (4.4) 

for all k 20 and t E Z. Note that we could substi- 
tute y for y, in these expressions. The oblique pre- 

dictor space ?Z$- := I$:[@> 1 et-] is obviously 

contained in a*- and is oblique splitting. We shall see 
shortly that it is in fact a minimal oblique splitting 

subspace. 
Define the extended future space @ := @’ V 

oJ+i- 
f . 

Lemma 4.2. We have 

!&+ = ?Pt+ II at-, (4.5) 

moreover the direct sum decomposition 

@~=(@~n%-)+($+nq+) (4.6) 

holds for all t E 22’. 

This intersection representation extends an analo- 
gous result known for ‘orthogonal’ splitting subspaces 



G. Picci, T Katayamal Signal Processing 52 (1996) 145-160 151 

[ 13, 141. As shown in Appendix A, it actually holds 

in greater generality for an arbitrary causal oblique 
splitting subspace (and even for non-causal ones, pro- 

vided the input space is also properly extended as in 

[13, 141). Since the proof is a bit technical it will be 

deferred to Appendix A. 

The following argument shows how state-space re- 

alizations are constructed by a geometric procedure 
based on the properties of oblique splitting subspaces. 

Denote by G!& the p-dimensional subspace of %t 
spanned by the components of u(t). By Assumption 
4.1, 

and by Lemma 4.2 we can then write 

@L, n a&, = (@ult+, n 42- ) + (9& n %I. (4.7) 

Now pick a basis vector xU(t), say of dimension3 II 

in !E;“- and let xU(t + 1) be the corresponding vector 
shifted by one unit of time. The n scalar components 

of xU(t + 1) span @tf+, n a!,, and, since @‘:,, c @' 
(this condition is equivalent to markovianness of the 

splitting subspace in the classical geometric theory, 

see e.g. [13, Theorem 3.21) we have 

@;I na;)c%, 

so by projecting x,( t + 1) onto the two components of 
the direct sum decomposition (4.7) we obtain a unique 

representation of the type 

xJt + 1) =&x,(t) $&u(t). 

Similarly, since by the feedback-free property yU( t ) E 

af; 1, we have 

and by projecting yU(t) onto the two components of 
the direct sum above we immediately obtain the state- 

output equation 

vu(t) = &x,(t) + DIP(t). 

Note that the state process xv(t) of the representa- 
tion constructed in this way is stationary by construc- 
tion and purely non-deterministic as the past ?Z- is 

3 Here for the sake of illustration we assume that X,“- is finite- 

dimensional. 

contained in al-. In fact, since x”(t) is, like yu(t), a 

functional of the past history @, by Lemma 4.1 ap- 
plied to the process x,,, it follows that there must be 

an m x p matrix function F(z) analytic in { 1 z 1 > 
l}, with rows in the space Lg[@+, do/2rt] of functions 
square integrable on the unit circle with respect to the 

matrix measure @,(e j”) do/2rt, such that 

xU(t) = 
I 

+’ ejWtF(ejw)di. 
--E 

Here u^ denotes the Fourier transform (random orthog- 

onal measure) of the process U. Now, by substituting 

this into the state equation for x, derived above, we 
see, by uniqueness of the spectral representation, that 

F(z) = (zZ - A,)-‘&. Note that F(z) is rational and 

actually analytic also on the unit circle since poles 

of modulus 1 would prevent integrability of the spec- 

trum of xU, F(z)@,(z)F( l/z)‘, on the unit circle. On 

the other hand, given that Q,(z) has no zeros on the 
unit circle, there cannot be cancellations with the ze- 
ros of Q,(z) either. If the pair (A,, B,) is reachable, 

one easily deduces from the analiticity of F(z) that the 
eigenvalues of A, must lie inside the unit disk. Hence, 

IWU)I < 1. 

Theorem 4.1. Assume the joint spectral density of y 
and u is rational and that the input process satisJies 
condition (4.1). Then the oblique predictor subspace 

X’l- has finite dimension n^ and t 

(1) For any choice of basis vector xU(t) in Xt”-, 
there are unique matrices (A,, B,, C,, D,) with 
(A,, B,, C,) a minimal triplet, such that 

(2) 

xu(t + 1) =&x,(t) + &u(t), (4.8a) 

yu(t) = Gxu(t) + W(t). (4.8b) 

Moreover, the realization (4.8) is causal, i.e. 

Ii(A)1 < 1. 
The state space of any other causal realization 
of y, in terms of u has dimension not smaller 
than 6. 

In other words, X,“- is a minimal state space for 
realizing yU in terms of u. In fact, there is a unique 
(module similarity) minimal causal state-space re- 
alization of yU in terms of u and its state space is 

precisely X,“- . 
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Proof. That rationality implies existence of finite- 
dimensional realizations is too well-known to need 

a proof. In this case the statement follows triv- 

ially from the fact that the transfer function p 
is rational and hence has finite-dimensional de- 

terministic realizations. Any such realization with 
input the process u can be interpreted as a re- 
alization of yU and without loss of generality, 
the realization can be reduced to be causal, i.e. 
with IA(A) 1 < 1. The representation (4.8) has 
been derived above for an arbitrary splitting sub- 

space. Minimality follows from the following argu- 
ment. 

Assume that we have an arbitrary causal state-space 

representation of yU with state process x of dimension 

n and system matrices (A,& CD). From this model 
we obtain 

Y*(l + k) 
t-1 tik 

= 
c 

CA’+k-“Bu(s) + C CA’+k-“Bu(s) (4.9a) 
-cc t 

:= yu(t + k)- + yu(t + k)+ (4.9b) 

t+k 

= CAkx(t) + c CA’+k-SBu(s), k >O. (4.9~) 
f 

Now yU(t + k)- and yU(t + k)+ coincide with the 
(unique) oblique projections of yU(t + k) onto the di- 

rect summands in the decomposition (4.6). In fact, 
since the random variables { yU(t + k), k 2 0) gener- 
atethefuture~t~,theprojections{y,(t+k)-,k~O} 

generate exactly Xti’- . 
From Eq. (4.9~) in the last line above however it is 

seen that this subspace is equal to the space spanned 
by the (scalar components of) { CAkx(t), k 2 0) which 

are in turn contained in X, := span{xk(t), k >O}. 

It follows that Xt > Xt+‘- and hence dimxa 
dimx,. 

Note that the last argument given above shows that 
the state space Xt of any causal realization of y, in 

terms of u must contain X,“‘- as a subspace. There- 

fore, Xt”- is just the unique mimimal state space for 
y, contained in the past of u as claimed. 0 

5. The joint model 

From what has been said in the previous sections, 

it is clear that a general state-space description for 
the process y can be obtained by just combining the 
two separate state-space models for yS and y,. For 
example, the (forward) innovation representation is 

obtained by combining together (3.7) and (4.8), so 
that the ‘input-output’ innovation model of y is 

+ [J u(t)+ [:I es(t), (5.la) 

+&u(t) + e,(t). (5.lb) 

In this model the matrix [:] has the meaning of a 
steady-state Kalman filter gain and its particular block 

structure is just a consequence of the fact that the 
‘deterministic’ state subspace of the system (i.e. the 
subspace where only the last n^ state coordinates are 
non-zero) is unreachable for the driving white-noise 

process e, . This is equivalent to the kernel of the 
steady-state error-covariance matrix being composed 

of vectors of the form i . [I 
More generally, y can be described by a state-space 

model with the same parallel structure of (5.1) but 

with an arbitrary minimal stochastic state-space 8, in 

place of the predictor space _?:I-. As we have seen 
above there is just one minimal state space for the 
deterministic part of y. 

Models of this kind are naturally interpreted as 
state-space realizations of the familiar ARMAX- 

type ‘input-output’ relations y = W(z)u + G(z)e 
(here we have W(z) = D, + C,(zZ - A,)-‘& and 
G(z) = D, + C,(zZ - A,)-‘&) so often used in the 

identification literature. 4 
It may happen that, even if the realizations of the 

two subsystems (stochastic and deterministic) are 

4 It should be recalled that models of this type are meaningful 

only when the mutual correlation structure of u and e is specified 

explicitely. This is seldom done in practice. Sometimes u is de- 

clared to be ‘deterministic’ which can be interpreted as u and e 

being completely uncorrelated. This of course corresponds to the 
feedback-free case that we are treating here. 
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minimal, the joint model is not, as there may be loss of 

observability due to the presence of common modes 

in the dynamics of the two subsystems. This happens 

when the transfer functions W(z) and G(z) have com- 

mon poles and common corresponding eigenspaces. 

The block structure of (5.1) may then give redundant 

descriptions of the signals in certain particular cases. 

These cases are highly non-generic in black-box iden- 

tification and in practice one need not worry about 

this evenience. On the contrary, in certain problems 

one has a pirori some knowledge about the way the 

input or the noise enter in the system and there may 

be noise effects which one specifically wants to model 

as being subject to the same dynamics as the input. 

In these cases there is actually a need to use models 

which allow for common dynamics. 

6. Estimation given a finite data set 

So far we have been working assuming that the 

complete infinite history of the stationary signals [Y, U] 

was available to build the model. If infinitely long sam- 
ple data of [Y, U] were available it would be a relatively 

simple matter to translate the geometric stochastic re- 
alization procedures of the previous sections into ‘sub- 
space’ identification algorithms. But this is of course 

never true in practice where we are instead given only 
a jinite input&output data set 

{u(O), u( 1), +. .1 u(t), . . . > u(n), 

b(O)? Jo), . 9 y(t), > A~)~~ 
(6.1) 

and we are faced with the problem of recovering a 

joint stationary model of the type (5.1) from jinite 
input-output data. In this section we shall study the 
problem of recovering the joint model (5.1) given a 
finite data set (6.1). For clarity we shall first analyze 
this equation in an ideal probabilistic setup where the 

available data are random vectors. We shall take up 

the question of dealing with real (time-series) data in 
the next section. 

The data (6.1) generate the finite history subspaces 
of second-order random variables, 

%[0,r] := span{u(t))O<tdT}, 

CV,o,rl := span{Y(t)(O,<t<T}. 

Denote the orthogonal complement of %lO,rl in @lo,r] V 

++O,TI by q&-], SO that 

@[O,Tl @ qi,,] = qo,r1 v OJ[o,r]. 

As we shall see later on, the practical computation of 

+iTl 
matrix 

can be done by an LQ factorization of the data 

generating %!la,rl V 9Yp~j. 

Lemma 6.1. Let y,, be described by the deterministic 
realization (4.8). Then 

WY(t) I ~[OJII = E[YU(l) I ~![o,r11 := .iJt), (6.2) 

where j,(t) is described by the same state-space 
model but started at a difSerent initial state, namely, 

&(t + 1) = A&(t) + B,u(t), (6.3a) 

3,(t) = G,&(t) +&u(t), (6.3b) 

i,(O) = E]&(O) I @![o,r11. (6.3~) 

Proof. Follows from (2.4) by noting that yJt)_L 

a 1 V@[O,T]. 0 

It follows from this lemma that the determin- 

istic part of (5.1), namely the system matrices 

(A,, B,, C,, 0,) (in a suitable basis) can be identified 
by using standard deterministic identification proce- 
dure, of the type discussed say in [32, 191, based on 
the data {j,(t), u(t) 1 t = 1,2,. . . , T}. Once the sys- 
tem matrices are computed, the estimate of the initial 

statei, can also be reconstructed. 
The identification of the stochastic subsystem in- 

volves the projections of the output data onto the 

complementary subspace @&, namely, 

9,(t) := y(t) - E[y(t) I @[O,T]l, 0 6t d T. (6.4) 

Note that these random vectors can in principle 
be computed from the available data, in fact we 

have 

%J’l := span{j,(t)lO<t&T}. 

The following proposition shows how the projected 
data (6.4) relate to the ‘true’ stochastic component 

YS. 
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Proposition 6.1. Let j,(t) := yu(t) - j,(t) (the 
‘smoothing error’ ofyJt)), then (7.2) 

j,(t) = ys(t) + j,(t), 0 <t 6 T. (6.5) 

Proof. The proof is based essentially on the same ar- 
gument as in Lemma 6.1, for, from (2.4) by noting that 

ys(t) -L @ 1 ~[O,T], one gets y,(t) := ys(t) + vu(t) - 

~LYu(t) I %O,Tll = Ys(t) + J,(t). 0 

are practically independent of the initial time to and 
arbitrarily close to a bona-fide stationary covariance 
matrix sequence 

(7.3) 

Hence for finite data length, the projection y,(t) 
of the output on the complementary subspace %!$jrl 
does not coincide with the stochastic component ys(t), 
as it would instead have happened for injinite data 
length. The ‘ideal’ projection ys(t) is affected by an 
additional ‘smoothing error’ term y,(t) which depends 
on the error on the estimate of the initial state of the 
deterministic component, QO) := x,(O) -1,(O). It 
has the form 

y,(t) = &4;&(O), 0 Q t < T. 

This additional term is a source of difficulty in identi- 
fication of the stochastic part since if it is neglected it 
tends to produce a stochastic model of yS of a much 
higher dimension than the true order n”. Therefore, a 
preliminary step necessary for the identification of the 
stochastic component is to filter it out somehow. 

Under these assumptions on the data we can trans- 
late the stochastic realization constructions of the 
previous sections into geometric procedures based 
on manipulations of the observed input-output time 
series. Although these manipulations are quite stan- 
dard in the subspace identification literature, most 
authors seem to be unaware of the fact that there is 
a precise one-to-one correspondence which automat- 
ically translates the ‘abstract’ stochastic geometrical 
setting of stochastic realization into the ‘concrete’ 
linear-algebraic data processing setup of subspace 
identification. In this section we shall briefly re- 
view the basic ideas behind this correspondence. 
For clarity of exposition we intially assume that 
N = oc (so that the time series are actually doubly 
infinite). 

A detailed description of this prefiltering step would 
unfortunately require too much of a diversion from 
the main theme of this paper and we shall not present 
it here. For a succinct discussion we shall refer the 
reader to the forthcoming paper [23]. 

For each t E H define the p x co and m x 00 
matrices 5 

7. How to deal with real data 

u(t) := bt, hfl, %+2,. . .I, (7.4a) 

y(t) := [Yt, Yt+1, yf+?, . . .I, (7.4b) 

and consider the sequences u := {u(t) 1 t E h} and 
y := {y(t) 1 t E Z}. These sequences will play a very 
similar role to the stationary processes u and y of the 
previous sections. 

In practice, instead of random variables one has just Define the vector spaces Y and Y of all finite linear 

a collection of input-output data, combinations 

{~O,Ul,...,~I,...,~h}, {YO,Yl,...,Yt,...,Y~}, 

(7.1) 

@ := {xa;u(tk) ak E [w’,tk E z}, (7.5) 

with ut E HP, yt E IR”, measured during an experi- 
ment. We shall assume that the sample size N is very 
large and that the data have been preprocessed so as 
to be compatible with the basic assumption of (wide- 
sense) stationarity and zero mean of the previous sec- 
tion. More specifically, we shall assume that we can 
pick A4 large enough so that the time averages 

Y := {c aky(tk) ak E i%“, tk E z} . (7.6) 

Note that the vector spaces Y and Y are just the 
row spaces of the two families of semi-infinite 
matrices (7.4) or, equivalently, of the infinite Hankel 

5 The use of the same symbols used for the random processess 

u and y in Sections 1 and 2 is intentional. 
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matrices 

while of course Y V Y can be seen as the row space of 

the compound matrix :I constructed by stacking 
[ 1 

all shifted future tails of the observed data. This vector 
space of scalar semi-infinite sequences (rows) can be 
equipped with an inner product, which is first defined 
on the generators by the bilinear form 

(7.7) 

and then extended by linearity to all finite linear 
combinations of elements of Y V Y. This inner 
product is non-degenerate 6 if the block-Toeplitz 
matrix Tk, constructed from the covariance data 
{JO),n(l),..., /l(k), . . .}, is positive definite for all 
k [ 161. Note also that the limit does not change if in 
the limits of the sum (7.7) t = 0 is replaced by an 
arbitrary initial instant to, so that 

= (a’[;;;;:;] ,b’ [;i;‘+;;]) 
for all to (wide-sense stationarity). We also define a 
shif operator cs on the family of semi-infinite matrices 
(7.4), by setting 

&u(t) = a’u(t + I), t E z, a E Iwp, 

aa’y(t) = a’y(t + 1 ), t E Z, a E IWm, 

defining a linear map which is isometric with respect 
to the inner product (7.7) and extendable by linearity 
to all of Y V Y. 

6 This means (l,[) = 0 u t = 0. 

By closing the vector space Y V Y with respect to 
convergence in the norm induced by the inner product 
(7.7), we obtain a Hilbert space 7 Y V Y to which the 
shift operator rs is extended by continuity as a unitary 
operator. 

As explained in more detail in [ 161, this Hilbert 
space framework is isometrically isomorphic to the 
abstract ‘stochastic’ geometric setup used in the pre- 
vious sections. We can formally think of the observed 
time series (7.1) as ergodic sample paths of two jointly 
wide-sense stationary stochastic process II, y, having 
joint covariance matrices equal to the limit (7.3) of 
the sum (7.2) as M + co. Then, at least as far as 
first- and second-order moments are concerned, the 
tail sequences u and y defined in (7.4) behave ex- 
actly like the abstract counterparts u and y. In par- 
ticular, all second-order moments of the two random 
processes can equivalently be calculated in terms of 
the tail sequences u and y provided we substitute ex- 
pectations with ergodic limits of the type (7.7). Since 
we only worry about second-order properties in this 
paper, we may even regard the tail sequences u and 
y of (7.4) as being the same object as the two un- 
derlying stochastic process u and y. This requires just 
thinking of ‘random variables’ as being semi-infinite 
strings of numbers and defining the expectation of 
products E{ @} as being the inner product of the cor- 
responding rows 5 and r]. For reasons of uniformity 
of notation the inner product (7.7) will then be de- 
noted 

(4, YI) = E{~v], (7.8) 

Here we allow E{ .} to operate on matrices, taking 
inner products row by row. 

Hence, all results in the geometric theory of stochas- 
tic realization can be carried over to the present frame- 
work. The orthogonal projection of a row (random 
variable) 5 onto a subspace X of the space Y V Y 
will still be denoted E[t 1 P]. Whenever 2 is given 
as the rowspace of some matrix of generators H, we 
shall write E[r 1 H] to denote the projection expressed 

‘Note that the symbols %# and C?J have a different meaning in 
this section as they just denote real inner-product spaces which 

need not be closed with respect to the inner product structure 

defined by (7.7). Since however we will not have any use for the 

completed spaces in the following, we shall not introduce special 

symbols for them. 



156 G. Picci, T. Katayama / Signal Processing 52 (1996) 145-160 

(perhaps non-uniquely) in terms of the generators. It 
is clear that for finitely generated subspaces we have 
the representation formula 

and in case of linearly independent rows we can sub- 
stitute the pseudoinverse # with a true inverse. 

8. Identification based on finite data 

For data of finite length N the inner product (7.7) 
is approximated by a finite sum 

which makes it essentially the same as the ordinary 
Euclidean inner product in RN. 

Assume now the integer N is chosen so large that 
the time averages in the ergodic limit (7.2) are suf- 
ficiently close to the true covariance for say z = 
0, l,..., 2k. Fix a ‘present’ time t = k and define the 
four block Hankel matrices of dimension pk x (N + 
1) . . . mk x (N + 1) formed by input and output data 
as 

r u. ul ... uN 1 
u, 242 ... UN+1 

= * 9 . > (8.1) . . . . 
t&-l t.dk ..* . 1 Uk+N-1 

r ~(0) 1 

r Y. yl ... YN 1 
Yl Y2 *.* YNfl 

= . , 

bk--1 Yk .” yk+N-,A 

(8.2) 

r uk uk+l *‘. UkfN 1 

= (8.3) 

1 y(2k’- 1) 

Yk Yk+l *” 

Yk+l Yk+2 “’ Yk+N+l 
= I! : 

YkfN 

i 1. 

(8.4) 

Y2k-1 ’ y2k “’ Y2k+N-1 

The relative rowspaces f#!; (+YU, ) are the past input 
(output) spaces generated by the rows of the p x 

(N + 1) tail matrices u(t) (respectively m x (N + 1) 
matrices y( t )) for 0 < t < k, while %l and +Yykf are the 
future inputs (outputs) spaces spanned by u(t) (and 
y(t)) for k < t < 2k. Since the tail matrix sequences 
we can form with the observed data are necessarily 
finite, these vector spaces can describe in reality only 
finite past and future histories of the data at time k. 
For simplicity of notations we use symbols that are 
not informative of this fact. * 

Let us define also the stacked 2k x (N + 1) block 
Hankel matrices 

u:= [$$I, Y:= [gy], 

the relative rowspaces !&![0,2k__1] and gtO,Jk_t] will also 
be denoted by the shorthands %! and ??I. This should 
cause no confusion with the infinite data subspaces 
introduced in Section 2 since from now on onlyfinite 

data set are used. 
The first step of the identification algorithm is 

to separate the (finite-history) ‘deterministic’ and 
‘stochastic’ components of the output. This is done 

s More accurate notations would be C#‘; := %[~,k), TT := 

T[O,!f), q := Q[k,2k), g; := Y[k,2k). 
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by computing 

E,(t) = xY(w@l~ 
j,v(t) = E[y(t)p?&], t = 0,. . . ,2k - 1, 

(8.5) 

where the orthogonal projections are with respect to 
the Euclidean inner product defined above; compare 
with (6.2) and (6.4). 

For the actual computation of the deterministic and 
the stochastic components of y we use the LQ factor- 
ization 

(8.6) 

where Q,‘Q,, = I, QfQ, = I, Q,‘Q, = 0 and Luu,Lyy 
are lower triangular. The LQ factorization is a key step 
in many subspace identification algorithms. 

Lemma 8.1. The Hankel matrices of the determinis- 
tic and stochastic components of y are obtainedfrom 
the LQ decomposition above, respectively, as 

g = E[YI%] = YQuQ,’ = LyUQ,’ 

and 

1 I T T 
K = WI@ I= YQyQ, = L,,Qy. 

Proof. This follows immediately by noting that the 
rows of Q,’ form an orthonormal basis for the rows- 
pace of U and those of Qz an orthonormal basis for 

the orthogonal complement ail in f& v ??I. 0 

8.1. Identijication of the deterministic part 

Standard subspace methods, e.g. [19], to identify 
a stationary state-space model for the deterministic 
part yU, are based on computing the state 2,(t) of the 
system (6.3) at two time instants, say k and k + 1 and 
then solve in the least-squares sense, 

where Z,(k) := [(xU)k,. , (x,)~+N_I] is a basis for 
the state space at time k. 

Theoretically (see Theorem 4.1) the state x,(k) is 
a basis of the intersection of the future rowspan @,’ 
with the injinite past space of u at time k. Instead 

we only have the finite history U- available (here to 
simplify notations we drop the subscript k). 

For a finite data set, the state x,(k) is, strictly speak- 
ing, no longer a basis for the intersection @u,’ n %!- 
because of the presence of a generally non-zero ini- 
tial condition x,(O) at the initial data point t = 0. It 
can however be shown by using arguments similar to 
[ 19, Theorem 3, pp. 223-2241, that fork large enough, 
we have 

f,(k) = basis in (&,’ V @) f? W, (8.8) 

so that we are still led to compute a basis for the inter- 
section of two larger subspaces of the same structure. 

Below we give an algorithm to compute a well- 
conditioned basis for the intersection of two subspaces 
of the form @,’ n W, based on the GSVD [2 11. Note 
that to determine the unknown system matrices in 
(8.7), we need to apply the basis selection algorithm 
at two consecutive time instants. In fact, the basis at 
time k + 1 must be chosen in such a way that it corre- 
sponds to the basis at time k, x,(k), stationarily time- 
shifted by one time unit, otherwise we would not get 
the right constant parameters in the realization. This 
means that after applying the algorithm at time k + 1, 
a suitable change of basis is necessary. 

8.2. Algorithm for computing a basis for the 
subspace 5? := “Y+ n W based on the GSVD 

We employ the canonical correlation approach de- 
scribed in [9] and numerically determine the dimen- 
sion fi of .@. 

We first introduce the LQ factorization 

[ ;r] = [Z: LY*] [ :;I2 

where we assume that [L21 L22] has full row rank. 
Then there exist V(kp x kp), Z(kp x kp) and a non- 
singular X(km x km) such that [21] 

L21 =XeVT = Xdiag(ci,. . . ,c,,)VT, 

L22 = X$Z* = X diag(s^i, . . . , $+.)ZT, 

. -T 
where cl2 ... >c,>O, O,> ... >s^i>O, CC + 

$iT = II, and v := min(pk,mk). 
Letting 

Q’ := CVTQ; + &Z’Q,‘, 
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we have F+ = XQT and Q’Q = Ikp, so that the 

rows of QT and Q’ form orthogonal bases for the 
rowspaces U- and f+, respectively. Moreover, we 
have ci = cos(Oi), i = 1,. . . , v, where t$ is the ith 
smallest principal angle between the rowspaces of r+ 
and U-. 

If 1 = cos(&) = ... = cos(Bfi) > cos(8a+r) for 
some h, the first 2 rows of VTQl span the intersection 
F;’ n Ulp [9]. Since this does rarely happen in actual 
computations, in practice we determine fi by selecting 
the first 2 principal angles which are ‘numerically’ 
equal to zero. 

Note that the Hankel matrix fi of the deterministic 
system is 

Let e- := L,~/fi, L + := Xl&, where i-, i+ 
are invertible. Hence, we get 
n * n * 
L+ HzlLIT = kVT = U1 CVT, (8.9) 

where 2 = diag(ci ,. . .,cA), 01 = [$I, and fi de- 

notes the number of &‘s that are effectively unity. 
Thus, we see that (8.9) is a SVD factorization of the 
normalized Hankel matrix, so that the corresponding 
state vector at time k is 

x,(k) = x?1’2 VI i:’ U,-. 

To compute the state vector x,(k + 1 ), we use a 
similar procedure and then rescale by a non-singular 
matrix so as to force the observability matrices to co- 
incide. This is also done in the ‘stochastic’ subspace 
algorithm of [29]. 

8.3. Ident$cation of the stochastic part 

The identification of the stochastic subsystem (3.7) 
is done by processing the ‘stochastic’ data matrix 8 
computed in the previous step. A prefiltering algo- 
rithm on the data fJ to eliminate the deterministic 
‘smoothing error’ component is discussed in [23]. 
Once the ‘theoretical’ stochastic component is ob- 
tained, the identification of the stochastic subsytem 
can be done by the techniques described, e.g., in 
[3,5,29, 161. As explained in [16], identification of 
the model in a stochastically balanced canonical form 

is to be recommended in order to guarantee positivity 
after the unavoidable truncation step which retains 
only the significantly larger singular values. The state 
(basis) vector in the predictor space should then be 
chosen to be the corresponding truncated subvector 
of canonical variates. 

9. Conclusions 

In this paper, we have solved the stochastic realiza- 
tion problem with exogenous inputs in the absence of 
feedback. We have introduced a class of dynamical 
models of a very simple structure where the stochastic 
and deterministic dynamics of the output process are 
completely decoupled. These models are generically 
minimal and can be advantageously used for identi- 
fication. In this setting the identification with exoge- 
nous inputs can be split into two separate subproblems 
of identifying the deterministic component and then 
of identifying the stochastic component. The second 
identification step requires prefiltering of the data by 
means of a filter constructed from the deterministic 
model. 
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Appendix A. Proof of Lemma 4.2 

We shall fix t = 0 and drop the subscripts through- 
out. The proof will be done in several steps. 

In order to streamline notations, assume here that 
y and u are jointly stationary p.n.d. processes of di- 
mensions m and p, u has a strictly positive spectral 
density and let Y/- c W, i.e. y admits a causal con- 
volution representation in terms of u of the form (4.3). 
Write 

y(t) = (&u)(t) + (W+u)(t), (A-1) 
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where 

(Hwu)(t) := 2 FV&U(k), 
-CC 

(PVfu)(t) := 2 K_/&(k). 

(A.2) 

0 

Obviously, (&u)(t) E %!!- and (W+u)(t) E a!+ for 
t 20. This fact is formally recorded in the following 
lemma. 

Lemma A.l. Fort 2 0 the random variable (Hwu)(t) 
is the oblique projection of y(t) onto W and belongs 
to z-2”+‘- := Ell%‘[ W]%!!-1. Hence, it belongs also to 
all causal oblique splitting subspaces 3. 

The last statement of this lemma is an immediate 

consequence of the minimality of X+1- among all 
causal splitting subspaces. 

Lemma A.2. Let 57 be an oblique splitting subspace 
and define 

9 .= “y+ v 0J . t 

Then X is the minimal oblique splitting subspace for 
9 and W contained in W. 

Proof. Since every element S of 9 has the form S = 

y+ +x, y’ E Yi, x E X and EllQ+[yf/Y!-] E 

Xfi- c X c a-, 

span{E,,q+[$4?-] 1s E s”} = x. 0 

Formula (4.5) is a particular case of the following 

result. 

Lemma A-3. Let the symbols have the same meaning 
as in Lemma A.2. Then 

PiV=X. 

Proof. First note that X contains the intersection p f! 
Y%- . For if n E 2 n %I- then clearly it belongs to 

E114+[plY-] hi h w c IS equal to X in force of the pre- 
vious lemma. 

Then just observe that, conversely, the intersection 
contains X, since 9 3 X and Y- > X. This proves 
the lemma. 0 

The result in particular applies to the extended fu- 

ture space @+ = Y3/+ V X”+/- (this is in a sense the 
‘minimal’ 9). In general, it is not true that X’+/- = 

Y+nY-as 

E,,“u+[YUflK] 3 Y+ n a- 

properly, unless some special conditions are satisfied. 

We now prove the identity (4.6) in the following 
lemma. 

Lemma A.4 Let the symbols have the same meaning 
as in Lemma A.2. Then 

P=(PnW)+(9nn+). (A.3) 

Proof. That 

Y3(9n%-)+(Pn%+> (A.4) 

is obvious since both terms on the right-hand side 

are subspaces of 9. We shall show that the op- 
posite inclusion also holds. In effect, decomposing 

y, as in (A.l), i.e. yU(t) = (Hwu)(t) + (W+u)(t), 
from Lemma A.l, we have (Hwu)(t) E XCY 

for t > 0, so that for _t 2 0 necessarily ( W+u)(t) = 

yu(t) - (Hwu)(t) E Y as well. In fact, (Hwu)(t) E 
9 n W and (Vu)(t) E <?? n 3X+. Taking fi- 

nite linear combinations of the form CaLy,(tk), 
ak E [w”, tk 20 and then closing in the Hilbert space 
norm of second-order random variables gives imme- 

diately the opposite inclusion to (A.4). 0 
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