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SIAM J. APPL. MATH. 
Vol. 33, No. 3, November 1977 

SOME CONNECTIONS BETWEEN THE THEORY OF SUFFICIENT 
STATISTICS AND THE IDENTIFIABILITY PROBLEM* 

GIORGIO PICCIt 

Abstract. In this paper the identifiability problem is formulated as a dual of the data reduction 
problem in statistical inference. Some classical results in the theory of sufficient statistics are dualized 
in order to obtain criteria for finding "maximal identifiable statistics" in parametric models. Applica- 
tions to identifiability of linear dynamical systems are discussed. 

1. Introduction. The objective, of this paper is to describe a remarkable 
duality which can be established between the concept of sufficient statistics and 
the problem of identifiability. "Identifiability" is an intrinsic property of a 
statistical model which makes it possible to distinguish between different 
parametric structures from observed samples. Though it is especially important in 
dynamic modeling, the problem of identifiability has been explicitly mentioned 
and studied in classical statistical inference at least since 1950. Rothenberg [16] 
gives an historical account of the statistical literature as well as the basic ideas in a 
finite dimensional setting. 

Using duality and the concept of sufficiency we prove alternative characteri- 
zations of identifiability as well as criteria for finding "maximal identifiable 
statistics" which are useful in a dynamic context. The derivation of some classical 
results of the theory of sufficient statistics can also be simplified and put in a more 
natural light (compare e.g. the characterization of minimal sufficient c--algebras 
and the extension of Dynkin's theorem, for the exponential family). 

A few applications are also presented. These are selected from the most 
commonly encountered identifiability problems in system theory. These examples 
point out that a "deterministic" approach (implicit for example in [5], [6]) used to 
find identifiable parametrizations may not be the correct approach to the problem. 
Somewhat different answers may be obtained when proper recognition is given to 
the stochastic coupling between observations and parameters. Some related 
results for discrete time systems can be found in [17] and [18]. 

2. Sufficient and unresolvable statistics. Let us consider two measurable 
mappings y and u defined on a common probability space {Ql, X, P}, 

(2.1) y: {Q, d}I {Y, '&}, 

(2.2) u: {Ql, d I U., O& , 

taking values in complete separable metric spaces Y and U, with relative Borel 
o--algebras I' and I1, respectively. The sub c--algebras of d induced by y and u on 
the basic space Ql, will be denoted by hatted symbols like O1 and 91, respectively. 

Referring to the customary setup of statistical inference, we will agree to 
interpret y as the observation variable and u as the inaccessible variable (or 
parameter). For applications to identifiability, typically y will be a random process 
(taking values on an appropriate space of time functions) and u a random vector 

* Received by the editors June 7, 1974, and in revised form May 24, 1976. 
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384 GIORGIO PICCI 

taking values in a finite dimensional space. Let us suppose that the probabilistic 
interaction between y and u is specified by assigning a transition probability 1 P on 
(ON x U) and an "a priori" probability measure Ho on O/ satisfying the compatibil- 
ity conditions: 
(2.3) P(A, u) = P(y_1(A)i9), AA, 

(2.4) Ho(B) = P(u (B)), B E 9/. 

For (2.3) to make sense, one ought to prove that the conditional probability in the 
second member admits a regular version (see Loeve [13]). This can be done, but, 
as far as possible, we will try not to get too involved in technicalities of measure 
theoretical nature. For details we refer the reader to the report [14]. 

DEFINITION 2.1. The Bayesian dual of P is a transition probability H on 
(9/ x Y) with values H(B, q), B E 9/, r? E Y, satisfying 

(2.5) H(B, y) = P(u (B)I03) a.s. 

In the statistical literature H is usually referred to as the "a posteriori" probability 
measure. It reflects how the a priori knowledge about u (i.e. the measure Ho on 9/) 
is modified as a consequence of the observation of the sample value q = y (w). 

The computation of H can be carried out via "Bayes rule" as shown by the 
following theorem, proved in [10]. 

THEOREM 2.2. Define the set function PB, B E 9/,. as 

(2.6) PB(A)= P(Aq ,)Ho(de), A E9/. 

Then PB is a finite measure on O/ which is absolutely continuous with respect to Po, 
the probability distribution induced by P on the space {U, 9/}. Its Radon-Nikodym 
derivative satisfies 

dPB 

where Po is given by the formula 

(2.8) Po(A)= J P(A, e)Ho(de), A E 9/. 
u 

Quite often in applications the data provided by the observation of y are 
redundant, in the sense that a smaller c--algebra than O/ may provide the same 
amount of information about u. The following is an abstract procedure to 
eliminate this redundancy. 

Let us introduce the equivalence relation "'-" on Y, by setting 

(2.9) 11 - 772 if and only if H(B, i7) = H(B, f72), VB E 9. 

A transition probability P on (IN x U) is a family of measures {P( *), - E U} such that 
(i) P( *, ) is a probability measure on ON for each 6 E U, 
(ii) P(A, * ) is a 91-measurable mapping for each A E 9/. 
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SOME CONNECTIONS 385 

Consider the quotient set Xo = Y/ and the canonical surjection 

(2.10) 90: 
where [77] is the equivalence class of n in the relation. 

Consider also the smallest sub o--algebra of ON with respect to which the a 
posteriori probabilities {H(B, ), B E "lt} are measurable: 

(2.11) So= or{H(B, ), B E 9l}. 

Then the next lemma can be easily checked. 
LEMMA 2.3. If we define, for each B E 91, H(B, ): Xo -> [0, 1] as 

(2.12) H(B, x) = H(B, r), forn such that'po(&i) = x, 

and the o--algebra 'o of subsets of Xo, as the one induced by the family of mappings 
{H(B, .), B E t}, then: 

(1) H is a transition probability on (91 x Xo). 
(2) The factorization 

(2.13) H(B, /) = A(B, (po(71)), 
which holds for all B E 9, i7 E Y, is canonical. This means that H: (Y, ON) -> -?P (91) 
(P (9) is the space of all probability measures over {U, 91}) is factored through a 
surjective po and an injective H2 

(3) With the above defined Xo, 'po becomes a measurable mapping. 
(4) The smallest o-algebra measuring 'po is precisely Fo, given by (2.11). 

Actually, 'po, considered as a mapping between o--algebras is a o--isomorphism of F 
onto 'o (i.e., 'po preserves countable set operations and is one to one and onto). 

The factorization (2.13) emphasizes the role played by 'po; two observed data 
71, 772 for which (Po(nl) = (PO(n2) provide exactly the same information about the 
unknown parameter u, the corresponding a posteriori probabilities being 
identical. 

DEFINITION 2.4. Any mapping 'po for which the canonical factorization 
property (2.13) holds is called a minimal sufficient statistic for u. 

Remarks. (i) An obvious observation to be made is that a minimal sufficient 
statistic is unique only up to an arbitrary measurable bijective y: (XO, X'o) > 
(X1, ). In fact the commutative diagram formed by the dashed arrows below 

{Y, 13 H g (w) 
A 1 

_ - 

(2.14) f o j(P yot 1H( .At-) 

{x0x0} {X 1, 1 } 

2 The notation is somewhat inconsistent; here H has to be interpreted as the mapping q1 
H( ). The same remark applies to H. 
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386 GIORGIO PICCI 

represents a new canonical factorization of H (through yop0o and H( *, y-1)), for 
arbitrary bijective y. 

(ii) For any canonical factorization H( , po) of H, the o--algebra X0= 
o-{H(B, ), B E '}, induced by H on Xo, is to be regarded as the natural family of 
measurable sets on XO. With this choice 'po induces precisely F0. We will call io 
the minimal sufficient o--algebra for u. 

DEFINITION 2.5. Measurable mappings p: (Y, O/) -* (X, ') which factorize 
H for a suitable transition probability H on (91 x X) 

(2.15) H(B, )H(B,(1)), VB E 'I, 

(not necessarily in a canonical way) will be called sufficient statistics for u. The 
induced o--algebras F = o-{q,} on { Y, O'} are sufficient o--algebras for u. 

From the definition (2.11) of F0 it is clear that 

(2.16) F0c c / 

for all sufficient o--algebras i. Since F0 is sufficient by Definition 2.5, we see that 
sufficient o--algebras constitute a partially ordered set with minimal element i0. 
For this reason 'Po is termed "minimal" in Definition 2.4. 

THEOREM 2.6. The statistic 'p is sufficient for u if and only if the conditional 
distribution P(A, 4I1) does not depend on the variable f E U. More precisely, 'P is 
sufficient for u if and only if 

(2.17) P (A, lfl= Po (AlF V1A E, E U. 

Proof. By setting B = u-1(B), the defining relationship (2.15) for a sufficient 
statistic 'p can be rewritten as 

(2.18) P(B/) = P(BI|) a.s., VBE Ol, 

which in turn is equivalent to 

(2.19) PB 03 V Sv ) = P(B 
I 
S) a. s., VB E V, 

since F 031. But (2.19) tells that 91 and O/ are conditionally independent given i; 
see Loeve [13, p. 351]. 

The role of 91 and 03 can be reversed, yielding 

(2.20) P(A 02v ) =P(A a.s., 8AEON/, 

where we have used again the notation A = y- (A), A E 0/. Now, it is not hard to 
show [14, Lemma 1.3] that P(y-1(A)j1 v = P(A, 4j1) a.s., where the symbol 
P( *, 41j) stands for the conditional probability given i, which can directly be 
defined over the space {Y, O/, P( , )}. Thus (2.19) gives immediately 
(2.16). Q.E.D. 

Remarks. Theorem 2.6 is usually stated as a definition of a sufficient statistic 
(or o--algebra); see Bahadur [2], Zacks [20]. It seems that the approach followed 
here is more direct and intuitive. At least it has the merit of clarifying the essential 
equivalence between sufficiency and the concept of conditional independence (c.f. 
the above proof). This does not seem to have been noticed before. 

The main motivation for the different approach we have taken comes, 
however, from the duality which can be established between the data reduction 
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SOME CONNECTIONS 387 

problem (origin of the concept of sufficiency) and the identifiability problem 
(which will produce the dual concept of unresolvable statistic). 

Let us define another equivalence relation on the parameter space U, by 
defining 

(2.21) el - f2 if and only if P(A, 1) P(A,42), VA E 9 

(since in the future we will refer only to the equivalence (2.21), we continue to use 
the same symbol -). 

We denote by 10 the quotient set Ul - and consider the canonical surjection 

(2.22) Go: [f], 

mapping U onto 0. As before we consider also the smallest sub o--algebra of 91 
with respect to which all random variables {P(A, * ), A E 9/} are measurable: 

(2.23) Wo= o-{P(A, * ), A E 0/}. 

Then, in perfect duality to Lemma 2.3, we have 
LEMMA 2.7. Let us define, for each A E N, P(A, 4 ): 0 [0, 1] as 

(2.24) P(A, o-) = P(A, f), for f such that O0(f) =o 

and the o--algebra g'o as the one induced on 0 by the family of mappings {P(A, ), 
A E 9}. Then: 

(1) P is a transition probability on (/ x lo). 
(2) The factorization 

(2.25) P(A, ) = P(A, Oo()), 

holding for all A E 09, f E U is canonical (i.e., 00 is surjective and P is injective). 
(3) 0o is a (M, g"o) measurable mapping, 
(4) The smallest sub o--algebra of 91 with respect to which 00 is measurable is 

precisely Wo * W0 and g'o are o-isomorphic. 
The canonical factorization property (2.25) brings into evidence the way the 

probability law governing the observations is affected by the parameter values 4. 
The dependence is not in general one to one (unless 0o reduces to the identity); 
thus, if we are to infer about u, we cannot expect that the observation of y would 
permit an arbitrarily fine discrimination on the set U. 

The equivalence classes [f] might be called maximally unresolvable for y. 
Actually, if two parameter values 41, 42 belong to the same equivalence class then 
(Go(41) = Oo(f2) and so) P(A, 4l) = P(A, f2) for all A E ON. Thus we cannot hope to 
distinguish 41 from f2 by observing y. Conversely, each observation class corres- 
ponds to a different probability distribution of the variable y; i.e. el and f2 belong 
to different equivalence classes if for at least one event A E 9/, P(A, 41) $ P(A, 42). 
This means that we can, in principle, devise some testing procedure in order to 
distinguish 4% from f2* 

DEFINITION 2.8. Any measurable mapping 00 for which the canonical 
factorization property (2.25) holds will be called a maximal unresolvable statistic 
fory. 
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388 GIORGIO PICCI 

Again a maximal unresolvable statistic is only unique up to an arbitrary 
measurable bijection ,3: (1o, 5%) - (T1, 51), the composition rules 

(2.26) 01= (8 o 00, P1( , o1) = PJ(. *, (31)) 

producing new canonical factorizations of P. By duality we are also led to 
DEFINITION 2.9. Any measurable mapping 0: (U, 91) -* (1, 5) which fac- 

torizes P, for a suitable transition probability P on (ON x 1), 

(2.27) P(A, O)= P(A, 0()), VA E ON, 

(not necessarily in a canonical way) is an unresolvable statistic for y. The induced 
o--algebra W = o-(0) on (U, 91) will be called an unresolvable o--algebra for y. 

THEOREM 2.10. 0 is an unresolvable statistic if and only if the conditional 
distribution H(B, r |W) does not depend on 1 e Y. In fact 0 is unresolvable if and 
only if 

(2.28) H(B, riI')=Ho(BI'6D, VBE9I, 7qEY. 

A criterion for unresolvability is supplied by the following result, dual of the 
classical factorization theorem. 

THEOREM 2.11. Assume that the family {H( *,), 1 E Y} is dominated on U, 
by some fixed o-finite measure A.t; let the density 

(2.29) h( ,r) = dH( *,q)IdA 

be jointly measurable on {U x Y, 91 0 03}. Then 0 is unresolvable if and only if the 
density h (6, q) factorizes according to 

(2.30) h(t r1 (hA(,r) -a.s Vq1E Y, 

where g is a random variable which is At -a.s. nonnegative, h (0, E), 7 E Y, is a family 
of random variables a.s. nonnegative with respect to the measure J g d,u. on 10. 

Remarks. We may interpret Theorem 2.10 as follows. Suppose the unresolv- 
able statistic 0 is known. Then formula (2.28) says that the observed sample 
,q = y(w) does not help in improving our a priori knowledge of u. This is because 
the a posteriori probability given 0 and y (w) = q is actually independent of q. 
Thus an unresolvable statistic gives a resolution on the parameter space which 
cannot be improved (refined) by the observations. Accordingly, a maximal 
unresolvable statistic 00, defines the coarsest partition of U which is left 
"invariant" (in the above specified sense) by the observation of y. 

As previously pointed out, a maximal unresolvable statistic, 00, is the unique 
(modulo isomorphisms) unresolvable statistic for which P in (2.27) is one to one. 
This is also equivalent to saying that 00 defines the best possible discrimination on 
U allowed by the observational scheme. Of course there is a whole class of 
statistics on {U, O1} giving a "worse" resolution on the parameter values than 00. 
For an estimation problem on u to be well-posed one has to restrict oneself to this 
class. 
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DEFINITION 2.12. Let {S, I} be a measurable space. An identifiable statistic 
of u is any measurable mapping 

(2.3 1) 0: (U, OY) -> (S, S@) 
whose induced o--algebra is coarser than Wo (i.e., is a sub o--algebra of W'). 

Equivalently we could say that i is identifiable if it depends on f only through 
the maximal unresolvable statistic 00, i.e. if () = 0o(4)) for a suitable i. 

By definition the identifiable statistic which gives the maximal attainable 
information about u is precisely 00. (On the other hand, "trivial" statistics exist 
which can always be identified, e.g. any constant function on U). 

Identifiability and unresolvability correspond to dual concepts of necessity 
and sufficiency in the classical theory of sufficient statistics (Bahadur [2]); just as 
epo is both necessary and sufficient, similarly 00 is at the same time identifiable and 
unresolvable. 00 will also be called maximal identifiable statistic. 

In order to determine the maximal identifiable statistic we need a sharper 
form of the factorization theorem 2.11. The following lemma plays a basic role. 

LEMMA 2.13. Let the family {P(*, 6), { E U} be dominated by a o--finite 
measure W, then {P( ,), e E U}, {H( , r), r E Y} are dominated by Po and Ho 
respectively; i.e. 

(2.32) PO(A) = O P(A, 4) = 0 for Ho almost all {E U, 

(2.33) Ho(B) =O EH(B, 71) = O for Po almost all i7 E Y. 

There exists a fixed Ho null set N1 E 91, such that PO(A) = 0 implies P(A, 4) = 0 for 
all f E U - N1 and N1 is independent of A. Similarly, a fixed null set N2 E 0' can be 
found such that HO(B) = O > H(B, 7) = 0 for all ' E Y - N2, independently of B. 

The proof is somewhat lengthy and will be omitted. It can be found in [14]. 
Notice that {P( , ) {e U} and {H( *, r, E Y} are then equivalent 

(almost surely) to P0 and Ho respectively. This follows from (2.7) and from the 
(dual) relationship 

(2.34) Ho(B) = H(B, i7)Po(dq7), B E 91. 

Since P( , ) can be modified to an arbitrary probability measure for all 4 
belonging to a Ho null set, there is the possibility of selecting a version for which 
the equivalence to Po holds without exceptional sets. From now on we will always 
assume that we are working with such a version of P. The same applies to H( ,) 

By Lemma 2.13 there exist densities m', m" such that 

(2.35) P(A, 6=IM'(,q, fPo(dq), f U, 

for all A E O/, and 

(2.36) H(B, 7)= J m"(7q, f)Ho(df), 1 E Y, 

for all B E 91. 
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390 GIORGIO PICCI 

THEOREM 2.14. The densities m', m" coincide Po X H0 a.s. Every version mod 
P0 X H0, of m = m' = m" possesses the following properties: 

(i) {m( (*, O E U}, {m (l, ), t E Y} induce minimal sufficient and maxi- 
mally unresolvable o-algebras. More precisely, 

(2.37) 0r{m(' ,0 ), 6E U-N1} = o 
(2.38) 0-M(7n, '), T1 E Y-N21= Wo, 

the sets N1 and N2 being H0 and Po null (respectively), depending on the particular 
version of m being chosen. 

(ii) m ('q, O) factorizes according to 

(2.39) m (n, O) = m hp('q), 90()), 

with m6: Xo XX -S R+ measurable and ('po, Oo) minimal sufficient and maximal 
unresolvable statistics. 

(iii) The mappings x +mi (x, *), x EXo ando- c- m( *,o), o- El0 are one to 
one (a.s.). As a consequence the factorization (2.39) is essentially unique. 

The proof of this theorem is in [14]. 
Remarks. Formula (2.37) is reminiscent of the well known recipe of Halmos- 

Savage [7] (see also Bahadur [2, Thm. 6.2]) for generating the minimal sufficient 
o-algebra go. The interesting point for our purposes is that, by (2.38), the 
maximal unresolvable o--algebra is induced by the same density m. Thus 'o can be 
determined directly from the original description of the inference problem (i.e. P 
and Ho) without computing the dual measure. 

We now give an application of this result which will be used in the sequel. 
Assume that P( *, )6 is absolutely continuous with respect to some o-finite 

measure W, for all 6 e U. Let further the density f: = dP/d W have the structure 

n 

(2.40) f(i, e) = q(-)g(0) exp E ci(Zsj(71), 
1 

with real valued random variables q, g, ci, si, i = 1, , n; q and g positive Po and 
Ho almost surely, respectively.3 If we compute m, starting from (2.40), we find 

(2.41) m (rn, O P/d/) r(n7)g(e ) exp E ci(6)si(?7 ), 

where 

(2.42) r(r) = 1/j g(e) exp E ci(e)sY7?)Ho(de 

Since q is positive r is also positive (P0 a.s.). Notice that r depends on 7 only 
through s, ... *, sn (Lehmann has shown that this dependence is also "smooth" 
[12, pp. 52-53]). 

THEOREM 2.15. Let f have the structure (2.40). Then if (cl, , Cng 1) and 
3Densities of the form (2.40) are said to belong to an exponential family. 
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(S1, , Sn, 1) are linearly independent systems of functions, 

(sl, , *s) form a minimalsufficientstatisticfor u, 
(c1, , cO) form a maximal unresolvable statisticfory. 

Proof. Define co(e) = log g(e), so(??) = log r(rl), and rewrite m(r, O as 

(2.43) m (, e) = exp { ci(e)si(n?)+co(e)+so(n)} 

Let now xi = si(7), i = 1 , n; then so can be rewritten as so = s (x1, *, Xn) for 
a suitable s. Consider now the mapping m: (x1,. **, Xn) 
exp {c1S( )x +co( ) + (x1, ,xA)}. If (cl,... , cn, 1) are linearly indepen- 
dent the above defined m is one to one. For m(x , , n ) = m (xn,* , 
is equivalent to 

n 
(2.44) sE 1i S )(1x)[(l * n)- l S * * n)]=O 

1 

and since no nontrivial linear combination of the ci can be a constant independent 
of e (like the term between square brackets), we have x = x", i = 1, * * , n, as 
required. 

By Theorem 2.14 (iii), (sl, . *, sO) form a minimal sufficient statistic. 
The dual result for (c1 *, cO) can be obtained following the same line of 

reasoning. Q.E.D. 
This result generalizes a classical characterization of the minimal sufficient 

statistic for a distribution belonging to the exponential family, due to Dynkin [4, 
Thm. 3.a]. 

3. Applications to identifiability. The applications we shall deal, with in this 
section will be concerned with particularly simple (but important) cases where the 
observation process y is of the type "signal plus white noise". 

Let Y be the space of continuous R m -valued functions of time q: I - R m (I 
is an interval, not necessarily bounded). If this space is equipped with the topology 
of uniform convergence on compact subsets of I, we obtain a well known 
separable Banach space 

(3.1) Y= C (I). 

Let 94 be the c--algebra of subsets of Y induced by the coordinate maps, 
7re: 71 71 t(s), for all s _ t. We define ON as the union Vt,1 ON,. It is well known that ON 
is generated by the open sets in the metric topology of Y. 

Assume that the observation process y = {y (t)}tE1 is generated by an equation 
of the following type: 

(3.2) dy(t) = h(u, t) dt+ dw(t), tE I, 

where: 
1. h is an Rm-valued function (in general random), jointly measurable in 

(t, w) and adapted to a given increasing family of sub o--algebras of i, ( We 
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assume h to be square integrable over I, i.e. 

(3.3) I h (u, t)J2 dt < c, a.s. 

2. w is a Rm valued separable standard Wiener process, with respect to the 
family (St) and the measure P. 

3. u is the random parameter ranging over some nice topological manifold 
U (the relative Borel o--algebra will be denoted by the symbol IC). We assume u to 
be independent of ( 

We are interested in computing the conditional probability measure induced 
by y on (Y, ON), given u. According to the general notations introduced at the 
beginning of ? 2 we shall denote its values by P(A, e). 

Since u is independent of (a), we can compute P( , ) for each e E U, simply 
by considering the measure induced on (Y, O/) by the process 

(3.4) dy (t)= h (, t) dt + dw (t), t E, 

corresponding to fixed value f in U. 
Let W denote the Wiener measure on (Y, ON), then it is well known [8], [9] 

that, under (3.3), 

(3.5) P( , ) is absolutely continuous with respect to W. 

In order to give an explicit expression for the Radon-Nikodym derivative 
f = dP( *, 6)/dW we need some supplementary assumptions. 

LEMMA 3.1 [8], [9]. If, in addition to the preceding assumptions, h(g, t is 
measurable with respect to ON, (the c--algebra induced by y(s), s ' t) for each t E I, 
and w is a Wiener process with respect to (0/t)I,, then 

(3.6) d W= exp{ h (e,t)' d??(t) -2 - h(e, t)1 t d W Iexp 
We can obtain an important conclusion from this formula. Since f( , e= 

f(*,e2) a.s., iff h(el, t) = h(e2, t) a.s. for all t E I, we deduce 
PROPOSITION 3.2. Under the same hypotheses as in Lemma 3.1, e1 -2 if and 

only if h(el, t) = h(e2, t), a.s., for all t ElI. 
Linear dynamical systems. Suppose we observe a linear dynamical system 

over the interval [0, T], 
(3.7) i(t) = Fx(t) + Gv(t), x(O) = xo, 

(3.8) dy(t) = Hx(t) dt + dw(t). 
The input path is assumed to be accessible to the experimenter, i.e. v is a known 
function of time with values in R' which we assume bounded and measurable. The 
state x (t) ER Rn is an n dimensional vector and w(t) an m dimensional standard 
Wiener process. The matrices F, G, H, are of appropriate dimension. 

A. Stochastic observability. Let H, F, G, be known matrices and suppose 
that the initial state xo is an unknown random vector, independent of w, which we 
would like to reconstruct from the noisy observations (3.8). The problem is to 
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determine the best possible reconstruction of x0 allowed by the measurements. 
The obvious identifications to be made are U = R n, U = q 'n (the Borel 

o--algebra on Rn), u = xo. The function h can be easily written down as 

(3 .9) h (e, t) = HeFte + ho(t), O -< t -<T 

where ho is a zero state response, which does not depend on e. Since h is a 
nonrandom function we may apply Lemma 3.1, getting the following expression 
for f(n. e): 

T rT 

f(ne) O= exp [HeFte]' d? (t) + ho(t) d(t) 
(3.10) 1 

--J |(egt)|2 dt . 2 o 

We show that f is of the exponential family type. First, notice that only the first 
term between square brackets depends jointly on 7t and . 

By standard linear algebra we can write 
rT n-i CT 

(3.11) J[HeFt4K'dId(t)= i (HFke) ai (t)d'q(t) 0 o j 
where ao, ..., an- are linearly independent scalar functions of time. Let 
rj, * rm, * * * be the row vectors forming the 1st, * * , mth row of the matrices H, 
HF,... , HF'-1, taken in that order, and let us define nm real functions Ck by 
putting 

(3.12) Ck4rk k = 1,k.. , nm. 

Define also 

T 

(3.13) Sk: 7 f ai(t) drj(t), k = (i + 1)j= 1,... , nm, 
0 

so that the first member in (3.1 1) can be expressed as a sum, Z1m Ck(e)Sk(q). With 
the obvious identifications, we see that f is precisely of the form (2.40). 

We can check at once that the nm functions Sk are linearly independent 
(almost surely) on (Y, O', W). Hence, the system of, functions (3.12) form a 
maximal identifiable statistic O0. 

Since everything is linear, X0 can be written as U/ker 00 and el - e2 if and 
only if el - e2 belongs to the linear subspace, ker 00, of U. On the other hand 00, as 
a mapping between the vector spaces Rn and R nm is represented by the 
observability matrix. 

H( 
(3.14) O= : 
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thus the equivalence classes reduce to points in U, if and only if ker 00= ker 0 is 
zero, in other words if and only if rank 0 = n. Let us agree to call stochastically 
completely observable the system (337), (3.8), if the equivalence classes reduce to 
points in U. Then we may summarize the above discussion in the following 
proposition, 

PROPOSITION 3.3. The maximal identifiable statistic for the initial state of the 
linear system described by (3.7), (3.8), is the linear mapping defined by the 
observability matrix 0. The system is completely observable if and only if rank 
O = n. 

It is of some interest to give an interpretation of the above discussion from the 
point of view of invariant theory (see Popov [15] or Denham [3] for the basic 
concepts). 

From the general definition (2.22) we see that 00 is always a complete 
invariant for the equivalence relation - , defined by (2.2 1).4 Here, using equival- 
ent terminology we might say that the family of mappings Ck, k -1, ** , nm, 
defined by (3.12) is a complete system of invariants for our problem. 

Recall that a set of invariants is said to be independent if "none of the 
functions of the family can be expressed as a function of the others and hence 
eliminated". This rather loose definition can be made precise in the present linear 
setting by requiring linearly independent invariants. But, a trivial check shows that 
the Ck defined before do not meet this condition, in general. Even though in the 
present context, it is rather obvious how to extract an independent family out from 
the Ck'S, the general situation is that a maximal identifiable statistic is defined by a 
highly "redundant" family of functions. This may happen even if 60 has linearly 
independent components, as we will see below. 

B. Identifiability with known input. We consider again the linear system 
(3.7), (3.8), but we now assume xo= 0 and H, F, G are unknown matrices. 

In the deterministic case (i.e., with no additive noise in 3.8), the maximum we 
can hope to reconstruct from observations of y and v is the transfer function of the 
system, that is, only the "completely reachable and completely observable" part. 

For this reason, we assume from the beginning that our unknown parameter u 
ranges over the manifold U of completely reachable and completely observable 
triples (H, F, G). This manifold can be partitioned into disjoint (finite dimen- 
sional) subsets, Un, including only those triples (H, F, G) for which F has 
dimension n x n. Let us denote by 

(3.15) M(6, t) = HeFtG, 

the impulse response matrix of the linear system, corresponding to a particular 
value 6 = (H, F, G) taken by the random vector u. We identify the function h in 
(3.4) with the output, 

t 

(3.16) h(e, t)= J M(e, t-s)v(s) ds, 

and (since h is nonrandom) use formula (3.6) to obtain the density of P( , 

4 Thus, by Definition 2.12 all identifiable statistics are (measurable) invariants. 
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with respect to the Wiener measure, i.e. 

f(n, O) = exp {j (j M(e, t-s)v(s) ds) dr1(t) 

(3.17) iJT jM({St-s)b(s)ds2 dt}. 

Define now 

(3.18) Mk: U~*RXP, Mk( HFkG, k-O 1* 

(the Markov parameters relative to M) and 

(3.19) ik (t) = | k !. v(s) ds, k = O, 1, 

With a little effort we may now check that the following expansion holds: 

(3.20) 1(1 M(e, t-s)v(s) ds) dr1(t) = E (Mk(i), jik(t) dq (t)), 
o k=o o 

where (, ) denotes inner product in Rm xp and the series at the second member 
is convergent in L2(Y, 9/, W), for all { e U. We observe that the sequence Mk, 
k = 0, 1, * * *, form a linearly independent set in the real vector space [RmXp]U, 
since no (finite) sum of the form 

(3.21) E aiHFk-G, ai eR, 

can be the zero matrix for all triples 6 = (H, F, G). Likewise, the real valued 
entries of the Mk's form a linearly independent set and no linear combination of 
them can be constant independent of 6. 

If the p components of the input v are linearly independent over [0, 7], the. 
functions ik, defined by (3.19) can also be shown to be componentwise linearly 
independent. This implies linear independence of the family of functions {Sky 

k = 0, 1, *}defined as 
rT 

(3.22) Sk(fl)= jik(t) dq (t). 

Now, from (3.20), we can transform f(', e) to an exponential type density. By 
Theorem 2.15 we have 

PROPOSITION 3.4. If the inputfunction v has linearly independent components 
over [0, T], the maximal identifiable and minimal sufficient statistics for u are given, 
respectively, by 

the sequence of Markov parameters Mk: 4f +HFkG, k = 0, 1,* ; 
the sequence of "empirical cross correlations" sk: n 1ik(t)' dn (t), k= 

0, 1, 
This result tells us that, in principle, we can reconstruct the transfer futiction 

exactly, as in the deterministic case. The equivalence classes [e], in U are easily 
obtained.5 Take any point in the image of 0O, i.e. a matrix sequence 

S Of course (by Proposition 3.2) there is no need for computing Oo. We could just use (3.16). 
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0f- = o, 1 ' o-* i E R m Xp and construct the Hankel matrix 

0' '1 0'2 

(3.23) J{ 0 0; 02 
02 

then Ye must necessarily have finite rank, say n. This integer determines an 
element of the partition {Un} of U. In each Un the equivalence classes are the 
orbits under the action of the general linear group Gl(n); that is, if = 
(HoFo, Go) E Un, then 

(3.24) [j] = {H, F, G|H= HoT- FF= TFoT-1, G = TGo; TEGl(n)} 

These last considerations are standard; see e.g. [11]. 
Remark. If in (3.4) h is nonrandom then (Yt) is a Gaussian process with mean 

Jo h(6, s) ds and covariance I(t A s). In this case P( , ) is uniquely determined 
by these functions (in the sense that measures corresponding to different means 
and/or covariances are different). Thus for a Gaussian process having mean 
m (6, t) and covariance X (6, t, s), 61 - 62 if and only if 

(3.25a) m(61, t) = m(62, t) for all tEI 

(3.25b) 6(f1, t, s) = X(62, t, s) for all (t, s) EIxI. 

The conclusions of examples A and B could also have been derived starting from 
these considerations. 

We note another consequence of this last remark. For an observation scheme 
of the type 

(3.26) dyt = h(H, F, G; t) dt+ Jdwt, 

where I= Jf'>0 is the unknown covariance matrix of the additive noise, a 
maximal identifiable statistic is the pair (H, F, G) ~-+{HFkG, k = 0, 1,*** } and 
J-fJJ'. Thus L is "identifiable". 

C. Identifiability of a stationary time series. Assume that we observe a 
Gaussian m dimensional stationary process (zt) plus an additive white noise term, 
(3.27) dyt = zt.dt + dwt. 

Let (zt) admit a finite dimensional realization of the type 

dxt = Fxt + dvt, 
(3.28) 

ztHxt, teR, 

where (vt) is a p dimensional orthogonal increments process, in general correlated 
with (wt), with 

(3.29) E[vt][V wK] =[S zJdtI + IS} - |t-sl). 

The identifiability problem is to determine how much of the "internal structure" 

This content downloaded from 147.162.14.159 on Fri, 31 Oct 2014 07:00:55 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


SOME CONNECTIONS 397 

of z can be inferred from the observations (3.27). Let f = (H, F, Q, S) and write z, 
as z( , t). We may assume F strictly stable, L: =Jo-0 eFtQ eFt dt, positive definite 
and (H, F) completely observable (these are the so-called "globally minimal" 
realizations [1]). 

Let us define z2t = E(ztI9/t) and 
rt 

(3.30) = Yt - t zsds, 
0 

then Pt is a standard Wiener process and we can rewrite (3.27) as 

(3.31) dyt = z({, t) dt + dvt, 

with z adapted to (%'t). From Proposition 3.2 the equivalence classes [4] are 
determined as the subsets of all 4' for which the conditional means z( , t) and 
z({', t) coincide a.s. over the observation interval I. 

If we take I= (- x, T) (i.e. we have been observing z from the "remote 
past"), then zt can be explicitly computed as the output of the "steady state" 
Kalman filter 

(3.32) dit = Fit dt +Kdvt, zt = Hxt 
where K = S + PH' and P is the positive solution of the algebraic Riccati equation: 

(3.33) FP+PF'-KK'+Q=O. 

Thus e1 = (H1, F1, Q1, Si) and 62 = (H2, F2, Q2, S2) are equivalent if and only if 
H1FkK, = H2F2kK2, k = 0, 1, . (In particular two equivalent globally minimal 
parametrizations have the same dimension n.) By Lemma 2 in [1] we can get a 
more explicit description of the equivalence, namely, 

PROPOSITION 3.5. el = (H1, F1, Q1, S1) and 62 = (H2, F2, Q2, S2) are equi- 
valentparametrizations of (zt) with respect to the observations (3.27) if and only if 
there exists TE Gl(n) and a symmetric (n x n) matrix A such that 

H1 = H2Th1, F1 = TF2T- 

(3.34) S1 +AHf= TS2, 

FlA+AF>= -Q1+TQ2T'. 

Notice that the solution is now significantly different from the "deterministic" 
case, in which we observe (zt) directly. In the latter case, by using (3.25b), we can 
check that el - 62 if and only if (3.34) hold with A = 0. This corresponds to a much 
better resolution. 
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