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a b s t r a c t

We study Statistical Consistency of an approximate subspace identification procedure for the infinite
dimensional a posteriori model of a frequency estimation problem in an Empirical Bayesian framework.
By first imposing a natural uniform prior probability density on the unknown frequencies, the
estimation of the hyperparameters of the a priori distribution can be accomplished by a sequence
of subspace identification techniques. These techniques exploit the special structure of the covariance
matrix of the a posteriori process which is discovered by making a connection with classical results
on energy concentration in deterministic signal processing. The convergence of the spectrum of the
subspace estimates to the (nonrational) spectral density of the a posteriori process has an analytic
counterpart in the approximation of symmetric positive definite Toeplitz matrices by submatrices of
finite rank. This is proven by a weak-sense convergence theorem for Toeplitz spectra.

© 2022 Elsevier Ltd. All rights reserved.
1. Introduction and motivation

The Empirical Bayes approach to parameter estimation
Lehmann & Casella, 1998) has in certain cases shown supe-
ior performance, providing a smaller Mean Square Error (MSE)
han Maximum Likelihood (Reinsel, 1985; Yuan et al., 2016).
here has consequently been some interest in approaching linear
ystem identification by using this methodology. The procedure
s however complicated since it requires as a preliminary step
hoosing a parametric class of prior distributions and estimate
heir relative parameters (which are called hyperparameters in the
iterature) from the available data. Successively one implements
standard Bayesian procedure based on the estimated prior,

ee Lehmann and Casella (1998, p. 262) and Aravkin et al. (2012),
hiuso (2016), Efron (2010, 2014).
A particular class of problems where this approach has shown

o be feasible is the identification of a purely oscillatory linear
ystem. For these systems the output signal (which is assumed
calar for simplicity) is the sum of sinusoidal oscillations with un-
nown deterministic frequencies and random amplitudes (called
quasi-periodic process), and a zero mean uncorrelated white
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Yat-sen University. The material in this paper was not presented at any
conference. This paper was recommended for publication in revised form by
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noise. It is well-known that quasi-periodic processes are (wide-
sense stationary and) purely deterministic. Casting the identifi-
cation problem in a Bayesian setting, the unknown frequencies
are modeled as random variables. The a priori description of these
random variables is naturally chosen as a combination of simple
local distributions concentrated about some nominal frequencies
which are a priori unknown (see e.g., Zacharias et al., 2013) and
play the role of hyperparameters. This model seems to be appro-
priate to describe a variety of applications where the frequencies
can fluctuate slightly about nominal values.

A remarkable fact is that under such a natural class of a
priori distributions on the unknown frequencies, the a posteriori
description of the quasi-periodic message signal is still a purely
deterministic process but this ‘‘a posteriori’’ process turns out to
have a nonrational spectral density. In other words, it is infinite
dimensional. The a posteriori spectrum of the message signal is
no longer composed of a finite combination of spectral lines
(Dirac functions) as for standard quasi periodic signals, but can
generally be of the continuous type, although the spectral density
should have a smaller support than the whole frequency range
[−π, π]. A specific example with some remarkable structural
properties will be described in the next section. Therefore, a faith-
ful second-order description of such a posteriori signals requires
infinite dimensional models. Their identification can therefore
only be approached by inventing a suitable finite-dimensional
approximation.

In an abstract Empirical Bayesian setting the posterior distri-
bution of the signal (which is still parametric) becomes a function

https://doi.org/10.1016/j.automatica.2022.110362
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f the hyperparameters of the prior and the statistical problem
an in principle be brought back to classical inference, now for-
ulated in terms of hyperparameters. The question of consistency,
nce suitably interpreted, remains therefore a central issue. Be-
ause of the infinite dimensionality of the posterior model, iden-
ification, by whatever method, say subspace algorithms, needs
o be implemented on an approximate model. Although subspace
lgorithms could per se provide consistent estimates for finite
imensional models, the problem of consistency now involves the
pproximation of the underlying infinite-dimensional true model,
nd its proof remains a challenging task.

.1. Contributions

The main contributions of this paper are:

(1) We study a simple prototype of Empirical Bayes iden-
tification problem for a finite-dimensional quasi-periodic
process. The computation of the a posteriori model can be
solved explicitly and analyzed quite in detail. Examples of
complete analytic solutions of problems of this kind are
very seldom found in the literature and seem to only regard
static linear regression problems.

(2) We address the hyperparameter estimation of the posterior
model by a suitable sequence of approximate subspace
methods. This can be interpreted as a specialization to
our setting of the standard marginal likelihood approach
suggested in the literature and considered for example
in Aravkin et al. (2012) and Lázaro-Gredilla et al. (2010)
which however needs to be solved by numerical optimiza-
tion algorithms. Our work uses instead the special structure
of the data process and need not involve optimization.

(3) Since the a posteriori model describes a process whose
spectral density is not rational and hence cannot be mod-
eled exactly by a linear stochastic system, the subspace
method must by nature be approximate. Hence there is a
natural question of statistical consistency which needs to be
addressed. We approach the consistency of the subspace
procedure by studying covariance approximation. The co-
variance of the a posteriori signal process is an infinite
Toeplitz matrix which, contrary to finite-dimensional quasi
periodic processes, does not have a finite rank. The proof of
consistency hinges on a result of approximation of infinite
Toeplitz matrices by Toeplitz matrices of finite rank which
is believed to be new and of interest to researchers in
stochastic systems theory.

(4) We propose a possible stochastic metric for this approx-
imation and prove convergence of the spectra, although
only in a weak sense. This is however sufficient for assess-
ing statistical consistency (in mean square) of the subspace
algorithm.

The final step of the identification procedure should be to
ompute a truly Bayesian Maximum A Posteriori (MAP) estimate
f the system parameters given the estimated prior. This has
een done in Picci and Zhu (2020, 2021), but including this
art in the present manuscript would have increased its length
eyond reasonable limits. The completion will appear in a future
ublication.

. Preliminaries

otations: All random variables considered in this paper will be
eal, zero-mean with finite variance. Most random processes are
calar wide sense (w.s.) stationary defined on the integer lattice
. Bold symbols like y or Σ are reserved for random variables or

or infinite arrays, say stochastic processes or infinite covariance k

2

atrices. Hatted symbols will denote sample estimates. We shall
se the standard stochastic real Hilbert space setting with inner
roduct of (scalar) random variables ⟨ξ, η⟩ defined by the covari-

ance Eξη and denote by H(v) the subspace linearly generated
by the components of a zero-mean process v. The abbreviations
p.d. and p.n.d. are shorthands for purely deterministic and purely
nondeterministic processes.

Consider a scalar observation process y which is the sum of
a purely deterministic message process x plus an uncorrelated
white noise process w of variance ρ2. Assume that the covariance
function

σ (τ ) = Ex(t + τ )x(t), τ ∈ Z (1)

admits a Fourier transform

ϕ(eiθ ) =

+∞∑
τ=−∞

e−iθ τσ (τ )

hich is a piecewise smooth function of θ , called the spectral
ensity of the process. For example ϕ is continuous and bounded
hen σ belongs to ℓ1. In the example studied in this paper, this

unction will vanish on a set of positive Lebesgue measure. By a
ell-known criterion, e.g., Lindquist and Picci (2015, Theorem
.7.5), this implies that x is purely deterministic. The process y
s described by the infinite covariance matrix

y = [σ (t − s)]t,s∈Z+
+ ρ2I := Σ x + ρ2I

nd the spectral density ϕy(eiθ ) = ϕ(eiθ )+ ρ2. Note that ϕ can be
asily recovered from ϕy by subtracting the baseline constant and
imilarly for the infinite covariance matrix Σ x. In this paper we
hall essentially study this last object and for simplicity denote
t by Σ . We shall assume that ϕ(eiθ ) is piecewise continuous
nd bounded, as for example is a rectangular function. Then Σ
nduces a bounded linear operator in ℓ2 (Akhiezer & Glazman,
961; Hartman & Wintner, 1954). The function ϕ is also called
he symbol of Σ .

. Bayesian frequency estimation

In recent investigations (Favaro & Picci, 2015; Picci & Zhu,
019, 2020) we have studied the Bayesian identification of the
biquitous signal plus noise model

(t) = x(t) + w(t), t ∈ Z (2)

here x is the sum of ν random oscillatory components (a quasi
eriodic process), that is,

(t) :=

ν∑
ℓ=1

aℓ cos(ωℓt) + bℓ sin(ωℓt), (3)

nd w is additive Gaussian white noise. The angular frequencies
ℓ are unknown random variables but their number ν is fixed in
dvance. The model is specified as follows:

• the amplitude pairs ak, bk are zero-mean pairwise and mu-
tually uncorrelated for all k and the two components ak, bk
have equal variance: σ 2

0,k := var[ak] = var[bk], k = 1, . . . , ν;
• each angular frequency ωℓ is a random variable taking values

in the interval [0, π], independent of the amplitudes;
• The noise w(t) is zero-mean stationary white Gaussian, of

variance σ 2
w, independent of everything else.

et ω := [ω1 . . . ων]⊤ and denote by a, b two similarly arranged
mplitude vectors. Note that the model is linear in a, b, and
ence estimation of the amplitudes and their variance is just
standard linear estimation problem when the frequencies are

nown.
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A simplified a priori model for the components ωℓ of the
andom vector ω is a uniform distribution on the frequency band
θℓ − Wℓ, θℓ + Wℓ] such that the symmetrized sets with respect
o the origin

ℓ := [θℓ − Wℓ, θℓ + Wℓ] ∪ [−θℓ − Wℓ,−θℓ + Wℓ] (4)

or ℓ = 1, . . . , ν do not overlap. For simplicity we shall assume
hat the assigned bandwidth is the same for different frequencies,
.e., W1 = · · · = Wν = W . Here 0 ≤ θℓ ≤ π is called a center
requency and 0 ≤ W ≤ π the bandwidth. Both θ and W are the
yperparameters of the a priori distribution for the frequency ω.
The assumptions imply that for each fixed frequency value
the ν components, say xℓ, ℓ = 1, . . . , ν of the signal (3) are

tationary uncorrelated processes. Hence the covariance function
f the process y for a fixed (deterministic) sample value ω has the
orm

y(t, s | ω) := E {y(t)y(s) | ω} = σ (t, s | ω) + σ 2
w δ(t, s) (5)

here δ(t, s) is the Kronecker symbol, and

(t, s | ω) :=

ν∑
ℓ=1

E {xℓ(t)xℓ(s) | ω} =

ν∑
ℓ=1

σℓ(t, s | ω)

s the a priori conditional covariance of the signal x given ω =

. To lighten the notation, we suppress the subscripts. The for-
ulas below should be interpreted as holding for a generic in-
ex ℓ. By the stated assumptions, the following computation is
traightforward:

(t, s | ω) = E
{
a2 cos(ωt) cos(ωs) + ab cos(ωt) sin(ωs)

+ab sin(ωt) cos(ωs) + b2 sin(ωt) sin(ωs)
}

= σ 2
0 cosωτ (6)

where τ := t − s, and then computing the a posteriori covariance
y integrating the function with respect to the uniform prior
ensity, one gets

(t, s) = σ 2
0 E (cosωτ) = σ 2

0

∫ θ+W

θ−W
cos(ωτ )

1
2W

dω

= σ 2
0 cos(θτ )

sinWτ
Wτ

. (7)

Since the covariance function depends only on τ , the signal x is
stationary, and so is y. In the following, we will write σ (τ ) in place
of σ (t, s). Note that the a posteriori covariance of the signal is no
longer a finite dimensional kernel and, as we shall see in a minute
its spectrum is far from being rational.

For θ = 0, the covariance function σ (τ ) is the well-known Sinc
unction, which is the inverse Fourier transform of a rectangular
unction with a support [−W , W ], namely

2
0
sinWτ
Wτ

=
σ 2
0

2W

∫ W

−W
eiωτdω. (8)

It follows that a zero-frequency component of the process x must
have a uniform spectral density πσ2

0
W χ[−W ,W ](ω). When W = π ,

the process is just a usual stationary white noise of variance σ 2
0 .

or W < π , the process x is nontrivial, called a bandlimited white
oise within the frequency band [−W , W ]. In this case, it is a
urely deterministic process with an absolutely continuous spec-
ral distribution, since the logarithm of the density is obviously
ot integrable, see e.g., Lindquist and Picci (2015, p. 144).
One is primarily interested in the case θℓ ̸= 0, for which we

ake the assumption that |θℓ| > W for all ℓ, so that each single
upport set S in (4) is composed of two disjoint intervals. Then
ℓ c

3

he last expression in (7) can be rewritten as

2
0 cos(θτ )

sinWτ
Wτ

=
σ 2
0

4W

∫ π

−π

cos(ωτ )χS(ω)dω

=
πσ 2

0

2W

∫ π

−π

eiωτχS(ω)
dω
2π

(9)

where χS is the indicator function of S, and the second equality
holds due to the symmetry of the integrand. From the above
relation, one sees that the spectral density of the process x is the
sum of ν disjoint spectral terms, each of a rectangular shape:

ϕxℓ (ω) =
πσ 2

0,ℓ

2W

(
χ[θℓ−W , θℓ+W ] + χ[−θℓ−W , −θℓ+W ]

)
, (10)

where ℓ = 1, . . . , ν. The signal x can then be described as a sum
of ν independent deterministic carriers, each of angular frequency
θℓ, amplitude-modulated by a bandlimited white noise process as
described before. Note that the generated subspace H(x) is always
infinite dimensional. The single covariance function (7) has been
called a modulated Sinc kernel in Khare (2006), where it arises in
a different deterministic context.

A remarkable fact is that the a posteriori covariance operator
with kernel σ (t−s) has very similar properties to those that have
been uncovered in the 60s and 70s by D. Slepian and coworkers
in a famous series of papers concerning the energy concentration
problems of time and band limited signals (Landau & Pollak,
1961; Landau & Widom, 1980; Slepian, 1978; Slepian & Pollak,
1961). The key property of the covariance operator in question
is that its eigenvalues decay extremely fast to very small values
(nearly zero) for indices greater than an a priori computable
number n, called the Slepian frequency.

In practice we can only observe sample paths of finite length N
from the process y. Collect the observed random variables into a
column vector, and in particular, let xN := [x(t), x(t+1), . . . , x(t+
N − 1)]⊤. Then consider the N × N covariance matrix

ΣN := E{xNx⊤

N }

=

⎡⎢⎢⎣
σ (0) σ (1) · · · σ (N − 1)
σ (1) σ (0) · · · σ (N − 2)
...

...
. . .

...

σ (N − 1) σ (N − 2) · · · σ (0)

⎤⎥⎥⎦ . (11)

his symmetric Toeplitz structure of the covariance matrix comes
rom the fact that the process is stationary and real-valued. Sim-
larly, we can define the N × N covariance matrix of the process
, say Σy,N , and we have the relation

y,N = ΣN + σ 2
wIN . (12)

nalysis of the eigen-structure of ΣN will be of great importance
o our frequency estimation problem, and that will be the content
f the next section.

. Eigenvalues of the covariance matrix

Let S be the set that is a union of a finite number of pair-
ise disjoint closed subintervals of [−π, π], like the one in (4).
bviously the spectrum φx(ω) has the same support of the char-
cteristic function χS(ω). Consider the inverse Fourier transform

(t) :=
1
2π

∫
S
eitωdω, t ∈ Z. (13)

This is just the impulse response of the ideal bandpass filter χS(ω)
hich in our context can be interpreted as a spectral density, a
ort of ‘‘global’’ renormalization of (10) so that for ν = 1 the
ovariance function σ (t) is just a scalar multiple of ρ(t) via σ (t) =



G. Picci and B. Zhu Automatica 142 (2022) 110362

ρ

C

R

B
c
f

c
u
c

4

w
t
t
n
t
f

i

i

[

s
d

R
Z
d

t
(
e
a
a
t
p
e

t
b
n
s

I
µ

t
t
n
M
t
t
f
t
s
w

5

n
s
o

πσ2
0

2W ρ(t). Observe that the function ρ has the symmetry ρ(−t) =

(t)∗ where z∗ means the complex conjugate (transpose) of z ∈

.
Define the Hermitian Toeplitz matrix

=

⎡⎢⎢⎣
ρ(0) ρ(−1) · · · ρ(−N + 1)
ρ(1) ρ(0) · · · ρ(−N + 2)
...

...
. . .

...

ρ(N − 1) ρ(N − 2) · · · ρ(0)

⎤⎥⎥⎦ . (14)

y well-known properties of covariance functions, for an arbitrary
omplex vector y = [y0, . . . , yN−1]

⊤ of length N , the quadratic
orm y∗Ry is positive definite. Notice that when the set S is
symmetric with respect to the origin as in (4), the integral in
(13) reduces to

∫
S cos(tω)dω. In that case, ρ is an even function

of time, and the matrix R is real symmetric.
Now, the largest eigenvalue of R is well-known to be equal

to the maximum of the Rayleigh quotient associated to R. By
the min–max theorem, this maximum is attained when y is the
orresponding eigenvector. It is also obvious that the eigenval-
es of R cannot exceed 1, simply because the maximum of the
orresponding spectrum χS(ω) is just equal to 1.

.1. Asymptotic behavior of the eigenvalues of R

We shall now allow the dimension of R to increase. In other
ords, the integer N introduced earlier is considered as a variable
ending to infinity. For notational consistency we shall then add
he subscript N to R. Let λj(N) be the j-th eigenvalue (arranged in
onincreasing order) of RN . We know from the previous subsec-
ion that 0 < λj(N) ≤ 1 for all j = 1, . . . ,N . It also follows easily
rom (13) that
N∑
j=1

λj(N) = tr RN = Nρ(0) =
m(S)
2π

N, (15)

where the notation m(·) denotes the Lebesgue measure of a set.
Now for a real number 0 < γ < 1, define n(γ ,N) to be the
number of eigenvalues of RN that are no less than γ . Note that this
number is just the numerical rank of the matrix RN with threshold
γ . The next result is a first-order description of the asymptotic
eigenvalue distribution of the matrix RN .

Theorem 1. It holds that

lim
N→∞

n(γ ,N)
N

=
m(S)
2π

(16)

ndependent of γ . Equivalently, for N → ∞, the covariance matrix
RN has numerical rank equal to

n = Nm(S)/2π, (17)

ndependent of γ and all the nonzero eigenvalues tend to 1.

Proof. Formula (16) follows from a famous theorem of Szegö
for the asymptotic eigenvalue distribution of Toeplitz matri-
ces (Grenander & Szegő, 1958, p. 65) as the support of the
‘‘spectral density’’ χS(ω) associated to the normalized covariance
function ρ is precisely the set S. In plain words, the fraction
of dominant positive eigenvalues of RN in the integer interval
0,N] is asymptotically equal to the fraction of the measure of the
pectral support of its symbol ρ to that of the whole frequency
omain. □

emark 2. The above proof has also been reported in Picci and
hu (2021). A more precise formula for the asymptotic eigenvalue
istribution of R is given in Landau and Widom (1980) for
N

4

Fig. 1. Eigenvalues of the Sinc kernel covariance matrix, numerical rank ≈ 40.

he continuous-time case. The number of ‘‘transient’’ eigenvalues
those that lie between the dominant and the ones which are
ssentially zero) is shown to be proportional to logN . Slepian’s
symptotic expressions for the eigenvalues, valid for θ = 0, are
lso reported in Thomson (1982, p. 1059). Although we believe
hat analogous discrete-time estimates should hold, a formal
roof is yet to be worked out. For our problem of frequency
stimation, Theorem 1 is anyway sufficient.

The decay of eigenvalues is very fast, as it can be shown
hat the matrix RN has only o(N) eigenvalues that are strictly
etween 0 and 1, and for large sample size they can be reasonably
eglected. For ν = 1 the covariance matrix in (11) is just a
calar multiple of RN via ΣN =

πσ2
0

2W RN . Clearly, the constant factor
only rescales the eigenvalues. In particular, the assertion on the
asymptotic numerical rank in Theorem 1 holds for ΣN . Below we
show some simulations of how the eigenvalues decay.

Fig. 1 shows the behavior of the eigenvalues µk of the Sinc
kernel (θ = 0) for N = 1000,W/2π = 0.02, σ 2

= 1 which
yields a numerical rank approximately equal to 40. We can clearly
see that for n < 40 the eigenvalues are all equal to the same
constant while for n > 40 the µk’s very quickly decrease to zero.
The behavior of the eigenvalues of RN is the same except that the
normalization makes the µk all practically equal to one for k < n.
n order to get the same normalization we just need to substitute
k with Wµk/π .
As for the modulated Sinc kernel, Fig. 2 shows the eigenvalues

of a matrix ΣN with the same values of N , W , and σ 2. One sees
hat the eigenvalues have exactly the same behavior as those of
he Sinc kernel. Only the value of n such that for k > n, µk ≃ 0 is
ow 4NW/2π = 80, i.e., twice the value of n for the sinc kernel.
oreover, the amplitudes of the eigenvalues for k < n are half of

hose of the sinc kernel, for equal values of W . This follows from
he symmetry of the spectrum and matches also the experimental
indings of Khare (2006). In order to get the largest eigenvalues of
he modulated Sinc kernel equal to one, a different normalization
hould be made by substituting µk with 2 Wµk/π . This agrees
ith the matrix rescaling described above.

. Covariance estimation

For clarity of exposition, we shall now assume that ν = 1 and
eglect the subscript ℓ altogether. The generalization to multiple
inusoids, i.e., ν > 1, will be straightforward. In the case of
ne hidden frequency, we have rankΣN ≈

2W
π

N according to
Theorem 1. We see that the bandwidth W can be inferred from
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Fig. 2. Eigenvalues of the modulated Sinc kernel covariance matrix, numerical
ank ≈ 80.

he asymptotic numerical rank of the signal covariance matrix Σ .
ince our measurements come from the process y, we start by
stimating its covariance matrix Σy.
A well-known difficulty in frequency estimation is that sta-

ionary random processes with periodic components, even when
he frequencies are exactly known, are not ergodic. Nonergod-
city means in particular that, when the sample size goes to
nfinity, the limit of the process sample covariance is sample
ependent, that is, the limit sample covariance depends on the
andom amplitudes of its elementary oscillatory components, see
.g., Söderström and Stoica (1989, pp. 105–109). This lack of
rgodicity is even more serious when the frequency is random.
or this reason, one-sample-path estimation runs into difficulty
nd the standard approach in many practical situations is to
onsider estimation from cross-sectional or panel data (also called
napshots), as described in e.g., Hsiao (2014) and done in the
DOA estimation. Cross-sectional frequency data can be the result
of parallel measurements by multiple sensors which is quite
common for example in testing of turbo, and in general rotating
machines, but also in many directional signal processing and
biomedical applications.

For the reasons above, we shall need to assume that our
bserved data consist of L strings of sample observations (snap-
hots), assumed for simplicity all of length N:

k(t) = ak cos(ωkt) + bk sin(ωkt) + wk(t), (18)

here k = 1, . . . , L, t = 1, . . . ,N , (ak, bk) are sample determi-
ations of the random variables (a, b), and the frequencies ωk

are sample determinations of the random variable ω which is
uniformly distributed on the fixed interval [θ − W , θ + W ]. We
assume that noises of different cross sections are independent.
Furthermore, we assume that the random samples [ak, bk, ωk]

come from i.i.d. copies of [a, b,ω], then the covariance matrix can
be estimated by first subtracting the sample mean from the data,
i.e.,

ỹk(t) := yk(t) −
1
N

N∑
t=1

yk(t)

and then doing a cross-sectional average

Σ̂y,N :=
1
L

L∑
YkY⊤

k , (19)

k=1

5

where Yk =
[
ỹk(1) · · · ỹk(N)

]⊤ is a column vector of centered
data. The procedure is asymptotically equivalent (for L → ∞) to
first computing the standard (biased) covariance estimator within
each sample path (Stoica & Moses, 2005, Chapter 2),

σ̂k(τ ) :=
1
N

N−τ∑
t=1

ỹk(t + τ )ỹk(t),

onstructing the sample symmetric Toeplitz estimate

ˆ k := SymToep{σ̂k(0), . . . , σ̂k(N − 1)} (20)

nd then doing cross sectional average with respect to k to obtain
ˆ y,N which is still symmetric Toeplitz (here the subscript N just
efers to the dimension which is fixed). By the strong law of large
umbers, we have

ˆ y,N → Σy,N as L → ∞ (21)

lmost surely. Let λ̂N be the smallest eigenvalue of Σ̂y,N . Then
given (12) and Theorem 1, we have

lim
L,N→∞

λ̂N = σ 2
w. (22)

The limit here is understood as first letting L → ∞ and then
N → ∞. In this sense we are able to build a consistent estimator
of the signal covariance matrix ΣN :

Σ̂N := Σ̂y,N − λ̂N IN . (23)

Thus a consistent estimator of the signal variance is given by

σ̂x(0) := σ̂y(0) − λ̂N , (24)

since we have σy(0) = σx(0) + σ 2
w by (5).

Next, the rank of ΣN (i.e., the Slepian frequency) may be ap-
proximated using Theorem 1 as

rank(ΣN ) ≃
2W
π

N (25)

with an approximation error which roughly grows as O(logN).
Hence the numerical rank of the sample signal covariance matrix
Σ̂N , written as rank(Σ̂N ) (not to be confused with the true rank
of Σ̂N ), can be estimated by locating the index at which its
eigenvalues collapse to zero. From (25) we can then obtain an
estimator of W :

Ŵ :=
π

2
rank(Σ̂N )

N
→ W (26)

as N → ∞. Unfortunately this estimator ofW depends heavily on
the estimate of the numerical rank whose computation is delicate
and is not very reliable unless N is large.

6. A subspace approach to hyperparameter estimation

Consider now the general measurement model (2), with the
signal x consisting of multiple sinusoids as in (3) satisfying all
assumptions listed in Section 3. The covariance of y can then be
omputed similarly to that in (7). We have

y(τ ) = σ (τ ) + σ 2
wδ(τ , 0)

=
sinWτ
Wτ

ν∑
ℓ=1

σ 2
0,ℓ cos θℓτ + σ 2

wδ(τ , 0)

=
π

2W

∫ π

−π

eiωτ
ν∑
ℓ=1

σ 2
0,ℓ χSℓ (ω)

dω
2π

+ σ 2
wδ(τ , 0)

(27)

here the sum
∑ν

ℓ=1 σ
2
0,ℓ χSℓ (ω) is a combination of indicator

unctions on the sets Sℓ with possibly different weights σ 2
0,ℓ.

From the integral expression for the covariance function, we see
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mmediately that Theorem 1 is applicable, and the asymptotic
ank of ΣN is now 2νW

π
N . A rank estimator for the bandwidth

similar to (26) can be used since we have assumed that
he supporting intervals for different frequencies have the same
andwidth. A more general situation with different W ’s can also
e dealt with but it yields complicated formulas and will not be
iscussed here. Next, we will concentrate on the estimation of the
enter frequency vector θ := [θ1, . . . , θν]

⊤.
Efficient estimation of the hyperparameters, assuming Gaus-

ian additive noise, is generally based on maximum likelihood.
ee MacKay (1992, p. 429) for a general discussion of this point.
he Gaussian a posteriori likelihood function based on the k-th
napshot of N data can be written as (Hannan & Deistler, 1988)

k(θ,W ) = −
N
2

log 2π −
1
2
log detΣy(θ,W )

−
1
2
Y⊤

k Σy(θ,W )−1Yk,

(28)

where Yk is the vector introduced in (19) and Σy(θ,W ) is the
heoretical a posteriori covariance matrix of Yk, with entries given
in (27) which do not depend on the index k. By the independence
of the sample paths, the log-likelihoods add to each other so that
we end up with maximization of the function

l(θ,W ) = −
L
2
log detΣy(θ,W ) −

L∑
k=1

1
2
Y⊤

k Σy(θ,W )−1Yk (29)

with respect to θ,W . This leads to the well-known unique max-
imizer, see e.g., Söderström and Stoica (1989, pp. 202–203), for
the covariance matrix

Σy(θ,W ) = Σ̂y,N (30)

where Σ̂y,N is defined in (19). Such an equation should be solved
for the unknown hyperparameters (θ,W ) appearing in the known
structure (27). Note that this equation can be interpreted as
resulting from the well-known method of moments which is the
theoretical basis of Subspace Methods (Lindquist & Picci, 2015,
Chap. 13). Since the equation is nonlinear, one may think of
setting up at the outset an iterative solution scheme. However,
these numerical algorithms very often converge only locally. In
fact, the likelihood function is nonconvex and contains many flat
regions. Therefore, brute-force optimization seems to be a hard
task.

We shall instead take inspiration from (30) to propose a
subspace-based approach. Of course subspace methods are re-
stricted to finite dimensional linear models. For a fixed N , we
may and shall here assume that the truncated N × N covariance
matrix ΣN of the process x has precisely rank n :=

2νW
π

N .
s discussed in Section 4.1, for N large this is a reasonable

approximation. Hence for each N the problem can be phrased as
the subspace identification of a finite dimensional process of rank
n approximating the a posteriori message x.

In terms of (a strict-sense) approximation of random signals,
we are just looking for a jointly stationary zero-mean process z,
spanning a finite-dimensional subspace H(z) ⊂ H(x) of dimension
n. Both x and z will occasionally be written as doubly infinite
column vectors. Any such process z must also be purely deter-
ministic. Abusing the terminology, we shall say that it is of rank n,
even if saying that it has dimension n would be more appropriate.
Note that z is uniquely determined by any finite string of random
variables {z(t)}t∈I induced on an interval I of length N ≥ n.
his follows from the statement in Lindquist and Picci (2015,
p. 276–277) which is reported below for completeness.

emma 1. Any p.d. process z of rank n can be represented for all
t ∈ Z by a state–space model (i.e., a stochastic realization) of the
6

form

ξ(t + 1) = Aξ(t) (31a)

z(t) = c ξ(t) (31b)

where ξ(t) = [ ξ1(t), ξ2(t), . . . , ξn(t) ]⊤ is a n-dimensional basis
vector spanning the Hilbert space H(zN ) linearly generated by the
N ≥ n random variables of the set {z(s) : t ≥ s ≥ t − N + 1}, A
is a n × n unitary matrix and c is a n-dimensional row vector such
that the pair (c, A) is observable.

Proof. See Lindquist and Picci (2015, p. 277). □

This linear state–space realization provides a representation
of z(t) as a deterministic autoregression of order n and hence
extends in time the finite family of random variables {z(s)}, gener-
ators of H(zN ), to a stationary p.d. process z defined on the whole
time domain Z. Since this realization is uniquely determined by
the space H(zN ) modulo a choice of basis, it follows that the
process z is also uniquely determined by the finite dimensional
subspace H(zN ). Hence all covariances γ (τ ) = Ez(t + τ )z(t) are
also uniquely defined and determine all the entries of the infinite
covariance matrix of the process. It is worth remembering that
the function γ (τ ) must be a periodic function of τ containing n
oscillatory modes and that the frequencies of these n modes are
exactly determined by the eigenvalues of the unitary matrix A,
which must belong to the unit circle of the complex plane.

Given the cross sectional measurements (18) of size L×N , we
summarize our subspace algorithm below:

(1) Compute Σ̂y,N , an estimate of the covariance matrix of y,
using (19);

(2) Subtract the smallest eigenvalue to obtain the signal co-
variance estimate Σ̂N , see (23),

(3) Estimate the numerical rank n of the signal covariance
matrix and then estimate the bandwidth W via a formula
like (26);

(4) Do eigen-decomposition to Σ̂N , keep the largest n eigenval-
ues, and call the N×nmatrix of corresponding eigenvectors
HN ;

(5) Let k = N − 1, and let now ↓Hk be the matrix Hk deprived
of its first row and ↑Hk be the same matrix deprived of its
last row. Solve the shift-invariance equation

↑HkA =↓Hk

by the Procrustes algorithm (Golub & van Loan, 2013) to
get a unique orthogonal n × n matrix A;

(6) Compute the eigenvalues of A, and extract their phase
angles (between −π and π );

(7) Run a clustering algorithm, e.g., k-means, on the phase
angles, and take the centers of final clusters as estimates
of the center frequencies.

As declared in point (3) the bandwidth W can be estimated from
the asymptotic numerical rank of the covariance matrix. Given
finite data strings, however, some ad-hoc schemes are usually
needed. One possibility could be to estimate n by maximizing the
ratio

argmax
k∈{1,...,N−1}

λ2k(Σ̂y,N )

λ2k+1(Σ̂y,N )
, (32)

where λk(Σ̂y,N ) denotes the kth eigenvalue of the estimated co-
variance matrix Σ̂y,N of the observation process, arranged in
nonincreasing order. Intuitively, the maximum should be attained
at the beginning of the flat region in the eigen-plot, see e.g., Figs. 1
and 2.
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Fig. 3. Discrete spectrum estimate with two hidden frequencies. The true
hyperparameters are [θ1, θ2,W ] = 2π × [0.1499, 0.2524, 0.0155] and the
stimated band centers are θ̂ = 2π × [0.1503, 0.2532].

In the last step of this subspace algorithm, the center of each
luster may be obtained by simply taking the average of all the
oints in the cluster. This yields the estimate

ˆ
ℓ =

1
nℓ

nℓ∑
k=1

ϕk,ℓ ℓ = 1, . . . , ν (33)

where nℓ is the number of phase points in each cluster of positive
phases.

Fig. 3 shows the discrete spectrum of the process z(t), output
of the approximate state–space model (31), in one simulation
trial in the case of L = 100. The horizontal axis is scaled to
represent the frequency in Hz. In this particular trial, the true
hyperparameters are [θ1, θ2,W ] = 2π×[0.1499, 0.2524, 0.0155],
and the estimated band centers are θ̂ = 2π × [0.1503, 0.2532].
One can see that the Dirac deltas indeed cluster around the true
center frequencies inside the supporting interval.

6.1. The question of consistency

We shall give for granted that a subspace identification pro-
cedure for finite dimensional stochastic systems, assuming a true
model exists, provides a consistent estimate of the ‘‘external’’ de-
scription (e.g., the covariance or spectrum) of a finite dimensional
model describing a finite rank p.d. process z; see Favaro and Picci
(2012) and Lindquist and Picci (2015, Sec. 13.4) for a general proof
of consistency of subspace algorithms. In this finite-dimensional
setting consistency can be seen just as a consequence of the
(exact) stochastic realization procedure underlying any subspace
algorithm. Note however that here the ‘‘true’’ process x may in
general be described (in the wide sense) by an infinite-dimensional
linear stochastic model or by a nonrational spectral density func-
tion of which any identified finite dimensional model (31) can
only provide, for each finite N , an approximation (in some sense
yet to be ascertained). Hence the question of statistical consis-
tency should be posed as that of discovering if, and in what
sense, the sequence of identified models (31) may converge when
N → ∞, to a ‘‘true" description of the infinite dimensional signal.

Each n-dimensional realization (31) defines a p.d. process z,
output of the identified finite-dimensional model (31), of rank n.
We shall denote the infinite covariance matrix of this p.d. process
by the boldface symbol Γ , notation specialized to Γ (n) when
studying its dependence on the dimension n (or equivalently,
on the sample size N). Clearly Γ (n) is a positive semidefinite

infinite symmetric Toeplitz matrix of rank n. In this way we may

7

construct a sequence of ‘‘approximations’’ of Σ , each having a
finite rank n. The symbol (spectral density) of Γ (n), say ϕn(eiθ ), is
the sum of 2n Dirac pulses supported on [−π, π ].

We would like to investigate in what sense, if any, the se-
quence of Toeplitz matrices Γ (n) could be considered an ap-
proximation of Σ or equivalently, ϕn(eiθ ) could be considered an
approximation of the symbol ϕ(eiθ ). It seems evident that this
last property could only be established in a weak sense, say for
arbitrary test functions ψ(eiθ ) continuous on the unit circle one
should have∫
ψ(eiθ )ϕn(eiθ )ψ(eiθ )∗ →

∫
ψ(eiθ )ϕ(eiθ )ψ(eiθ )∗ (34)

as n → ∞. An equivalent question can be posed in terms of
L2 approximation of the stationary process x by the rank n p.d.
process z of (31). As we shall see this problem should also be
naturally formulated in a weak sense.

7. Finite rank approximation of random processes

To begin with, suppose we want to approximate a N-
dimensional zero-mean random vector y (not to be confused
with the output process of our model) having a positive definite
covariance matrix Σ ∈ RN×N , by another N-dimensional vector
say ŷ having covariance Σn of rank n < N . To make the problem
well-posed we shall require that the approximation ŷ should
generate a linear n-dimensional subspace of H(y) which means
that ŷ can be represented as a linear function of y, say

ŷ := My

where M ∈ RN×N has rank n. Motivated by the discussion in the
previous subsection, let us consider the following approximation
problem:

Problem 3. Find a matrix M ∈ RN×N of rank n, solving the
following minimum problem

min
rank(M )= n

E{∥y − M y∥2
} . (35)

Note that an equivalent geometric formulation is to look for an
optimal n-dimensional subspace of H(y) onto which y should be
projected in order to minimize the approximation error variance.
Let us stress that this is quite different from the usual least
squares approximation problem which amounts to projecting
onto a given subspace.

Theorem 4. The solution of the approximation problem (35) has
the form

M = Un U⊤

n , (36)

where Un is a N×n matrix whose columns can be chosen as the first n
normalized eigenvectors of Σ , ordered in the descending magnitude
ordering of the corresponding first n eigenvalues, collected in the
diagonal matrix Λn.

The proof is deferred to Appendix.
Observe that ŷ = UnU⊤

n y is just the first n-Principal Compo-
ents Approximation of y. In fact it is well-known that the PCA
ector ŷ can be expressed as a linear transformation acting on
(Hotelling, 1936). This result confirms in particular that the

runcated PCA expansion is optimal in the sense that it provides
he best M and the best approximation subspace for the criterion
35). This characterization has been also found by a different tech-
ique studying subspace approximation problems; see e.g., Yang
1995).
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It is immediate to check that the variance matrix of ŷ has rank
n since

Eŷŷ⊤
= UnU⊤

n Eyy⊤UnU⊤

n = Un diag{λ1, . . . , λn}U⊤

n (37)

iven that

U⊤

n Eyy⊤Un

U⊤

n UN diag{λ1, . . . , λn, λn+1, . . . , λN}U⊤

N Un
(38)

nd U⊤
n UN = [In O] picks the n × n submatrix of Λ with the

first n eigenvalues. This expression holds for arbitrary N and
hence for arbitrary n. Naturally one should keep in mind that the
eigenvector matrices now depend on N but the eigenvalues stay
fixed.

7.1. Extension to infinite dimension

In analogy to Problem 3, let us now consider the approxima-
tion of our a posteriori signal x and ask if there is a stationary
process z spanning a subspace H(z) ⊂ H(x) of dimension n, which
minimizes an approximation criterion of the type (35). If such
a process exists we shall call it a n-Principal Components (n-PC)
approximation of x.

Let I = [ t, t + 1, . . . , t + N − 1 ] be a finite subinterval
of the time domain Z of length N ≥ n and consider the finite
random vectors xN := [x(t) . . . x(t + N − 1)]⊤ and a candidate
vector zN := [z(t) . . . z(t + N − 1)]⊤ which is extracted from a
yet undefined candidate stationary process z. Due to stationarity
the second order properties of these vectors are invariant with
respect to the particular time t . We may represent zN as zN =

MxN for some N × N matrix M of rank n so that H(zN ) ⊂ H(xN )
has dimension n. We want to find such a zN which minimizes the
norm E{∥xN − zN∥

2
}. This minimization problem is analogous to

that of Problem 3 where now ŷ is substituted by zN . By Theorem 4
the solution vector, say x̂N = M̂xN , is a linear function of xN
which must span a subspace H(x̂N ) ⊂ H(x) of dimension n.
Hence it determines by stationary extension (Lemma 1) a purely
deterministic process x̂ such that H(x̂) = H(x̂N ) has finite di-
mension n. Since H(x̂) = H(xN ) ⊂ H(x), this process satisfies
our requirements. By stationarity x̂ is invariant with respect to
translations of the interval I provided its length N is fixed. Then x̂
is a n-PC approximation of x. Below we state a key relation linking
this n-PC approximation to the subspace procedure. The result is
quite general and although here we shall only refer to the x of
(3), it apparently holds for a more general class of p.d. message
processes.

Theorem 5. For N > n, the subspace identification algorithm based
on the (true) truncated covariance ΣN provides a n-PC approxima-
tion of x.

Proof. To understand in what sense the algorithm may pro-
vide an approximation of the true a posteriori signal x, we shall
re-examine the subspace procedure in terms of the limit true
covariances (i.e., not in terms of their sample estimates). Consider
the N × N-truncation of the matrix Σ , introduced in (11) which
for each N has a positive point spectrum, say

SN := {σN,1, . . . , σN,N}

where and the eigenvalues are ordered in decreasing magnitude.
In our problem all ΣN ’s are nonsingular so that the eigenvalues
are strictly positive for all N .

An approximate model is defined by extracting a rank n < N
factorization of ΣN . In terms of random variables, the subspace
identification procedure starts from the spectral decomposition

⊤
ΣN = UNΛNUN , ΛN = diag{σN,1, . . . , σN,N}

8

and discards the eigenvalues of index larger than n to get an
approximate rank n factorization

Σ̂N = UnΛnU⊤

n , Λn = diag{σN,1, . . . , σN,n}

where UN =

[
Un Ũn

]
with Un ∈ RN×n having orthonormal

columns and

∥ŨnΛ̃nŨ⊤

n ∥
2
F =

N∑
k=n+1

σ 2
N,k.

Here Λ̃n is the diagonal matrix with discarded eigenvalues of
index larger than n and the subscript F denotes the Frobenius
norm. Let now ↓ Un be the matrix Un deprived of its first row
and ↑ Un be the same matrix deprived of its last row. Apply the
shift-invariance property

↑UnA =↓Un

and the Procrustes algorithm (Golub & van Loan, 2013) to get a
unique orthogonal n×nmatrix A, which leads to the Observability
structure

Un =

⎡⎢⎢⎣
c
cA
...

cAN−1

⎤⎥⎥⎦
having rank n by construction. This procedure leads to a stochas-
tic system of the same structure as (31) where the state vector ξ
has uncorrelated components of variance Λn. The output process
has a covariance function γ (t − s) = cAtΛnA−sc⊤

= cAt−sΛnc⊤

since A and Λn commute as AΛnA∗
= Λn (by Lyapunov).

Let now zN := Unξ. This random vector has covariance matrix

ΓN := EzNz⊤

N = UnΛnU⊤

n , (39)

which is an approximate SVD factorization of rank n of ΣN . In
fact,

ΣN = ΓN + ŨnΛ̃nŨ⊤

n , (40)

Therefore in view of the identity of the expressions (39) and (37),
zN has the same covariance structure of x̂N and can be considered
an equivalent n-PC approximation of xN . □

The question now is to understand in what sense this ap-
proximation can get close to x as n → ∞. Since we are now
studying the behavior of the n-PC approximation of x when the
dimension n varies, we shall attach a superscript to x̂ and denote
it by x̂n; likewise we shall do for its covariance matrix, which
will be denoted Γ (n). From what we have seen so far, for each n
there is a n-PC approximation of x having a well defined (infinite)
covariance matrix Γ (n) of rank n.

Theorem 6. The sequence {Γ (n)} converges weakly to Σ as n
diverges to ∞, that is

ψ⊤
[Σ − Γ (n)]ψ → 0 as n → ∞

for all functions (infinite row sequences) ψ⊤ having finite support in
an interval I ⊂ Z.

Proof. Consider the N × N truncation (with N ≥ n) of the (infi-
nite) covariance matrix Γ (n) of the n-PC approximation process
x̂n of x and denote it ΓN (n). By analogy to (37) this N ×N matrix
s the rank n SVD approximation of ΣN and has the structure

(n) = Un diag{σ , . . . , σ }(Un )⊤ (41)
N N N,1 N,n N
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here σN,k are the first n eigenvalues of the N × N-truncation
f Σ . These eigenvalues are well-defined for all finite N . The
× n eigenvector matrices Un

N depend on N and their dimension
bviously grows with N .
By a well-known property of the SVD, see e.g., Golub and

an Loan (2013, Chap. 2), the variance matrix ΓN (n) of x̂nN is the
ymmetric N × N matrix of rank n which has minimum distance
rom that of xN in the Frobenius norm. This in turn implies that
he (infinite) covariance matrix Γ (n) is the symmetric positive
perator of rank n for which
⊤(Σ − Γ (n))ψ = ψ⊤

N (ΣN − ΓN (n))ψN

≤ ∥ψN∥
2

N∑
k=n+1

σN,k
(42)

or all functions ψ having support in an interval I ⊂ Z of length
≥ n. We shall let n → ∞ while still keeping N ≥ n (so

bviously we have N → ∞ as well).
Recall now that Σ is a bounded linear operator in ℓ2 and let

(ϕ) be the essential infimum of its spectral density ϕ(eiθ ). Since
or our model this function is zero on a set of positive Lebesgue
easure we have m(ϕ) = 0. We quote the following fundamental

act from Grenander and Szegő (1958, p. 65) and Gray (2006,
orollary 6, p. 58).

heorem 7 (Szegő). Let ϕ(eiθ ) be the symbol of the infinite covari-
nce matrix Σ , then

lim
→∞

min
k
σN,k = m(ϕ). (43)

herefore if the eigenvalues are listed in descending order, one has

lim
→∞

σN,N = 0 . (44)

Since σN,N tends to zero by Theorem 7, so does any finite
equence {σN,k; n + 1 ≤ k ≤ N} and likewise should do their
um. Therefore the first member in (42) converges to zero for all
as N → ∞. □

emark 8. Contrary to all submatrices ΣN , the infinite covariance
perator Σ may not have eigenvalues (nor corresponding eigen-
ectors) and consequently the idea of PC approximation does not
pply directly to the full (infinite) matrix. For this reason the
pproximation and the convergence results may not hold in a
trong sense.

. Approximation in the spectral domain

We have shown that the theoretical subspace algorithm de-
cribed in Section 7.1 provides a n-PC approximation converging
eakly to the ‘‘true’’ process x. Next we want to study this
pproximation in the spectral domain.
From Lindquist and Picci (2015, Chap. 3), the processes x and

ˆn have a spectral representation with random spectral measures
Z(eiθ ) and dZn(eiθ ) such that

EdZ(eiθ )dZ(eiθ )∗ = ϕ(eiθ )
dθ
2π
,

EdZn(eiθ )dZn(eiθ )∗ = ϕn(eiθ )
dθ
2π

.

here the second expression is formally written as a bona fide
pectral density in spite of the fact that ϕn(eiθ ) is a sum of Dirac
elta functions. Letting ψ̂(eiθ ) :=

∑N−1
k=0 ψ(k)eiθk, one has

ψ⊤Σψ = E

[
N−1∑
k=0

ψ(k)x(k)

]2

= E
[∫ π

−π

ψ̂(eiθ )dZ(eiθ )
]2

=

∫ π

ψ̂(eiθ )ϕ(eiθ )ψ̂(eiθ )∗
dθ
,

−π 2π M

9

and similarly for ψ⊤Γ (n)ψ we have

ψ⊤Γ (n)ψ = E

[
N−1∑
k=0

ψ(k)x̂(k)

]2

= E
[∫ π

−π

ψ̂(eiθ )dZn(eiθ )
]2

=

∫ π

−π

ψ̂(eiθ )ϕn(eiθ )ψ̂(eiθ )∗
dθ
2π
,

so that

ψ⊤
[Γ (n) − Σ ]ψ =

∫ π

−π

ψ̂(eiθ )[ϕn(eiθ ) − ϕ(eiθ ) ]ψ̂(eiθ )∗
dθ
2π

and (34) follows from Theorem 6. □
Note also that, because of the orthogonality ψ⊤(x − x̂n) ⊥

ψ⊤x̂n (which follows from the relation (A.1)), the difference (42)
can be rewritten as E[ψ⊤(x− x̂n)]2 which also must tend to zero
when n → ∞ for all functions ψ having support in an interval
I ⊂ Z of length N ≥ n. Therefore we can say that x̂n converges
weakly to x. In particular, we can take the support of ψ to be a
single point t ∈ Z, and the above result implies that x̂n(t) → x(t)
in mean square for all t ∈ Z.

Remark 9. As the reader may have noticed, this proof of con-
sistency uses only certain special properties of the random-
frequency model (3), namely the fact that the spectral density
of x, ϕ(eiθ ), is a bounded function which is zero on a set of
positive Lebesgue measure. In this sense the argument does apply
to a larger class of p.d. message signals (and to a larger class of
positive definite infinite Toeplitz matrices). An analysis of this
class of signals goes however beyond the scope of this paper.

9. Conclusions

We have studied consistency of an approximate subspace
identification procedure for the infinite dimensional a posteri-
ori model of a frequency estimation problem in an Empirical
Bayesian formulation. By first imposing a natural uniform prior
probability density on the unknown frequencies, the estimation
of the hyperparameters of the a priori distribution can be ac-
complished by a sequence of subspace identification techniques.
The key idea is to exploit the special structure of the covariance
matrix of the a posteriori process which has been discovered by
exploring classical results on energy concentration in determin-
istic signal processing. The convergence of the spectrum of the
subspace estimates to the (nonrational) spectral density of the
a posteriori process is proven by a weak-sense approximation
theorem for Toeplitz spectra.

Appendix. Proof of Theorem 4

As usual, minimizing the square distance in (35) requires that
the approximation My should be uncorrelated with the approxi-
mation error, namely

y − My ⊥ My, (A.1)

which is equivalent to

MΣ − MΣM⊤
= 0.

Introducing a square root Σ1/2 of Σ and defining M̂ := Σ−1/2

MΣ1/2, this condition is seen to be equivalent to

M̂ = M̂ M̂⊤

which just says that M̂ must be symmetric and idempotent (i.e.
M̂ = M̂2), in other words an orthogonal projection from RN onto
some n-dimensional subspace. Hence M must have the following
tructure

1/2 −1/2 2 ⊤

= Σ Π Σ , Π = Π , Π = Π (A.2)
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here Π is an orthogonal projection matrix of rank n. Let Λ :=

iag{λ1, . . . , λN} and Σ = UΛU⊤ be the spectral decomposition
f Σ in which U is an orthogonal matrix of eigenvectors. We
an, for example, pick as a square root of Σ the matrix Σ1/2

:=

Λ1/2.
Now, no matter how Σ1/2 is chosen, the random vector e :=

−1/2 y has orthonormal components. Hence using (A.2) the cost
unction of our minimum problem can be rewritten as

E{∥y − M y∥2
} = E{∥Σ1/2e −Σ1/2Π Σ−1/2y∥2

}

E{∥Σ1/2(e −Π e )∥2
} = E{∥Λ1/2(e −Π e )∥2

}

E (e −Π e )⊤Λ (e −Π e )
tr

[
ΛE(e −Π e )(e −Π e )⊤

] (A.3)

here tr A :=
∑

akk is the trace of A. Our minimum problem can
herefore be rewritten as

min
ank(Π )= n

tr{ΛΠ⊥
}

here Π⊥
:= I −Π is the orthogonal projection matrix onto the

rthogonal complement of the subspace ImΠ .
Since the eigenvalues are in a decreasing order, i.e., λ1 ≥

· · ≥ λN , one sees that the minimum of this function of Π
s reached when Π projects onto the subspace spanned by the
irst n coordinate axes. In other words, Πoptimal = diag{In, O} the
inimum being λn+1 + · · · + λN . It is then evident that

= UΛ1/2ΠoptimalΛ
−1/2U⊤

= UnU⊤

n

aturally, multiplying Un by any n×n orthogonal matrix does not
hange the result. □
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