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Abstract

It is a well-known, yet poorly understood fact that, contrary to the continuous-time case,
the same discrete-time processan be represented by minimal linear models (see (1.1a),
(1.1b) below) which may either have a non-singular or a singDlamatrix. In fact, models
with D = 0 have been commonly used in the statistical literature. On the other hand, for
models with a singulab matrix the Riccati difference equation of Kalman filtering involves
in general the pseudo-inversion of a singular matrix. This “cheap filtering” problem, dual to
the better known “cheap control” problem, has been studied for several decades in connection
with the so-called “invariant directions” of the Riccati equation. For a sindb)a reduction
of the order of the Riccati equation is in general possible. The reasons for such a reduction do
not seem to be completely clear either. In this paper we provide an explanation of this phe-
nomenon from the classical point of view of “zero flipping” among minimal spectral factors.
ChangingD’s occurs whenever zeros are “flipped” fram= oo to their reciprocals at = 0.

Itis well known that for finite zeros, the zero-flipping process takes place by multiplication of
the underlying spectral factor by a suitable rational all-pass matrix function. For infinite zeros,
zero flipping is implemented by a dual version of the Silverman structure algorithm. Using
this interpretation, we derive a new algorithm for filtering of non-regular processes, based on
a reduced-order Riccati equation. We also obtain a precise characterization of the reduction of
the order of the Riccati equation which is afforded by zeros either=ato or at the origin.

This order reduction has traditionally been associated with the study of invariant directions,
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a point of view which, as we show, does not capture the essence of the phenomenon. © 2002
Elsevier Science Inc. All rights reserved.
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man structure algorithm; Invariant directions

1. Introduction

Consider a linear discrete-time stochastic model

x(t+1) = Ax() + Bw(t), (1.1a)
y() = Cx(1) + Dw(1), (1.1b)

driven by a normalize@-dimensional white-noise process i.e., such thak {w(r)
w(s)'} = I,8(t —s). The model (1.1a), (1.1b) represents a certaidimensional
wide-sense stationary procgssvhich may be a measured signal used in estimation
problems, or in identification, etc. Any stationary procgs&lmitting a representa-
tion of the form (1.1a), (1.1b) has a spectral density ma®ix), which is ann x m
rational function ofz. Representations of the type (1.1a), (1.1b) are caltechastic
realizationsof the procesg. In practice only “non-redundant”, i.eminimal sto-
chastic realizations, where the dimension of the state vedsoss small as possible,
are of interest and, for such reason, in this paper we shall only deal with minimal
stochastic realizations. Even assuming minimality, the representations (1.1a), (1.1b)
are highly non-unique. In fact, a fundamental result of stochastic system theory [2,5]
parametrizes the family of minimal stochastic realizations of a process with a given
rational spectrum by the solutions of a certain linear matrix inequality, whose coef-
ficients can be read off from a state-space realizatioh(gf. This matrix inequality
reduces, in certain special (but important) instances, to an algebraic Riccati equation.
A general assumption, which we shall keep all through this paper, isyttsat
a full-rank process. This is equivalent to the spectral density mak() being of
full rank, i.e., an invertible matrix, almost everywherezirAs a consequence, in the
model (1.1a), (1.1b) the dimension of the process always greater than or equal to
that ofy, i.e.,p > m. Now, it is well known that the same discrete-time progesan
be represented by minimal realizations of the type (1.1a), (1.1b), which may either
have a non-singular or a singulBrmatrix. In fact, there may be realizations such
as those used by Akaike in [1] and quite commonly encountered in the statistical
literature, where one postulat&s= 0.
When the matribXD in the representation (1.1a), (1.1b) is singular, the problem
of estimating the statg based on the (past) observationsyaé known as “cheap
(or singular) filtering”. This problem is dual to the better known “cheap control”
problem, and has been discussed in the literature for several decades, see [3,9,11],
and references therein. It has been observed that, related to the singulBrithefe
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is a possible reduction in the order of the Riccati equation. This reduction has been
investigated in a series of papers by L. Silverman and co-authors (compare [20], and
references therein), mostly in an optimal control context.

1.1. Motivations and outline of the paper

This paper is motivated by the observation that the analysis of [20] does not ap-
ply naturally to the stochastic setting and in particular to the Riccati equation of
the stochastic realization problehit seems fair to say that, in spite of the appar-
ent simplicity of the model (1.1a), (1.1b) and of the extensive research over many
years, there is still some mystery regarding the reason why some minimal realizations
(1.1a), (1.1b) of the same procesmay have either a singular or a non-singubar
matrix. To the best of our knowledge, questions regarding the singularity of some
(but in general not all) realizations of a discrete-time process have been around for
several decades in the stochastic system literature, but have never been solved or
explained completely. In this paper, we provide an explanation of this phenomenon
in the traditional key of “zero flipping” among minimal spectral factors. The ze-
ros which are “flipped” are zeros at= oo being sent to their reciprocals at=
0. Accordingly, one transforms spectral factors with a singDlanatrix into other
spectral factors with a “less singular” (and eventually non-singafjhis process,
which for finite zeros takes place by right-multiplication by a suitable all-pass ratio-
nal matrix function, is here implemented by a dual version of the Silverman structure
algorithm. Using this interpretation, we point out that the reduction in the order of
the ARE is related to the non-regularity of the procgg¢see Definition 4.1 below)
rather than to the singularity of tHe matrix in the given model. Moreover, we get
a precise characterization of the amount of reduction of the order of the Riccati
equation, which is afforded by zeros eitherzat oo or at the origin, something
which has traditionally been looked upon by studying “invariant directions”.

In this respect, we should say that our paper takes a different, more algebraic
point of view than the recent and very much related paper [12], where the problem
is tackled entirely from a geometric angle. It is quite likely that some of our results
are in close contact with the geometry of invariant directions as expounded in a very
elegant way in the above paper. We shall leave further investigations on this topic to
a future paper.

We outline the organization of the paper and its contributions. In Section 2 we
discuss a dual (filtering) version of the Silverman structure algorithm and in Section
3 we recall some well-known results on spectral factorization.

Regularity of a stochastic process is defined and discussed in Section 4, where
a new necessary and sufficient condition is derived. Condition 7 in Theorem 4.1
relates only to the spectral densi}(z) of y, whereas all the existing conditions
in the literature are based on particular spectral factor®(ej, i.e., on particular

1 In fact, past attempts in this direction [10] have been less than convincing.
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representations of. In Section 4 we also discuss the case of processes admitting
models withD = 0. We derive a characterization of this class of processes in terms
of the spectral densit(z).

The main contribution of the present paper is in Section 5 where we propose a
reduced-order algorithm for filtering of non-regular processes. We show thé if
a non-regular process the optimal filter may be derived by solving a reduced-order
Riccati equation. The structure of this equation and the amount of reduction are
analyzed and related to the parametérsB, C, D of the given model and to the
spectral density of the procegs Examples illustrating the implementation of the
proposed algorithm are presented in Section 6.

2. Silverman algorithm and singular filtering

In this section we shall describe a dual (stochastic filtering) version of the Silv-
erman structure algorithm. The steady-state version of this algorithm will provide a
key tool in the analysis of non-regular processes which we shall take up later.

Suppose the output of the linear discrete-time stochastic model (1.1a), (1.1b) is
observed starting at the initial time= 0, the initial statex(0) having covariance
matrix Pp. We do not assume here that fhematrix of the model is right-invertible,
so that we are dealing with a possibly “cheap” filtering problem.

The Kalman predictof (z | — 1) := E[x(¢) | y(s); 0 < s < t] can be computed
by the following dual version of Silverman algorithm [20, pp. 333-337].

Let Py = HOHOT be a full-rank factorization of the initial state covariance matrix
and set

x(0) = How(—1),

wherew(—1) is a random vector of unit covariance. Sine@®) L w(z), t > 0, we
havew(—1) L w(t), t > 0, as well. Substitute into the recursion (1.1a), (1.1b) at
timer = 0, to get

*(] _[AHo B][w(=1)
[Y(O)}_[CHO D][ww)]' (2.1)

Now, letD haver linearly independent columns, with< m. Then, there exists an
isometrySp such that

AHy BS_LO Ko
CHy D|°T|0 Dol

where Dg and Lo both have linearly independent columns; sBy,is m x rg, with
r <ro<m,andLgisn x pg, with pg < n. It follows that (2.1) can be rewritten as

x(D|_[Lo Kol|v(0
[y(m}‘[o Do} [e«»] (2-2)
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where
v | _ o7 |w(=D)
o s ) 23
Sincee(0) spans the same spaceyd®) andv(0) L ¢(0), we have

X(110) := E[x(D) | y(O)] = Koe(0),
x(110) :==x(1) — E[x(1) | y(O)] = Lov(0).

Next, substitute the first line of (2.2) into the recursion (1.1a), (1.1b) at#timéd,
to obtain

x(2)] _ [AKoe(0) ALy B [v(0)
|:y(1)i| = [CKoe(O)} + |:CL0 D] [w(l):| ' (2.4)
Note that
%(210) := E[x(2)| y(0)] = AKoe(0),
¥(10) := E[y(1) | y(0)] = CKoe(0).
Hence, denoting (2| 0) := x(2) — %(2]0), y(1|0) := y(1) — y(110), we have
¥(210)] _[ALo B][v(0)
[y(1| 0)] - [CLO D] |:w(1)i| ' (2:5)
Now, as in the previous step, introduce an isometric maygiguch that
ALy B S5 — L1 Ki
CLo D|”*T |0 Dy
where bothD; and L1 have linearly independent columns; s&, is m x r1, with
r <ri <m,while Ly isn x p1, with p1 < n. It follows that (2.5) can be rewritten

as

¥2107] _[L1 Ki|[v@)

[i(llo)]_[o Dl] |:e(1)i|’ (2.6)
where

v | _ [

[e(l)] =51 |:w(1):| : 2.7)

Itis evident from (2.6) tha¢(1) is the normalized innovation of the processt time
t =1, i.e., anormalized version of the one-step prediction &r¢bi 0), so that

Kie(1) = E[x(2|0) |e(D] = E[x(2) | e(D)].

In other words,K; is the Kalman gain at time= 1 and we can update the early
estimatex (2| 0) to

£2]1) = 2(2]0) + K1e(D).
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Moreover,
L1v(1)=x(2|0) — E[x(2) | e(D)]
=x(2) — E[x(2) | e(0)] — E[x(D) |e(D)] = x(2] D)
is the state prediction error at time= 1. From this expression, we can compute the
prediction error covariance matrix at time= 1 asP; = LlLI of rank p1.
The procedure is iterated recursively. Assume that at tiroee has available
the state estimaté(z | r — 1) and the current measuremertt). From the recursion

(1.1a), (1.1b) and the normalized expression|r — 1) = L,_1v(r — 1) of the state
prediction error, withl; _; € R™*>*#=1 full column rank, we form the error model

¥t+11t -1 [ALi_1 B[v@ -1
[ y(lt =1 }_[CLt_l DH w(t) } (2.8)
where ¢ +1|t—1):=x(¢t+1) —x(t+1jt—D=x@+1)—Ax@¢|t—-1

andy(t|r—1) :=y(t) —y@|t —1) = y(@) — Cx(¢t |t — 1). Then, acting by an iso-
metry S; such that

ALt—l B S _ Lt Kt

CLi1w D|7" |0 D
where D, and L, both have linearly independent columns (sBy,is m x r;, with
r <rp <m,andL;isn x p;, With p, < n), Eq. (2.8) can be rewritten as

x@+1t-=D| [L, K ||v@®)

[ V|t -1 :| o [Ot Di] |:e(t):|’ (2.9)
where

v®)| _ T|v@E—=D

ARkl 210

Here,K; is the Kalman gain at timg since
Kie(t) = E[x(t + 1|t —1)|e(®)] = E[x(t + 1) | e(r)].
From this, one can update the previous state estimate to get
x@+1|t) =Ax@ |t =21 + Ke(t),
and compute
Lov(t)=%(t+ 1]t — 1) — E[x(t + 1) | e(?)]

t
=x(t+1) =) Elx(t+1e(s)] = +1]0),
s=0
which is the state prediction error at tievhose covariance matrix is obtained as
P = L,L], and has ranj,.

If the stationary procesgor, equivalently, the spectral density mat#Xz) is of
full rank, the variance matrixi(r) = D, D, of the non-stationary innovation process
y(t |t — 1) becomes invertible after a finite number of steps, ie m for t suffi-
ciently large. This follows from the well-known fact thd{r) converges as — oo
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to the variance1 of the stationary innovation(¢) — E[y(¢) | y(s); —oo < s < t],

which is positive-definite if and only iy is of full rank [22,23]. Likewise, the rank

p; Of the varianceP; = L,L,T of the non-stationary state prediction erfar + 1| 1)
converges after a finite number of steps to the naok P_ = lim;_, o, P;, the vari-

ance of the steady-state prediction erx@r + 1) — E[x(t + 1) | y(s); —00 < 5 <

t], see Section 3.1. Hence our (non-stationary) cheap filtering algorithm eventually
tends to a steady state.

3. Silverman algorithm and stochastic realization
3.1. Review of spectral factorization

The material in this section is standard and can be found in various places in the
literature [6,7]. We shall just recall the basic facts in order to set notations.

The transfer functioiV (z) = C(zI — A)~1B + D of any state-space representa-
tion of the procesy of the type (1.1a), (1.1b) isspectral factorof @(z), i.e.,

D) =WRWEH'.

Note that twop-dimensional normalized white-noise procesggsw» differing in
multiplication by a constant x p orthogonal matrix are indistinguishable (as sec-
ond-order processes). Hence it is natural to consider two realizations (1.1a), (1.1b)
with input noises differing by a constant orthogonal transformation as the same ob-
ject. For this reason we will not distinguish among spectral factors differing by right-
multiplication by a constant x p orthogonal matrix.

From now on, we shall fix our attention tausalrealizations, where the matrix
A has all eigenvalues strictly inside of the unit circle of the complex plane. The
transfer function of each model (1.1a), (1.1b) is theraaalytic spectral factor of
&(z), since it has no poles outside of the open unit disk, including the peinto.
To each such spectral factorminimal degredcalled aminimal spectral factgrwe
let correspond an equivalence class of minimal realizations (1.1a), (1.1b), defined
modulo a change of basis in the state space, an arbitraryp constant orthogonal
transformation of the white-noise procassand, in the non-square case, the choice
of some components of the noise process; see [14-16] for details. In this sense, the
minimal causal realizations gfare essentially in a one-to-one correspondence with
the (equivalence classes of) minimal analytic spectral fadiors.

If we decompose(z) = ¢(z~1)T into the analytic and co-analytic (with respect
to the unit circle) components

B(z) = DPy(2) + iz YT, (3.1)

then®_ (z) has a minimal realization whose parameters can be formally expressed
as a function of the parameters of the model (1.1a), (1.1b) as

®.(z) = Czl = A)~CT + 340, (3.2)
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whereCT = APCT + BDT, P being the state covariande:= E{x(t)x(r)"}, solu-
tion of the Lyapunov equatioR = APA" + BBT.

Although seemingly dependent éhand on theB, D matrices of the particular
model, the matrixC must obviously be an invariant of the process (in the given
basis). The matrixig in (3.2) is just the output covariance at lag zero, i.e.,

Ag:= E{y®)y(t)"} = CPCT + DD".

Well-known examples of minimal analytic spectral factors are dhter, also
calledminimum-phaseand themaximum-phasspectral factors, denotéti_ (z) and
W4 (z), respectively. BotiV_(z) and W, (z) are analytic in{z : |z|] > 1} including
infinity, but while the outer factor has all zeros inside of the closed unit dii5kiz)
has all zeros outside of the open unit disk. The following result is standard [24,14].

Theorem 3.1. All minimal analytic rational spectral factors can be obtained by
post-multiplying the minimum-phase factét_(z) by a rational inner matrix func-
tion Q(z), or by post-multiplying the maximum-phase fadidr (z) by a co-analytic
rational inner matrix functionQ(z), i.e., a rational matrix function analytic ifz :

|z| < 1}, such that

00 HT =1

Since the McMillan degree of minimal spectral factors has to be kept constant in
the multiplication by the inner function, cancellation of zero$iaf(z) with poles of
Q(z) or cancellation of zeros d¥.,.(z) with poles ofQ(z) has to take place. Hence,
some zeros are replaced by their reciprocal image with respect to the unit circle. This
phenomenon is called “zero flipping” in the engineering literature. Zero flipping is
closely related to solving a linear matrix inequality, as summarized in the following
theorem; for the proof of which we refer e.g. to [7].

Theorem 3.2. Let (A, CT, C, 40) be a minimal realization of the analytic com-
ponentd, (z) of the spectral density matrik(z). Then there is a one-to-one corre-
spondence between minimal analytic spectral factor@@h and symmetria x n
matrices P solving theinear Matrix Inequality

P—APAT C_‘T—APCT1| 0

C—CPA" Ag—cCPCT (3:3)

M(P) :=|:

In fact, corresponding to each solutioR = P of (3.3), consider the unique
(modulo orthogonal transformationgull column rank matrix facto{g] of M(P),

M(P) = [g] [BT D], (3.4)

and define the rational matri¥ (z) parametrized in the form

W(z) =CI — A~ 1B+ D. (3.5)
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Then(3.5) is a minimal realization of a minimal analytic spectral factor®fz).
Conversely to each minimal analytic spectral factd¥ (z) there corresponds
by suitably choosing a basis in the state spageninimal realization of the form
(3.5) for someB, D matrices. Thenthe solution? = PT of the Lyapunov equation
P — APAT = BBT satisfies the matrix equatiaB.4) and hence the Linear Matrix
Inequality (3.3).
Moreover all symmetric solutions P f3.3) are necessarily positive-definite.

It can be shown [5,7] that the set of solutions to the LMI (3.3),
2?:={P|P=P",M(P) >0},
is closed, bounded and convex. Moreover, there are two special eleRmenks €
2 such that
P_< PPy forall Pe2,

where P; < P> means thatP, — P; > 0, i.e., the difference?, — P is a positive
semidefinite matrix. To such minimal and maximal solutions of the LMI there cor-
respond minimum-rank matrix factors

o] e (5]

in the factorization (3.4), which yield the minimum- and maximum-phase spectral
factors
W_(z) =C(zI — A)™1B_+D_,

Wi(z) =C(zI — A" 1B, + Dy. (3.6)

If Ap— CPCT > 0, a simple calculation yields thaf (P) > 0 if and only if P
satisfies the algebraic Riccati inequality

P—APAT — (CT — APCY(Ag—CPCHY X (C-CcPAT) > 0. (3.7)
In particular, ifP satisfies the algebraic Riccati equation
P=APA"+(C"—APCY(Ug—CcPCTH"X(C - cPA"), (3.8)

the corresponding spectral factdt(z) is squarem x m. The solutionsP? = PT of
(3.3) corresponding to square spectral factors form a subfatily 2. If P ¢ 2,
thenW (z) is rectangulam x p, with p > m.

3.2. Zero flipping at infinity

We want to analyze the minimal realizatiot, B, C, D) of a procesy where
D is asingular matrix, the word “singular” meaning th& is not of full row rank,
i.e.,D does not possess a right-inverse. The following (quite obvious) lemma serves
the purpose of linking singularity d to the presence of zeros at infinity. The proof
will be skipped.
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Lemma3.1. A proper rational matrixW(z) = C(zI — A)~1B + D has zeros at
z = oo if and only if D is singular.

Consider a minimal spectral factdf (z) = C(z/ — A)~1B + D with a singular
D. The “flipping” of zeros at infinity to zeros at= 0 is accomplished by using a
stationary version of the dual Silverman algorithm described in Section 2.

Assume the matribD has pg linearly independent columns, with<Q pg < m.
Let Qg be an orthogonal matrix such thBtQg = [Do1 | O], with Do € R™*P0 be-
ing full column rank. Let us partitio® Qg = [Bo1 | Boz2] conformably, obtaining the
following block structure,

Wo(z) := W(2) Qo = C(zI — A) Y[Boz1 | Bozl + [Do1] 0], (3.9)
and let
Wi(z) == Wo(z) [1”0 0 } : (3.10)
0 zlppo

Clearly, Wi(z) is also a spectral factor df(z). Since

Wi(z)=[Do1 + CBoiz 1 + CAByz 2 + - --
| CBo2+ CABopz ™t + CA?Bopz 2 + - - ]
=C(zI — A)"[Bo1| ABoal + [Do1 | CBoal.

this spectral factor has necessarily McMillan degread, hence, is minimal. At this
point, either[Do1 | C Bg2] is right-invertible or we may iterate the above procedure
by introducing another orthogonal matriX such that

[Do1| CBo2]Q1 = [D11]0],

with D11 € R"™*P1 of full column rank p1 > po, and define the minimal spectral
factor

W1(z) := Wi(z) Q1 = C(zI — A)"Y[B11| B12l + [D11] 0], (3.11)

where[B11 | B12] = [Bo1| ABo2] Q1.

Sincey is afull-rank process,W(z) as a rational function has full row rank
and hence, after a finite number of steps of the above procedure, waergeinaal
spectral factor

-1
Wi(z) = W) Q). Q(Z)=Qo]_[[16" Z,po_p_]QiH (3.12)
i=0 !

such thatW; (c0) is right-invertible, i.e. W;(z) has no zeros at infinity. Equivalently,
W;(z) has a realization of the form

Wi(z) = C(zI — A~ Bi1| B2l + D11 0], (3.13)

with D;; square and invertible.
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In the following, we shall denote the transfer functidf(z) obtained at the last
step of Silverman algorithm by the symbdl (z).

The indicespg < p1 < --- < p; = m are related to theero structure at infinity
of the rational matrixW (z), see [4,18,21], and references therein. In fact, there are
two square biproper rational matric®$z) and R(z), i.e., finite and non-singular at
z = oo together with their inverses, such that

Iy 0 0 0
o 1, - 0 O
P@W(@)R(E@) = | . . . . e (3.14)
0 o - z', 0
wherego := po,q; == p; — pi—1fori =1,...,1,and the last column of zero blocks

only appears in the non-square case.

The geometric multiplicity of the zero at= oo is 2521 gi = m — rankD, while
its algebraic multiplicity is given by ! _,igi = Y-l _q(m — pi).

In conclusion, the steady-state Silverman algorithm transforms a spectral factor
W (z) with a given zero structure at infinity to anoth&s(z), which has no zeros
at infinity. In fact, it can be shown (but we shall not do this here) that all zeros at
infinity of W (z) are replaced by corresponding zerog at 0 of Wg(z) of the same
multiplicity.

4. Regularity

One of the questions which naturally arises in the discrete-time context is for
what kind of processeall minimal realizations have a non-singularmatrix. The
following definition is from [5].

Definition 4.1. The procesy is regular if all its minimal realizations have a right-
invertible D matrix.

Right-invertibility of D is obviously equivalent ta> DT being non-singular and
it can be seen that a regular process has none of the typical discrete-time patholo-
gies which we did mention in the introduction. All system-theoretic properties of a
regular process are exactly the same as of a continuous-time process with a spectral
density matrix strictly positive-definite at infinity. The following theorem collects
some equivalent characterizations of the property of regularity.

Theorem 4.1. Lety be a stationary process with a full-rank rational spectral density
matrix @(z). Then the following are equivalent

1. The process y is regular.

2. For all solutionsP = PT of theLMI (3.3), 49— CPCT > 0.
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3. Ao — CPLCT > 0, whereP, = P is the maximal solution of theMI (3.3) or,
equivalently D4 = W, (o0) is non-singular.
4. There exists a minimal spectral factor &#fz) having zeros neither at = 0 nor
atz = o0
. All minimal spectral factors of(z) have zeros neither at= 0 nor atz = oo
. The numerator matrif_ = A — B_ D_C of the minimum-phase spectral factor
W_(z) is non-singular or equivalently lim._.o W_(z) 1 is finite.
7. @(z) has zeros neither at infinity nor at zermore preciselylim._, o, ®(z)~tis
finite or, equivalently lim._,o @(z) 1 is finite.

o Ol

While Conditions 1-6 are more or less known, see [12,17], Condition 7 seems to
be new. It states that the inver®éz) ~ of the spectrum of a full-rank regular process
is proper, i.e., has poles neither at= co (nhor atz = 0). Below we provide a proof.

Proof. Assume regularity. Then any minimal square spectral fagta) = C(zI —
A)~1B + D has a directly computable inverse given by

Wi t=bp1-Dlcizi-r)1BD1,

wherel’ = A — BD~1C has no zero eigenvalues, i.e., it is non-singular, by Condi-
tion 5. Therefore,

I|m Wi t=bp1+Dpcripp .

It follows that
lim &(z)~t = Jim W H"Twet=m 1+ bptcriepHTp 1,

Z—>0

which is obviously f|n|te.

Conversely, assumgeis not a regular process, so that the numerator matriof
the minimum-phase spectral factdt_(z) is singular, by Condition 6.

Recall that, by the full-rank assumptio®,. = W_(oc0) is non-singular. Hence,
by minimality of the triple(A, B_, C), the limit

lim W_(z)"t = lim b~*— p=c(z1 = r_)"*B_D!
z—0 z—0

cannot be finite, as the resolvant — I'_)~1 has a pole at = 0. Therefore
lim &(z)~* = lim W HhTw_ o t= lim W ()~ Tp~1

—>0

cannot be finite either. Hengds regular if Condmon 7 holds. O

Condition 7 has the following intuitive versiofror a full-rank process y to be
regular, the spectral density matri®(z) must have onlyinite zeros and none of
them can be at the origin.

Regularity is quite restrictive. For instance, scalar processes admitting an AR rep-
resentation
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YO + D ary(t — k) = bow(?),
k=1

with w normalized white noise ang, + 0, cannot be regular if > 0. Instead, MA
processes described by models of the form

Y0y =Y bw(t — k)

k=0
are regular. In fact, in the former case the spectral density function is

-8 [ ) (5]

with a zero at = oo of multiplicity n, while in the second case we get

n n
b(z) = (Z bkz—") <Z bkzk> ,
k=0 k=0
whose inverse is bounded as+> cc.

4.1. The totally non-regular case

The “most degenerate” case with respect to regularity happens when there is a
minimal realization ofy which hasD = 0. As already observed, this situation is of
some interest since such models are occasionally used in the statistical literature.

Theorem 4.2. Let®(z) be a full-rank rational spectral density matrix. The follow-
ing are equivalent

1. &(c0) = 0.

2. There exists a minimal spectral facté(z), with W(co) = 0.

Proof. Let (3.2) be a minimal realization ab, (z), let P~ = PT be the minimal
solution of the LMI (3.3) and_, D_ be such that

P_=AP_A" +B_B], (4.1a)
C=CP_A"+D_BT, (4.1b)
Ag=CP_C"+D_D". (4.1c)

Note thatD_ is non-singular by the full-rank assumption.

Consider, now, the corresponding minimum-phase spectral faétofz) =
C(zI — A)"1B_ + D_ and assumé(oco) = 0. From®(z) = W_(2)W_(z~HT, we
get

0= lim &(z) = D_{D_ + lim [C(z"*1 — A)~*B_]}". 4.2)
7—>00 7—> 00
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Thus, by non-singularity ob_ and minimality,A is non-singular, yielding
D_=CA™1B_. (4.3)
Substituting in (4.1b) and taking into account (4.1a), we also obtain
C=CP_AT+CA'B_B!
=CP_A"+CA Y (P_ —AP_ AT =cAlP_. (4.4)

Now, let Py := A~1P_A~T. We have:

1. Po— APGAT = AP —AP_ATIA T=A1B_BTA T >0,
2.C=CA1P_=CPyAT,
3. 40— CPCT=CP_.CT+CAIB_BTATCT —CcPyCT = 0.

Therefore,Py = POT solves the LMI (3.3) and the corresponding minimal analytic
spectral factor

Wo(z) = C(zI — A) 1By, (4.5)

with Bo = A~1B_, is such thaDg = Wy(c0) = 0.
Conversely, let

W) =C@zl — A7 IB (4.6)

be a minimal realization of a minimal spectral factordef), with W (oco) = 0. We
first prove thatA is necessarily non-singular. Suppose, by contradiction, Ahat
R™**" is singular. Without loss of generality, we may assume that

0 A
A:[O Aﬂ, 4.7)

whereA, € R"~Dx=D | et us partitiorB andC conformably so that

0 A]) '[B
W(@)=[C1|C2] (Z’ - [o AZD [32}

C1B C1A
I e o

; (zI — A2) " Bo + Co(zI — A2) 'By. (4.8)

Itis clear that
Wi(z) := W (z) = C1B1 + C1A12(z] — A2) *Bo + zCa(zI — A2)*B,  (4.9)
is also a spectral factor d@f(z). Moreover, since
2z — A) Y = Ax(zl — Ap) " 4+ 1, (4.10)
we have
Wi(z) = C1B1+ C2B2 + (C1A12+ C2A2) (2] — A2) 'Ba, (4.11)
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so that
dedWi] < ded W], (4.12)

which contradicts the minimality oV (z) as a spectral factor ob(z). Thus, by
non-singularity ofA, we conclude that

P(00) = W(co)W(O0)' =0-(-CA™1B)'=0. O (4.13)

5. Steady-statefiltering of non-regular processes: order-reduction of the ARE

In this section we shall consider steady-state estimation of the statef the
model

x(t+1) = Ax(@) + Bw(t), (5.1a)
y(@) = Cx() + Dw(t), (5.1b)

of a non-regular observation process).

The non-regular filtering problem stated above encompasses (but is more general
than) the singular filtering problem (wheE is singular). Singular problems are
usually addressed by writing the ARE with a Moore—Penrose pseudo-invémse
place of the usual inverse

X =AXA" —axc"+BD")(CcxcT+ DD AXC"+BD"" + BBT.
(5.2)

This formulation however hardly gives insight into the problem and may lead to
substantially heavier computations than what is actually needed.

In this section we shall show that the size of the ARE (5.2) associated to a non-reg-
ular observation process is always fictitiously large and that the problem complexity
may be conveniently reduced everbifis non-singular. We would like to stress that
the order-reduction is a consequence of the non-regularity of the procesther
than of the singularity oD DT; in fact, the reduction does not depend on the partic-
ular realization (5.1a), (5.1b) of but only on the procesgitself. For this reason,
the order-reduction procedure may be applied even in the standard (non-singular)
filtering case.

It turns out that the reduction of the order of the algebraic Riccati equatjas,
an invariant of the process, equal to the sum of the multiplicities of the zeros of the
model (5.1a), (5.1b) located at= co and atz = 0. A lower bound fon based only
on the rank oD will be given in Proposition 5.1. The order-reductiomill also be
related to certain system theoretic properties of the matfiaesd B2 (cf. (5.4)) that
play a central role in stochastic realization theory [16] and smoothing estimation [8].

Let W(z) = C(zI — A)~1B + D be the transfer function of the given model
(5.1a), (5.1b). In generd will not be right-invertible but, by using the stationary
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Silverman algorithm of Section 3, we can always obtain an equivatentiel ofy
described by the transfer function

Ws(z) := W(2)Q(z) = C(zI — A)"'[B1| B2l + [D1]0], (5.3)

with D3 non-singular. The functio® (z) is a polynomial conjugate-inner function
given by the expression (3.12). Let

I''=A-BD;C (54)

be the numerator matrix d¥s(z) [12,13] and consider the orthogonal complement
of the column space df" | B2], which we may denote as LKdr| B2]. We have the
following characterization of non-regular processes.

Lemmab5.1. The processy is non-regular if and only if

Lker[I" | Bo] + {O}. (5.5)

Proof. Lety be non-regular. By constructidiis(co) is right-invertible, so that, by
Condition 4 of Theorem 4.1, the minimal spectral fadigy(z) has an invariant zero
atz = 0. It is known that the invariant zerdg,} and the corresponding invariant
zero-directiond13,18] of Ws(z) can be found by computing the left-kernel of the
so-calledsystem matrixof Ws(z), i.e., by solving

T T A - )\1 B]_ B2 _
[v u ][ c D, 0 =0. (5.6)

In particular the invariant zero-directions associated with a zero at the origin are
found by computing the left-kernel of the matrix

A By B

cC D 0O
It is also well known from geometric control theory that the whole spacgeof
eralizedinvariant zero-directions, isomorphic to the quotient space %™, can be
identified, whenD1 is invertible, with the orthogonal complement of the reachabil-

ity subspaceI’ | By) for the pair(I', B2). In this case, the subspace of invariant
zero-directions corresponding to the eigenvalue 0 is precisely Lkell" | Bp]. O

Let Pp = POT be the solution of the LMI (3.3) corresponding to the spectral factor
Ws(z) so that

Po— APoAT = B1B] + B2BJ, (5.7)

C=(APoC" +B1D])T, Ag=D1D] +CPsCT, (5.8)

2 “Equivalent” here means tha¥g(z) is also a minimal spectral factor @f(z). The state process of
this model will in general be different from the original one.
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and letP = PT be a solution of the LMI leading to a minimatjuarespectral fac-

tor with anon-singular D One such solution of particular interest herePis= P_,

since the steady-state Kalman filter for the given model (1.1a), (1.1b) is uniquely
determined onc@_ is known. In fact the steady-state Kalman gain is given by

K=(C"—AP_.C"Y(49—cCcP_Cc"H L.
However, the argument below will work for more genelPd of the kind defined

above.
Any suchP must satisfy

Ag—CPC" >0, (5.9a)
P—APAT — (CT— APCTY(Ug—CPCHY X (C-CcPAT)=0. (5.9b)
Defined := Py — P. By subtracting (5.9b) from (5.7), we get the algebraic Ric-
cati equation
A=AAAT — (AACT + B1D])(D1D] + CACT)"Y(AACT + BiD])T
+ B1B{ + B2Bj, (5.10)

which is the standard ARE satisfied by the steady-state error covariance matrix of
the state estimate. WritiyasI” + BlDl‘lc, the ARE assumes the form

A=TAI" —IrACT(D1D] + cACTY LcAr™ + ByB). (5.11)

We now show that, if the processin non-regular, then the ARE (5.11) has a
fictitiously large size. More precisely, in a suitable basis, any solution of (5.11) has
the form

_[41 0
A_[O 0}, (5.12)

where is a solution of a reduced-order ARE (RARE). To this aim,Tiet [l‘f]
be an orthogonal(TT = 77T = I) matrix such that

row-spaV] = Lker[I"| B2]. (5.13)
Itis clear that

- =1 _[I1 T2

TIT' = [0 0 } (5.14)

7By = [Bél} , (5.15)

so that, by multiplying Eq. (5.11) by’ on the left-hand side and b§' on the
right-hand side, it is easy to see that for any solutioof (5.11) we have

- =1 _[41 0
TAT _[0 0}, (5.16)
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with 41 being a solution of the RARE
~ ~ o~ T o~ o~ =~ ~ ~ ~\—1. . T . <
A1 =T14111 — F]_A]_CI (D]_DI + C]_A]_CI) C141I' + Bz]_Bérl,
(5.17)

where we have partitione@d7 " asCTT = [C1 | Ca].

Observe that Lemma 5.1 guarantees thay, i non-regular4; has a strictly
smaller size than that of. In general, however, with this procedure we do not reach
the maximal possible reduction of the order of the ARE, since it is not guaranteed
that eventually

Lker[I'1 | B21] = {O}. (5.18)

If (5.18) does not hold, one may further reduce the order of the RARE by using
iteratively the same procedure.

The maximal order-reduction of (5.11) can in fact be performed in just one step.
Theorem 5.1 below will describe the procedure and also clarify what is the maximal
amount of reduction of the order of the ARE which one can get.

As a preliminary step, select a square orthogonal matsuch that

. I'r TI'rr x . By
I''=Trr"=|0 I; x|, By:=TBy=| 0 |, (5.19)
0 0 N 0

where the pair [z, Bo1) is reachable]’; is invertible andV € RV*" is nilpotent.
Note thatN is the nilpotent part of the map induced lbyon the quotient space
R"/(I'| B2). In other wordsN describes thénvariant zero-dynamics at = 0 of
Ws(2).

Define

_ | TR Tgi __[Ba
F1~—|:0 F,]’ 321-—[0], (5.20)
and, as usual, partitio7 T asCT T = [C1 | C2] with C1 of dimensionm x (n — v).

Theorem 5.1. Let T be an orthogonal matrix leading to the block diagonal form
(5.19). There is a bijective correspondence between the symmetric solutions of the
ARE(5.11) and those of the RARE

Ay = [MT] — T1A1C{ (D1D] + C141C])"2C141T] + Ba1By,,  (5.21)
given by

1[4 0
A=T [o O}T. (5.22)

The RARKS5.21) has ordern — v, with v being the algebraic multiplicity of the
invariant zero atz = 0 of Wg(z). The ARE cannot be reduced further.
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Proof. We have

P [rol ’6} , (5.23)

so thatf™ T ATT(I"")" has the form

o 1T, [x 0

PTATT () = [0 o}’ (5.24)
andi™ TATT has the form

'rarT = m . (5.25)

k T ko AT aT
Moreover, for anye > 0, 1" TBoBJTT(I' )* = I" BB (I' )* has the form

P BoBT (T = [ 0}

o ol (5.26)

Hence, by multiplying Eq. (5.11) b’ 7 on the left-hand side and k" (f" )"~
on the right-hand side, it is easy to see that 4180 TATT (i )"~ has the form

P ATy = [* 0] (5.27)

0 0|

Similarly, by multiplying Eq. (5.11) only on the left-hand sidefiVlT, we see that
7' ATT has the form

P rarT = [;] (5.28)

and, inductively, we show that for ary> 0, I TATT (" )k has the form
Ak T AT k_ ES O
I"TAT™ () —[o o]
In conclusion, also in this case, we have
T[4 0
rar =[5 9.

with 41 being a solution of the (maximally reduced) RARE (5.21). It can be easily
checked that in this case (5.18) holds so that the ARE cannot be further rediiged.

(5.29)

In conclusion, the computation of the steady-state Kalman filter gain for a non-
regular realization of transfer functidi (z) can be performed in the following way:

1. Apply Silverman algorithm tdV (z) to getWs(z) with a non-singulab matrix.
2. Compute the state covariance matPiof the transformed model by solving the
Lyapunov equation (5.7).
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3. Do an orthogonal change of basis on the realizatiowf;) (e.g. bring it to the
real Schur form) to find andl'y, C1, B21.

. Find the maximal solutiod; max of the RARE (5.21).

. Computedyax using (5.22) andP— = Py — Amax to get the steady-state Kal-
man gaink.

[l

The reduction procedure is actually performed on the ARE relative to the model
Ws(z), obtained from the original modéV (z) by flipping the zeros at infinity. In
the next proposition we provide a lower bound on the reduction of the ARE, which
can be computed without performing the zero flipping and uses only the ratrfix
the original model.

Proposition 5.1. Letl' = A — BlDl‘lc be the numerator matrix dVs(z). Then
dimLkedI' | B2] > m — rankD. (5.30)

Proof. LetW(z) = C(zI — A)~Y[B1| B2] + [D1]0] = W(z) Q1, with D full col-
umn rank, be the spectral factor obtained at the first step of the Silverman procedure
and let

o A 1?1
A = Lker [C Dl] . (5.31)
After the second step of the Silverman procedure we obtain the spectral factor

Wi(z) = C(zI — A)"YB1| AB2] + [D1| CB2] = W(2) [é ZOI] . (5.32)

After the third step of the Silverman procedure we obtain the spectral factor
W(z) = C(zI — A)""[B1| B2l + [D1|0] = W1(z) Q2. (5.33)
Itis clear that

%:Lker[A B AI?Z]:Lker[A B ABZ} [1 O}

C D1 CB> C D Céz 0 QO
_ A El Ez
=Lker [C D, 0 } . (5.34)
After two more steps of the Silverman procedure we obtain the spectral factor
- “1h A A - I 0
W(2) = C(zl — A) " '[B1| B2] + [D1]0] = Wi(2) [0 zl] 03 (5.35)
so that
A El §2 A §1 AEZ
N = ~ C ~ ~
A =Lker [C D, ] C Lker [C D, CBJ

A By B>
=Lker A . 5.36
[C Dy 0} (5.36)
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In conclusion, at the end of the Silverman procedure we have the spectral factor
(5.3)and

o A B1 B2
A C Lker [C D, 0} ) (5.37)
SinceD1 is invertible,

I 0 O

; A B1 Ba| _ A By B> 1

fnger[C Dy 0]_Lker[c Dy O:| -D;C I O
0 0 I

I' B1 B> -1
:Lker[o Dy 0} = (Lker[I"| B2D)[I'| — B1D7 ], (5.38)

which completes the proof.[]

An obvious corollary of the above proposition is that the amount of reduction,
v, is lower-bounded by the geometric multiplicity of the zero at infinityW(z),
namely

v > m — rankD. (5.39)

In particular, ifD is not right-invertible, it is guaranteed that the ARE can be re-
duced. However, as we have seen, as long as the process is non-regular, the reduction
occurs even if the origindD matrix is right-invertible.

6. Examples

(A) Consider the problem of estimating the state of a system of the form (5.1a),
(5.1b) with

—12 1 1 4 2
A:[—l 3/2] B:[l/Z 3 1] 6.1)

1 2 1 0 O
[t 9 b5 09 62

The matrixD is not full row rank so that we are facing a singular filtering problem
and the procesy is clearly non-regular. The standard Kalman filtering procedure
would require the solution of the ARE (5.2) which, in this case, has order 2. We shall
instead apply the algorithm illustrated in Section 5. The matrRgsB> and D4 of

the transfer function (5.3) are easily seen to be given by

5 _[-L067 Qo19] . [-0127) . _[-1034 10767
1= 065 0263]° 727 |-0508]° “17 0 7.616 |’

(6.3)
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so that
(31111 24444 _|—0.1935 02742 (6.2)
T |2.4444 27778|° T | —=0.7742 10968|"° ’
We have
7T — 0.9032 —1.0484’ TBy— 0.52367 6.5)
0 0 0
with

T —0.2425 -0.9701
T [-0.9701 02425

so thatl'; = 0.9032 andB,1 = 0.5236. At this point, to comput®_ we only need
to solve the RARE (5.17) which, in this case, isGalar equation. The RARE has
been obtained by linear operations with negligible computational burden, while the
complexity required to solve the RARE is appreciably lighter than that required for
the solution of the full-order ARE (5.2).

The solutiond1 max turns out to bed; max = 0.8593 so that

_ _t[4imax 0], [0.0505 02022
WM—T[ 0 JT—bmm 08088 (6:6)

and

3.0606 22423} 6.7)

P_ = Py— Auax = [2'2423 19690| "

(B) In the case wheD is full row rank, the reduction procedure for filtering non-
regular processes is even more direct. To illustrate this fact, consider the following
example. Let

A:[_O'S 1} [05 25 1] 6.8)
0
2 3 1 0
25 o-[t 2] 69
In this case,
1 0
per ]
is clearly non-singular and we have
o 1. |12 |1
r=A BlDlC_[O O]’ Bz_[o}. (6.10)

Thereforel'1 = 1, B21 = 1 and the maximal solution of thezalarRARE (5.17) is
A1.max = 1.1708 so that

1.1708 ﬂ

Amax = [ 0 0 (6.11)
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and

7.2292 28667} (6.12)

P-=Fo—dwax = [2.8667 16667 °

Also in this case, the same result could have been derived by the standard Kalman
filtering algorithm based on solving an ARE of order 2, but this route would have
required an appreciably heavier computational burden.
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