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Abstract

It is a well-known, yet poorly understood fact that, contrary to the continuous-time case,
the same discrete-time processy can be represented by minimal linear models (see (1.1a),
(1.1b) below) which may either have a non-singular or a singularD matrix. In fact, models
with D = 0 have been commonly used in the statistical literature. On the other hand, for
models with a singularD matrix the Riccati difference equation of Kalman filtering involves
in general the pseudo-inversion of a singular matrix. This “cheap filtering” problem, dual to
the better known “cheap control” problem, has been studied for several decades in connection
with the so-called “invariant directions” of the Riccati equation. For a singularD, a reduction
of the order of the Riccati equation is in general possible. The reasons for such a reduction do
not seem to be completely clear either. In this paper we provide an explanation of this phe-
nomenon from the classical point of view of “zero flipping” among minimal spectral factors.
ChangingD’s occurs whenever zeros are “flipped” fromz = ∞ to their reciprocals atz = 0.
It is well known that for finite zeros, the zero-flipping process takes place by multiplication of
the underlying spectral factor by a suitable rational all-pass matrix function. For infinite zeros,
zero flipping is implemented by a dual version of the Silverman structure algorithm. Using
this interpretation, we derive a new algorithm for filtering of non-regular processes, based on
a reduced-order Riccati equation. We also obtain a precise characterization of the reduction of
the order of the Riccati equation which is afforded by zeros either atz = ∞ or at the origin.
This order reduction has traditionally been associated with the study of invariant directions,
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a point of view which, as we show, does not capture the essence of the phenomenon. © 2002
Elsevier Science Inc. All rights reserved.
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1. Introduction

Consider a linear discrete-time stochastic model

x(t + 1) = Ax(t)+ Bw(t), (1.1a)

y(t) = Cx(t)+Dw(t), (1.1b)

driven by a normalizedp-dimensional white-noise processw, i.e., such thatE{w(t)
w(s)T} = Ip δ(t − s). The model (1.1a), (1.1b) represents a certainm-dimensional
wide-sense stationary processy, which may be a measured signal used in estimation
problems, or in identification, etc. Any stationary processy admitting a representa-
tion of the form (1.1a), (1.1b) has a spectral density matrix�(z), which is anm×m
rational function ofz. Representations of the type (1.1a), (1.1b) are calledstochastic
realizationsof the processy. In practice only “non-redundant”, i.e.,minimal sto-
chastic realizations, where the dimension of the state vectorx is as small as possible,
are of interest and, for such reason, in this paper we shall only deal with minimal
stochastic realizations. Even assuming minimality, the representations (1.1a), (1.1b)
are highly non-unique. In fact, a fundamental result of stochastic system theory [2,5]
parametrizes the family of minimal stochastic realizations of a process with a given
rational spectrum by the solutions of a certain linear matrix inequality, whose coef-
ficients can be read off from a state-space realization of�(z). This matrix inequality
reduces, in certain special (but important) instances, to an algebraic Riccati equation.

A general assumption, which we shall keep all through this paper, is thaty is
a full-rank process. This is equivalent to the spectral density matrix�(z) being of
full rank, i.e., an invertible matrix, almost everywhere inz. As a consequence, in the
model (1.1a), (1.1b) the dimension of the processw is always greater than or equal to
that ofy, i.e.,p � m. Now, it is well known that the same discrete-time processy can
be represented by minimal realizations of the type (1.1a), (1.1b), which may either
have a non-singular or a singularD matrix. In fact, there may be realizations such
as those used by Akaike in [1] and quite commonly encountered in the statistical
literature, where one postulatesD = 0.

When the matrixD in the representation (1.1a), (1.1b) is singular, the problem
of estimating the statex based on the (past) observations ofy is known as “cheap
(or singular) filtering”. This problem is dual to the better known “cheap control”
problem, and has been discussed in the literature for several decades, see [3,9,11],
and references therein. It has been observed that, related to the singularity ofD, there
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is a possible reduction in the order of the Riccati equation. This reduction has been
investigated in a series of papers by L. Silverman and co-authors (compare [20], and
references therein), mostly in an optimal control context.

1.1. Motivations and outline of the paper

This paper is motivated by the observation that the analysis of [20] does not ap-
ply naturally to the stochastic setting and in particular to the Riccati equation of
the stochastic realization problem.1 It seems fair to say that, in spite of the appar-
ent simplicity of the model (1.1a), (1.1b) and of the extensive research over many
years, there is still some mystery regarding the reason why some minimal realizations
(1.1a), (1.1b) of the same processy may have either a singular or a non-singularD
matrix. To the best of our knowledge, questions regarding the singularity of some
(but in general not all) realizations of a discrete-time process have been around for
several decades in the stochastic system literature, but have never been solved or
explained completely. In this paper, we provide an explanation of this phenomenon
in the traditional key of “zero flipping” among minimal spectral factors. The ze-
ros which are “flipped” are zeros atz = ∞ being sent to their reciprocals atz =
0. Accordingly, one transforms spectral factors with a singularD matrix into other
spectral factors with a “less singular” (and eventually non-singular)D. This process,
which for finite zeros takes place by right-multiplication by a suitable all-pass ratio-
nal matrix function, is here implemented by a dual version of the Silverman structure
algorithm. Using this interpretation, we point out that the reduction in the order of
the ARE is related to the non-regularity of the processy (see Definition 4.1 below)
rather than to the singularity of theD matrix in the given model. Moreover, we get
a precise characterization of the amount of reduction of the order of the Riccati
equation, which is afforded by zeros either atz = ∞ or at the origin, something
which has traditionally been looked upon by studying “invariant directions”.

In this respect, we should say that our paper takes a different, more algebraic
point of view than the recent and very much related paper [12], where the problem
is tackled entirely from a geometric angle. It is quite likely that some of our results
are in close contact with the geometry of invariant directions as expounded in a very
elegant way in the above paper. We shall leave further investigations on this topic to
a future paper.

We outline the organization of the paper and its contributions. In Section 2 we
discuss a dual (filtering) version of the Silverman structure algorithm and in Section
3 we recall some well-known results on spectral factorization.

Regularity of a stochastic process is defined and discussed in Section 4, where
a new necessary and sufficient condition is derived. Condition 7 in Theorem 4.1
relates only to the spectral density�(z) of y, whereas all the existing conditions
in the literature are based on particular spectral factors of�(z), i.e., on particular

1 In fact, past attempts in this direction [10] have been less than convincing.
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representations ofy. In Section 4 we also discuss the case of processes admitting
models withD = 0. We derive a characterization of this class of processes in terms
of the spectral density�(z).

The main contribution of the present paper is in Section 5 where we propose a
reduced-order algorithm for filtering of non-regular processes. We show that ify is
a non-regular process the optimal filter may be derived by solving a reduced-order
Riccati equation. The structure of this equation and the amount of reduction are
analyzed and related to the parametersA,B,C,D of the given model and to the
spectral density of the processy. Examples illustrating the implementation of the
proposed algorithm are presented in Section 6.

2. Silverman algorithm and singular filtering

In this section we shall describe a dual (stochastic filtering) version of the Silv-
erman structure algorithm. The steady-state version of this algorithm will provide a
key tool in the analysis of non-regular processes which we shall take up later.

Suppose the output of the linear discrete-time stochastic model (1.1a), (1.1b) is
observed starting at the initial timet = 0, the initial statex(0) having covariance
matrixP0. We do not assume here that theD matrix of the model is right-invertible,
so that we are dealing with a possibly “cheap” filtering problem.

The Kalman predictor̂x(t | t − 1) := E[x(t) | y(s); 0 � s < t] can be computed
by the following dual version of Silverman algorithm [20, pp. 333–337].

Let P0 = H0H
T
0 be a full-rank factorization of the initial state covariance matrix

and set

x(0) = H0w(−1),

wherew(−1) is a random vector of unit covariance. Sincex(0) ⊥ w(t), t � 0, we
havew(−1) ⊥ w(t), t � 0, as well. Substitute into the recursion (1.1a), (1.1b) at
time t = 0, to get[

x(1)
y(0)

]
=
[
AH0 B

CH0 D

] [
w(−1)
w(0)

]
. (2.1)

Now, let D haver linearly independent columns, withr � m. Then, there exists an
isometryS0 such that[

AH0 B

CH0 D

]
S0 =

[
L0 K0
0 D0

]
,

whereD0 andL0 both have linearly independent columns; say,D0 is m× r0, with
r � r0 � m, andL0 is n× ρ0, with ρ0 � n. It follows that (2.1) can be rewritten as[

x(1)
y(0)

]
=
[
L0 K0
0 D0

] [
v(0)
e(0)

]
, (2.2)
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where[
v(0)
e(0)

]
= ST

0

[
w(−1)
w(0)

]
. (2.3)

Sincee(0) spans the same space asy(0) andv(0) ⊥ e(0), we have

x̂(1 | 0) := E[x(1) | y(0)] = K0e(0),

x̃(1 | 0) := x(1)− E[x(1) | y(0)] = L0v(0).

Next, substitute the first line of (2.2) into the recursion (1.1a), (1.1b) at timet = 1,
to obtain[

x(2)
y(1)

]
=
[
AK0e(0)
CK0e(0)

]
+
[
AL0 B

CL0 D

] [
v(0)
w(1)

]
. (2.4)

Note that

x̂(2 | 0) := E[x(2) | y(0)] = AK0e(0),

ŷ(1 | 0) := E[y(1) | y(0)] = CK0e(0).

Hence, denoting̃x(2 | 0) := x(2)− x̂(2 | 0), ỹ(1 | 0) := y(1)− ŷ(1 | 0), we have[
x̃(2 | 0)
ỹ(1 | 0)

]
=
[
AL0 B

CL0 D

] [
v(0)
w(1)

]
. (2.5)

Now, as in the previous step, introduce an isometric matrixS1 such that[
AL0 B

CL0 D

]
S1 =

[
L1 K1
0 D1

]
,

where bothD1 andL1 have linearly independent columns; say,D1 is m× r1, with
r � r1 � m, whileL1 is n× ρ1, with ρ1 � n. It follows that (2.5) can be rewritten
as [

x̃(2 | 0)
ỹ(1 | 0)

]
=
[
L1 K1
0 D1

] [
v(1)
e(1)

]
, (2.6)

where[
v(1)
e(1)

]
= ST

1

[
v(0)
w(1)

]
. (2.7)

It is evident from (2.6) thate(1) is the normalized innovation of the processy at time
t = 1, i.e., a normalized version of the one-step prediction errorỹ(1 | 0), so that

K1e(1) = E[x̃(2 | 0) | e(1)] = E[x(2) | e(1)].
In other words,K1 is the Kalman gain at timet = 1 and we can update the early
estimatex̂(2 | 0) to

x̂(2 | 1) = x̂(2 | 0)+K1e(1).



224 A. Ferrante et al. / Linear Algebra and its Applications 351–352 (2002) 219–242

Moreover,

L1v(1)= x̃(2 | 0)− E[x(2) | e(1)]
=x(2)− E[x(2) | e(0)] − E[x(2) | e(1)] = x̃(2 | 1)

is the state prediction error at timet = 1. From this expression, we can compute the
prediction error covariance matrix at timet = 1 asP1 = L1L

T
1 of rankρ1.

The procedure is iterated recursively. Assume that at timet one has available
the state estimatêx(t | t − 1) and the current measurementy(t). From the recursion
(1.1a), (1.1b) and the normalized expressionx̃(t | t − 1) = Lt−1v(t − 1) of the state
prediction error, withLt−1 ∈ Rn×ρt−1 full column rank, we form the error model[

x̃(t + 1 | t − 1)
ỹ(t | t − 1)

]
=
[
ALt−1 B

CLt−1 D

] [
v(t − 1)
w(t)

]
, (2.8)

where x̃(t + 1 | t − 1) := x(t + 1)− x̂(t + 1 | t − 1) = x(t + 1)− Ax̂(t | t − 1)
andỹ(t | t − 1) := y(t)− ŷ(t | t − 1) = y(t)− Cx̂(t | t − 1). Then, acting by an iso-
metrySt such that[

ALt−1 B

CLt−1 D

]
St =

[
Lt Kt
0 Dt

]
,

whereDt andLt both have linearly independent columns (say,Dt is m× rt , with
r � rt � m, andLt is n× ρt , with ρt � n), Eq. (2.8) can be rewritten as[

x̃(t + 1 | t − 1)
ỹ(t | t − 1)

]
=
[
Lt Kt
0 Dt

] [
v(t)

e(t)

]
, (2.9)

where[
v(t)

e(t)

]
= ST

t

[
v(t − 1)
w(t)

]
. (2.10)

Here,Kt is the Kalman gain at timet, since

Kte(t) = E[x̃(t + 1 | t − 1) | e(t)] = E[x(t + 1) | e(t)].
From this, one can update the previous state estimate to get

x̂(t + 1 | t) = Ax̂(t | t − 1)+Kte(t),
and compute

Ltv(t)= x̃(t + 1 | t − 1)− E[x(t + 1) | e(t)]

=x(t + 1)−
t∑
s=0

E[x(t + 1) | e(s)] = x̃(t + 1 | t),

which is the state prediction error at timet, whose covariance matrix is obtained as
Pt = LtLT

t , and has rankρt .
If the stationary processy or, equivalently, the spectral density matrix�(z) is of

full rank, the variance matrix�(t) = DtDT
t of the non-stationary innovation process

ỹ(t | t − 1) becomes invertible after a finite number of steps, i.e.,rt = m for t suffi-
ciently large. This follows from the well-known fact that�(t) converges ast → ∞
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to the variance� of the stationary innovationy(t)− E[y(t) | y(s); −∞ < s < t],
which is positive-definite if and only ify is of full rank [22,23]. Likewise, the rank
ρt of the variancePt = LtLT

t of the non-stationary state prediction errorx̃(t + 1 | t)
converges after a finite number of steps to the rankn of P− = limt→∞ Pt , the vari-
ance of the steady-state prediction errorx(t + 1)− E[x(t + 1) | y(s); −∞ < s �
t], see Section 3.1. Hence our (non-stationary) cheap filtering algorithm eventually
tends to a steady state.

3. Silverman algorithm and stochastic realization

3.1. Review of spectral factorization

The material in this section is standard and can be found in various places in the
literature [6,7]. We shall just recall the basic facts in order to set notations.

The transfer functionW(z) = C(zI − A)−1B +D of any state-space representa-
tion of the processy of the type (1.1a), (1.1b) is aspectral factorof �(z), i.e.,

�(z) = W(z)W(z−1)T.

Note that twop-dimensional normalized white-noise processesw1, w2 differing in
multiplication by a constantp × p orthogonal matrix are indistinguishable (as sec-
ond-order processes). Hence it is natural to consider two realizations (1.1a), (1.1b)
with input noises differing by a constant orthogonal transformation as the same ob-
ject. For this reason we will not distinguish among spectral factors differing by right-
multiplication by a constantp × p orthogonal matrix.

From now on, we shall fix our attention tocausalrealizations, where the matrix
A has all eigenvalues strictly inside of the unit circle of the complex plane. The
transfer function of each model (1.1a), (1.1b) is then ananalytic spectral factor of
�(z), since it has no poles outside of the open unit disk, including the pointz = ∞.
To each such spectral factor ofminimal degree(called aminimal spectral factor) we
let correspond an equivalence class of minimal realizations (1.1a), (1.1b), defined
modulo a change of basis in the state space, an arbitraryp × p constant orthogonal
transformation of the white-noise processw and, in the non-square case, the choice
of some components of the noise process; see [14–16] for details. In this sense, the
minimal causal realizations ofy are essentially in a one-to-one correspondence with
the (equivalence classes of) minimal analytic spectral factorsW(z).

If we decompose�(z) = �(z−1)T into the analytic and co-analytic (with respect
to the unit circle) components

�(z) = �+(z)+ �+(z−1)T, (3.1)

then�+(z) has a minimal realization whose parameters can be formally expressed
as a function of the parameters of the model (1.1a), (1.1b) as

�+(z) = C(zI − A)−1C̄T + 1
2�0, (3.2)
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whereC̄T = APCT + BDT, P being the state covarianceP := E{x(t)x(t)T}, solu-
tion of the Lyapunov equationP = APAT + BBT.

Although seemingly dependent onP and on theB,D matrices of the particular
model, the matrixC̄ must obviously be an invariant of the process (in the given
basis). The matrix�0 in (3.2) is just the output covariance at lag zero, i.e.,

�0 := E{y(t)y(t)T} = CPCT +DDT.

Well-known examples of minimal analytic spectral factors are theouter, also
calledminimum-phase, and themaximum-phasespectral factors, denotedW−(z) and
W+(z), respectively. BothW−(z) andW+(z) are analytic in{z : |z| � 1} including
infinity, but while the outer factor has all zeros inside of the closed unit disk,W+(z)
has all zeros outside of the open unit disk. The following result is standard [24,14].

Theorem 3.1. All minimal analytic rational spectral factors can be obtained by
post-multiplying the minimum-phase factorW−(z) by a rational inner matrix func-
tionQ(z), or by post-multiplying the maximum-phase factorW+(z) by a co-analytic
rational inner matrix functionQ̄(z), i.e., a rational matrix function analytic in{z :
|z| < 1}, such that

Q̄(z)Q̄(z−1)T = I.

Since the McMillan degree of minimal spectral factors has to be kept constant in
the multiplication by the inner function, cancellation of zeros ofW−(z) with poles of
Q(z) or cancellation of zeros ofW+(z) with poles ofQ̄(z) has to take place. Hence,
some zeros are replaced by their reciprocal image with respect to the unit circle. This
phenomenon is called “zero flipping” in the engineering literature. Zero flipping is
closely related to solving a linear matrix inequality, as summarized in the following
theorem; for the proof of which we refer e.g. to [7].

Theorem 3.2. Let (A, C̄T, C, 1
2�0) be a minimal realization of the analytic com-

ponent�+(z) of the spectral density matrix�(z). Then there is a one-to-one corre-
spondence between minimal analytic spectral factors of�(z) and symmetricn× n
matrices P solving theLinear Matrix Inequality

M(P) :=
[
P − APAT C̄T − APCT

C̄ − CPAT �0 − CPCT

]
� 0. (3.3)

In fact, corresponding to each solutionP = P T of (3.3), consider the unique
(modulo orthogonal transformations) full column rank matrix factor

[
B
D

]
ofM(P),

M(P ) =
[
B

D

] [
BT DT

]
, (3.4)

and define the rational matrixW(z) parametrized in the form

W(z) = C(zI − A)−1B +D. (3.5)
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Then(3.5) is a minimal realization of a minimal analytic spectral factor of�(z).
Conversely, to each minimal analytic spectral factorW(z) there corresponds,

by suitably choosing a basis in the state space, a minimal realization of the form
(3.5) for someB,D matrices. Then, the solutionP = P T of the Lyapunov equation
P − APAT = BBT satisfies the matrix equation(3.4) and hence the Linear Matrix
Inequality(3.3).

Moreover, all symmetric solutions P of(3.3) are necessarily positive-definite.

It can be shown [5,7] that the set of solutions to the LMI (3.3),

P := {
P |P = P T,M(P ) � 0

}
,

is closed, bounded and convex. Moreover, there are two special elementsP−, P+ ∈
P such that

P− � P � P+ for all P ∈ P,

whereP1 � P2 means thatP2 − P1 � 0, i.e., the differenceP2 − P1 is a positive
semidefinite matrix. To such minimal and maximal solutions of the LMI there cor-
respond minimum-rank matrix factors[

B−
D−

]
and

[
B+
D+

]
in the factorization (3.4), which yield the minimum- and maximum-phase spectral
factors

W−(z) = C(zI − A)−1B− +D−,
W+(z) = C(zI − A)−1B+ +D+.

(3.6)

If �0 − CPCT > 0, a simple calculation yields thatM(P) � 0 if and only if P
satisfies the algebraic Riccati inequality

P − APAT − (C̄T − APCT)(�0 − CPCT)−1(C̄ − CPAT) � 0. (3.7)

In particular, ifP satisfies the algebraic Riccati equation

P = APAT + (C̄T − APCT)(�0 − CPCT)−1(C̄ − CPAT), (3.8)

the corresponding spectral factorW(z) is squarem×m. The solutionsP = P T of
(3.3) corresponding to square spectral factors form a subfamilyP0 ⊂ P. If P /∈ P0,
thenW(z) is rectangularm× p, with p > m.

3.2. Zero flipping at infinity

We want to analyze the minimal realizations(A,B,C,D) of a processy where
D is asingularmatrix, the word “singular” meaning thatD is not of full row rank,
i.e.,D does not possess a right-inverse. The following (quite obvious) lemma serves
the purpose of linking singularity ofD to the presence of zeros at infinity. The proof
will be skipped.
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Lemma 3.1. A proper rational matrixW(z) = C(zI − A)−1B +D has zeros at
z = ∞ if and only if D is singular.

Consider a minimal spectral factorW(z) = C(zI − A)−1B +D with a singular
D. The “flipping” of zeros at infinity to zeros atz = 0 is accomplished by using a
stationary version of the dual Silverman algorithm described in Section 2.

Assume the matrixD hasp0 linearly independent columns, with 0� p0 � m.
LetQ0 be an orthogonal matrix such thatDQ0 = [D01 | 0], with D01 ∈ Rm×p0 be-
ing full column rank. Let us partitionBQ0 = [B01 |B02] conformably, obtaining the
following block structure,

W0(z) := W(z)Q0 = C(zI − A)−1[B01 |B02] + [D01 | 0], (3.9)

and let

Ŵ1(z) := W0(z)

[
Ip0 0
0 zIp−p0

]
. (3.10)

Clearly,Ŵ1(z) is also a spectral factor of�(z). Since

Ŵ1(z)=[D01 + CB01z
−1 + CAB01z

−2 + · · ·
|CB02 + CAB02z

−1 + CA2B02z
−2 + · · ·]

=C(zI − A)−1[B01 |AB02] + [D01 |CB02],
this spectral factor has necessarily McMillan degreen and, hence, is minimal. At this
point, either[D01 |CB02] is right-invertible or we may iterate the above procedure
by introducing another orthogonal matrixQ1 such that

[D01 |CB02]Q1 = [D11 | 0],
with D11 ∈ Rm×p1 of full column rankp1 � p0, and define the minimal spectral
factor

W1(z) := Ŵ1(z)Q1 = C(zI − A)−1[B11 |B12] + [D11 | 0], (3.11)

where[B11 |B12] = [B01 |AB02]Q1.
Sincey is a full-rank process,W(z) as a rational function has full row rankm

and hence, after a finite number of steps of the above procedure, we get aminimal
spectral factor

Wl(z) := W(z)Q(z), Q(z) = Q0

l−1∏
i=0

[
Ipi 0
0 zIp−pi

]
Qi+1 (3.12)

such thatWl(∞) is right-invertible, i.e.,Wl(z) has no zeros at infinity. Equivalently,
Wl(z) has a realization of the form

Wl(z) = C(zI − A)−1[Bl1 |Bl2] + [Dl1 | 0], (3.13)

with Dl1 square and invertible.
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In the following, we shall denote the transfer functionWl(z) obtained at the last
step of Silverman algorithm by the symbolWS(z).

The indicesp0 � p1 � · · · � pl = m are related to thezero structure at infinity
of the rational matrixW(z), see [4,18,21], and references therein. In fact, there are
two square biproper rational matricesP(z) andR(z), i.e., finite and non-singular at
z = ∞ together with their inverses, such that

P(z)W(z)R(z) =


Iq0 0 · · · 0 0
0 z−1Iq1 · · · 0 0
...

...
. ..

...
...

0 0 · · · z−lIql 0

 , (3.14)

whereq0 := p0, qi := pi − pi−1 for i = 1, . . . , l, and the last column of zero blocks
only appears in the non-square case.

The geometric multiplicity of the zero atz = ∞ is
∑l
i=1 qi = m− rankD, while

its algebraic multiplicity is given by
∑l
i=1 iqi = ∑l

i=0(m− pi).
In conclusion, the steady-state Silverman algorithm transforms a spectral factor

W(z) with a given zero structure at infinity to another,WS(z), which has no zeros
at infinity. In fact, it can be shown (but we shall not do this here) that all zeros at
infinity of W(z) are replaced by corresponding zeros atz = 0 ofWS(z) of the same
multiplicity.

4. Regularity

One of the questions which naturally arises in the discrete-time context is for
what kind of processesall minimal realizations have a non-singularD matrix. The
following definition is from [5].

Definition 4.1. The processy is regular if all its minimal realizations have a right-
invertibleD matrix.

Right-invertibility of D is obviously equivalent toDDT being non-singular and
it can be seen that a regular process has none of the typical discrete-time patholo-
gies which we did mention in the introduction. All system-theoretic properties of a
regular process are exactly the same as of a continuous-time process with a spectral
density matrix strictly positive-definite at infinity. The following theorem collects
some equivalent characterizations of the property of regularity.

Theorem 4.1. Let y be a stationary process with a full-rank rational spectral density
matrix�(z). Then the following are equivalent:
1. The process y is regular.
2. For all solutionsP = P T of theLMI (3.3), �0 − CPCT > 0.
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3. �0 − CP+CT > 0, whereP+ = P T+ is the maximal solution of theLMI (3.3) or,
equivalently, D+ = W+(∞) is non-singular.

4. There exists a minimal spectral factor of�(z) having zeros neither atz = 0 nor
at z = ∞.

5. All minimal spectral factors of�(z) have zeros neither atz = 0 nor at z = ∞.
6. The numerator matrix�− = A− B−D−1− C of the minimum-phase spectral factor
W−(z) is non-singular or, equivalently, limz→0W−(z)−1 is finite.

7. �(z) has zeros neither at infinity nor at zero; more precisely, limz→∞ �(z)−1 is
finite or, equivalently, limz→0 �(z)−1 is finite.

While Conditions 1–6 are more or less known, see [12,17], Condition 7 seems to
be new. It states that the inverse�(z)−1 of the spectrum of a full-rank regular process
is proper, i.e., has poles neither atz = ∞ (nor atz = 0). Below we provide a proof.

Proof. Assume regularity. Then any minimal square spectral factorW(z) = C(zI −
A)−1B +D has a directly computable inverse given by

W(z)−1 = D−1 −D−1C(zI − �)−1BD−1,

where� = A− BD−1C has no zero eigenvalues, i.e., it is non-singular, by Condi-
tion 5. Therefore,

lim
z→0

W(z)−1 = D−1 +D−1C�−1BD−1.

It follows that

lim
z→∞ �(z)−1 = lim

z→∞W(z
−1)−TW(z)−1 = (D−1 +D−1C�−1BD−1)TD−1,

which is obviously finite.
Conversely, assumey is not a regular process, so that the numerator matrix�− of

the minimum-phase spectral factorW−(z) is singular, by Condition 6.
Recall that, by the full-rank assumption,D− = W−(∞) is non-singular. Hence,

by minimality of the triple(A,B−, C), the limit

lim
z→0

W−(z)−1 = lim
z→0

D−1− −D−1− C(zI − �−)−1B−D−1−

cannot be finite, as the resolvent(zI − �−)−1 has a pole atz = 0. Therefore

lim
z→∞ �(z)−1 = lim

z→∞W−(z−1)−TW−(z)−1 = lim
z→0

W−(z)−TD−1−

cannot be finite either. Hencey is regular if Condition 7 holds. �

Condition 7 has the following intuitive version:For a full-rank process y to be
regular, the spectral density matrix�(z) must have onlyfinite zeros, and none of
them can be at the origin.

Regularity is quite restrictive. For instance, scalar processes admitting an AR rep-
resentation
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y(t)+
n∑
k=1

aky(t − k) = b0w(t),

with w normalized white noise andan /= 0, cannot be regular ifn > 0. Instead, MA
processes described by models of the form

y(t) =
n∑
k=0

bkw(t − k)

are regular. In fact, in the former case the spectral density function is

�(z) = b2
0

/{(
1 +

n∑
k=1

akz
−k
)(

1 +
n∑
k=1

akz
k

)}
,

with a zero atz = ∞ of multiplicity n, while in the second case we get

�(z) =
(
n∑
k=0

bkz
−k
)(

n∑
k=0

bkz
k

)
,

whose inverse is bounded asz→ ∞.

4.1. The totally non-regular case

The “most degenerate” case with respect to regularity happens when there is a
minimal realization ofy which hasD = 0. As already observed, this situation is of
some interest since such models are occasionally used in the statistical literature.

Theorem 4.2. Let �(z) be a full-rank rational spectral density matrix. The follow-
ing are equivalent:
1. �(∞) = 0.
2. There exists a minimal spectral factorW(z), withW(∞) = 0.

Proof. Let (3.2) be a minimal realization of�+(z), let P− = P T− be the minimal
solution of the LMI (3.3) andB−,D− be such that

P− = AP−AT + B−BT−, (4.1a)

C̄ = CP−AT +D−BT−, (4.1b)

�0 = CP−CT +D−DT−. (4.1c)

Note thatD− is non-singular by the full-rank assumption.
Consider, now, the corresponding minimum-phase spectral factorW−(z) =

C(zI − A)−1B− +D− and assume�(∞) = 0. From�(z) = W−(z)W−(z−1)T, we
get

0 = lim
z→∞ �(z) = D−

{
D− + lim

z→∞[C(z−1I − A)−1B−]}T
. (4.2)
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Thus, by non-singularity ofD− and minimality,A is non-singular, yielding

D− = CA−1B−. (4.3)

Substituting in (4.1b) and taking into account (4.1a), we also obtain

C̄=CP−AT + CA−1B−BT−
=CP−AT + CA−1(P− − AP−AT) = CA−1P−. (4.4)

Now, letP0 := A−1P−A−T. We have:

1. P0 − AP0A
T = A−1[P− − AP−AT]A−T = A−1B−BT−A−T � 0,

2. C̄ = CA−1P− = CP0A
T,

3. �0 − CP0C
T = CP−CT + CA−1B−BT−A−TCT − CP0C

T = 0.

Therefore,P0 = P T
0 solves the LMI (3.3) and the corresponding minimal analytic

spectral factor

W0(z) = C(zI − A)−1B0, (4.5)

with B0 = A−1B−, is such thatD0 = W0(∞) = 0.
Conversely, let

W(z) = C(zI − A)−1B (4.6)

be a minimal realization of a minimal spectral factor of�(z), withW(∞) = 0. We
first prove thatA is necessarily non-singular. Suppose, by contradiction, thatA ∈
Rn×n is singular. Without loss of generality, we may assume that

A =
[
0 A12
0 A2

]
, (4.7)

whereA2 ∈ R(n−1)×(n−1). Let us partitionB andC conformably so that

W(z)=[C1 |C2]
(
zI −

[
0 A12
0 A2

])−1 [
B1
B2

]
= C1B1

z
+ C1A12

z
(zI − A2)

−1B2 + C2(zI − A2)
−1B2. (4.8)

It is clear that

W1(z) := zW(z) = C1B1 + C1A12(zI − A2)
−1B2 + zC2(zI − A2)

−1B2 (4.9)

is also a spectral factor of�(z). Moreover, since

z(zI − A2)
−1 = A2(zI − A2)

−1 + I, (4.10)

we have

W1(z) = C1B1 + C2B2 + (C1A12 + C2A2)(zI − A2)
−1B2, (4.11)
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so that

deg[W1] < deg[W ], (4.12)

which contradicts the minimality ofW(z) as a spectral factor of�(z). Thus, by
non-singularity ofA, we conclude that

�(∞) = W(∞)W(0)T = 0 · (−CA−1B)T = 0. � (4.13)

5. Steady-state filtering of non-regular processes: order-reduction of the ARE

In this section we shall consider steady-state estimation of the statex(t) of the
model

x(t + 1) = Ax(t)+ Bw(t), (5.1a)

y(t) = Cx(t)+Dw(t), (5.1b)

of a non-regular observation processy(t).
The non-regular filtering problem stated above encompasses (but is more general

than) the singular filtering problem (whereD is singular). Singular problems are
usually addressed by writing the ARE with a Moore–Penrose pseudo-inverse+ in
place of the usual inverse

X = AXAT − (AXCT + BDT)(CXCT +DDT)+(AXCT + BDT)T + BBT.

(5.2)

This formulation however hardly gives insight into the problem and may lead to
substantially heavier computations than what is actually needed.

In this section we shall show that the size of the ARE (5.2) associated to a non-reg-
ular observation process is always fictitiously large and that the problem complexity
may be conveniently reduced even ifD is non-singular. We would like to stress that
the order-reduction is a consequence of the non-regularity of the processy, rather
than of the singularity ofDDT; in fact, the reduction does not depend on the partic-
ular realization (5.1a), (5.1b) ofy but only on the processy itself. For this reason,
the order-reduction procedure may be applied even in the standard (non-singular)
filtering case.

It turns out that the reduction of the order of the algebraic Riccati equation,ν, is
an invariant of the process, equal to the sum of the multiplicities of the zeros of the
model (5.1a), (5.1b) located atz = ∞ and atz = 0. A lower bound forν based only
on the rank ofD will be given in Proposition 5.1. The order-reductionν will also be
related to certain system theoretic properties of the matrices� andB2 (cf. (5.4)) that
play a central role in stochastic realization theory [16] and smoothing estimation [8].

Let W(z) = C(zI − A)−1B +D be the transfer function of the given model
(5.1a), (5.1b). In generalD will not be right-invertible but, by using the stationary
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Silverman algorithm of Section 3, we can always obtain an equivalent2 model ofy
described by the transfer function

WS(z) := W(z)Q(z) = C(zI − A)−1[B1 |B2] + [D1 | 0], (5.3)

with D1 non-singular. The functionQ(z) is a polynomial conjugate-inner function
given by the expression (3.12). Let

� := A− B1D
−1
1 C (5.4)

be the numerator matrix ofWS(z) [12,13] and consider the orthogonal complement
of the column space of[� |B2], which we may denote as Lker[� |B2]. We have the
following characterization of non-regular processes.

Lemma 5.1. The process y is non-regular if and only if

Lker[� |B2] /= {0}. (5.5)

Proof. Let y be non-regular. By constructionWS(∞) is right-invertible, so that, by
Condition 4 of Theorem 4.1, the minimal spectral factorWS(z) has an invariant zero
at z = 0. It is known that the invariant zeros{λk} and the corresponding invariant
zero-directions[13,18] ofWS(z) can be found by computing the left-kernel of the
so-calledsystem matrixofWS(z), i.e., by solving[

vT uT
] [A− λI B1 B2

C D1 0

]
= 0. (5.6)

In particular the invariant zero-directions associated with a zero at the origin are
found by computing the left-kernel of the matrix[

A B1 B2
C D1 0

]
.

It is also well known from geometric control theory that the whole space ofgen-
eralizedinvariant zero-directions, isomorphic to the quotient spaceV∗/R∗, can be
identified, whenD1 is invertible, with the orthogonal complement of the reachabil-
ity subspace〈� |B2〉 for the pair (�, B2). In this case, the subspace of invariant
zero-directions corresponding to the eigenvalueλ = 0 is precisely Lker[� |B2]. �

LetP0 = P T
0 be the solution of the LMI (3.3) corresponding to the spectral factor

WS(z) so that

P0 − AP0A
T = B1B

T
1 + B2B

T
2 , (5.7)

C̄ = (AP0C
T + B1D

T
1 )

T, �0 = D1D
T
1 + CP0C

T, (5.8)

2 “Equivalent” here means thatWS(z) is also a minimal spectral factor of�(z). The state process of
this model will in general be different from the original one.
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and letP = P T be a solution of the LMI leading to a minimalsquarespectral fac-
tor with anon-singular D. One such solution of particular interest here isP = P−,
since the steady-state Kalman filter for the given model (1.1a), (1.1b) is uniquely
determined onceP− is known. In fact the steady-state Kalman gain is given by

K = (C̄T − AP−CT)(�0 − CP−CT)−1.

However, the argument below will work for more generalP’s of the kind defined
above.

Any suchP must satisfy

�0 − CPCT > 0, (5.9a)

P − APAT − (C̄T − APCT)(�0 − CPCT)−1(C̄ − CPAT) = 0. (5.9b)

Define� := P0 − P . By subtracting (5.9b) from (5.7), we get the algebraic Ric-
cati equation

�=A�AT − (A�CT + B1D
T
1 )(D1D

T
1 + C�CT)−1(A�CT + B1D

T
1 )

T

+B1B
T
1 + B2B

T
2 , (5.10)

which is the standard ARE satisfied by the steady-state error covariance matrix of
the state estimate. WritingA as� + B1D

−1
1 C, the ARE assumes the form

� = ���T − ��CT(D1D
T
1 + C�CT)−1C��T + B2B

T
2 . (5.11)

We now show that, if the processy in non-regular, then the ARE (5.11) has a
fictitiously large size. More precisely, in a suitable basis, any solution of (5.11) has
the form

� =
[
�̃1 0
0 0

]
, (5.12)

where�̃1 is a solution of a reduced-order ARE (RARE). To this aim, letT̃ = [
U
V

]
be an orthogonal (̃T T̃ T = T̃ TT̃ = I ) matrix such that

row-span[V ] = Lker[� |B2]. (5.13)

It is clear that

T̃�T̃ T =
[
�̃1 �̃12
0 0

]
, (5.14)

T̃ B2 =
[
B̃21
0

]
, (5.15)

so that, by multiplying Eq. (5.11) bỹT on the left-hand side and bỹT T on the
right-hand side, it is easy to see that for any solution� of (5.11) we have

T̃�T̃ T =
[
�̃1 0
0 0

]
, (5.16)
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with �̃1 being a solution of the RARE

�̃1 = �̃1�̃1�̃
T
1 − �̃1�̃1C̃

T
1

(
D1D

T
1 + C̃1�̃1C̃

T
1

)−1
C̃1�̃1�̃

T
1 + B̃21B̃

T
21,

(5.17)

where we have partitionedCT̃ T asCT̃ T = [C̃1 | C̃2].
Observe that Lemma 5.1 guarantees that, ify is non-regular,�̃1 has a strictly

smaller size than that of�. In general, however, with this procedure we do not reach
the maximal possible reduction of the order of the ARE, since it is not guaranteed
that eventually

Lker[�̃1 | B̃21] = {0}. (5.18)

If (5.18) does not hold, one may further reduce the order of the RARE by using
iteratively the same procedure.

The maximal order-reduction of (5.11) can in fact be performed in just one step.
Theorem 5.1 below will describe the procedure and also clarify what is the maximal
amount of reduction of the order of the ARE which one can get.

As a preliminary step, select a square orthogonal matrixT such that

�̂ := T�T T =
�R �RI ∗

0 �I ∗
0 0 N

 , B̂2 := T B2 =
B̄21

0
0

 , (5.19)

where the pair (�R, B̄21) is reachable,�I is invertible andN ∈ Rν×ν is nilpotent.
Note thatN is the nilpotent part of the map induced by� on the quotient space
Rn/〈� |B2〉. In other words,N describes theinvariant zero-dynamics atz = 0 of
WS(z).

Define

�1 :=
[
�R �RI
0 �I

]
, B21 :=

[
B̄21
0

]
, (5.20)

and, as usual, partitionCT T asCT T = [C1 |C2] with C1 of dimensionm× (n− ν).

Theorem 5.1. Let T be an orthogonal matrix leading to the block diagonal form
(5.19). There is a bijective correspondence between the symmetric solutions of the
ARE(5.11) and those of the RARE

�1 = �1�1�
T
1 − �1�1C

T
1 (D1D

T
1 + C1�1C

T
1 )

−1C1�1�
T
1 + B21B

T
21, (5.21)

given by

� = T T
[
�1 0
0 0

]
T . (5.22)

The RARE(5.21) has ordern− ν, with ν being the algebraic multiplicity of the
invariant zero atz = 0 ofWS(z). The ARE cannot be reduced further.
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Proof. We have

�̂
ν =

[
�ν1 ∗
0 0

]
, (5.23)

so that�̂
ν
T�T T(�̂

T
)ν has the form

�̂
ν
T�T T(�̂

T
)ν =

[∗ 0
0 0

]
, (5.24)

and�̂
ν
T�T T has the form

�̂
ν
T�T T =

[∗
0

]
. (5.25)

Moreover, for anyk � 0, �̂
k
T B2B

T
2T

T(�̂
T
)k = �̂

k
B̂2B̂

T
2 (�̂

T
)k has the form

�̂
k
B̂2B̂

T
2 (�̂

T
)k =

[∗ 0
0 0

]
. (5.26)

Hence, by multiplying Eq. (5.11) bŷ�
ν−1
T on the left-hand side and byT T(�̂

T
)ν−1

on the right-hand side, it is easy to see that also�̂
ν−1
T�T T(�̂

T
)ν−1 has the form

�̂
ν−1
T�T T(�̂

T
)ν−1 =

[∗ 0
0 0

]
. (5.27)

Similarly, by multiplying Eq. (5.11) only on the left-hand side by�̂
ν−1
T , we see that

�̂
ν−1
T�T T has the form

�̂
ν−1
T�T T =

[∗
0

]
(5.28)

and, inductively, we show that for anyk � 0, �̂
k
T�T T(�̂

T
)k has the form

�̂
k
T�T T(�̂

T
)k =

[∗ 0
0 0

]
. (5.29)

In conclusion, also in this case, we have

T�T T =
[
�1 0
0 0

]
,

with �1 being a solution of the (maximally reduced) RARE (5.21). It can be easily
checked that in this case (5.18) holds so that the ARE cannot be further reduced.�

In conclusion, the computation of the steady-state Kalman filter gain for a non-
regular realization of transfer functionW(z) can be performed in the following way:

1. Apply Silverman algorithm toW(z) to getWS(z) with a non-singularD matrix.
2. Compute the state covariance matrixP0 of the transformed model by solving the

Lyapunov equation (5.7).
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3. Do an orthogonal change of basis on the realization ofWS(z) (e.g. bring it to the
real Schur form) to findT and�1, C1, B21.

4. Find the maximal solution�1,MAX of the RARE (5.21).
5. Compute�MAX using (5.22) andP− = P0 − �MAX to get the steady-state Kal-

man gainK.

The reduction procedure is actually performed on the ARE relative to the model
WS(z), obtained from the original modelW(z) by flipping the zeros at infinity. In
the next proposition we provide a lower bound on the reduction of the ARE, which
can be computed without performing the zero flipping and uses only the matrixD of
the original model.

Proposition 5.1. Let� = A− B1D
−1
1 C be the numerator matrix ofWS(z). Then

dim Lker[� |B2] � m− rankD. (5.30)

Proof. Let W̄ (z) = C(zI − A)−1[B̄1 | B̄2] + [D̄1 | 0] = W(z)Q1, with D̄1 full col-
umn rank, be the spectral factor obtained at the first step of the Silverman procedure
and let

K := Lker

[
A B̄1

C D̄1

]
. (5.31)

After the second step of the Silverman procedure we obtain the spectral factor

W̄1(z) = C(zI − A)−1[B̄1 |AB̄2] + [D̄1 |CB̄2] = W̄ (z)
[
I 0
0 zI

]
. (5.32)

After the third step of the Silverman procedure we obtain the spectral factor

W̃ (z) = C(zI − A)−1[B̃1 | B̃2] + [D̃1 | 0] = W̄1(z)Q2. (5.33)

It is clear that

K=Lker

[
A B̄1 AB̄2

C D̄1 CB̄2

]
= Lker

[
A B̄1 AB̄2

C D̄1 CB̄2

] [
I 0
0 Q2

]
=Lker

[
A B̃1 B̃2

C D̃1 0

]
. (5.34)

After two more steps of the Silverman procedure we obtain the spectral factor

Ŵ (z) = C(zI − A)−1[B̂1 | B̂2] + [D̂1 | 0] = W̄1(z)

[
I 0
0 zI

]
Q3 (5.35)

so that

K=Lker

[
A B̃1 B̃2

C D̃1 0

]
⊆ Lker

[
A B̃1 AB̃2

C D̃1 CB̃2

]
=Lker

[
A B̂1 B̂2

C D̂1 0

]
. (5.36)



A. Ferrante et al. / Linear Algebra and its Applications 351–352 (2002) 219–242 239

In conclusion, at the end of the Silverman procedure we have the spectral factor
(5.3) and

K ⊆ Lker

[
A B1 B2
C D1 0

]
. (5.37)

SinceD1 is invertible,

K⊆Lker

[
A B1 B2
C D1 0

]
= Lker

[
A B1 B2
C D1 0

] I 0 0
−D−1

1 C I 0
0 0 I


=Lker

[
� B1 B2
0 D1 0

]
= (Lker[� |B2])

[
I | − B1D

−1
1

]
, (5.38)

which completes the proof.�

An obvious corollary of the above proposition is that the amount of reduction,
ν, is lower-bounded by the geometric multiplicity of the zero at infinity ofW(z),
namely

ν � m− rankD. (5.39)

In particular, ifD is not right-invertible, it is guaranteed that the ARE can be re-
duced. However, as we have seen, as long as the process is non-regular, the reduction
occurs even if the originalD matrix is right-invertible.

6. Examples

(A) Consider the problem of estimating the state of a system of the form (5.1a),
(5.1b) with

A =
[−1/2 1

−1 3/2

]
, B =

[
1 4 2

1/2 3 1

]
, (6.1)

C =
[
1 2
1 1

]
, D =

[
1 0 0
0 0 0

]
. (6.2)

The matrixD is not full row rank so that we are facing a singular filtering problem
and the processy is clearly non-regular. The standard Kalman filtering procedure
would require the solution of the ARE (5.2) which, in this case, has order 2. We shall
instead apply the algorithm illustrated in Section 5. The matricesB1, B2 andD1 of
the transfer function (5.3) are easily seen to be given by

B1 =
[−1.067 0.919

−0.65 0.263

]
, B2 =

[−0.127
−0.508

]
, D1 =

[−1.034 10.767
0 7.616

]
,

(6.3)
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so that

P0 =
[
3.1111 2.4444
2.4444 2.7778

]
, � =

[−0.1935 0.2742
−0.7742 1.0968

]
. (6.4)

We have

T�T T =
[
0.9032 −1.0484

0 0

]
, T B2 =

[
0.5236

0

]
, (6.5)

with

T :=
[−0.2425 −0.9701
−0.9701 0.2425

]
,

so that�1 = 0.9032 andB21 = 0.5236. At this point, to computeP− we only need
to solve the RARE (5.17) which, in this case, is ascalar equation. The RARE has
been obtained by linear operations with negligible computational burden, while the
complexity required to solve the RARE is appreciably lighter than that required for
the solution of the full-order ARE (5.2).

The solution�1,MAX turns out to be�1,MAX = 0.8593 so that

�MAX = T T
[
�1,MAX 0

0 0

]
T =

[
0.0505 0.2022
0.2022 0.8088

]
(6.6)

and

P− = P0 − �MAX =
[
3.0606 2.2423
2.2423 1.9690

]
. (6.7)

(B) In the case whenD is full row rank, the reduction procedure for filtering non-
regular processes is even more direct. To illustrate this fact, consider the following
example. Let

A =
[−0.5 1

0 0.5

]
, B =

[
0.5 2.5 1
0.5 1 0

]
, (6.8)

C =
[
2 3
1 2

]
, D =

[
1 0 0
1 1 0

]
. (6.9)

In this case,

D1 =
[
1 0
1 1

]
is clearly non-singular and we have

� = A− B1D
−1
1 C =

[
1 2
0 0

]
, B2 =

[
1
0

]
. (6.10)

Therefore,�1 = 1,B21 = 1 and the maximal solution of thescalarRARE (5.17) is
�1,MAX = 1.1708 so that

�MAX =
[
1.1708 0

0 0

]
(6.11)
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and

P− = P0 − �MAX =
[
7.2292 2.8667
2.8667 1.6667

]
. (6.12)

Also in this case, the same result could have been derived by the standard Kalman
filtering algorithm based on solving an ARE of order 2, but this route would have
required an appreciably heavier computational burden.
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