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An Empirical Bayes Approach to Frequency
Estimation

Giorgio Picci and Bin Zhu

Abstract—In this paper we show that the classical problem of
frequency estimation can be formulated and solved efficiently in
an empirical Bayesian framework by assigning a uniform a priori
probability distribution to the unknown frequency. We discover
that the a posteriori covariance matrix of the signal model is the
discrete-time counterpart of an operator whose eigenfunctions
are the famous prolate spheroidal wave functions, introduced by
Slepian and coworkers in the 1960’s and widely studied in the
signal processing literature although motivated by a different
class of problems. The special structure of the covariance matrix
is exploited to design an estimator for the hyperparameters of the
prior distribution which is essentially linear, based on subspace
identification. Bayesian analysis based on the estimated prior
then shows that the estimated center-frequency is asymptotically
coincident with the MAP estimate. This stochastic approach
leads to consistent estimates, provides uncertainty bounds and
may advantageously supersede standard parametric estimation
methods which are based on iterative optimization algorithms
of local nature. Simulations show that the approach is quite
promising and seems to compare favorably with some classical
methods.

Index Terms—Frequency estimation, Empirical Bayes, prolate
spheroidal wave functions, modulated Sinc kernels, subspace
methods, multiple frequency and DOA estimation.

I. INTRODUCTION

Frequency estimation is an old nonlinear problem encoun-
tered in many branches of science and engineering which
has generated a huge literature. The survey of the literature
up to 1993 in [1] contains more than 300 titles. Since the
literature on this problem is so large it is impossible to present
a reasonably complete summary in this introduction. For a
general overview we shall just limit to refer to the books [2]–
[4] and to the references therein.

The most classical frequency estimation method is via
spectral analysis, based on the direct use of the periodogram
which however tends to produce nonconsistent estimates and
must rely on ad hoc recombinations of partial spectral es-
timates (see e.g. [5] and the comments in the introduction
of Thomson’s paper [6]). Research in this framework has
nevertheless continued and we should here at least point to
some recent interesting contributions such as [7]–[9].

Another rather popular class of methods is based on the
so-called signal subspace decomposition. The forerunner of
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signal subspace decomposition method (SSDM) is Pisarenko
harmonic decomposition, followed by MUSIC, ESPRIT, and
multiple signal classification methods. A survey of these
methods can be found in the book [2]. They are all based
on linear algebra operations on the sample covariance matrix
of the observed process and for this reason are quite popular.
However in a way or another these methods rely on a rank
estimation step and on a (unavoidably approximate) rank-
factorization of the sample covariance. This feature, in our
opinion may generate some uncertainty on their statistical
properties, in particular consistency.

Accurate frequency estimation has been mostly approached
in the literature by nonlinear optimization techniques, typically
variants of Maximum Likelihood, of which a remarkable
example is the early paper [10]. Unfortunately, because of
nonconvexity, these methods are generally local and not
guaranteed to yield a unique optimum. Convex relaxation
algorithms based on atomic norm minimization have appeared
recently [11], [12], [13] but these methods rely on heavy
regularization which in principle cannot produce unbiased
estimates. A thorough statistical analysis of these methods still
seems to be missing.

New results

In this paper we follow a Bayesin approach. The underlying
model is the classical sum of harmonic oscillations corrupted
by additive white noise, whose frequencies are modeled as
randomly varying parameters. Data are modeled as trajectories
of a process whose frequency may deviate sightly about
an unknown nominal value. It is then reasonable to model
frequency as a random variable, a noisy versions of some
nominal frequency.

Bayesian estimation techniques for this model have been
proposed in various places, e.g. [14]–[19] based on various
choices of the prior distribution. Here we propose an approach
based on the Empirical Bayes philosophy, inferring from the
observed data a family of parametric prior distributions on the
unknown frequencies. This approach to frequency estimation
seems to be new.

The parametric a priori density is chosen as a uniform
distribution on a small frequency range of unknown width,
which can be interpreted as an a priori confidence interval
centered about some unknown nominal frequencies. The width
and the relative center frequencies are the hyperparameters of
the prior which are estimated from data. This simple model
seems to be a reasonable model for a variety of applications.
Frequency variations on a small bandwidth could describe an
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experiment where one is measuring the frequency shift of an
oscillator (a function generator generating an AC waveform)
with variable center frequency. That is, the central frequency
is unknown (random in [−π, π]) and also there is an unknown
frequency shift of [−W/2,W/2] radians/sample (which is also
random and uniformly distributed). The random signal being
observed under additive white Gaussian noise.1

In this frame we show that the estimation of the hyperpa-
rameters can be approached by a simple efficient subspace
algorithm. This in contrast with the standard marginal likeli-
hood approach as considered for example in [20], [21]. Our
work uses more deeply the structure of the data process and
need not involve optimization, going well beyond the marginal
likelihood approach. For a survey and some bibliography on
Empirical Bayes methods we refer to [22, p. 262], [21], [23]–
[26]. A general underlying motivation for the Empirical Bayes
approach is that in some cases it has been proven to yield a
mean squared error (MSE), which can even be smaller than
maximum likelihood [27], [28].

Assuming a true model with a true unknown center fre-
quency hyperparameter, one can prove consistency of the
subspace estimation method which justifies our procedure in
the framework of the traditional frequentist interpretation of
the hyperparameter. Later on, we shall see that the (empirical)
Bayesian MAP frequency estimate is very close to (and in
fact may asymptotically coincide with) the subspace center-
frequency estimate.

Relation with Prolate Spheroidal Wave Functions

Imposing the class of parametric uniform priors leads to
a simple probabilistic structure of the signal. One ends up
by describing the observed signal as a special stationary
process named bandlimited white noise which has a flat
power spectrum within some finite bandwidth, whose gener-
ation was first studied in the conference papers [29], [30].
The remarkable fact is that the covariance operator of these
processes has isomorphic properties to those uncovered in
the 60’s and 70’s by D. Slepian and coworkers in a famous
series of papers studying the energy concentration properties
of time- and band- limited signals, a completely different
problem in a completely deterministic context [31]–[34]. The
monograph [35] is also a good reference on this topic. We
believe that an important contribution of this paper is to
point out this stochastic interpretation and show its usefulness
in random signal analysis. In section III we make contact
with the classical works of David Slepian and colleagues. In
particular, here we elaborate on the bandpass analogues of
Prolate Spheroidal Wave Functions whose properties were still
unknown, as mentioned in a concluding remark in the paper
[31].

We discover that the whole theory of bandlimited
time/frequancy analysis of Slepian and co-workers, which for
decades has only been used for deterministic signal analysis,
can be transported to the stochastic setting allowing a deep
understanding and a fine analysis of the structure of the
covariance of stationary signals with harmonic components.

1We thank one reviewer for supplying this example.

This has dramatic consequences. For the first time our analysis
allows a precise characterization of the finite-data approxi-
mation and truncation errors of the covariance kernel of the
observed signal which is inherent in many covariance-based
signal processing methods of the literature. Similar to Slepian’s
theory we discover that the eigenvalues of the covariance
operator decay abruptly to infinitesimal values (practically
zero) after staying constant up to a certain a priori computable
number, which can be identified as the numerical rank of
the matrix. One can in fact get a rather precise estimate of
the rank of a finitely-truncated covariance matrix and work
with approximations of known precision. This was never
suspected before and in all current literature, the use of finite
rank covariance approximations to finite data sets is assumed
without much of no analysis of the quality of approximation.

In this setting we can rigorously justify the use of subspace
methods based on finite rank purely-deterministic approxi-
mation of the process and its representation by state-space
models.

The proposed stochastic model embraces (in a Bayesian
framework) the theoretical covariance structure underlying
many classical subspace methods used for frequency and DOA
estimation such as MUSIC, ESPRIT and descendants. In a
sense our theory and results shed light on the foundations and
approximation inherent in these methods. In particular it al-
lows a precise analysis of the finite-rank signal approximation
which is rarely addressed in the literature. As a result of this
analysis a neat general proof of consistency can be provided.

More specifically, because of the uniform frequency prior,
the covariance of the observed process turns out to be a func-
tion of the modulated Sinc-type, which in the special case of
nominal center frequency equal to zero, has been well studied
in the afore-cited literature. The key property of the covariance
operator in question is that its eigenvalues decay extremely
fast to zero for indices greater than an a priori computable
number (the so-called Slepian frequency [36]). This means that
the eigenfunction expansion of the covariance kernel involves
essentially only a finite number of terms. This key feature was
already evident and well-studied in the classical deterministic
literature when the center frequency is zero but for non zero
center frequencies a thorough understanding of the behavior of
these modulated Sinc operators was posed as an open problem
in [31, p. 63]. Later it was shown to hold for continuous-time
modulated Sinc kernels in [34], [37] but the discrete-time case
was left open. In this paper, we provide a proof that modulated
discrete-time kernels behave in a completely analogous way.
This fact allows a direct and rather simple estimation of one
hyperparameter of the prior. The resulting center frequency
estimate is computed by a subspace algorithm followed by a
simple averaging process which seems to yield very accurate
and robust results, at least for a large enough sample size. This
new estimation method is expounded for signals with multiple
unknown frequencies.

Layout
The paper is organized as follows:
In Section II, we formulate the Bayesian framework for the

frequency estimation problem. We first deal with signals with
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one hidden sinusoidal component but the techniques and re-
sults are then extended to treat signals with multiple harmonic
components of unknown frequencies by assigning them non-
overlapping rectangular (uniform) prior distributions. In this
way the overall covariance kernel becomes the sum of the
individual covariances of uncorrelated harmonic components.
Our technique can still be applied and is somehow reminiscent
of Multiple Kernel methods as in [38], [39].

Then in Section III, we discuss the special structure of
the signal covariance which is a discrete-time counterpart of
the modulated Sinc kernel class discussed in the literature.
We prove the sharp decay property of the eigenvalues using
techniques inspired by the continuous-time results from the
literature. Then we illustrate our findings through a numerical
example.

In Section IV we exploit the covariance structure to propose
an extremely simple frequency estimate for signals with only
one unknown frequency, which is only based on spectral
data of the covariance. Note that because of non-ergodicity,
consistent estimation of the covariance data is a non-trivial
issue.

Section V attacks the main theme of the paper, namely
estimation of multiple center-frequencies using a subspace
method. By the finite rank property one can use a natural
approximate state-space model of the data.

Consistency of the subspace estimator is then discussed in
Section VI.

Section VII addresses the MAP Bayesian estimator of the
random frequency ω based on the estimated prior discussed
in Section V.

In the following Section VIII, the method is applied to
several test examples. As can be seen, the results are very
encouraging.

At last, Section IX concludes the paper.

Notation and conventions

Boldface symbols denote random quantities. For a square
summable sequence y of complex numbers, we take the
definition of the discrete-time Fourier transform (DTFT) to
be the following

F : `2 → L2[−π, π]

y 7→ ŷ(ω) :=
∑
t∈Z

y(t)e−itω,

where the convergence of the Fourier series is understood in
L2 norm. The inverse transform is given by

F−1 : ŷ 7→ y(t) :=
1

2π

∫ π

−π
eitω ŷ(ω)dω.

The `2 norm of y is known as thefr energy of the signal.
The indicator function on a set S ⊂ Ω is defined as

χS(ω) =

{
1 for ω ∈ S,
0 for ω ∈ Ω \ S.

II. SIGNAL MODEL

Consider the following signal model

y(t) = x(t) + w(t), t ∈ Z (1)

where t represents time, x is the sum of random oscillatory
components (a quasi periodic process), that is

x(t) :=

ν∑
`=1

a` cos(ω`t) + b` sin(ω`t), (2)

and w is additive white noise. The angular frequencies ω` are
unknown but their number ν is fixed in advance. In addition
we shall require that:
• the amplitude pairs ak,bk are zero-mean pairwise and

mutually uncorrelated for all k and the two components
ak,bk have equal variance: σ2

k = var[ak] = var[bk], k =
1, . . . , ν;

• each angular frequency ω` is a random variable taking
values in the interval [0, π], independent of the ampli-
tudes;

• The noise w(t) is assumed white, zero-mean Gaussian,
stationary of variance σ2

w, independent of everything else.

We shall let ω :=
[
ω1 . . . ων

]>
and denote by a, b two

similarly arranged amplitude vectors. Note that the model is
linear in a, b, and hence estimation of the amplitudes and their
variance is just a standard linear estimation problem when the
frequencies are known. For this reason, in this paper we shall
mostly concentrate on the problem of frequency estimation.

Let us now introduce the Empirical Bayesian framework.
We shall impose that each component ω` of the random vector
ω follows a uniform distribution on the frequency band [θ` −
W`, θ` +W`] such that the symmetrized sets w.r.t. the origin

S` := [θ`−W`, θ`+W`]∪[−θ`−W`,−θ`+W`], ` = 1, . . . , ν

do not overlap. For simplicity we shall assume that the
assigned bandwidth is the same for different frequencies, i.e.,
W1 = · · · = Wν = W . Here 0 ≤ θ` ≤ π is called a center-
frequency and 0 ≤ W ≤ π the bandwidth. In the literature,
both θ and W are called hyperparameters of the a priori
distribution for the frequency ω.

The stated assumptions imply that for each fixed frequency
value ω the ν components, say x`, ` = 1, . . . , ν of the signal
(2) are stationary uncorrelated processes. Hence the covariance
function of the process y for a fixed deterministic ω has the
form

Σ(t, s | ω) := E {y(t)y(s) | ω} = K(t, s | ω) + σ2
w δ(t, s)

(3)
where δ(t, s) is the Kronecker symbol, and

K(t, s | ω) :=

ν∑
`=1

E {x`(t)x`(s) | ω} =

ν∑
`=1

K`(t, s | ω)

is the a priori conditional covariance of the signal x given
ω = ω. To lighten the notation, we shall temporarily suppress
the subscripts. The formulas below should be interpreted as
holding for a generic index `.
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By the model assumptions, the following computation is
straightforward:

K(t, s | ω) = E
{
a2 cos(ωt) cos(ωs) + ab cos(ωt) sin(ωs)

+ab sin(ωt) cos(ωs) + b2 sin(ωt) sin(ωs)
}

= σ2 cosωτ (4)

where τ := t − s, and then computing the a posteriori
covariance by integrating the function w.r.t. the uniform prior
density, one gets

K(t, s) = σ2 E (cosωτ) = σ2

∫ θ+W

θ−W
cos(ωτ)

1

2W
dω

= σ2 cos(θτ)
sinWτ

Wτ
. (5)

Since the covariance function depends only on τ , the signal
x is stationary, and so is y. In the following, we will write
K(τ) in place of K(t, s).

For θ = 0, the covariance function K is the well-known
Sinc function, which is the inverse Fourier transform of a
rectangular function, namely

σ2 sinWτ

Wτ
=

σ2

2W

∫ W

−W
eiωτdω. (6)

It follows that a zero-frequency component of the process x
must have a uniform spectral density πσ2

W χ[−W ,W ](ω). When
W = π, the process is just a usual stationary white noise
of variance σ2. For W < π, the process x is nontrivial,
called a bandlimited white noise within the frequency band
[−W, W ]. In this case, it is a purely deterministic process
with an absolutely continuous spectral distribution, since the
logarithm of the density is obviously not integrable (see e.g.,
[40, p. 144]).

In this paper, we are primarily interested in the case θ` 6= 0,
for which we make the assumption that |θ`| > W , so that each
support set

S := [θ −W, θ +W ] ∪ [−θ −W,−θ +W ] (7)

is composed of two disjoint intervals symmetric with respect
to the origin. Then the last expression in (4) can be rewritten
as

σ2 cos(θτ)
sinWτ

Wτ
=

σ2

4W

∫ π

−π
cos(ωτ)χS(ω)dω

=
πσ2

2W

∫ π

−π
eiωτχS(ω)

dω

2π

(8)

where χS is the indicator function of S, and the second
equality holds due to the symmetry of the integrand. From the
above relation, we see that the spectral density of the process
x is now the sum of ν disjoint spectral terms, each of the form

φx`(ω) =
πσ2

`

2W

(
χ[θ`−W, θ`+W ] + χ[−θ`−W, −θ`+W ]

)
.

The signal x can therefore be described as a sum of inde-
pendent deterministic carriers, each of angular frequency θ`,
amplitude-modulated by a bandlimited white noise process
described before. For the same reason, the covariance function
(4) has been called a modulated sinc kernel in [36], where it
arises in a different context.

In practice we can only observe sample paths of finite length
N from the process y. For clarity of exposition, we shall
now assume that ν = 1 and neglect the subscript ` altogether.
The generalization to multiple sinusoids, i.e., ν > 1, will be
obvious. Collect the observed random variables into a column
vector, and in particular, let XN := [x(t),x(t+ 1), . . . ,x(t+
N − 1)]>. Then consider the N ×N covariance matrix

KN := E{XNX>N}

=


K(0) K(1) · · · K(N − 1)
K(1) K(0) · · · K(N − 2)
...

...
. . .

...
K(N − 1) K(N − 2) · · · K(0)

 . (9)

This symmetric Toeplitz structure of the covariance matrix
comes from the fact that the process is stationary and real-
valued. Similarly, we can define the N ×N covariance matrix
of the process y, say ΣN , and we have the relation

ΣN = KN + σ2
wIN . (10)

Analysis of the eigen-structure of KN will be of great impor-
tance to our frequency estimation problem, and that will be
the content of the next section.

III. PROPERTIES OF THE COVARIANCE MATRIX

In this section, we show that the covariance matrix (9) also
arises in a quadratic form which is the essential instrument
for solving the energy concentration problem for discrete-time
deterministic signals. In order to state the problem, we first
need to set up some notations. Let J be a set that is a union
of a finite number of pair-wise disjoint closed subintervals of
[−π, π], e.g., a union of sets like S in (7). Define the band-
limiting operator

B : `2 → `2, y 7→ F−1[χJF(y)] (11)

that corresponds to a bandpass filter with prescribed bandwidth
{ω ∈ J}. Fix a positive integer N and let

I := {0, 1, . . . , N − 1}. (12)

Define similarly the time-limiting operator

T : `2 → `2, y 7→ χIy, (13)

where χI is the indicator function in the time domain Z.
The energy concentration problem that will be discussed in

this section is

sup
y∈`2

‖BTy‖2`2
‖y‖2`2

. (14)

Notice that the supremum can only be attained at a time-
limited y, because the objective value of ỹ := Ty is equal
to ‖Bỹ‖2`2/‖ỹ‖2`2 which is not less than that of y. Therefore,
it is equivalent to consider the problem

sup
y∈`2

supp(y)⊂I

‖By‖2`2
‖y‖2`2

, (15)

where supp(·) denotes the support of a function. In other
words, the aim is to find a time-limited signal whose energy
is most concentrated in the frequency band J .
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A. The eigenvalue problem

The impulse response of the ideal bandpass filter χJ(ω) is
just the inverse Fourier transform

ρ(t) :=
1

2π

∫
J

eitωdω t ∈ Z. (16)

Observe that the function ρ has the symmetry ρ(−t) = ρ(t)∗

where z∗ means the complex conjugate (transpose) of z ∈ C.
According to the definitions (11) and (13), we have

BTy = F−1 [χJ(ω)F(Ty)]

= F−1
[
χJ(ω)

N−1∑
t=0

y(t)e−itω

]
= ρ ∗ Ty

(17)

where ∗ denotes convolution. It follows that

‖BTy‖2`2 =
∑
t∈Z

∣∣∣∣∣
N−1∑
k=0

ρ(t− k)y(k)

∣∣∣∣∣
2

=

N−1∑
j=0

y(j)∗
N−1∑
k=0

y(k)
∑
t∈Z

ρ(t− j)∗ρ(t− k).

(18)

The last summation can be rewritten∑
t∈Z

ρ(t− j)∗ρ(t− k) =
∑
t∈Z

ρ(j − t)ρ(t− k)

= (ρ ∗ x)(j),

(19)

where the sequence x(t) := ρ(t − k) has Fourier transform
x̂(ω) = e−ikωχJ(ω). The Fourier transform of ρ∗x is simply
again e−ikωχJ(ω). Hence the above sum is equal to ρ(j−k),
and we arrive at

‖BTy‖2`2 =

N−1∑
j=0

y(j)∗
N−1∑
k=0

y(k) ρ(j − k)

= y∗Ry,

(20)

where y = [ y(0), y(1), . . . , y(N − 1) ]> is a slight abuse of
notation, and

R =


ρ(0) ρ(−1) · · · ρ(−N + 1)
ρ(1) ρ(0) · · · ρ(−N + 2)
...

...
. . .

...
ρ(N − 1) ρ(N − 2) · · · ρ(0)

 . (21)

The matrix R has a Hermitian Toeplitz structure, and it is
also positive definite because the quadratic form determines
the energy of BTy. Notice that when the set J is symmetric
w.r.t. the origin such as S in (7), then the integral in (16)
reduces to

∫
J

cos(tω)dω. In that case, ρ is an even function
of time, and the matrix R is real symmetric.

Now the objective functional in the energy concentration
problem (14) is in fact equal to the Rayleigh quotient asso-
ciated to R. By the min-max theorem, the maximum of the
objective is equal to the largest eigenvalue of R, and it is
attained when y is the corresponding eigenvector. It is obvious
that the eigenvalues of R do not exceed 1, simply because both
B and T are projection operators.

Remark 1. Although it does not particularly interest us here,
it is worth mentioning that the energy concentration problem
(14) has a “dual” problem obtained by interchanging the two
operators B and T, namely

sup
y∈`2

‖TBy‖2`2
‖y‖2`2

. (22)

The problem (22) is equivalent to determining the supremum
of ‖Ty‖2`2 over all band-limited signals subject to the con-
straint ‖y‖`2 = 1. By a standard variational argument using the
Lagrange multiplier, one can conclude that the maximum of
the dual objective is equal to the largest eigenvalue of a linear
integral operator with a (modified) Dirichlet kernel. Moreover,
following the lines in [41, Section 5], it is not difficult to show
that the eigenvalues of such an integral operator are identical to
those of R, and the corresponding eigenfunctions are related
via the Fourier transform.

B. Asymptotic distribution of the eigenvalues

We shall now allow the dimension of R to increase. In
other words, the integer N introduced by the set I in (12) is
considered as a variable tending to infiity. Let λj(N) be the
j-th eigenvalue (arranged in nonincreasing order) of R. We
know from the previous subsection that 0 < λj(N) ≤ 1 for
all j = 1, . . . , N . It also follows easily that

N∑
j=1

λj(N) = tr R = Nρ(0) =
m(J)

2π
N, (23)

where the notation m(·) denotes the Lebesgue measure of a
set. Now for a real number 0 < γ < 1, define M(γ,N) to be
the number of eigenvalues of R that are no less than γ. Again
we have included the explicit dependence on the dimensional
variable N . The next result is a first-order description of
the asymptotic eigenvalue distribution of the matrix R. The
proof borrows techniques from [37] and can be found in the
appendix.

Theorem 1. It holds that

lim
N→∞

M(γ,N)

N
=

m(J)

2π
(24)

independent of γ.

A more precise formula for the asymptotic expansion of
the quantity M(γ,N) is given in [34] for the continuous-time
case. The second term in the asymptotic expansion is shown
to be proportional to logN . Slepian’s asymptotic expressions
for the eigenvalues, valid for θ = 0, are also reported in [6,
p. 1059]. Although we believe that analogous discrete-time
estimates should hold, a formal proof is yet to be worked out.
For our problem of frequency estimation, Corollary 1 below
is anyway sufficient.

By choosing γ arbitrarily close to 1, an immediate conse-
quence of the above theorem and formula (23) is the following.

Corollary 1. For N →∞, the matrix R has rank

n = Nm(J)/2π, (25)
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and all the nonzero eigenvalues tend to 1.

The convergence is very fast since, as it is shown in the
proof of the Theorem, the matrix R has only o(N) eigenvalues
that are between 0 and 1, and for large sample size they can
be reasonably neglected.

For ν = 1 the covariance matrix in (9) is just a scalar
multiple of R via KN = πσ2

2W RN (here for notational
consistency we have added the subscript N to R). Clearly,
the constant factor only rescales the eigenvalues. In particular,
the assertion on the rank in Corollary 1 holds for K. Below
we show some simulations of how the eigenvalues decay.

Fig. 1 shows the behavior of the eigenvalues µk of the sinc
kernel for N = 1000,W/2π = 0.02, σ2 = 1 which yields a
rank approximately equal to 40. We can clearly see that for
n < 40 the eigenvalues are all equal to the same constant
while for n > 40 the µk’s very quickly decrease to zero.

The behavior of the eigenvalues of R is the same except
that the normalization makes the µk all practically equal to
one for k < n. In order to get the same normalization we just
need to substitute µk with 2Wµk/2π.

As for the modulated sinc kernel, Fig. 2 shows the eigen-
values of a matrix K with the same values of N , W , and σ2.
One sees that the eigenvalues have exactly the same behavior
as those of the Sinc kernel. Only the value of n such that
for k > n, µk ' 0 is now 4NW/2π = 80, i.e., twice the
value of n for the sinc kernel. Moreover, the amplitudes of
the eigenvalues for k < n are half of those of the sinc kernel,
for equal values of W . This follows the from the symmetry
of the spectrum and matches also the experimental findings of
[36].

In order to get the largest eigenvalues of the modulated sinc
kernel equal to one, a different normalization should be made
by substituting µk with 4Wµk/2π. This agrees with the matrix
rescaling described above.

10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

n

λ n

Figure 1. Eigenvalues of the sinc kernel covariance matrix, rank≈ 40

IV. COVARIANCE ESTIMATION

In the case of one hidden frequency, we have rank KN ≈
2W
π N according to Corollary 1. We can see that the bandwidth
W can be inferred from the rank information of the signal

20 40 60 80 100 120 140 160 180
0

2

4

6

8

10

12

n

λ n

Figure 2. Eigenvalues of the modulated sinc kernel covariance matrix, rank≈
80

covariance matrix K. Since our measurements come from the
process y, we start by estimating its covariance matrix Σ.

A well-known difficulty in frequency estimation is that
stationary random processes with periodic components, even
when the frequencies are exactly known, are not ergodic. Non-
ergodicity means in particular that, when the sample size goes
to infinity, the limit of the process sample covariance is sample
dependent, that is, the limit sample covariance depends on
the random amplitudes of its elementary oscillatory compo-
nents (see e.g., [42, pp. 105-109]). This lack of ergodicity
is even more serious when the frequency is random. For
this reason, one-sample-path estimation runs into difficulty
and the standard approach in many practical situations is to
consider estimation from cross-sectional or panel data (also
called snapshots), as described in e.g., [43] and e.g. done in
DOA estimation. Cross-sectional frequency data can be the
result of parallel measurements by multiple sensors which
is quite common for example in testing of turbo, and in
general rotating machines, but also in many directional signal
processing and biomedical applications.

For the reasons above, we shall need to assume that our
observed data consist of L strings of sample observations
(snapshots), assumed for simplicity all of length N :

yk(t) = ak cos(ωkt) + bk sin(ωkt) + wk(t), (26)

where k = 1, . . . , L, t = 1, . . . , N , (ak, bk) are sample deter-
minations of the random variables (a, b), and the frequencies
ωk are sample determinations of the random variable ω which
is uniformly distributed on the fixed interval [θ−W, θ+W ].
We assume that noises of different cross sections are inde-
pendent. Furthermore, we assume that the random samples
[ak, bk, ωk] come from i.i.d. copies of [a,b,ω], then the
covariance matrix can be estimated by first subtracting the
sample mean from the data, i.e.

ỹk(t) := yk(t)− 1

N

N∑
t=1

yk(t)
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and then doing a cross-sectional average

Σ̂N,L :=
1

L

L∑
k=1

YkY>k , (27)

where Yk =
[
ỹk(1) · · · ỹk(N)

]>
is a column N -vector of

centered data. The procedure is asymptotically equivalent (for
L → ∞) to first computing the standard (biased) covariance
estimator within each sample path [2, Chapter 2],

σ̂k(τ) :=
1

N − τ

N−τ∑
t=1

ỹk(t+ τ)ỹk(t),

constructing the sample Toeplitz estimate

Σ̂k := SymToep{σ̂k(0), . . . , σ̂k(N − 1)} (28)

and then doing cross sectional average w.r.t. k to obtain Σ̂N,L

which is still symmetric-Toeplitz (here the subscript N just
refers to the dimension which is fixed). By the strong law of
large numbers, we have

Σ̂N,L → ΣN as L→∞ (29)

almost surely. Let λ̂N be the smallest eigenvalue of Σ̂N . Then
given (10) and Theorem 1, we have

lim
L,N→∞

λ̂N = σ2
w. (30)

The limit here and those similar ones in the following are
understood as first letting L → ∞ and then N → ∞. In this
sense we are able to build a consistent estimator of the signal
covariance matrix KN :

K̂N := Σ̂N − λ̂NIN , (31)

A consistent estimator of the signal variance is given by

σ̂2
x := σ̂y(0)− λ̂N , (32)

since we have σy(0) = σ2
x + σ2

w by (3).
Next, for ε > 0 close to zero, the numerical rank of KN

can be estimated using Theorem 1 as

rank(KN ) 'M(ε,N) =
2W

π
N (33)

with an approximation error which roughly grows as
O(logN). In particular we have

Ŵ :=
π

2

rank(KN )

N
→W (34)

when N is large. Unfortunately this estimator of W depends
heavily on the estimate of the numerical rank whose computa-
tion is delicate and is not very reliable unless N is very large.
We shall comment on this in the next subsection.

The relation for the scalar covariance of lag 1

σx(1) = σ2 cos θ
sinW

W
, (35)

could then be used to get a rough estimate of the center
frequency:

θ̂ := arccos

(
σ̂x(1)

σ̂2

Ŵ

sin Ŵ

)
, (36)

where σ̂x(1) is an estimator of σx(1) = Ex(t+ 1)x(t).
In the next section we shall describe a more general reliable

estimator based on the subspace philosophy.

Remark 2. The independence of the cross sections, although
often assumed in the literature, may seem quite strong. A more
natural assumption could be to require that the strings (26)
are sample observations of length N from an exchangeable
sequence of N -dimensional random vectors, {yk}Lk=1. For
reasons of space this alternative viewpoint will not be further
pursued here.

V. A SUBSPACE APPROACH TO HYPERPARAMETER
ESTIMATION

Consider now the general measurement model (1), with the
signal x consisting of multiple sinusoids as in (2) satisfying all
assumptions listed in Sec. II. For simplicity, we shall assume
that the amplitude variances are the same, σ2

1 = · · · = σ2
ν =

σ2. The covariance of y can then be computed similarly to
that in Sec. II. We have

Σ(τ) = K(τ) + σ2
wδ(τ, 0)

=

ν∑
`=1

σ2 E (cosω`τ) + σ2
wδ(τ, 0)

= σ2 sinWτ

Wτ

ν∑
`=1

cos θ`τ + σ2
wδ(τ, 0)

=
πσ2

2W

∫ π

−π
eiωτ

ν∑
`=1

χS`(ω)
dω

2π
+ σ2

wδ(τ, 0).

(37)

Under the assumptions listed in Sec. II, the sum
∑ν
`=1 χS`(ω)

is the indicator function on the set S :=
⋃ν
`=1 S`. From

the integral expression for the covariance function, we see
immediately that Corollary 1 is applicable, and the asymptotic
rank of KN is now 2νW

π N . A rank estimator for the bandwidth
W similar to (34) can be used since we have assumed that the
supporting intervals for different frequencies have the same
bandwidth. A more general situation with different W ’s can
also be dealt with but it yields complicated formulas and
will not be discussed here. Next, we will concentrate on the
estimation of the center frequency vector θ := [θ1, . . . , θν ]>.

Remark 3. When the amplitudes σ2
1 , . . . , σ

2
ν are different, the

spectral density of our signal is a sum of nonoverlapping
rectangular functions and can always be written as a weighted
sum of indicator functions. The assertion on the rank in
Corollary 1 must still hold and a proof could be given based on
Szegö’s eingenvalue distribution theorem for Toeplitz matrices
(see e.g., [44]).

Efficient estimation of the hyperparameters can be based
on maximum likelihood, assuming Gaussian additive noise.
See [45, p. 429] for a general discussion of this point. The
Gaussian likelihood function based on the k-th snapshot of N
data can be written as (cf. [46])

lk(θ,W ) = −N
2

log 2π − 1

2
log det Σ(θ,W )

−1

2
Y>k Σ(θ,W )−1Yk,

(38)
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where Yk is the vector introduced in (27), Σ(θ,W ) is the
theoretical covariance matrix of Yk, with entries given in (37)
which do not depend on the index k. The first constant can
be dropped from the objective function. By the independence
of the sample paths, the log-likelihoods add to each other so
that we end up with maximization of the function

l(θ,W ) = −L
2

log det Σ(θ,W )−
L∑
k=1

1

2
Y>k Σ(θ,W )−1Yk

(39)
with respect to θ,W . This leads to the well-know unique
maximizer, see e.g. [42, pp. 202–203], for the covariance
matrix

Σ(θ,W ) = Σ̂N,L (40)

where Σ̂N,L is defined in (28). Such an equation should be
solved for the unknown hyperparameters (θ,W ) appearing
in the known structure (37). Note that this equation can
be interpreted as resulting from the well-known method of
moments which is the theoretical basis of Subspace Methods
[40, Chapt. 13]. Since the equation is nonlinear, one may
think of setting up at the outset an iterative solution scheme.
However, these numerical algorithms very often converge only
locally. In fact, the likelihood function is nonconvex and
contains many flat regions. Therefore, brute-force optimization
seems to be a hard task.

We shall instead take advantage of the structure of the
equation (40) to propose a subspace-based approach. For a
fixed and large enough N , we may and shall here assume that
the N×N covariance matrix KN of the process x has exactly
rank n := 2νW

π N . As discussed in Subsection III-B, for N
large this is a quite accurate approximation. In other words,
we do a truncation in the spectral decomposition of the matrix
KN , retaining the largest n eigenvalues, namely

KN =
πσ2

2W
RN =

πσ2

2W
QNDNQ>N

≈ πσ2

2W
QN diag{In, ON−n}Q>N , (41)

where Om denotes the square all-zero matrix of size m. As
before, the eigenvalues in the diagonal matrix DN are arranged
in nonincreasing order.

Proposition 1. For N large enough, there are an n×n matrix
A and an n-dimensional row vector c such that the random
oscillatory signal x can be represented by the system

ξ(t+ 1) = Aξ(t) (42)
x(t) = c ξ(t) (43)

where ξ(t) = [ ξ1(t), ξ2(t), . . . , ξn(t) ]> is an n-dimensional
basis vector spanning the Hilbert space H(x) linearly gener-
ated by the N random variables of the set {x(s) : t ≥ s ≥
t−N + 1}.

Proof. It is well-known that a rank-deficient covariance matrix
(of rank n) must necessarily be the covariance of a purely
deterministic process [40, p. 138, 276]. When the total support
of the spectrum S =

⋃ν
`=1 S` is a proper subset of [−π, π],

x in (2) is a purely deterministic process which can be

represented by a deterministic linear recursion of order n
or equivalently, by a n-dimensional state-space model. Any
such state-space representation for the process x is of the
form (42), (43) where A can be chosen orthogonal so that
A> = A−1.

The output of (43) has the expression x(t) = cAtξ(0), from
which we can compute the covariance function of the process
as

σ(t− s) = cAtEξ(0)ξ(0)>(A>)sc> = cAtP A−sc>.

The matrix P := Eξ(0)ξ(0)> satisfies a degenerate Lya-
punov equation and commutes with A. Therefore, we have
σ(τ) = cPAτ c>. The spectral density of x is a sum of Dirac
deltas. To see this, we first notice that since A is orthogonal,
its spectral decomposition can be written A = TΛT ∗ where T
is unitary and Λ = diag{eiϕ1 , . . . , eiϕn} is a diagonal matrix
of eigenvalues all having modulus 1. The eigenvalues should
come in conjugate pairs e±iϕ if ϕ 6= 0, π due to the realness
of A. The spectrum of the output process now follows:

Φx(ω) = cPF(Aτ )c> = cPTF(Λτ )T ∗c>

= 2π cPT diag{δ(ω − ϕ1), . . . , δ(ω − ϕn)}T ∗c>,
(44)

where the weights for the Dirac deltas are determined by the
vectors cPT and T ∗c>. See also [40, Eq. (8.129)].

Since the state-space realization will be constructed from
the truncated covariance matrix (41), its spectrum should
approximate the true one, i.e., the indicator function on S times
a constant factor, in the sense that the supports of the Dirac
deltas should be clustered in S. The center of each cluster,
namely the average of the arguments ϕk inside one cluster,
is an estimate of the center frequency. Such an idea is also
justified by the fact that the (approximate) eigenvalues of KN

do not depend on the center frequencies θ. Hence the whole
dependence on θ must be in c and A.

Now the remaining point is how to obtain the parame-
ters c, A in the realization from the measurements of y.
First, we estimate the rank of KN using the technique in
Subsection VIII-B. Secondly, one can easily verify that the
finite covariance matrix of x in (43) can be written as
KN = HNPH

>
N , where

Hk =


c
cA
...

cAk−1

 (45)

for a positive integer k. This is in fact a rank n factorization
of KN . Notice that such a factorization is unique modulo the
choice of basis in the state space and one can always choose
a basis such that P is a diagonal matrix. In that case, we
can compare with (41) and choose HN = QN (1 : N, 1 :
n) and P just a constant multiple of the identity. Thirdly,
due to additive structure of the covariance matrix (10), ΣN

has the same eigenvectors as KN . Therefore, we can estimate
the covariance matrix ΣN using the scheme (28), and extract
the eigenvectors corresponding to the largest n eigenvalues to
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compose HN . Notice also that the variances of the signal and
the noise do not affect HN , and thus do not play a role in the
later estimation.

The vector c is simply the first row of HN . The matrix A
can be computed by a standard “shift-invariance” procedure
of subspace identification. More precisely, for k ≤ N − 1,
consider the matrix Hk in (45) and its one row shifted
counterpart ↓ Hk := HN (2 : k+ 1, :). The dynamic matrix A
can be extracted by solving the equation ↓ Hk = HkA in a
least-squares sense. When A is constrained to be orthogonal,
this is the well-known “orthogonal Procrustes problem”. In
[47, Subsec. 6.4.1], it is reported that such a problem is well-
posed, and can be solved using SVD. A similar subspace
method for oscillatory signals was proposed in [29], [48].

Given the cross sectional measurements (26) of size L×N ,
we summarize our algorithm below:

1) Compute Σ̂N , an estimate of the covariance matrix of y,
using (28);

2) Estimate the rank n of the signal covariance matrix KN ,
and then estimate the bandwidth W by (34);

3) Do eigen-decomposition to Σ̂N , keep the largest n eigen-
values, and call the N × n matrix of corresponding
eigenvectors HN ;

4) Let k = N − 1, and solve the orthogonal Procrustes
problem ↓ Hk = HkA for the orthogonal matrix A;

5) Compute the eigenvalues of A, and extract their phase
angles (between −π and π);

6) Run a clustering algorithm, e.g., k-means, on the phase
angles, and take the centers of final clusters as estimates
of the center frequencies.

In the last step of this subspace algorithm, the center of each
cluster may be obtained by simply taking the average of all
the points in the cluster. This yields the estimate

θ̂` =
1

n`

n∑̀
k=1

ϕk,` ` = 1, . . . , ν (46)

where n` is the number of phase points in each cluster of
positive phases.

VI. CONSISTENCY

Subspace methods for finite-dimensional models are essen-
tially an instance of the method of moments which is well-
known in Statistics to be generically consistent under very
mild assumptions. However, here the true covariance matrix
is infinite-dimensional and the basic consistency analysis of
moment estimation for finitely parametrized models does not
apply. In order to completely answer the convergence question
of the subspace-based estimator to the true frequency hyperpa-
rameter, one should then combine the consistency property of
subspace estimates which holds for the estimate of each finite
dimensional approximate linear model (of fixed dimension),
with the convergence, as the dimension of the covariance
truncation tends to infinity, of the purely deterministic ap-
proximate process described previously to the a posteriori
process which has a continuous spectrum. This is a rather
technical issue essentially centering on symmetric Toeplitz

spectral approximation which could not be reported in this
paper and is treated in a companion publication [49].

Consistency follows from a result of [49] which establishes
convergence (understood in a weak sense) of the line spectrum
of the approximate model (42),(43) to the continuous spectrum
of the infinite Toeplitz covariance matrix. This implies in
particular that both the width and the centers of the discrete
frequency clusters must converge to the width and center of the
corresponding intervals supporting the continuous spectrum
which are indeed the true frequency hyperparameters.

VII. BAYESIAN ESTIMATION

Assume now that we have a consistent estimate of the
parameters of the prior, in particular of the center frequencies
θ`. The question is what this estimate has to do with (say)
the Bayesian Maximum A Posteriori (MAP) estimate2 of the
random angular frequency ω, computed from the relative
posterior distribution. Is there any reason why the MAP
estimate should coincide, at least asymptotically, with the
center frequencies of the prior?

In the Subsection VIII-C we shall provide experimental
evidence that in our setting the inherent optimization problem
leads to a MAP estimate of ω which is practically indistin-
guishable from the Empirical Bayes estimate of the center
frequency θ. This fact is verified experimentally but should be
also evident from the theoretical analysis which follows.

The MAP estimator of ω is obtained by maximizing the
log of the unnormalized posterior distribution of ω given N

observations3 y :=
[
y(t) . . . y(t−N)

]>
, neglecting the

denominator p(y) which does not depend on the parameters.
The prior for one frequency is

p(ω | θ`,W ) =
1

2W
χ[θ`−W, θ`+W ]

and since the intervals do not overlap we have independence
and the overall prior of ω is the product of the priors for each
ω` so that, recalling that the noise is Gaussian i.i.d. we have

ω̂MAP=argmax
ω∈[0,π]ν

{
− 1

2σ2
w

‖y−V (ω)u‖2 +
∑
`

log p(ω | θ`,W )

}

with V (ω) =
[
C(ω) S(ω)

]
where

C(ω) =

 cosω1 . . . cosων
...

. . .
...

cosω1N . . . cosωνN

 :=
[
c1(ω1) . . . cν(ων)

]

S(ω) =

 sinω1 . . . sinων
...

. . .
...

sinω1N . . . sinωνN

 :=
[
s1(ω1) . . . sν(ων)

]

2MAP is known to be the best estimate in a variety of norms.
3The estimation from multiple snapshots data can be dealt with in a similar

way even in case of unequal measurement error variances.
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and u =
[
a1 . . . aν b1 . . . bν

]>
:=
[
a b

]>
which

could also be written in complex form as Re[Ṽ (ω)ũ] where
Ṽ (ω) is the van der Monde matrix

Ṽ (ω) =

 ejω1 . . . ejων

...
. . .

...
ejNω1 . . . ejNων


and ũ :=

[
a1 − jb1 . . . aν − jbν

]>
. Since we are to com-

pute real quantities this complex formulation does however
not offer substantial simplifications.

Now the log of the prior is −∞ outside of the intervals
J` := [θ` −W, θ` + W ] and equal to log 1

(2W )ν inside (this
is obviously true for each frequency and true for the whole
prior). Hence the MAP estimator of ω can be found by solving
the constrained minimization problem

ω̂MAP = argmin
ω

{
1

2σ2
w

‖y − V (ω)u‖2 + ν log(2W )

}
subject to : ω` ∈ J` l = 1, . . . , ν (47)

Suppose that θ̂`, ` = 1, . . . , ν and Ŵ are our subspace
estimates of the hyperparameters of the prior. Since these are
consistent as discussed in the previous section, substituting
these estimates for the true values leads to an asymptotically
equivalent optimization problem. Here W appears as a nui-
sance parameter which shall be fixed to the estimated width
Ŵ . The Bayes MAP estimate of ω can then in principle be
compute by minimizing the quadratic criterion ‖y−V (ω)u‖2
subject to the fixed deterministic constraint J : an hypercube
in Rν centered in θ̂ of edge length 2Ŵ .

The minimization problem (47) can then equivalently be
interpreted as the Maximum Likelihood estimation of a deter-
ministic angular frquency ω ranging on the bounded compact
set J . On this set the likelihood function is smooth and,
according to standard statistical theory, the estimate must be
consistent, that is converging for N →∞ to some ”true value”
ω0 which has generated the observations, and asymptotically
efficient.

For a finite data set problems of the type (47) have in general
several local minima. However because of the bounded, com-
pact, feasible set constraint ω ∈ J , the solution must stay in a
small neighborhood of the center frequency. Also, the squared
norm term in (47) depends on ν sinusoidal functions of ω and
hence, for small enough W ’s there are no equivalent values
of the frequency ω leading to the same value of the cost. The
function has generically a unique minimum.

We now propose an algorithm for the problem (47) by using
the a priori estimate θ̂ as a starting point for a gradient descent
and solve the problem by a local search algorithm about θ̂.
Since the subspace estimate, θ̂, asymptotically tends to the
center frequency, for large N we are allowed to identify θ
with θ̂.

As a first preliminary step, solve a least squares problem
minimizing ‖y−V (θ̂)u‖2 to get an estimate of the amplitude

vector u4 and use the estimated amplitude vector,

û = [V (θ̂)>V (θ̂)]−1V (θ̂)>y

in place of u in the formulas.
Let ỹ(θ̂) := y − V (θ̂)û and introduce the deviation ω̃ :=

ω − θ̂. The gradient of V with respect to ω computed at θ̂,
is an array of 2ν rectangular N × ν gradient matrices of the
form

∇V (θ̂)=
[
∇θ1c1(θ̂1),. . . ,∇θνcν(θ̂ν),∇θ1s1(θ̂1),. . .,∇θνsν(θ̂ν)

]
(48)

where each matrix entry has only the k-th column nonzero,
equal (in Matlab notation) to

∇θkck(θ̂k)[:, k] = −DNsk(θ̂k), ∇θksk(θ̂k)[:, k] = DNck(θ̂k),
(49)

where DN = diag{1, 2, . . . , N}. Hence ∇{V (θ̂)û} turns out
to be a linear combination of these 2ν, N × ν matrices,
properly combined by the corresponding components of the
vector u ∈ R2ν . By this operation the zero columns are
superseded and the linear combination leads to a N×ν matrix
made by linearly combining the 2ν nonzero column vectors in
(48) to form a final matrix which we denote M(θ̂). For ν = 1

we have for example u =
[
a b

]>
and

M(θ̂) = DN (−s(θ̂)a+ c(θ̂)b) ∈ RN×1 .

With this gradient calculation established, we proceed to
approximate (47) by a constrained local linear Least Squares
minimization

min
ω̃

{
‖ỹ −M(θ̂) ω̃‖2

}
subject to : |ω̃`| ≤ Ŵ equivalent to ωl ∈ J` , (50)

for ` = 1, . . . , ν. The solution can be refined iteratively by an
algorithm of the form

ω̃(k + 1) = [M(ω(k))>M(ω(k))]−1×
M(ω(k))>ỹ(ω(k)) k = 1, 2, , . . . (51)

where at each step ω(k) := ω̃(k) + θ̂ is substituted back in
place of ω(k − 1) or, initially, of θ̂ in the expression of the
gradient. The scheme is initialized for k = 0 setting ω(0) = θ̂
and then stopping when the difference ω̃(k + 1) − ω̃(k) =
ω(k + 1)− ω(k) becomes small enough. It requires to check
at each step if |ω̃`| ≤ Ŵ otherwise the estimator should be
re-initialized. Alternatively, we may try to keep ‖ω̃‖ small by
adding a ridge penalty term λ(k)‖ω̃(k)‖2 with λ(k)→ 0 for
k large for consistency, to the least squares formulation. This
may in fact also make the computation of the inverse better
conditioned.
Remark 4. The reasoning above can be extended to include
multiple snapshots of data in a straightforward manner. Since
the conditional likelihood function for each snapshot multi-
plies given the hidden frequencies, the squared-norm term in
the objective function of (47) becomes ‖Y−V (ω)U‖2F, where
Y and U are matrices whose columns are the data and the

4The estimate can also be justified based on a noninformative prior as in
[16].
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amplitude vectors, respectively, and the subscript F denotes
the Frobenius norm. A similar linearization scheme can be
devised to solve the enlarged optimization problem. �

VIII. SIMULATIONS

In this section, we provide simulation evidence showing
that the subspace algorithm described at the end of Section V
works quite well in the case of one or two hidden frequencies.
Simulations comparing with the MAP estimate will also be
shown.

In the second step of the subspace algorithm, in order to
compute an estimate of the bandwidth W using (34) we need
to estimate the asymptotic rank of the signal covariance matrix.
It turns out that such a rank estimation task can be tricky if we
are given (relatively) a small number of samples. This point
will be discussed in the next subsection.

A. The bandwidth estimator

In the first example, we compare the decay property of
eigenvalue sequence of the estimated covariance matrix with
the theoretical behavior as shown in Figs. 1 and 2 in the case of
two hidden frequencies. The measurements (26) are generated
with a,b with uniform distribution U [−1.3813, 1.3813] and
ω drawn from the uniform distribution in [θ−W, θ+W ] with
the hyperparameters θ = [θ1, θ2] = 2π × [0.3145, 0.4201] and
W = 2π × 0.0465. 5 The signal length N and the number
of snapshots L are both equal to 100. The additive noise
is i.i.d. Gaussian with variance σ2

w. The signal-to-noise ratio
(SNR) defined as 20 log10(σ/σw) has a value of 15 dB. In
Fig. 3, we report the eigenvalues of the estimated covariance
matrix (28).
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Sample eigen.

Theoretical eigen.

Figure 3. Eigenvalues of the theoretical and estimated covariance matrices
with N = L = 100.

By comparison with the eigenvalues of the theoretical
covariance matrix (red dashed line), we can see a significant
distortion in the large eigenvalues due to the slow convergence

5These numbers come from one trial in the Monte-Carlo simulations.

of the estimator (28). However, the flat regions of two eigen-
sequences still overlap nicely. Inspired by such an observation,
we propose an ad-hoc scheme: replace rank(KN ) in (34) with
the index maximizing the following ratio

argmax
k∈{1,...,N−1}

λ2k(Σ̂N )

λ2k+1(Σ̂N )
, (52)

where λk(Σ̂N ) denotes the k-th eigenvalue of the estimated
covariance matrix Σ̂N arranged in nonincreasing order. Intu-
itively, the maximum should be attained at the beginning of
the flat region in the eigen-plot.

Next, we do a Monte-Carlo simulation to test our idea.
In each trial, the hyperparameters are generated randomly.
More precisely, first the bandwidth W is drawn from the
uniform distribution in 2π × [0.01, 0.05], and then the center
frequencies θ1 and θ2 are drawn from U [W,π − W ] such
that |θ1 − θ2| > 2W so that the supporting intervals for
the two frequencies do not overlap. Given L independent
measurement sequences of length N , the covariance matrix
is estimated through (28), and then the rank is computed via
(52), which gives an estimate of W by (34). The relative
estimation error of Ŵ is defined by the ratio (Ŵ −W )/W .
Notice that we have not taken the absolute value of the
numerator because we want to show that the scheme (52)
tends to overestimate the rank of the signal covariance matrix.
This feature is important in practice since the estimated rank
determines the eigen-truncation performed in the subspace
algorithm (Step 3). Clearly, we want to retain the eigenvectors
of the covariance matrix corresponding to large eigenvalues.
Hence, an underestimation of the rank should be avoided since
otherwise, useful information about the spectral content of the
signal could be lost.

Each Monte-Carlo simulation consists of 1000 trials. In the
first experiment, we fix N = L = 100 and estimate the
bandwidth W , or equivalently the numerical rank of the signal
covariance matrix, under different SNRs. In Fig. 4, the relative
errors of Ŵ are depicted using the boxplot. We see from the
box on the right that a low SNR results in an underestimate of
the rank which is undesirable for the subsequent estimation of
the band centers. The overall error is not small mainly because
we have a poor estimate of the covariance matrix given the
number of available samples (see Fig. 3). However, we want
to emphasize that the estimation of W is a separate problem,
and a large error here does not propagate to the estimation of
the center frequencies. As we will see in the next subsection,
the center frequencies can be estimated quite accurately given
a rough estimate of the bandwidth.

In the second experiment, we fix the SNR = 15 dB and
estimate W as both N and L change while keeping N = L.
The result is depicted in Fig. 5. One can see that as N = L
increases, the estimates become more and more accurate.

We want to comment that preliminary results for the arccos
estimator of one center frequency θ could be obtained from
(36) but they will not be discussed in depth since much more
reliable estimates will be obtained by the subspace method of
Sec. V.
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Figure 4. Relative estimation errors of the bandwidth W versus the SNR
with N = L = 100.
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Figure 5. Relative estimation errors of the bandwidth W versus the signal
length and the number of cross sections N = L while SNR = 15 dB is
fixed.

B. The Subspace estimator of the band centers

Given the estimated rank of the signal covariance matrix
in the previous subsection, we proceed to implement the
subspace algorithm described at the end of Sec. V. Again
we do a Monte-Carlo simulation of 1000 trials. The signal
length N = 100 and the SNR = 15 dB are fixed, and we
change the number of snapshots L. The data has already
been generated in estimating W , and we only need to use
the estimated covariance matrix.

The relative estimation errors of the center frequency is
defined as ‖θ̂ − θ‖/‖θ‖, and their values in Monte-Carlo
simulations are plotted in Fig. 6. It appears that apart from the
outliers (the red crosses), the performance of the algorithm is
quite good as the cumulative relative error is lower than 2%,
even in the case of few snapshots (L = 50). The simulation
result also seems to indicate that the algorithm works very
well when the covariance estimate is sufficiently accurate.
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Figure 6. Relative estimation errors of two hidden frequencies (θ1, θ2) using
the Subspace method in Sec. V versus the number L of cross sections with
N = 100 and SNR = 15 dB.

Fig. 7 shows the discrete spectrum of the output process
(43) in one simulation trial in the case of L = 100. The
horizontal axis is scaled to represent the frequency in Hz. In
this particular trial, the true hyperparameters are [θ1, θ2,W ] =
2π× [0.1499, 0.2524, 0.0155], and the estimated band centers
are θ̂ = 2π × [0.1503, 0.2532]. The theoretical (asymptotic)
rank of the signal covariance matrix is 2νW

π N ≈ 12, while
the ratio scheme (52) produces a rank estimate equal to 20.
One can see that the Dirac deltas indeed cluster around the
true center frequencies inside the supporting interval.
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Figure 7. Discrete spectrum estimate with two hidden frequencies. The true
hyperparameters are [θ1, θ2,W ] = 2π × [0.1499, 0.2524, 0.0155] and the
estimated band centers are θ̂ = 2π × [0.1503, 0.2532].

C. The Bayesian MAP estimator of the frequencies

Given the center frequencies and the bandwidth estimated
from the Subspace procedure, we can now compute the
Empirical Bayes MAP estimator using the algorithm described



13

in Sec. VII. The data are the same as those used for covariance
and hyperparameter estimation. Once again, we fix the signal
length N = 100 and SNR = 15 dB, and do Monte-Carlo
simulations of 1000 trials as the number L of cross sections
changes. The relative errors of ω̂MAP with respect to the true
center frequencies are shown in Fig. 8. It appears that the
MAP estimate of the frequencies is close to the true band
centers with a cumulative relative error below 6%. Moreover,
the estimation accuracy improves as more snapshots of data
are available. It is noticed that the cumulative error size is
larger than that of the empirical Subspace method (Fig. 6)
probably due to the linearization scheme in solving the original
nonlinear least squares problem subject to interval constraints.
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Figure 8. Relative estimation errors of two hidden frequencies (θ1, θ2) using
the Bayesian MAP method in Sec. VII versus the number L of cross sections
while N = 100 and SNR = 15 dB.

Remark 5. A quite reasonable conjecture, which unfortunately
so far we have not been able to prove rigorously, is that for
N → ∞ and small enough W , the Bayesian estimate ω̂MAP

should converges a.s. to the true center frequency θ.
The conjecture is based on the observation that both ω̂MAP

and θ̂ are asymptotic maximizers of the likelihood function
based on the same data. In fact, θ̂ asymptotically solves (40)
which is the maximizing equation of the marginal likelihood
function, marginalized by integrating with respect to the a
priori distribution of ω and hence parametrized only in terms
of the hyperparameters (θ,W ). We will leave a detailed
discussion of this point to a future publication. �

Remark 6. At the end of this section want to comment on the
difference between our method and classical subspace methods
for frequency estimation such as MUSIC, ESPRIT, etc. All
classical methods are designed for oscillatory signals with
deterministic frequencies and perform the eigen-truncation of
the estimated covariance matrix at an index equal to 2ν where
ν is the number of unknown frequencies (the factor 2 is due
to complexification of the real signal). In contrast, we show
that in the case of uniform random frequencies, we have a
stochastic multiband signal, and the eigen-truncation should
be done at the approximate index 4WN × ν corresponding

to the asymptotic rank of the signal covariance matrix. Based
on this observation, it is not surprising that classical subspace
methods do not apply to the current problem setup. More-
over, our Empirical Bayes procedure provides both the band
centers and the bandwidth for the random frequencies, which
can be interpreted as confidence intervals for the frequency
estimation. �

Remark 7. Concerning the Atomic Norm approach, we may
just say that it views the observed sinusoidal signal as a
deterministic linear combination of elementary exponential
components with deterministic frequencies. For this reason
(similarly to the previous remark), it does not seem possible
to compare to our random-frequency signal model, although it
has been extended to deal with deterministic multiband signals
[12]. �

IX. CONCLUSIONS

We have formulated the problem of frequency estimation in
an Empirical Bayesian framework by first imposing a natural
uniform prior probability density on the unknown frequency.
In this way the estimation of the hyperparameters of the a
priori distribution can be accomplished by exploiting the spe-
cial structure of the covariance matrix of the posterior process
which has been long studied in the framework of energy
concentration problems by the signal processing community.
In this setting the solution can be based on essentially linear
techniques of subspace identification. Using the estimated
prior parameters one can adapt the prior to the data and
this leads to Bayesian estimates which are asymptotically
maximum likelihood and therefore the best possible in a
variety of metrics. The simulation results using this Empirical
Bayesian philosophy are very encouraging.

APPENDIX

In the proof of Theorem 1 we shall need two auxiliary
lemmas. The first is just a simple technical fact.

Lemma 1. If two sequences of bounded real numbers
{an}, {bn} are such that

lim
n→∞

(an − bn) = 0, (53)

then
lim sup
n→∞

an = lim sup
n→∞

bn,

and
lim inf
n→∞

an = lim inf
n→∞

bn.

Proof. The argument is quite standard. Let
ā := lim supn→∞ an. Then there exits a subsequence
{ank} converging to ā. Define b̂ := lim supk→∞ bnk .
Then there exists a sub-subsequence {bnkj } converging to
b̂. The condition (53) holds for the subsequence indexed
by nkj , which implies that ā = b̂. It then follows that
b̄ := lim supn→∞ bn ≥ b̂ = ā. A symmetric argument leads
to ā ≥ b̄, and therefore ā = b̄. The proof for the limit inferior
is similar and hence omitted.
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The next lemma concerns the sum of squared eigenvalues
of R.

Lemma 2.

lim
N→∞

1

N

N∑
j=1

λ2j (N) =
m(J)

2π
. (54)

Proof. Since R is Hermitian, we have

N∑
j=1

λ2j (N) = tr R2 = tr(RR∗)

=

N−1∑
j=−N+1

|ρ(j)|2(N − |j|).

(55)

It follows that

1

N

N∑
j=1

λ2j (N) =

N−1∑
j=−N+1

|ρ(j)|2
(

1− |j|
N

)
. (56)

We can view the latter summation over Z by adding zeros.
Apparently, each term in the infinite sum is dominated by
|ρ(j)|2. Moreover, for each fixed j the term-wise limit as
N → ∞ is also |ρ(j)|2. Applying Lebesgue’s dominated
convergence theorem for the counting measure on Z, we can
conclude that

lim
N→∞

1

N

N∑
j=1

λ2j (N) =
∑
j∈Z
|ρ(j)|2

=
1

2π

∫ π

−π
|χJ(ω)|2dω =

m(J)

2π
,

(57)

where the second equality is the Parseval identity.

Proof of Theorem 1

Proof. We first show that the number of eigenvalues not close
to 0 or 1 is o(N). To this end, define the function

J(N) :=

N∑
j=1

λj(N) (1− λj(N)) (58a)

=

N∑
j=1

λj(N)−
N∑
j=1

λ2j (N), (58b)

where each summand in (58a) is nonnegative. Then according
to (23) and Lemma 2, we have

lim
N→∞

J(N)

N
= 0. (59)

In other words, the function J(N) is o(N). Fix 0 < δ <
γ < 1, and the number of eigenvalues δ ≤ λj(N) < γ is
M(δ, n)−M(γ,N). Clearly, for these eigenvalues we have

λj(N) (1− λj(N)) > δ(1− γ) := ν > 0, (60)

which implies that

J(N) ≥
∑

δ≤λj(N)<γ

λj(N) (1− λj(N))

≥ ν [M(δ,N)−M(γ,N)] ≥ 0.

(61)

It follows that

lim
N→∞

M(δ,N)−M(γ,N)

N
= 0, (62)

which means that the quantity M(δ,N) − M(γ,N) is also
o(N).

Next, define the quantities

M+ := lim sup
N→∞

M(γ,N)

N
,

M− := lim inf
N→∞

M(γ,N)

N
.

(63)

Applying Lemma 1 in this appendix to the relation (62), we
know that both M+ and M− do not depend on 0 < γ < 1.
We want to establish that the two quantities coincide so that
the ordinary limit in (24) exits and is equal to the common
value. Observe that

tr R =

M(γ,N)∑
j=1

λj(N) +

N∑
M(γ,N)+1

λj(N)

︸ ︷︷ ︸
>0

≥ γM(γ,N),

(64)
and similarly

N∑
j=1

λ2j (N) =

M(γ,N)∑
j=1

λ2j (N) +

N∑
M(γ,N)+1

λ2j (N)

︸ ︷︷ ︸
here each λj(N)<γ

<

M(γ,N)∑
j=1

1 +

N∑
M(γ,N)+1

γλj(N)

< M(γ,N) + γ tr R.

(65)

It follows that
N∑
j=1

λ2j (N)− γ tr R ≤M(γ,N) ≤ tr R

γ
, (66)

and furthermore, we have

M+ ≤ lim sup
N→∞

tr R

γN
=

m(J)

2πγ
, (67a)

M− ≥ lim inf
N→∞

1

N

 N∑
j=1

λ2j (N)− γ tr R


= (1− γ)

m(J)

2π
, (67b)

where we have used Lemma 2 again in (67b). Letting γ → 1
in (67a) and γ → 0 in (67b), we obtain

m(J)

2π
≤M− ≤M+ ≤

m(J)

2π
, (68)

and the claim of the theorem follows.

The next proposition concerns the time average of one
sample path of the noisy sinusoidal signal.

Proposition 2. Let

y(t) = x(t) + w(t)

= a cos(ωt) + b sin(ωt) + w(t)
(69)
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be a sample path of the process (1), where t = 1, 2, . . . . Then
for each fixed ω with |ω| < π,

1

N

N∑
t=1

y(t+ τ)y(t)→ a2 + b2

2
cosωτ + σ2

wδ(τ, 0)

as N →∞ with probability one.

Proof. We have

1

N

N∑
t=1

y(t+ τ)y(t) =
1

N

N∑
t=1

[x(t+ τ)x(t) + x(t+ τ)w(t)

+w(t+ τ)x(t) + w(t+ τ)w(t)]

and that the first time average converges to a2+b2

2 cosωτ is
shown in [42, pp. 105-109] or [2, pp. 171-172]. That the
average of each cross term in the middle tends to 0, follows
since the process w̃(t) := eiωtw(t) is (complex) zero-mean
i.i.d. and by the assumed uncorrelation so is also aeiωτ w̃(t)
and hence so is its real part, so that the law of large numbers
holds for each cross term. The time average of the last term
tends to σ2

wδ(τ, 0) again by the law of large numbers.
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