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a b s t r a c t

The theory of variational integration provides a systematic procedure to discretize the equations of
motion of a mechanical system, preserving key properties of the continuous time flow. The discrete-time
model obtained by variational integration theory inherits structural conditions which in general are not
guaranteed under general discretization procedures. We discuss a simple class of variational integrators
for linear second order mechanical systems and propose a constrained identification technique which
employs simple linear transformation formulas to recover the continuous time parameters of the system
from the discrete-time identified model. We test this approach on a simulated eight degrees of freedom
system and show that the new procedure leads to an accurate identification of the continuous-time
parameters of second-order mechanical systems starting from discrete measured data.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction and motivations

The identification of linear second order models of mechanical
systems has been the object of intensive research and of several
papers in the past decade (De Angelis, Lus, Betti, & Longman,
2002; Lus, De Angelis, Betti, & Longman, 2002, 2003). Of particular
interest are systems which can be described by a second order
vector model of the following form:

Mq̈ + Dq̇ + Kq = f (1.1)

where M and K , both symmetric positive definite matrices in
Rn×n, have the interpretation of generalized mass (or inertia) and
generalized stiffness coefficient matrices respectively, while D ∈

Rn×n,D = DT is a linear (viscous) damping coefficient which is
at least positive semidefinite. The generalized forces f acting on
the system can be expressed as a linear function of a vector of
independently assignable generalized input forces u of dimension
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m ≤ n; namely

f = Lu (1.2)

where the matrix L, which will be assumed to be known, describes
the physical locations atwhich the input forces u act on the system.
Without loss of generality itmay be assumed that L is of full column
rank; i.e. rank L = m.

For simplicity and for mathematical convenience we shall
assume that a full set of linear sensors is available to the
experimenter; i.e., that all n degrees of freedom are measured
via linear sensors. This is obviously equivalent to assume that
the measurement equation is y = q. The system (1.1) can
also be represented in state space form; for example, defining
x := [q, q̇]⊤, one gets

ẋ =


0 I

−M−1K −M−1D


x +


0

M−1L


u (1.3)

which should be coupledwith themeasurement (output) equation
y = [ I 0 ] x. Note that under our assumptions the system is
automatically controllable and observable and henceminimal. This
is a necessary condition for parameter identifiability. See Laub and
Arnold (1984) for a direct test of controllability/observability of
second order models of the type considered in this paper.

Now, in several areas of engineering, such as mechanical or
structural engineering, an accurate estimation of the parameters
(M, K , D ) of the physical continuous time model (1.1) is often
required. A typical example being the estimation of deformations
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at points which are not monitored or the estimation of proper
modes of vibration of a mechanical structure.

Mainstream system identification theory deals with discrete-
time data and discrete-time models and normally the recovery
of the continuous-time parameters involves a conversion step
from discrete to continuous time (the so-called indirect approach).
The problem of reconstructing a continuous-time model from
an identified discrete-time model has a long history and has
been discussed in several places, see e.g. Söderström (1991)
and the reference list in the more recent paper Mahata and Fu
(2007). The conversion step from discrete to continuous may
sometimes be cause of troubles. It is a commonly experienced
fact that for multivariable systems of moderate/large dimension,
accurate values of the continuous-time parameters may be hard
to recover from the estimated discrete-time system, no matter
how accurate the estimates of the latter may be. One reason of
this difficulty may be attributed to the ill-conditioning of the
discrete-to-continuous conversion, which involves, in the zero-(or
first-order)-hold (ZOH) discretizations,2 inverting the exponential
relation F = exp Ah, G =

 h
0 exp As ds B to recover the matrices

(A, B) of the continuous-time model from estimates (F ,G) of an
identified discrete time model

xk+1 = Fxk + Gfk, yk = Hxk + Jfk. (1.4)

The default option in the discrete-to-continuous (d2c) routine in
MATLAB is ZOH. It is well-known that this operation may turn
into an ill-conditioned problem since the recovery of matrix A
involves the computation of the logarithm of F which may be a
complex matrix or, may be undefined as requiring the inversion
of the exponential map in a region of the complex plane where it is
not invertible. We would like to point out that the common belief
that this problem should be solvable by choosing a high sampling
frequency may actually worsen the problem. Consider the trivial
case of a scalar discrete F subject to a perturbation δF . The relative
error incurred when computing A + δA :=

1
h log(F + δF) is

δA
A

=
1

log F
δF
F

a more complicated formula holding in the matrix case, see Dieci
and Papini (2000, Formula 2.3). Since for h → 0, F → I , the
condition number of computing A =

1
h log F tends to infinity

when h → 0. This means that at high sampling frequency, the
effect of unavoidable random errors on the estimates of F (and G)
could be largely amplified when computing A by the logarithmic
transformation. See Dieci and Papini (2000) and the references
therein.

A possible option in the Matlab d2c routine is the so-called
Tustin transform. Since this discretization scheme has superficial
similarities with the approach proposed in this paper and deserves
an accurate analysis, we shall postpone a detailed discussion of this
option to Section 3.

Now, since the problem we are discussing is a specific parame-
ter estimation problem, the continuous model structure obtained
from the discrete-time identified model should be easily trans-
formable into the form (1.1) or (1.3) in that particular basis. In gen-
eral however, an identified discrete model will just have a generic
structure (1.4) with full matrices (F , G, H, J) and need not have

2 The ZOH sampler transforms continuous-time into discrete-time by syn-
chronously sampling the output of the continuous system once the input signal is
approximated by a piecewise constant function on each sampling interval. There
are more refined schemes, such as the first-order-hold (FOH) which assumes in-
stead the input to be piecewise linear. The discussion which follows applies also to
FOH, modulo notational complications which we choose to avoid.

any of the structural properties of a mechanical system. In particu-
lar, the continuous state-space realization obtained by the inverse
of the ZOH or FOH discretizations does not lead to an input–output
relation of the special second-order form (1.1). This means that the
recovery of the physical parametersM, D, K may in general be ill-
defined or impossible. That this is not of purely academic interest is
witnessed by the interest in this problem in the recent mechanical
engineering literature, see e.g. De Angelis et al. (2002), Lus, De An-
gelis, and Betti (2003), Lus, De Angelis, Betti, Longman (2003) and
the references therein. Ideally, we would like to use discretization
schemes which preserve the second order input–output structure
of the type (1.1), which is a basic characteristic of linear models of
fully observed mechanical systems (Newton law).

In addition, besides the previous difficulties, since the inverse
discretization transform is generally non-linear it does introduce
bias in the estimates of the continuous-time parameters, even
when the estimates of the discrete-time parameters are unbiased
and accurate. For this reason a linear (or ‘‘approximately linear’’)
discrete-to-continuous conversion would be highly desirable.3

1.1. On continuous-time identification

An alternative approach could be to identify the continuous-
time parameters directly (the so-called direct approach). This
could be done in several ways. One may attempt to identify
the parameters of the model (1.1) or (1.3) from (discrete) noisy
observations directly, by using a continuous-time PEM method.
However continuous-time iterative optimization methods are
especially sensitive to the choice of good initial estimates of
the parameters, particularly when the data sampling frequency
may not be suitable for a reasonable numerical approximation of
derivatives and gradients. The sensitivity to initial estimates is a
serious difficulty especially for multivariable (multi input/multi
output) models like the mechanical systems we are dealing with,
where good quality initial parameter estimates may be hard to
obtain. The problem of getting reasonable initial continuous-time
parameter estimates seems indeed to be a non trivial one.

Correlation methods, say by replacing the differentiation
operatorwith the so-called delta operator (Feuer&Goodwin, 1996)
or by various approximations of the continuous derivative operator
have been proposed (Söderström, Fan, Carlsson, & Bigi, 1997).
The approach seems to be advantageous only if the underlying
continuous system is scalar autoregressive. The accuracy of the
approach depends on the particular approximation being used and
does not seem to be easy to assess, especially when the method
should be applied to multivariable continuous-time models of
moderate or high dimension. Other continuous-time identification
algorithms eventually end up to rely on logarithmic transforms,
like inverting the relation z = exp{sh} which turns out to be
equivalent to the logarithmic d2c transformation. For the reasons
given above, these methods are not always reliable. There is also
a quite popular approach based on filtering the continuous-time
data by a family of test functions (Heuberger, de Hoog, van denHof,
&Wahlberg, 2003; Ohta & Kawai, 2004), which may or may not be
orthonormal. This approach needs extensive numerical integration
for computing the inner products over a long period of time, since
in order to reach a reasonable accuracy the computation of many
inner products of the measured signal with a large number of test
functions is needed. In a sense each inner product plays eventually
the role of a single discrete-time sample value of the signal.

Unfortunately according to the current literature on con-
tinuous time identification, see e.g. Garnier and Wang (2008),
Sinha and Rao (1991) and the references therein, the existing

3 One may argue that the Euler discretization is a well known instance of linear
conversion map but unfortunately the Euler discretization is too primitive to be of
use in most situations.
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continuous-time algorithms do not seem to be of much help for
an accurate identification of the physical parameters of multi-
variable mechanical systems. To our knowledge, reliable one shot
continuous-time identification methods which can be applied to
concrete multivariable real-world problems seem still to be on the
way. There seem to be progress still to be made in this area.

1.2. Contributions of the paper

After this introduction, we shall describe the content of the
paper. The layout is as follows.
(1) We shall introduce a discretization technique of system (1.1)

or (1.3) based on the idea of variational integrators. This tech-
nique leads to conversion formulas from a discrete identified
model to the corresponding continuous input–output model
which are simple and generally better conditioned.

(2) We shall show that in an important special case the vari-
ational discretization leads to a well-known continuous-to-
discrete transformation used in system and control, namely
the Cayley–Tustin discretization. The model discretization is
different from the traditional Cayley–Tustin discretization for-
mula since it involves uniformly sampled values of the input
function available at the outset. We shall discuss this peculiar
discretization technique andwe shall address some related ap-
proximation problems.

(3) We shall use the variational discretization to attack the
mechanical system identification from noisy sampled in-
put–output data. As a preliminary step we shall discuss a stan-
dard discrete-time subspace identification technique which is
used in order to supply good starting values to a successive Pre-
diction Error optimization-based algorithm.

(4) We shall describe a refinement of the subspace identifica-
tion estimates by a discrete-time Prediction Error algorithm
which updates the Variational model directly and complies
with the constraints of second order mechanical structure. The
inverse Cayley–Tustin discretization formulas then provide the
continuous-time estimates (M, D, K). This is the final step of
the procedure.

(5) Finally, simulation results are shown and compared with the
results obtained by state of the art identification methods.

2. The variational integrators approach to discretization

A novel twist to the discretization of mechanical systems
has been provided by the theory of variational integrators, see
Veselov (1988), and the extensive work of J. Marsden and co-
workers, see e.g. Marsden and West (2001). These techniques
seem to be fairly well known to numerical analysts working with
mechanical models but not so familiar to the system and control
community. The key idea is that the discrete equations of motion
should not be derived by attempting a direct discretization of
Eqs. (1.1) or (1.3) but rather derived by paraphrasingwhat happens
in continuous time; i.e. by making stationary a discrete action
integral defined in terms of a suitable discrete Lagrangian function.
The (discrete) equations of motion should then follow just like
the Euler–Lagrange equations in continuous time. In short, the
variational integrators paradigm is to build from scratch a theory
of Lagrangian Discrete Mechanics.

In (continuous-time) Lagrangianmechanics, given a Lagrangian
function L(q(t), q̇(t)) and external forces fL(q(t), q̇(t), t), the
equations ofmotion follow from the Lagrange–d’Alembert principle,
stating that the trajectory of a mechanical system starting at time
t0 in position q0 and arriving at time t1 at position q1 must satisfy
the variational principle

δ

 t1

t0
L(q, q̇) dt +

 t1

t0
fL(q, q̇, t) δq(t) dt = 0 (2.1)

for arbitrary variations δq(t), while holding the endpoints q0 and
q1 of the curve t → q(t) fixed. This leads to the well-known forced
Euler–Lagrange equations

∂L
∂q

(q, q̇) −
d
dt


∂L
∂ q̇

(q, q̇)


+ fL(q(t), q̇(t), t) = 0

which for the quadratic Lagrangian L(q(t), q̇(t))= 1
2 q̇

⊤Mq̇− 1
2q

⊤Kq
and the external force fL composed by a dissipation force −Dq̇ and
the actual (generalized) external force f (t), i.e.,

fL(q(t), q̇(t), t) := −Dq̇(t) + f (t), (2.2)

leads to the linear second order vector differential equation (1.1).
In discrete Lagrangian mechanics, one first considers a dis-

cretization {qk = q(kh) ; k = 0, . . . ,N} and curve segments
{qk,k+1(t) ; t ∈ [kh, (k+ 1)h )} between two configuration points
qk = q(kh) and qk+1 = q((k + 1)h) in the configuration space,
placed h units of time apart. One defines an exact (forced) discrete
Lagrangian and the exact discrete forces on that curve segment as:

LEd(qk, qk+1, h) :=

 (k+1)h

kh
L(qk,k+1(t), q̇k,k+1(t))dt,

f E−

d (qk, qk+1, h) :=

 (k+1)h

kh
fL(qk,k+1(t), q̇k,k+1(t), t)

∂qk,k+1

∂qk
(t)dt,

f E+

d (qk, qk+1, h) :=

 (k+1)h

kh
fL(qk,k+1(t), q̇k,k+1(t), t)

∂qk,k+1

∂qk+1
(t)dt,

and then the following Discrete Lagrange–d’Alembert principle

δ

N−1
k=0

LEd(qk, qk+1, h)

+

N−1
k=1


f E+

d (qk−1, qk, h) + f E−

d (qk, qk+1, h)


δqk = 0

where the variation δq(t) of a continuous curve is replaced by a
discrete (finite) sequence of variations {δqk}k=0,...,N , for arbitrary
δqk’s. The variation is computedwith fixed end points. This leads to
the (Exact) Discrete Euler–Lagrange equations

D2LEd(qk−1, qk, h) + D1LEd(qk, qk+1, h)

+ f E+

d (qk−1, qk, h) + f E+

d (qk, qk+1, h) = 0 (2.3)

where Di stands for the partial derivative operator applied to the
i-th argument of the function onwhich it is acting. These equations
should be interpreted as an algorithm mapping the pair (qk, qk+1)
to the next configuration pair (qk+1, qk+2). See Marsden and West
(2001, p. 427) for details.

If it were possible to compute the integrals explicitly, we
would obtain a discrete model which describes exactly the
continuous dynamic sampled at the discrete time instants
t = kh. In general this is not possible and one needs to use
approximations both for the discrete Lagrangian and for the
discretized external forces. These approximations we denote
Ld(qk, qk+1), f +

d (qk, qk+1, k), f −

d (qk, qk+1, k). It is remarkable that
although many approximations are possible, one of which will be
described below, the ‘‘stationary action’’ principle leads in any case
to approximate Discrete Euler–Lagrange (DEL) equations of the
standard form (2.3).
The variational midpoint discretization: One of the simplest and
most commonly usedmethods to approximate the Lagrangian and
the external forces is by the so-called ‘‘midpoint rule’’, whereby

Ld(qk, qk+1, h) := hL


qk+1 + qk

2
,
qk+1 − qk

h


, (2.4)
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f −

d (qk, qk+1, h) :=
h
4


fL


qk+1 + qk

2
,
qk+1 − qk

h
, hk



+ fL


qk+1 + qk

2
,
qk+1 − qk

h
, h(k + 1)


(2.5)

f +

d (qk, qk+1, h) := f −

d (qk, qk+1, h). (2.6)

This scheme applies to an arbitrary Lagrangian and external forces
and leads to a discretization of quite arbitrary nonlinear dynamics.
Obviously, the solution of the approximate DEL equations derived
from an approximate Lagrangian and approximate discrete forces
will no longer be equal to the true configuration variable sampled
at the discrete time instants t = kh, so that qk will now have to be
interpreted just as an approximation of q(kh). For clarity we shall
henceforth denote this approximation by the symbol q(k).

When L is the quadratic Lagrangian defined above, using the
approximations (2.4)–(2.6), a straightforward computation leads
to the resulting approximate DEL equation

Md q(k) + Dd q(k − 1) + Kd q(k − 2) = fd(k), (2.7)

where

Md :=
M
h

+
hK
4

+
D
2

, (2.8a)

Dd :=
hK
2

−
2M
h

, (2.8b)

Kd :=
M
h

+
hK
4

−
D
2

, (2.8c)

and

fd(k) :=
hL
4

(u(kh) + 2u[(k − 1)h] + u[(k − 2)h]), (2.9)

u(kh) denoting the sampled value of the input u at time kh. Eq. (2.7)
is the discrete-time counterpart to the continuous-time system
(1.1). Note that the computation of the discrete forcing function
{fd(k)} requires adjacent samples at times k, k− 1 and k− 2 of the
sampled external force f (or equivalently u) so the input–output
model (2.7) has zeros (or numerator dynamics), contrary to the
continuous time model (1.1).

Since the relations (2.8) are linear and invertible, the original
continuous-time parameters (M,D, K) can be recovered immedi-
ately from the parameters of the discretized model (2.7) by means
of the linear transformation

M :=
h
4
[Md + Kd − Dd], (2.10a)

D := Md − Kd, (2.10b)

K :=
1
h
[Md + Kd + Dd]. (2.10c)

These are nice linear relations much in the spirit of what we
wanted to achieve. Naturally, it must be kept in mind that the so-
lution of (2.7) provides only an approximation of the sampled exact
flow t → q(t) at t = kh. It can be shown that the midpoint ap-
proximation is a second order method with an error of the order
O(h2+1), see Marsden and West (2001, p. 402). The use of more
sophisticated approximation schemes than (2.4) can however pro-
vide approximations of the exact flow of arbitrarily high order (see,
e.g., Hairer, Lubich, & Wanner, 2005; Leokand & Shingel, 2011).

3. Equivalence with the Cayley–Tustin transform

We shall use hats to denote either Laplace or Z-transforms
of time signals; specifically q̂(s) will be the Laplace transform of

q(t); t ∈ R and û(z) the Z-transforms of the discrete sequence
{u(kh)}. Accordingly, the Z-transform of {q(k)} will be denoted by
q̂(z). The bilinear substitution map

s =
2
h
z − 1
z + 1

(3.1)

called the Tustin transform, is well-known in sampled-data control
(see, e.g., Havu & Malinen, 2007; Jury, 1977). Given a continuous-
time signal f (t), t ∈ R, having Laplace transform f̂ (s), let us de-
note by fT the discrete-time signal whose Z-transform, say f̂T (z),
is the Tustin transform obtained by the substitution (3.1) on f̂ (s),
namely

f̂T (z) = f̂

2
h
z − 1
z + 1


and call fT simply the Tustin transform of the continuous-time
signal f .

Proposition 1. The discrete transfer function of the variational
integrator defined by the midpoint rule (2.4)–(2.6), applied to the
linear mechanical system (1.1), coincides with the Tustin transform
of the transfer function:

G(s) := [Ms2 + Ds + K ]
−1 (3.2)

of the continuous time system (1.1).
In other words, the discrete transfer function of the system

described by the difference equation (2.7)with numerator polynomial
defined by (2.9), having as input the signal {u(kh)} and as output the
signal {q(k)}, is the Tustin transform of the transfer function of the
system (1.1).

Proof. From the expression (3.2) it is immediate to check that

G(s)−1
|s= 2

h
z−1
z+1

= M
4
h2

(z − 1)2

(z + 1)2
+ D

2
h
z − 1
z + 1

+ K

= [Mdz2 + Ddz + Kd]

× [(h/4)In(z2 + 2z + 1)]−1, (3.3)

where In is the n × n identity matrix. This is precisely the inverse
transfer function of the model (2.7). �

Hence, denoting, as in the proof, by G(s) the transfer function of
(1.1), we have,

q̂(z) = GT (z)û(z) (3.4)
where GT (z) is the Tustin transform of G(s). Therefore given the
signals {q(k)} and {u(kh)} one could in principle recover GT (z) and
obtain the continuous time parameters of the system by inverting
the Tustin transform, using the relations (2.10).

Remark. We would like to draw the reader’s attention to the
fact that formula (3.4) is quite different from the obvious relation
obtainable by taking the Tustin transform of both members of the
input–output relation (1.1), which would yield instead

q̂T (z) = GT (z)ûT (z)

a relation necessarily involving the Tustin transforms, q̂T (z), ûT (z)
of the continuous time signals u(t) and q(t), as defined earlier.
Unfortunately a relation of this kind is quite useless for recovering
models from realistic data. Since sampled input/output data are the
only thing that can be acquired with finite speed devices available
in reality, qT and uT should be computable starting from discrete
time samples, u(kh) and q(kh), k ∈ Z, of the continuous-time input
and output functions u(t) and q(t), a problem which we insist in
formalizing below,

Problem. From sampled values, say f (kh), k ∈ Z, of a continuous-
time function f (t); t ∈ R, compute the discrete-time sequences fT .
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To our best knowledge this problem, elementary and simple
to state as it may look, is unsolved. It is touched upon in Ref.
Oppenheim and Johnson (1972) but, for several reasons, the
approximation procedures described in this paper have revealed to
be extremely difficult (if not practically impossible) to implement
in practice. Of course one may well resort to ‘‘engineering
common sense approximation’’ and approximate qT and uT by
sampled data q(kh) and u(kh), or perhaps by sampling linear
interpolation of these signals. This maymean approximating GT (z)
by something close to the ordinary ZOH Z-transform of G(s).
These approximations may sometimes be acceptable, but there
are no known bounds on the errors and the range of validity
vis a vis the sampling process is unknown. In this respect, it
is a common suggestion that a fast sampling rate should do.
However as discussed in the introduction, this approach may
lead to aliasing errors and ill-conditioning. In the same vein,
obtaining a continuous-time model by inverse Tustin transform of
a discrete one, as mentioned e.g. in Unbehauen and Rao (1990)
is, as explicitly declared, an ‘‘indirect approach method’’ which
is applied to a discrete-time model which is actually identified
by standard discrete-time techniques based on ordinary sampled
input–output signals. Thismay be seen as one of the common sense
approximations mentioned above.

Since the accuracy of the parameter estimates is a crucial factor
for the applications we have in mind, we insist in a, as far as
possible, rigorous procedure.

Yet it is still not obvious how to get {q(k)}. Again, since the
discrete system (2.7) is driven by the ordinary sampled input u(kh)
(and not by the Tustin transform of u(t)) the output signal q(k)
cannot be identified with the Tustin transform of the continuous-
time response G(s)û(s). Below we shall provide an approximation
result which can be useful for fast sampling rates.

Let Cm(R+) denote them-dimensional continuous functions on
{t > 0}. Assume the input signal u belongs to Cm(R+)∩L2m(R+) and
let Sh : u → {u(kh)}+∞

k=1 denote the sampling operator. Define GT
and G to be the time domain convolution operators corresponding,
on Z+, to the multiplication GT (z)û(z), and on R+, to G(s)û(s). The
following proposition is adapted from Havu and Malinen (2007).
It says that for fast sampling rate (h → 0), the ordinary sampling
of the continuous-time output q̂(s) = G(s)û(s), provides a good
approximation of the signal {q(k)}.

Proposition 2. Let G(s) be a stable transfer function. Assume the
input signal u belongs to Cm(R+) ∩ L2m(R+) and that the sampled
signal {u(kh)} is a square summable sequence; i.e. belongs to ℓ2

m(Z+).
Then as h → 0

∥GTShu − ShGu∥ℓ2m(Z+) → 0. (3.5)

The proof will be given in the Appendix.
In our case the quality of the approximation will be enhanced

by the low-pass character of the transfer function G(jω) of the
mechanical system. When the sampling frequency is chosen large
enough with respect to the bandwidth of G(jω), the product
G(jω)û(jω) will be sensibly non zero only on a frequency band
about ω = 0 which is small relative to the sampling angular fre-
quency 2π/h. On this frequency band, by a well-known frequency
domain relation between the Tustin and Laplace transforms, the
difference between GT (ejωh)û(ejωh) and G(jω)û(jω) will be negligi-
ble.4

4 In fact by a well-known frequency domain relation, f̂T (ejωh) = f̂ (j 2h tan(ωh/2))
and ω

tan(ωh/2)
ωh/2 ≃ ω(1 +

1
3 ( ωh

2 )2 +
2
5 ( ωh

2 )4 + · · ·) ≃ ω up to third order terms in ω

as h → 0.

Concerning the validity of variational discretization, it should be
remarked that it need not be a universally applicable discretization
method as it may only be applicable to physical systems that
contain energy storage elements and evolve according to a
variational principle. It does not seem to be applicable to arbitrary
dynamical systems. However by its very derivation, it does
conserve (at least approximately) some basic physical quantities of
the system. A case in point is that the discretization (2.4)–(2.6) is
equivalent to the well-known Cayley transformwhich is known to
preserve passivity (besides stability), a fact which was apparently
first discovered by P. Faurre in 1973 (Faurre, 1973) and re-
discovered in several later papers.

4. System identification

As discussed in the introduction, one may attempt to identify
the parameters of the model (1.1) or (1.3) directly by using a
continuous-time PEM method, say the continuous-time idgrey
algorithm of the Matlab Sysid Toolbox (Ljung et al., 2011).
However, unless very good quality initial parameter estimates
are provided, this algorithm, for the particular model class under
study, turns out to lack robustness and tend to behave erratically.
As an alternative, we shall propose a discrete-time identification
procedure based on the variational discretization described in
Sections 2 and 3. Initial parameter estimates of the discrete-time
variational discretization model (Md,Dd, Kd) will be needed for
this algorithm as well. These estimates are obtained by running a
preliminary subspace identification method (n4sid) in discrete-
time, followed by an appropriate structure transformation which
converts the estimated state space model into the input–output
structure of the variational discretization model (2.7). A discrete-
time PEM procedure follows which computes refined estimates of
the discrete-time parameters (Md,Dd, Kd). Finally the continuous-
time estimates (M,D, K) are obtained by using the inverse (Tustin)
transform (2.10). We maintain that this procedure has some
advantages with respect to the classical d2c transform methods
working under the assumption of ZOH (or FOH) discretization
which suffer from the problems described in the introduction.

Ideal sampled data measurements from our system with
sampling period h, are denoted

{q(k) ∈ Rn
: k = 1, 2, . . . ,N},

{u(k) ∈ Rm
: k = 1, 2, . . . ,N} (4.1)

where q(k) ≡ q(kh) and u(k) ≡ u(kh) (we suppress the sampling
interval h for ease of notation). The sample size N is supposed
suitably large. Since the signal {q(k)} will be always corrupted
by additive measurement noise, it will be convenient to merge
the measurement noise and the approximation errors of the ideal
signal {q(k)} and assume an output model of the form y(k) =

q(k)+ n(k), where n(k) is a white stationary noise. Hence we shall
model our measurements as

y(k) = q(k) + n(k)

where q(k) is the (noiseless) sampled output of the variational
approximation system (2.7). We shall then write our noisy
variational integrator model as a second order stochastic vector
difference equation of the form

y(k) = A1y(k − 1) + A2y(k − 2) + B0fd(k) + w(k) (4.2)

where fd is the filtered input defined in (2.9) which we use to
avoid including the zero polynomial h(1 + 2z−1

+ z−2)/4 in the
input–output model. The noise process {w(k)}, is described by
w(k) = n(k) − A1n(k − 1) − A2n(k − 2) and is therefore colored.
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The model parameters are

A1 := −M−1
d Dd, A2 := −M−1

d Kd, B0 := M−1
d . (4.3)

Clearly the term B0 represents the direct coupling between fd(k)
and q(k) in the midpoint approximation model (2.7).

Note that (4.2) is a so-called output error (OE) model (Ljung,
1999), whose predictor depends non-linearly on the parameters
and gives rise to a nonlinear estimation problem. For OE models a
standard choice of identification algorithm is the ‘‘grey box’’ PEM
algorithm idgrey described in the MATLAB System Identification
Toolbox guide (Ljung et al., 2011), which can in principle incorpo-
rate various structural constraints on the system parameters such
as, e.g., the symmetry of various matrices. Since the discrete-time
PEM algorithm is also very sensitive to the choice of initial val-
ues for the parameters, good initial parameter estimates are neces-
sary. In the next subsectionwe describe an initialization procedure
which is tailored to the specific structure of the model (2.7).

4.1. The initialization step

In order to compute the initial estimates a rather common
choice is to run a preliminary subspace algorithm, say the
n4sid algorithm, directly on the input–output data (y(k), fd(k))
(or (y(k), u(k))). Any such subspace algorithm yields a discrete
innovation model of the type

x(k + 1) = Fx(k) + Gfd(k) + Ke(k) (4.4)
y(k) = Hx(k) + Jfd(k) + e(k), (4.5)

of which we are interested only in the parameters (F ,G,H, J).
Since for OE models the state-output dynamics of the stochastic
and deterministic subsystems are the same, one can get a minimal
realization of the deterministic part simply by setting e(k) ≡ 0
in (4.4), see Ljung et al. (2011). Also, since we have a priori
knowledge of the number of degrees of freedom, order estimation
is not necessary and the algorithm can be pre-set to return a 2n-
dimensional discrete realization (F ,G,H).

We shall now describe a procedure to compute a preliminary
estimate of the parameters Md,Dd, Kd from those of the model
(4.4), identified by the subspace algorithm. To this end we shall
need to recall the following result; see e.g. Meyer and Srinivasan
(1996).

Lemma 3. A necessary and sufficient condition for a 2n dimensional
discrete state space model (1.4), with dim y(k) = n, to have an
input–output relation described by a second order vector difference
equation is that

rank

H
HF


= 2n. (4.6)

In practice, for our system identified by a subspace method, the
matrixΩ :=


H
HF


will almost always be of rank 2n (i.e., invertible).

Using Ω−1 as a similarity transformation, one gets the block-
companion form

F := ΩFΩ−1
=


0 I
F21 F22


, H := HΩ−1

=

I 0


,

G := ΩG =


HG
HFG


:=


G1
G2


,

where the blocks F21 and F22 can be computed by solving the
equation

HF 2
=

F21 F22


Ω. (4.7)

Hence, the identified deterministic model5 can generically be
transformed to the block-companion structure

x(k + 1) =


0 I
F21 F22


x(k) +


G1
G2


fd(k) (4.8)

y(k) =

I 0


x(k) + Jfd(k) (4.9)

which corresponds to an estimated I/O difference equation, with
full numerator dynamics

y(k) = A1y(k − 1) + A2y(k − 2)
+ B0fd(k) + B1fd(k − 1) + B2fd(k − 2) (4.10)

where A1 = F22, A2 = F21 and

B0 = J, B1 = G1 − F22J, B2 = G2 − F22G1 − F21J.
Note that, unless both estimates B1, B2 turn out to be zero, the
identified state space model will not have the right structure to
yield the AR-type input–output representation of the form (2.7). It
is not hard to check that a block-companion state-space structure
yielding an I/O difference equation of the form (2.7), is

x̄(k + 1) =


0 I
F21 F22


x̄(k) +


0
G


fd(k + 2) (4.11)

y(k) =

I 0


x̄(k),

where the filtered input fd has been shifted two steps ahead for
convenience, so that the direct coupling term (B0) is equal to G.

In order to get reasonable initial estimates of the parameterswe
shall impose equality of the gain matrices and of the AR dynamics
of the two transfer functions. The model (4.11) is defined in terms
of three matrix parameters (F21, F22, G ≡ B0) which can be com-
puted by equating the steady state gains and the dynamics of (4.10)
and of (4.11), getting

G0
= B0 + B1 + B2, F 0

21 = F21, F 0
22 = F22. (4.12)

4.2. The overall algorithm

The matrices (4.12) are used as initial values for the parameter
updating recursion of a discrete-time PEM algorithm run on the
block-companion structure (4.11). The final parameter estimates
(Md, Dd, Kd) can then easily be recovered from the identified state
space model (4.11) by solving the one-to-one relations

F PEM
21 = −M−1

d Kd, F PEM
22 = −M−1

d Dd, GPEM
= M−1

d .

(4.13)

In order to keep track of the structural properties of the parameters
like the symmetry of the matrices, it is actually advisable to
parametrize the model directly in terms of (Md, Dd, Kd). In this
wayweneed to update only n(n+1)/2 parameters for eachmatrix.
The scheme in Fig. 1 summarizes the various steps.
(1) Acquire sampled data {fd(k), y(k)} from the continuous time

mechanical linear system (1.3). The sampling timeh is assumed
small enough so that {q(k)} is a good approximation of the ideal
signal {q(k)}.

(2) Perform n4sid identification from the data {fd(k), y(k)} and
get the system (4.4); (Σd in Fig. 1). This system has no specific
structure.

(3) Impose the condition (4.12) and compute initial estimates
of the matrices Md,Dd, Kd, say M̂ init

d , K̂ init
d , D̂init

d , which (after
symmetrization) are taken as initialization point for the
constrained optimization procedure based on PEM.

5 In order to save notations we still denote the output of the deterministic
subsystem by the symbol y. This should cause no confusion.
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Fig. 1. Scheme of the identification procedure.

(4) Run the PEM algorithm initializedwith these parameters using
the data set {fd(k), y(k)} imposing symmetry of the estimates
M̂d, D̂d, and K̂d.

(5) Use the inverse transformation (2.10) to convert the discrete
estimates into continuous time estimates M̂, D̂, and K̂ . Positive
definiteness may be checked throughout or as a last step.

Since the algorithm is essentially an implementation of a PEM
method, we should expect consistency and asymptotic efficiency
in case of Gaussian additive noise. Due to the linearity of
relation (2.10), consistency will hold also for the continuous-
time parameter estimates computed in step (5). The stochastic
error on the continuous-time parameters depends, besides the
intrinsic sensitivity of the model class to parameter variations
(Cramèr–Rao bound), on the conditioning of the discrete-to-
continuous transform. This random error naturally worsens as
the width of the sampling interval tends to zero, although to
a different extent than, say, for the ZOH discretization. Besides
this, one key advantage of the proposed identification method
is that the linear transformation (2.10) automatically transforms
the symmetric matrices Md, Kd, and Dd into their symmetric
continuous counterparts, acting effectively on 3n × (n + 1)/2
parameters while a generic d2c transform would operate instead
on an unstructured discrete-time 4-tuple (F , G, H, J) and would
make (M, D, K) to inherit errors present in 4n2 parameters.

5. Simulation results

We consider an eight degrees of freedom system described
in De Angelis et al. (2002) with stiffness and damping matrices
K and D given in Table 1 and a diagonal mass matrix M with
entries equal to 100 kg. See Table 1. Eight sensors measure and
record the sampled displacements of the eight point masses with
independent (white) measurement noise with SNR of 20 dB. Note
that such a noise mimics a difficult realistic condition. An array
of n × N = 8 × 3300 data points is collected and used for
system identification. The sampling time interval is varied within
the range corresponding to sampling frequencies from 100 to
1000 Hz. This seems to be the most significant frequency range in
applications. The eight inputs are obtained as successive chunks of
a continuous time signal obtained by cubic spline interpolation of
the samples of a normalized (pseudo-random) discrete Gaussian
white noise, see Fig. 2. The amplitude is varied according to the
desired SNR.

5.1. Comparisons

System identification based on continuous-time optimization
methods does not seem to be popular in the mechanical/civil
engineering literature. What seems to be the state of the art in
structural engineering identification is the procedure described in

3000

2000

1000

0

–1000

–2000

–3000
0 5 10 15 20 25 30 35

A
m

pl
itu

de
 [

N
]

time [s]

Fig. 2. Input function.

Lus et al. (2002) and Lus, DeAngelis, Betti, Longman (2003), see also
De Angelis et al. (2002) and Lus, De Angelis, Betti (2003) which is
based on a first step of discrete subspace identification, followed by
a standard d2c step and then by a suitable ‘‘projection’’ procedure
in continuous time which is needed to enforce the second order
structure (1.1) upon the identified continuous-time system.

We shall henceforth compare this methodwith our variational-
integrator subspace-based algorithm described in Section 4.1,
followed by the inverse transformation (2.10) to convert the
discrete estimates M̂ init

d , K̂ init
d , D̂init

d , into continuous time estimates
M̂, D̂, K̂ . Recall that in our algorithm this conversion step is not
implemented but rather the discrete estimates M̂ init

d , K̂ init
d , D̂init

d are
to provide the initial conditions to the PEM refinement step.

First, a comparison of the two subspace-based identification
methods is presented for the benchmark problemwith 8 degrees of
freedom described above. Although the projection step in Lus et al.
(2002) and Lus, De Angelis, Betti, Longman (2003) is of course an
essential ingredient of the method, this ‘‘state of the art’’ method
will be simply referred to as n4sid + d2c.

To compare the quality of the identification, averages of 50
Monte Carlo runs of the relative errors of the estimated continuous
time parameters are computed for different values of h. Fig. 3
shows the comparison of the state-of-the-art n4sid + d2c
method with our proposed method. By looking at the magnitude
of the relative errors, it is clear that there is an advantage in using
the variational approach, even without the PEM refinement. In
particular the estimation errors on the matrix D are always about
double of those with the variational approach. For small h much
higher relative errors are observed for the n4sid+ d2c approach.
The behavior for small sampling intervals is actually in accordance
with the discussion in the introduction.

5.2. Effect of the PEM refinement

In Fig. 4 we compare the results of our proposed full variational
procedure with the above state-of-the-art n4sid + d2c method.
Although itmay look a bit ‘‘unfair’’ this serves to appreciate, besides
the expected improvement on the quality of the estimates, the fact
that the PEM step always terminates in all of the 50 Monte Carlo
runs in spite of random errors on the initial estimates.

Some referees have asked to add a PEMstep to then4sid+d2c
approach for a ‘‘fair’’ comparison with the results of our full varia-
tional algorithm. This combined simulation, adding a continuous-
time PEM step based on the n4sid + d2c estimates, has led to
rather disappointing results. We have decided not to show the
plots here since they leave the reader wondering how to inter-
pret the results, if either due to larger errors in the subspace es-
timates of the n4sid + d2c approach or to the high sensitivity
of the successive continuous PEM step. We have instead chosen to
add a ‘‘somewhat artificial’’ simulation experiment which is meant
to be a study of the sensitivity to errors in the initial estimates of
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Table 1
Numerical example. Stiffness matrix K and damping matrix D for the 8 d.o.f. system.

K =



27071.1 0 0 0 −10000 0 −3535.5 −3535.5
0 17071.1 0 −10000 0 0 −3535.5 −3535.5
0 0 27071.1 0 −3535.5 3535.5 −10000 0
0 −10000 0 17071.1 3535.5 −3535.5 0 0

−10000 0 −3535.5 3535.5 27071.1 0 0 0
0 0 3535.5 −3535.5 0 17071.1 0 −10000

−3535.5 −3535.5 −10000 0 0 0 27071.1 0
−3535.5 −3535.5 0 0 0 −10000 0 17071.1


,

D =



136.4 0 0 0 −50 0 −17.7 −17.7
0 86.4 0 −50 0 0 −17.7 −17.7
0 0 136.4 0 −17.7 17.7 50 0
0 −50 0 86.4 17.7 −17.7 0 0

−50 0 −17.7 17.7 136.4 0 0 0
0 0 17.7 −17.7 0 86.4 0 −50

−17.7 −17.7 −50 0 0 0 136.4 0
−17.7 −17.7 0 0 0 −50 0 86.4



Fig. 3. Comparison of relative errors on subspace estimates ofM,D, and K for the 8 d.o.f. system.

Fig. 4. Comparison of relative errors on variational estimates ofM,D, and K for the 8 d.o.f. system.

Fig. 5. Relative error onM,D, and K for the 8 d.o.f. system, large h.

the continuous-time PEM, for the particular model class under study
(as of course, we are not in a position to make more general state-
ments here).

Below are the results obtained by 30 Monte Carlo runs on
6000 data points of the continuous-time idgrey algorithm with
ZOH sampling, applied to the eight degrees of freedom model,
using as initial data the true parameters (M,D, K) perturbed by

Gaussian zero-mean noise of standard deviations equal to 10%
and 12% of the respective true Frobenius norms. As it can be
seen, even with relatively small perturbations on the true values,
a good percentage of the CT idgrey runs end in local minima
providing unstable or grossly wrongmodels. With higher standard
deviation of the perturbations quite often the algorithm does not
even terminate. Note from our Monte Carlo simulations in Fig. 3,
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that the errors with the Lus–De Angelis–Betti–Longman method
can be well above 10 or 12%, especially for small sampling period.

h % of fails with 10%
perturbation (%)

% of fails with 12%
perturbation (%)

0.005 7 26
0.011 16 21
0.017 20 10
0.021 33 21

5.2.1. Algorithm behavior for increasing h
Naturally for slow sampling rates the approximation of {q(k)}

by the sampled continuous signals may be poor. Errors due to
a slow sampling rate are however common to all identification
schemes and may not concern us since here we are assuming
fast sampling. Nevertheless, just to give an idea of the order of
magnitude of these errors, in this section we shall show the effect
of approximating the Tustin transformation with the sampled
signals when h is not small. In Fig. 5 the relative errors for
the matrices M and D are shown for a range of sampling times
including larger values of h than in the previous simulation.We use
a somewhat high SNR of 25 dB, as we are interested in highlighting
the distortion due to the discretization rule rather than that due to
the noise. A gradual increase of the relative error is evident for the
matrix M up to a point when the n4sid and d2c procedure gives
better results for large values of h. Interestingly, for the matrix D
the good quality of the estimate seems to persist.

6. Conclusions and future work

A new identification procedure for the second order equations
of a linear mechanical system has been described which appears
to lead to an accurate recovery of the continuous time mechanical
parameters. The proposed procedure is based on the theory of
variational integrators and on a rather elementary discretization
rule (the midpoint rule). Simulations (not all of which have
been reported in the paper) confirm that the relative error with
the proposed method is significantly smaller than that obtained
by state-of-the art methods. The key point of the variational
discretization technique is to enforce the mechanical structure
on the discrete-time model from first principles rather than by
ad hoc methods. For this reason, variational integrators theory
seems to provide an interesting and rather general point of
view which may even allow to attack identification of nonlinear
mechanical systems.More elaborate variational discretizations are
possible; say higher order methods which however lead to more
complicated models and have not been considered here.

The theory presented here applies without difficulties, also to
more realistic linear sensing schemes such as measurements of
combinations of configuration q, velocities q̇ and acceleration, in
place of the full configuration q. The analysis of thesemore general
schemes is left to future publications.

Appendix. Proof of Proposition 2

Our main reference for the proof will be Theorem 4.3 in
Havu and Malinen (2007) which is stated for more general input
functions u ∈ L2m(R+). On this space the pointwise sampling
operator Sh is not defined and an ‘‘average’’ sampling operator
Th : L2m(R+) → ℓ2

m(Z+) defined as

(Thu)(k) :=
1

√
h

 kh

(k−1)h
u(t) dt

is utilized instead (equivalently, in Havu and Malinen (2007) the
authors define Thu as the Z-transform of the sampled sequence).
Theorem 4.3 in Havu and Malinen (2007) states that, as h → 0,

∥T∗

hGTThu − Gu∥L2m(R+) → 0.

Note that the Fourier transform map L on L2m(R+) appearing in
formula (4.2) of Ref. Havu and Malinen (2007) is unnecessary as
G operates in the time domain. Now the adjoint, T∗

h , is
1

√
h
times

the zero-order hold operator on the intervals ((k − 1)h, kh] and
for all v ∈ ℓ2

m(Z+), we have ∥T∗

hv∥L2m(R+) = ∥v∥ℓ2m(Z+), so that T∗

h is
isometric. Hence we also have

∥GTThu − ThGu∥ℓ2m(Z+) → 0 (A.1)

for all u ∈ L2m(R+). Now, by assumption, u ∈ Cm(R+)∩L2m(R+) and
Shu ∈ ℓ2

m(Z+) (this certainly happens if, for example, u̇ ∈ L2m(R+)
or u is band-limited) and it is trivial to see that, under these
assumptions, letting f represent either u or Gu, that

∥(Th − Sh)f ∥ℓ2m(Z+) → 0,

as h → 0. Therefore, (3.5) follows from (A.1) and the triangle
inequality. �
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