
Lecture 9 - PID Control

K. J. Åström

1. Introduction

2. Derivative Filter

3. Set Point Weighting

4. Integrator Windup

5. Computer Implementation

6. Tuning

7. Summary

Theme: The most common controller. A glimpse of implemen-
tation.

Introduction

• Why PID?

– The most common controller
– Widely used in all applications of control (90% of all

control problems)

• An essential element of more sophisticated controllers

• Are there any research issues?

• Nonlinear features

– Saturation and windup
– Dead zones

– What can be done by PID?
– What cannot be done by PID?

Introduction

• Feedback is a very powerful concept with many useful
properties

– Reduction of effects of disturbances
– Create robust linear relations
– Follow command with High Fidelity
– Robust to process variations
– But risk for instability

• Advances in control theory have given a good insight into
the design problem

• PID a simple powerful form of feedback

• Apply advances in control to PID control

• Connect with the classic tradition of Ziegler and Nichols

PID versus Advanced Control

• Advanced control - other prediction methods

• What are the benefits?

c& K. J. Åström, October 2002 1



The Amazing Property of Integral Action

Consider a PI controller

u = ke+ ki

∫ t

0
e(τ )dτ

Assume that there is an equilibrium with constant e(t) = e0
and constant u(t) = u0. The error e0 then must be zero. Proof:
Assume e0 �= 0, then

u = ke0 + ki

∫ t

0
e(τ )dτ = ke0 + ki

∫ t

0
e0dτ = ke0 + kie0t

The right hand side is different from zero. Hence a contradiction
unless e0 = 0.

A controller with integral action will always give the correct
steady state provided that a steady state exists.

A PID Algorithm

In spite of the widespread use of PID it is only given moderate
attention in education. Much information among the manufac-
turers. PID control is much more than

u(t) = ke(t) + ki

∫ t

0
e(τ )dτ + kd

de(t)
dt

We have to consider
• Derivative filter

• Set point (reference)
weigthing

• Integrator Windup

• Computer implementation

• Mode switches

• Bumpless parameter changes

Dealing with these issues is a good introduction to practical
implementation of any control algorithm.

PID Control

1. Introduction

2. Derivative Filter

3. Set Point Weighting

4. Integrator Windup

5. Computer Implementation

6. Tuning

7. Summary

Differentiating Noisy Signals

Consider the signal

y(t) = sin t+ an sinω t

It has the derivative

dy(t)
dt

= cos t+ anω cosω t

0 5 10 15

−2

2
Brusfri signal

0 5 10 15

−2

2
Brusig signal sb

0 5 10 15

−2

2
Brusfri derivata

0 5 10 15

−2

2
Derivatan av sb

The curves are generated with ω = 100, an = 0.01.
One percent error in the original signal gives 100% error in

derivative!

c& K. J. Åström, October 2002 2



Approximate Differentiation - High Frequency
Roll-off

Replace sT by

Gd(s) =
sT

1+ sT/N

What does it mean?
• For small s we have

Gd(s) � sT .

• For large s we have
Gd(s) � N.

Frequency (rad/sec)

P
ha

se
 (

de
g)

; M
ag

ni
tu

de
 (

dB
)

Bode Diagrams

−40

−20

0

20

40
 

10
−1

10
0

10
1

10
2

0

20

40

60

80

100
 

PSfrag replacements

Gain
Phase

Frequency ω
The system Gd(s) has the output T dy/dt for low fre-
quency signals. The gain of Gd is not greater than N.

A nice illustration of use of Bode Plots!

Simulation of Approximate Derivative

y(t) = sin t+ an sin ω t

Approximate deriva-
tive

Gd(s) =
s

1+ s/5

0 5 10 15

−2

2
Brusfri signal

0 5 10 15

−2

2
Brusig signal sb

0 5 10 15

−2

2
Brusig signal sb

0 5 10 15

−2

2
Brusfri derivata

0 5 10 15

−2

2
Derivatan av sb

0 5 10 15

−2

2
Fuskderivatan av sb

Different Parameterizations

Parallel form:

G(s) = k
(

1+ 1
sTi

+ sTd

)
= k

sTi
(1+ sTi + s2TiTd)

Series form:

G̃(s) = k̃
(

1+ 1
sT̃i

)
(1+ sT̃d) =

k̃
sT̃i

(
1+ s(T̃i + T̃d) + s2T̃iT̃d

)

Relations between coefficients

k = k̃
T̃i + T̃d

T̃i
, Ti = T̃i + T̃d, Td =

T̃iT̃d

T̃i + T̃d

Parallel form is more general. Equivalence possible only if
Ti ≥ 4Td. Essential for tuning to know which form is used.

PID Control

1. Introduction

2. Derivative Filter

3. Set Point Weighting

4. Integrator Windup

5. Computer Implementation

6. Tuning

7. Summary

c& K. J. Åström, October 2002 3



Set Point (Reference) Response

Set point weighting allows a moderate adjustment. A 2DOF
structure makes set-point response independent of disturbance
response.

PSfrag replacements

F CI

CR

P

−1

ΣΣΣ
r e u

v

d

x

n

y

U (s) = k
(

bR(s) − Y(s) + 1
Ti
(R(s) − Y(s)) − sTd

1+ sTd/N
Y(s)

)

Set Point (Reference) Weighting

A simple way to obtain some DOF benefits

0 10 20 30 40
0

0.5

1

0 10 20 30 40
0

2

0 10 20 30 40
−1

−0.5

b = 1b = 0.5b = 0

b = 1b = 0.5
b = 0

l n

Notice different signal paths y → u and r → u. Not a complete
2DOF but often a good way to separate disturbance rejection from
response to reference signals.

PID Control

1. Introduction

2. Derivative Filter

3. Set Point Weighting

4. Integrator Windup

5. Computer Implementation

6. Tuning

7. Summary

Effects of Saturation

PSfrag replacements

ur yController Process

• Practically all systems have saturations in actuators

• The feedback loop is broken when saturation occurs

• Unstable modes in process and controller will grow

• An integrator is an unstable and it will wind up

• Windup protection is required in all controllers with integral
action

• Instabilities are essential difficulites!

c& K. J. Åström, October 2002 4



Integrator Windup

0 20 40 60 80
0

1

2

0 20 40 60 80

−0.1

0.1

0 20 40 60 80

−2

2

y

r

u

I

One Way to Avoid Windup

Actuator

– +Σ

Σ

Σ

  e = r − y

  KTds

K

    
1
s

    
1

Tt

  

K
Ti

–y

  es

Actuator
model

Control with Anti-Windup

0 10 20 30
0

0.5

1

0 10 20 30
−0.05

0.05

0.15

0 10 20 30
−0.8

−0.4

0

r

y

u

I

Effect of Time Constant Tt

Influence of the reset time constantTt.

0 10 20 30
0

1

0 10 20 30
−0.1

0

0.1

r Tt = 3
Tt = 2

Tt = 0.1, Tt = 1

Tt = 3
Tt = 2

Tt = 1
Tt = 0.1

Rules of thumb Tt = 0.5Ti for PI control or Tt =
√

TiTd for PID.
Simulation made with PI control with Ti = 1.

c& K. J. Åström, October 2002 5



PID Control

1. Introduction

2. Derivative Filter

3. Set Point Weighting

4. Integrator Windup

5. Computer Implementation

6. Tuning

7. Summary

Computer Implementation

Practically all control systems are today implemented using
computers. We will briefly discuss some aspects of this.

AD and DA converters are needed to connect sensors and ac-
tuators to the computer. A clock is also needed to synchronize
the operations. We will discuss

• Sampling and aliasing

• A basic algorithm

• Converting differential equations to difference equations

• Wordlength issues

• Bumpless parameter changes

Sampling, Aliasing and Antialiasing Filters

0 1 2 3 4 5

−1

0

1

• Samples of signals of different frequencies may be identical

• Nyquist frequency = (Sampling frequency)/2

• To represent a continuous signal uniquely from its samples the
continuous signal cannot have frequencies above the Nyqyist
frequency which which is half the Nyquist frequency

• Antialiasing filters that reduce the frequency content above the
Nyquist frequency is essential.

A Basic Algorithm

The following operations are executed by the computer.

1. Wait for clock interrupt

2. Convert setpoint r and process output y to numbers

3. Compute control signal u

4. Convert control signal to analog value

5. Update variables in control algorithm

6. Go to step 1

Desirable to make time between 1 and 4 as short as possible.
Defer as much as possible of the computations to step 5.

c& K. J. Åström, October 2002 6



A Practical PID Controller

The basic equation

u(t) = k
(
br(t) − y(t)

)
+ ki

∫ t

0

(
r(τ ) − y(τ )

)
dτ + kd(−

dy f (t)
dt

),

Derivative filter Td
N

dy f
dt + y f = y

Feedback Gc(s) = k+ ki
s + kd

s
1+sTf

Feedforward G f f (s) = bk+ ki
s

Set point weighting b

Sometimes also high frequency roll-off

U (s) = k
(1+ sTf )2

(
bR(s)−Y(s)+ 1

sTi

(
R(s)−Y(s)

)
− sTdY(s)

)

The PID Algorithm

The PID controller is described by:

U(s) = P(s) + I(s) + D(s)

P(s) = k
(

bR(s) − Y(s)
)

I(s) = k
1

sTi
(R(s) − Y(s))

D(s) = −k
sTd

1+ sTd/N
Y(s)

Computers can only add and multiply, it cannot integrate or
take derivatives. To obtain a programmable algorithm we must
approximate. There are many ways to do this.

Introduce the times tk when the clock ticks, assume that
tk − tk−1 = h, ,where h is the sampling period.

The Proportional Part

p(tk) = k ∗ (br(tk) − y(tk))
No approximation required!

Integral Part

i(t) = k
Ti

∫ t

e(τ )dτ

Differentiate
di
dt
= k

Ti
e(t)

Approximate the derivative by a forward difference

i(tk+1) − i(tk)
h

= ke(tk)
Ti

This equation can be written as

i(tk+1) = i(tk) +
kh
Ti

e(tk)

c& K. J. Åström, October 2002 7



Derivative Part

D(s) = −k
sTd

1+ sTd/N
Y(s)

Hence
(1+ sTd/N)D(s) = −ksTdY(s)

In time domain

d(t) + Td

N
dd
dt
= −kTd

dy
dt

Approximate derivative by backward difference

d(tk) +
Td

N
d(tk) − d(tk−1)

h
= −kTd

y(tk) − y(tk−1)
h

Derivative Part Continued

d(tk) +
Td

N
d(tk) − d(tk−1)

h
= −kTd

y(tk) − y(tk−1)
h

Hence
(

1+ Td

Nh

)
d(tk) =

Td

Nh
d(tk−1) −

kTd

h
(

y(tk) − y(tk−1)
)

or

d(tk) =
Td

Td + Nh
d(tk−1) −

kTdN
Td + Nh

(
y(tk) − y(tk−1)

)

Notice that the algorithm works well even if Td is small, this is
not the case if forward approximations are used.

The Discrete PID Algorithm

Summarizing we find

p(tk) = k ∗ (br(tk) − y(tk))
e(tk) = r(tk) − y(tk)

d(tk) =
Td

Td + Nh

(
d(tk−1) − kN

(
y(tk) − y(tk−1)

))

u(tk) = p(tk) + i(tk) + d(tk)

i(tk+1) = i(tk) +
kh
Ti

e(tk)

Add Protection Against Windup

p(tk) = k ∗ (br(tk) − y(tk))

d(tk) =
Td

Td + Nh

(
d(tk−1) − kN

(
y(tk) − y(tk−1)

))

v = p(tk) + i(tk) + d(tk)
u(tk) = sat(v)
e(tk) = r(tk) − y(tk)

i(tk+1) = i(tk) +
kh
Ti

e(tk) +
kh
Tr

(
u− v

)

• Useful to precompute parameters

• Make sure updating is done safely

• Organize the code right

c& K. J. Åström, October 2002 8



Wordlength Issues

Consider updating of the integral part

i(tk+1) = i(tk) +
kh
Ti

e(tk)

Example

• h=0.05 s

• Ti=5000 s

• k=1

•
kh
Ti
= 10−5

If the error has 3 digits the integral need to be updated with 8
digits (28 bits) to avoid rounding off the errors!

Bumpless Parameter Changes

A PID controller is often switched between three modes: off,
manual and automatic control. It is important that there are no
switching transients.

It is also important that parameter changes do not generate
transients. This can be avoided by proper coding.

Example:

This implementation gives
bumps

i = k
Ti

∫ t

e(s)ds

This implementation does
not give bumps

i =
∫ t k

Ti
e(s)ds

The basic issue is that multiplication with a time function does
not commute with differentiation or integration.

PID Control

1. Introduction

2. Derivative Filter

3. Set Point Weighting

4. Integrator Windup

5. Computer Implementation

6. Tuning

7. Summary

Requirements

PSfrag replacements

F C P

−1

ΣΣΣ
r e u

d

x

n

y

• Reduce the effect of load disturbances

• Do not inject too much measurement noise

• Low sensitivity to process variations

• Good response to set point changes

c& K. J. Åström, October 2002 9



Introduction

A wide range of methods have been developed to design and
tune PID controllers

• Special methods for PID controllers

• Application of general techniques for control system design
like pole placement that you have learned in the class.

The methods differ with respect to

• Models

• Model acquisition

• Criteria

• Design techniques

We will present a selection

Ziegler-Nichols’ Step Response Method

• Switch controller to manual.

• Make a step in the control variable.

• Log process output. Normalize the curve so that it corre-
sponds to a unit step.

• Determine intercepts of tangent with steepest slope
i.e. parameters a and L. The controller parameters are
obtained from a table.

0 2 4 6 8 10 12 14 16 18 20
−1

0

1

2

3

Ziegler-Nichols’ Step Response Method

Data: apparent time delay L and intercept a. Controller param-
eters are given by

Controller k Ti Td Tp

P 1/a 4L
PI 0.9/a 3L 5.7L

PID 1.2/a 2L L/2 3.4L

Parameter Tp is an estimate of the response time of the closed
loop system.

Ziegler-Nichols’ Frequency Response Method

• Switch the controller to
pure proportional.

• Adjust the gain so that the
closed loop system is at
the stability boundary.

• Determine the gain ku
(the ultimate gain) and
the period Tu (the ultimate
period) of the oscillation.

• Suitable controller param-
eters are obtained from a
table.

−0.5 0 0.5 1
−1

−0.5

0

0.5

c& K. J. Åström, October 2002 10



Ziegler-Nichols’ Frequency Response Method

Data: ultimate gain ku and ultimate period Tu. Controller
parameters given by.

Reg. k Ti Td Tp

P 0.5ku Tu

PI 0.4ku 0.8Tu 1.4Tu

PID 0.6ku 0.5Tu 0.125Tu 0.85Tu

Parameter Tp is an estimate of the response time of the closed
loop system.

Properties of Ziegler Nichols Rules

Properties

+ Easy to explain and use

+ Very common

- The closed loop system obtained too oscillatory ζ � 0.2.
Part of the criterion (quarter amplitude damping)

- Too large overshoot

- Sensitive to process variations

Large scope for improvements.

More process information needed.

Assessment of Ziegler-Nichols Methods

• Published in 1942 in Trans. ASME 64(1942)759–768.

• Tremendously influential

• The beginning of process control

• Slight modifications used extensively by controller manu-
facturers and process engineers

• Uses too little process information: only 2 parameters

• Substantial improvements can be obtained with modified
rulse based on 3 parameters

• Basic design principle quarter amplitude damping is not
robust, gives closed loop systems with too high sensitivity
(Ms > 3) and too poor damping (ζ � 0.2)

Dynamics of Processes Suitable for PID Control

0 5 10 15 20
0

0.5

1

A

0 5 10 15 20
−0.5

0

0.5

1

B

0 5 10 15 20
0

0.5

1

1.5
F

0 5 10 15 20
0

5

10

15

20
E

0 5 10 15 20
−5

0

5

10
D

0 5 10 15 20
0

0.5

1

C

Essentially monotone step responses:
∫ ∞

0 h(t)dt
/∫ ∞

0 hh(t)hdt � 1

c& K. J. Åström, October 2002 11



Characterize Dynamics by 3 Parameters

Step response method: K , L and T

0 2 4 6 8 10 12 14 16 18 20
−1

0

1

2

3

Frequency response method: ω u, hP(ω u)h and P(0)

−0.5 0 0.5 1
−1

−0.5

0

0.5

A Modified Step Response Method

Lag dominated dynamics: L < 0.1T

K = 0.3
T

KpL
, Ti = 8L

Balanced dynamics 0.1T < L < 2T

K = 0.3
T

KpL
, Ti = 0.8T

Delay dominated dynamics L > 2T

K = 0.15
Kp

, Ti = 0.4L

PI Balanced Process Dynamics L � T

0 10 20 30 40 50 60 70 80
0

0.5

1

1.5

2

t

0 10 20 30 40 50 60 70 80
−0.5

0

0.5

1

1.5

2

2.5

t

PSfrag replacements

Zigler-Nichols (dashed) modified (full)

Zigler-Nichols (dashed) modified (full)

y
u

PI Lag Dominated Dynamics L << T

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

y

t

0 1 2 3 4 5 6 7 8 9 10
−10

−5

0

5

10

15

u

t

PSfrag replacements

Zigler-Nichols (dashed) modified (full)

Zigler-Nichols (dashed) modified (full)

c& K. J. Åström, October 2002 12



PI Delay Domiated Dynamics L >> T

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2
y

t

0 2 4 6 8 10 12 14 16 18 20
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

u

t

PSfrag replacements

Zigler-Nichols (dashed) modified (full)

Zigler-Nichols (dashed) modified (full)

PID Control

1. Introduction

2. Derivative Filter

3. Set Point Weighting

4. Integrator Windup

5. Computer Implementation

6. Tuning

7. Summary

Summary

• Remember control fundamentals

– Load disturbances and measurement noise
– Reference signals
– Model uncertainty
– Six responses are needed

• Many practical and operational issues

– Derivative filter
– Set point weighting (2DOF)
– Integrator windup
– Digital control
– Tuning

• Relevant for all control systems

Recommendations for Studies

The PI(D) controller is the most common controller. You should
learn how it works and how to tune it. A laboratory is strongly
recommended, you can take a lab course in the spring of
2003.

Reading suggestions:

• Study Chapter 6

c& K. J. Åström, October 2002 13


