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e (lassical predictive control

— A simple system with time delay
— Smith’s predictor
— Astrém’s predictor

— Time delay emulation

e Model-based predictive control

— Intermittent control

e References [n] in notes

\_ /

Delay Equations 2 and their Applications




From Smith’s predictor to model-based predictive control

-

A System with Delay I
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SISO, LTL
X(t) =AX(@)+BU(t—T) (1) | Delayed input
Y(e) =CX(t)+D() State-space (1)
y(s) e_ST%u(s) +d(s) (2) | Transfer-function (2)
s
d T Delay value
e Time delay
—sT B(s)
u + y e Az System
T B(s) T _ d disturbance
A(s) u control signal
y system output
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Non-predictive Control[1] I
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3)

(4)

K(s) Control  com-

pensator
Feedback control (3)
Closed-loop system
(4)
eI inevitable in
numerator

Problem ¢! in de-
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hard to design K ()
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Smith’s Predictor [2, 3] I

4

~

e*!" Time delay
—sT B(s)

w y Bis)
+ K(s) |z f;:j L e Als) system
-; T Delay value
K(s) Controller
(I - e—sI)’ B(s) + +
A(s) T | d disturbance
u control signal
1% .
w Setpoint
y system output
—y+(1-e )2, (5)
Yp =Y A( yp prediction
=M (y+e); e=(1- e_ST) d (6) |€ prediction error
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Smith’s Predictor: equivalent diagram I

w + u B ++ y
A,Q_, K(s) o o7 A::j J) + Delay removed

— from denomina-

p tor

+ T - Initial  conditions
e
j A(s) ignored

- So no good if sys-

tem unstable

—sr__ K(s)B(s) - Properti
_ 7 roperties of d not
T R T N B
P R— (8)

A(s)+ K(s)B(s)
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‘ Astrom’s Predictor[4] I

d
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W, i 4 BE |+ y |z7* time delay

—( »—| K(z) -
\ AQ k integer delay. k = %

Discrete-time

E(z)B(z) + F(z)
C(z) T C(z) Stochastic (9)

Minimum-variance
v p
K(S) —> 00
C(z) Realisabilify. de-
d= S ) composition
A(z) o
€z L F(2)
=E(z)+z" = 10
@&+ 30 (10)
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‘ Realisability decomposition I
e FO
03 hago oo é_ é(z_) _________________________ -
% o :*+ XE() F(z) Algebraic long divi-
E; R Az) sion (16)
N R e e e e .
ERTIRS “Fure” £ (2
%% s i) 5 10 s 20 i S Extensions
Time .
self-tuning[5, 6]
) generalised
Z
d=—-= 11 MVI7, 8,9
C(z) 4 F2)
—— =E(2)+z "—= 12
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‘ Emulator-based control[10, 11] I
4 C(s)
"1 A6
w u
;Q_' K(s) o T i;:j . .
_ \ Continuous-time
Non-stochastic v
G(s) + 7t F(s) . ,
Ces) Ces) Minimum-variance
K (s) —> 00
" Realisability  de-
composition
F(s)  G(s)
= —= S 13
= T )" (13)
=ty te; e=¢TEv (14)
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‘ Realisability decomposition I

“Future” e’ E(s)

“Past” %

Impulse response

self-tuning [10, 11,
12, 13]

ct “Model predictive
fime control”’[14, 15,
16]
C
d= 1%& (15) | E(s) FIR transfer
function
C(z) 4 F(2)
—=FE(z)+7 "—= 16
ne (z) +z i) (16)
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Impulse response
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‘ Continuous-time Finite Impulse Responses I

Delay Equations

034 eSTE(S) F(s)
Eg: A(s) =s+a
Eg: C=1
Pole of E(s) has zero
residue
Implementation
| — e—(s+a)T issues
E(s) = 17
(5) = —— a7)
F —at
A(s) s+a /
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Emulator: equivalent diagram I

d
+ Delay removed
w u + y .
+ K oy Bs) | ¢ from denomina-
4>Q—> (s) > ¢ A%5) —_—
- tor
» + Initial conditions

Wt | C(s), not A(s)
e
+I + So OK even if sys-
tem unstable

C(s) design parame-

e=eTE(v=eTEWAYd  (19)|__ter

C(s)
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Summary I

e Emulator-based Predictor

— removes delay e*’ from denominator
— accounts for initial conditions

— sensitivity analysis? [3]

e Extensions: can emulate
¢’ Prediction

P(s) Improper transfer function

1

B 0) Unstable transfer function

e Self-tuning Control [10, 11, 17]

e Cannot predict further ahead than T
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‘ Model-based Predictive Control '

e Background
— Long history [16, 18, 19, 20]
— Related to Generalised Predictive Control[21, 22, 23]
— Related to “Open-loop feedback optimal” control[24, 25]
— Mostly discrete time[18]
— Continuous time possible [26, 27, 28]
— Predicts ahead further than the time delay
— Trajectory based

e Current research on Intermittent Predictive Control

— Overcomes delay due to optimisation

\ — Physiological interpretation

~
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‘ Parameterising the control signal[29] I

1.2 _ _ _ _
N A S S u*(t,7) Control
= NGRS NS SRR SN SR signal
: SR S S —— | |UP(n) Basis funs
e | U ) Parametersto
06 i : i : be optimised
0 2 4 6 8 10
Time
t Actual time
T Time-to-go
u*(t,t) =U"(1)U(t) (20)
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y(®) ) y*(7)

‘ Moving Horizons I

~

* Moving horizon

21 Fixed axes

> 7T
g 22 Moving axes
o xg = x(t)
(1) Ax(t) + Bu(t) u(t) = u*(1,0)
— 21
1) Cx(1) b Optimise in moving
x(0)  =x0 axes
( %x*(t,’c) = Ax*(¢,7) + Bu*(¢,7) Control applied in
$ye(t,7) = Cx*(t,7) (22) fixed axes
\ \X*(l‘,()) — x6 /
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‘ Optimisation I

~

23 Output cost

1 [©
W) =5 [ |0 —w 0] dr 23) |24 mput cos
1
| '
+5 W (1,7) H Jr 24 25 Terminal cost
“ 26 Input constraint
T || (" (1,72) —20(1)) H P (25) | 27 Output constraint
w* (¢, Tuk) < @ (1, Tur) (26) | QP to determine
Y, Tyr) < V(2 Tk (27) U(t)
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‘ Intermittency[30, 31, 32, 33] I

e In predictive control

“Continuous-time predictive control algorithms have the
apparently fatal drawback that optimisation must be
completed within an infinitesimal time. However, this
problem can be overcome using intermittent control” [30]

e In physiological control

“A finite interval of time 1s required by the CNS [central
nervous system] to preplan the desired perceptual
consequences of a movement ... This behaviour introduces

intermittency into the planning of movements.” [31]

e Neither continuous-time nor discrete-time

~
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‘ Intermittent Control ' \

i+I1th u*
W

p -

ith measurement  Endith i+Ith measurement Lnd i+1th
Start optimisation optimisation Start optimisation optimisation

u(t) = u(ty ) = 4 1 () <A (28)

u?(’fi) T, > A,‘ /
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A Physical System

|

e [ego Mindstorms Cart-Pendulum System

e legOS posix-compliant real-time kernel
— compute u(t)

e Laptop Optimisation
— compute U(¢)
— estimate state X (¢)

— estimate parameters 0

e IR connection to laptop
— send U(1).

/

Delay Equations 20 and their Applications




From Smith’s predictor to model-based predictive control

/ ‘ Simulations ' \

1.00
0.80 |
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Summary I

e Model-based predictive control

— Continuous-time setup
— Basis function approach
— Moving axes optimisation
e Intermittent control
— Framework for MPC
— Combines best of continuous-time & discrete-time

— Physiological control systems

— Engineering applications ...
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