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Outline

• Classical predictive control

– A simple system with time delay

– Smith’s predictor

– Åström’s predictor

– Time delay emulation

• Model-based predictive control

– Intermittent control

• References [n] in notes
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A System with Delay







Ẋ(t) = AX(t)+BU(t −T )

Y (t) = CX(t)+D(t)
(1)

y(s) = e−sT B(s)
A(s)

u(s)+d(s) (2)

A(s)
B(s)

e−sT
y

d

u ++

SISO, LTI.

Delayed input

State-space (1)

Transfer-function (2)

T Delay value

e−sT Time delay

e−sT B(s)
A(s) system

d disturbance

u control signal

y system output

Delay Equations 3 and their Applications
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Non-predictive Control[1]

A(s)
B(s)

e−sTK(s)
yu

d

w +

−

++

u = K(s)[w− y] (3)

y = e−sT K(s)B(s)
A(s)+ e−sT K(s)B(s)

w

+
A(s)

A(s)+ e−sT K(s)B(s)
d (4)

K(s) Control com-
pensator

Feedback control (3)

Closed-loop system
(4)

e−sT inevitable in
numerator

Problem e−sT in de-
nominator

hard to design K(s)
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Smith’s Predictor [2, 3]

A(s)
B(s)

e−sTK(s)

yp

A(s)

B(s)(1 − e     )−sT

yu

d

w +

−

++

+ +

yp = y+(1− e−sT )
B(s)
A(s)

u (5)

= esT (y+ ε); ε =
(

1− e−sT )

d (6)

e−sT Time delay

e−sT B(s)
A(s) system

T Delay value

K(s) Controller

d disturbance

u control signal

w Setpoint

y system output

yp prediction

ε prediction error
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Smith’s Predictor: equivalent diagram

A(s)
B(s)

e−sTK(s)

e +sT

yp

yu

d

w +

−

++

+

+

ε

y = e−sT K(s)B(s)
A(s)+K(s)B(s)

(w− e) (7)

+
A(s)

A(s)+K(s)B(s)
d (8)

+ Delay removed
from denomina-
tor

- Initial conditions
A(s) ignored

- So no good if sys-
tem unstable

- Properties of d not
used

Delay Equations 6 and their Applications
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Åström’s Predictor[4]

z−k

A(z)
B(z)

C(z)
E(z)B(z)

K(z)

C(z)
F(z)

yp

yu

d

w +

−

++

+ +

d =
C(z)
A(z)

ξ (9)

C(z)
A(z)

= E(z)+ z−k F(z)
A(z)

(10)

z−k time delay

k integer delay. k = T
h

Discrete-time

Stochastic (9)

Minimum-variance
K(s) → ∞

Realisability de-
composition
(10)
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Realisability decomposition

F(z)
A(z)

kz

F(z)
A(z)

z  E(z)k

Time

Im
pu

ls
e 

re
sp

on
se

 0
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 0.25

 0.3

−10 −5  0  5  10  15  20  25  30

 0.05

d =
C(z)
A(z)

ξ (11)

C(z)
A(z)

= E(z)+ z−k F(z)
A(z)

(12)

Algebraic long divi-
sion (16)

“Future” zkE(z)

“Past” F(z)
A(z)

Extensions

self-tuning[5, 6]

generalised
MV[7, 8, 9]
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Emulator-based control[10, 11]

A(s)
B(s)

e−sT

C(s)
G(s)

K(s)

C(s)
F(s)

yp

A(s)
C(s)

yuw +

−

++

+ +

d

v

yp =
F(s)
C(s)

y+
G(s)
C(s)

u (13)

= esT y+ e; e = esT Ev (14)

Continuous-time

Non-stochastic v

Minimum-variance
K(s) → ∞

Realisability de-
composition
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Realisability decomposition

Time

Im
pu

ls
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F(s)
A(s)E(s)e−sT
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 0.2

 0.25

 0.3

−1 −0.5  0  0.5  1  1.5  2  2.5  3

d =
C(z)
A(z)

ξ (15)

C(z)
A(z)

= E(z)+ z−k F(z)
A(z)

(16)

“Future” esT E(s)

“Past” F(s)
A(s))

self-tuning [10, 11,
12, 13]

cf “Model predictive
control”[14, 15,
16]

E(s) FIR transfer
function
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Continuous-time Finite Impulse Responses

Time

Im
pu

ls
e 

re
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on
se

F(s)
A(s)E(s)esT

FIR

 0
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 0.15
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−1 −0.5  0  0.5  1  1.5  2  2.5  3

E(s) =
1− e−(s+a)T

s+a
(17)

F(s)
A(s)

=
e−at

s+a
(18)

Eg: A(s) = s+a

Eg: C = 1

Pole of E(s) has zero
residue

Implementation
issues
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Emulator: equivalent diagram

A(s)
B(s)

e−sTK(s)

e +sT

yp

yu

d

w +

−

++

+

+

ε

ε = esT E(s)v = esT E(s)
A(s)
C(s)

d (19)

+ Delay removed
from denomina-
tor

+ Initial conditions
C(s), not A(s)

+ So OK even if sys-
tem unstable

C(s) design parame-
ter
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Summary

• Emulator-based Predictor

– removes delay e−sT from denominator

– accounts for initial conditions

– sensitivity analysis? [3]

• Extensions: can emulate

est Prediction

P(s) Improper transfer function
1

B?(s) Unstable transfer function

• Self-tuning Control [10, 11, 17]

• Cannot predict further ahead than T

Delay Equations 13 and their Applications
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Model-based Predictive Control

• Background

– Long history [16, 18, 19, 20]

– Related to Generalised Predictive Control[21, 22, 23]

– Related to “Open-loop feedback optimal” control[24, 25]

– Mostly discrete time[18]

– Continuous time possible [26, 27, 28]

– Predicts ahead further than the time delay

– Trajectory based

• Current research on Intermittent Predictive Control

– Overcomes delay due to optimisation

– Physiological interpretation

Delay Equations 14 and their Applications
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Parameterising the control signal[29]

−0.6
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Time

u?(t,τ) = U?(τ)U(t) (20)

u?(t,τ) Control
signal

U?(τ) Basis funs

U(t) Parameters to
be optimised

t Actual time

τ Time-to-go

Delay Equations 15 and their Applications
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Moving Horizons

y(t)

t τ

y* (t,  )τ















d
dt x(t) = Ax(t)+Bu(t)

y(t) = Cx(t)

x(0) = x0

(21)















d
dτ x?(t,τ) = Ax?(t,τ)+Bu?(t,τ)

y?(t,τ) = Cx?(t,τ)

x?(t,0) = x?
0

(22)

* Moving horizon

21 Fixed axes

22 Moving axes

x?
0 = x(t)

u(t) = u?(t,0)

Optimise in moving
axes

Control applied in
fixed axes
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Optimisation

J(U(t)) =
1
2

Z τ2

τ1

∥

∥

∥y?(t,τ)−w?(t,τ)
∥

∥

∥
dτ (23)

+
1
2

Z τ2

τ1

∥

∥

∥u?(t,τ)
∥

∥

∥
dτ (24)

+
∥

∥

∥(x?(t,τ2)− xw(τ))
∥

∥

∥

P
(25)

u?(t,τuk) ≤ ū?(t,τuk) (26)

y?(t,τyk) ≤ ȳ?(t,τyk) (27)

23 Output cost

24 Input cost

25 Terminal cost

26 Input constraint

27 Output constraint

QP to determine
U(t)

Delay Equations 17 and their Applications
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Intermittency[30, 31, 32, 33]

• In predictive control

“Continuous-time predictive control algorithms have the
apparently fatal drawback that optimisation must be
completed within an infinitesimal time. However, this
problem can be overcome using intermittent control” [30]

• In physiological control

“A finite interval of time is required by the CNS [central
nervous system] to preplan the desired perceptual
consequences of a movement ... This behaviour introduces
intermittency into the planning of movements.” [31]

• Neither continuous-time nor discrete-time

Delay Equations 18 and their Applications
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Intermittent Control

ith u*

t i

i−1th u*

i+1th u*

t

u

t

τ

i+1

∆

ol∆

i

ith measurement 
Start optimisation

End i+1th
optimisation

i+1th measurement 
Start optimisationoptimisation

End ith

u(t) = u(ti + τi) =







u?
i−1(τi−1) τi < ∆i

u?
i (τi) τi ≥ ∆i

(28)
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A Physical System

• Lego Mindstorms Cart-Pendulum System

• legOS posix-compliant real-time kernel

– compute u(t)

• Laptop Optimisation

– compute U(t)

– estimate state X(t)

– estimate parameters θ

• IR connection to laptop

– send U(t).

Delay Equations 20 and their Applications
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Simulations
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y

Time (s)
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0.00
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0.60

0.80

1.00

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

y

Time (s)

w: Unit step

y: System output An-
gle and position

u: System input

∆ol(= 1.0): Open-
loop interval

estimate state X(t)

estimate parameters
θ

computational delay
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Summary

• Model-based predictive control

– Continuous-time setup

– Basis function approach

– Moving axes optimisation

• Intermittent control

– Framework for MPC

– Combines best of continuous-time & discrete-time

– Physiological control systems

– Engineering applications ...

Delay Equations 22 and their Applications
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