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Preface

0.1 Statistical Learning, Data Science and System
Identification

In a modern technologically driven society the demand for accurate predictions
and rational decision making is becoming more and more compelling. In En-
gineering, but also in many other sectors of the human society, predictions and
rational decision making should be made based on quantitative (i.e mathemat-
ical) models much more than based on a single person intuition and experience
as it could happen in the past. Therefore mathematical modeling of Engineer-
ing, Biological, Finance, Metheorology, and many other kind of systems is be-
coming of paramount importance. Due to the poor knowledge or unavailabil-
ity of the underlying first principles, of the physical parameters and, especially,
due to uncertainty and measurement errors and imprecision (called noise in gen-
eral terms) inherent in almost all Biologica, Economic or Engineering processes,
these models need, most of the times face uncertainty and comprise a descrip-
tion of uncertainty margins. Hence it is natural to use a probabilistic language.

Probabilistic model building from uncertain data used to be the realm of Sta-
tistical Science. The new ingredients which have recently entered the scenery
are ultrafast and essentially unlimited computing power and the need to treat
Big Data. We are facing an ever increasing amount of data in electronic form.
Just think of Computer Vision and Image processing. Most systems are now
susceptible to on-line measurement and data acquisition at speeds and with
storage capacity which were unthinkable just a couple of decades ago. All of
this data need to be interpreted and processed for the purpose of probing or
classification and especially for prediction and rational decision making. This
has led to a revisitation of Statistics with a new emphasis on algorithms, predic-
tivity and decision making, much more than data explanation and parameter
estimation as it was in the past. This is nowadays called Statistical Learning or
even Machine Learning, the term “machine” being of course a captivating buz-
zword for “algorithmic”.

In a typical scenario we have observable outcomes of a measurement pro-
cess which may be quantitative (such as voltage or stock prices) but may also
be categorical; i.e. alternatives in finite set such as presence or absence of signal
in a communication channel. These are called effects or outputs. There is a set of
variables which are called inputs which are also observable but play the role of
a cause originating the output. For example the angle of the steering wheel and
the pressure on the gas pedal as originators of the trajectory followed by a car.

vii



viii Preface

There is a Training Set consisting of a data-base of measured input-output pairs
from which one should be able to learn a mathematical model of the system. In
very rough terms, this model can be seen just as a function mapping decision
inputs into corresponding predicted outputs. The key issue being extracting
(i.e. learning) such a function from the measured data,

Naturally to make the problem solvable one should have some a priori class
of reasonable candidate models to choose from. These may sometimes be gener-
ically called "functions" but in some circles models are called “concepts”. One
should then learn “concepts” from the data collected in the training set. Word-
ing in this field has unfortunately become a kind of advertising game which can
be misleading at times. Nowadays for example, fashionable families of func-
tions are the so-called Neural Nets. These Neural Nets have nothing to do with
brain or intelligence or whatever biological apparatus one may try to associate
to them.They are just extremely simple mathematical functions very easy to fit
to observed data, which can be combined together to arbitrary complexity. With
very complicated Neural Nets one is supposed to achieve "Deep Learning".

In general, one should find a best mathematical model in the given class to
describe the observed training data. This is a purely mathematical problem and
of course the basic step once the variables have been coded mathematically in
a proper way. The scope of learning is then to predict a next output from the
knowledge of a current observed input (which is not in the training set) and
using the model just "learned" from processing the data in the training set. Natu-
rally the key point here is that this modeling (i.e. learning) process should be
the result of automatic procedures or algorithms which are implemented in a
computer. This seems to be the main outgrowth of traditional Statistics.

Time and modeling of Dynamic phenomena

Consider a physical/economic/biological system, say a paper machine, an elec-
trical power plant or the stock exchange market in Bulgaria. By a “model” of the
system we may often mean a mathematical description linking the temporal be-
haviour of certain observed variables of the system. In general the models that
are needed to describe the temporal behaviour of systems must involve time
and describe time variations, that is to say be dynamical models. In a determinis-
tic setting dynamical models could be, say, difference or differential equations.
For example Newton’s law is really a differential equation describing the tem-
poral evolution of a mechanical system. Specifically, aimed at predicting the
trajectory of a heavy body caused by the action of external forces.

In a dynamic setting both the input and output variables, once sampled and
collected in the training data set, are called time series. These are just sequences
of real or vector-valued measurements and the problem is to infer from the
training data set a probabilistic model of the dynamic relation linking the two
variables. This automatic model building from time series data is called (Dy-
namic) System Identification.

There may be different reasons to build models. In Data Science and in
particular in System Identification one does not pay much attention to models
which explain phenomena as in Physics (whatever this word may mean); one
is chiefly interested in model building for the practical purpose of prediction,
decision and control of a specific system. This is a basic difference from Physics
where one instead looks for universal laws which apply to a large class of sys-
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tems. In Physics one wants to understand the basic principles governing the
behaviour of the world. The attitude in statistical learning is that a "true model”
of reality does not exist. Somehow this seems to be the distinction between instru-
mentalism (just use the model for prediction or decision) and realism (pretend to
describe the truth) that some scientists like Vapnik [?] are talking about.

The importance of the automatic construction of mathematical models of
dynamical systems from observed data, has grown tremendously in the last
decades. Identification techniques have found application in diverse fields like
automatic control, econometrics, geophysics, hydrology, structural testing in
civil engineering, bioengineering, automotive science, to name just a few prin-
cipal areas. In particular, recursive identification techniques, have found ap-
plication in the design and real-time monitoring of industrial processes and in
adaptive control and communication systems.

Naturally, the pervasive use of mathematical models in modern science and
engineering has been afforded and greatly stimulated by the massive diffusion
of computers. One could safely say that the enormous progress of microelec-
tronics and computer hardware and the dramatic increase of real-time com-
puting power available after the 1990’s have led to a shift of paradigms in the
design of engineering systems. To cope with the growing complexity and the
rising demand for sophistication and performance, the design of modern con-
trol and communication systems has to be based more than ever before on quan-
titative models of the signals and systems involved. For example, on-line iden-
tification algorithms have become a key ingredient in signal processing, where
there is a growing demand for modeling procedures which are adapted to the
dynamic structure of various types of channels and signals encountered in the
applications. Early examples of successful application of this principle have
been model-based coding and recognition of audio and video signals. Some
devices based on these ideas are now part of commercially available communi-
cation systems (cellular phones for example).

0.2 About Modeling
Mathematical modeling should ideally be based on first principles, say like dif-
ferential equations derived from the laws of physics, but often the physics of
many systems is not known or too complicated and one has to resort to empir-
ical models based just on inference from observed data. In this course we will
only concentrate on the construction and validation of empirical models.
The distinction may seem rather crude; and is actually made only for the sake of
clarity. In practice there always is some knowledge of underlying physical (or
economic or biological) laws which helps in choosing suitable model classes.

Variables of the system which are accessible to measurement, can be are clas-
sified as "inputs" or exogenous or externally imposed variables, normally denoted
by the symbols x or u, and "outputs" or explained variables which will generally
be denoted by the symbol y. Normally these variables can only be measured at
discrete instants of time t and collected in a string of data which in econometric
applications are called time series or discrete-time signals in communication and
control engineering.

In real systems, there are always many other variables besides the prese-
lected inputs and outputs which influence the time evolution of the system.
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These other variables represent the unavoidable interaction of the system with
its environment. For this reason, even in the presence of a true causal relation
between inputs and outputs there always are some unpredictable fluctuations of
the values taken by the measured output y which are not explainable in terms
of past input (and/or output) history.

We cannot (and do not want to) take into account these variables explicitly in
the model as some of them may be inaccessible to measurement and in any case
this would lead to complicated models with too many variables and unknown
parameters. We need to work with models of small complexity and treat the
unpredictable fluctuations in some simple aggregate manner.

A realistic formulation of the modeling problem requires a satisfactory no-
tion of non-rigid, i.e. flexible or approximate, notion of mathematical model of the
observed data.
A model should be able to accept as legitimate, data sets (time series) which
may possibly differ slightly from each another. The rationale for probabilistic
models is that they fulfill precisely this request.

Imposing rigid "exact" descriptions of the type F (u, y) = 0 to experimen-
tal data has been criticized since the early beginnings of experimental science.
Particularly illuminating is Gauss’ general philosophical discussion in his early
astronomical work Theoria motus corporum caelestium sect. III, p. 236 (1809).
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Figure 0.2.2. Carl Friedrich Gauss
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Example: fitting a straight line toN experimental data {u(t), y(t); t = 1, 2, . . . , N}.
Exact modeling means trying to match exactly a linear equation by solving N
linear equations in the parameters a, b,

y(t) = au(t) + b, t = 1, 2, . . . , N .

Can we exactly match N data points with the linear model ?
Obviously no; even if possible, the results would be extremely sensitive even
to small perturbations in the data. New incoming data may change the model
drastically, which means that a model determined in this way has very poor
predictive capabilities.
One would say that real data obey exactly rigid relations of this kind “with
probability zero”. If in addition the model class is restricted to be linear finite-
dimensional depending only on two parameters. A severe restriction that no
real measured data can obey. In general insisting on "exact" modeling on real
data leads to disastrous results. This is by now very well-known and docu-
mented in the early literature. In the language of numerical analysis, fitting
rigid models to measured data invariably leads to ill-posed problems.

A critique to the probabilistic approach

Often data are collected in one unrepeatable experiment and no preparation of
the experiment is possible (i.e. we cannot choose the experimental conditions
or the input function to the system at our will). We are forced to do the best
with the data coming from one unrepeatable experiment.

It has then been argued that the abstract axiomatic “urn model” of probabil-
ity theory looks inadequate to deal with situations where there is just one un-
repeatable experiment and there is really no sample space around from which
the results of the experiment could possibly have been drawn.

Although in large sectors of the literature the statistical framework is often
imposed dogmatically, in our opinion however, the critique originates from a
tendency to confuse physical reality with mathematical models. The urn model
(i.e. the underlying probability space) is just a mathematical device which de-
scribes many possible alternatives (yet statistically similar according to some
probability distribution) sequences of data but is not required to have any
physical interpretation. It could in principle be used to model systems which,
may be described deterministically but would require extremely complicated
mathematical models with myriads of variables.
On the same grounds it could be questioned if there are in nature objects like
differential or difference equations.

Names

There is an enormous literature of books and published articles in technical
journals on statistical data modeling and classification. Many such writings are
sold under a variety of titles such as: Machine Learning, Data Science, Statistical
Learning Theory, Neural Networks, Deep Learning, etc. Many are just centered
on static Classification problems, called Pattern Recognition, and techniques
called Support Vector Machines, to name just the most widespread and widely
quoted nicknames. Honestly one should say that most of these names seem just
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invented to make audience. For example all books titled on Machine Learning
are just books building on Statistics and statistical concepts. Not to talk about
Artificial Intelligence which nobody has ever been able to define in a reasonably
precise way and seems to be a loosely defined empty box inside which one
can put anything. In our opinion, it may be much better to leave the word
"intelligence" to psichologists and to the literary language..

References

Without even trying to quote the enormous literature of published articles in
technical journals, we shall just limit to say that there are many recent books
on statistical data modeling and classification which are sold under a variety of
titles. There is ample space for deepening the issues which are just touched on
in these notes; for this we may refer the reader for example to [75, 44, 95, 100,
61, 65, 23].



xiv Preface



Chapter 1

A REVIEW OF
CLASSICAL
STATISTICAL
INFERENCE

1.1 Introduction
Modern Probability Theory is axiomatic. It assumes an abstract model of reality
consisting of a space of elementary events Ω (for example the set of all possible
outcomes of a dice throwing experiment or of a measurement process), a “σ-
algebra” A of observable events (the subsets of Ω which are “probabilizable”)
and a probability measure P , defined on A, obeying a set of well-known axioms.
While it is often rather easy (and in any case quite arbitrary) to describe the set
of all possible outcomes of an experiment by a set Ω and the class of interesting
events by a σ-algebra of subsets of Ω (think for example of throwing a dice or
of the measurement of the length of a table), except for a very limited number
of rather simple situations, specifying a rational process by which one assigns a
probability P to the space {Ω, A}, is a priori not obvious at all.

This process constitutes the subject matter of Statistics.
One could well say that the scope of Statistics is to assign probabilities on the

basis of experimental evidence. This means that assigning a certain measure P
to a given space of experiments {Ω,A} is an inductive process which requires an
interpretation or, better, a rational extrapolation made on certain experimental
data. By its very nature, therefore, the assignement of a probability is never
certain. There are several criteria which may lead to a decision that a certain
P describes “well” the results of an experiment but these criteria may have
different purposes and merits and may even not be comparable on an objective
basis.
Typically, a statistical inference problem consists of:

• A space of experiments{Ω,A};

• A family P , or a number of disjoint families Pi, i = 1, . . . , k (k finite),of
candidate probability measures P on {Ω,A};

• The outcome of an experiment, ω̄, ω̄ ∈ Ω (ω̄ is the observation; i.e. the
measured experimental data) .

The inference problems are traditionally classified in two broad categories:

1
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Estimation: On the basis of the experimental data ω̄, assign an admissible prob-
ability measure, i.e. an element P = P (ω̄) ∈ P .

Hypothesis Testing: On the basis of the experimental data ω̄, assign P to one of
the subclasses Pi (in other words, decide to which subclass Pi it belongs
to).

In both cases one is asked to construct (based on some inference criterion) a
function ω̄ → P , or ω̄ → {1, 2, · · · , k}. The distinction between estimation
and hypothesis testing is actually between an infinite versus a finite number of
possible alternatives.

An elementary example

Assume we are tossing a coin and let p := probability to observe head, event
which will be denoted by the symbol T and 1 − p := probability that instead
the toss will show tail; event which is denoted by the symbol C. Naturally, p is
unknown. We want to obtain information on the value of p by tossing the coin
N consecutive times, assuming that each toss does not influence the outcome of the
other tosses.

Let Ω = {all possible outcomes of N consecutive tosses}. The set Ω con-
tains all sequences made of N symbols T and C in any possible order. Let A
be the family of all subsets of Ω. It is well-known that this family has the struc-
ture of a Boolean Algebra. We translate our assumption that “each toss does
not influence the outcome of the other tosses” by defining a class of probabil-
ity measures which describes each toss as being independent of the others. In
formulas, this means that our admissible probability measures P := {Pp} on
{Ω,A} are defined, for each elementary event ω ∈ Ω by

Pp({ω}) = pn(T ) (1− p)N−n(T ) , 0 < p < 1 , (1.1.1)

where n(T ) is the number of symbols T in the sequence ω. Clearly the probabil-
ity measure Pp is defined as soon as one assigns a value to p in the interval(0 <
p < 1). In this case the family P is parametric; i.e.

P :=
{
Pp ; 0 < p < 1

}
.

Estimating P is hence the same thing as selecting a plausible value of p based
on the observation of the outcomes of N successive coin tosses.
Alternatively, one may want to validate some a priori belief on p for example
that p = 1/2 (that is, T and C are equiprobable). In this case one deals with an
hypothesis testing problem: on the basis of the observation ω̄ decide whether
Pp belongs to the class

P0 := {P1/2} ,

or Pp belongs to the complementary family

P1 :=
{
Pp ; p 6= 1/2

}
.

As we shall see, estimation and hypothesis testing problems are approached by
quite different methodologies. ♦



1.1. Introduction 3

Parametric problems

The family of possible probability measures P (or the k classesPi, i = 1, . . . , k)
constitutes the a priori information of the statistical inference problem. Very often
the choice of P is actually dictated by mathematical convenience.

Parametric problems are those where P has the form

P = {Pθ ; θ ∈ Θ} , (1.1.2)

where Θ is a subset of a finite dimensional Euclidean space, say Θ ⊆ Rp.
One then speaks of estimation of the parameter θ or of testing hypotheses on the

parameter θ. In this last case one may as well formulate the problem as deciding
if θ belongs to one out of k disjoint subsets (Θi, i = 1, . . . , k) of Θ such that
Pi = {Pθ | θ ∈ Θi}, i = 1, . . . , k.

The coin tossing problem above is parametric. Here Θ is the interval (0, 1).
The two classes Θ0 = {1/2}, Θ1 = (0, 1)−{1/2} parametrize the two alternative
hypotheses.

In this course we shall exclusively deal with probabilities induced by ran-
dom variables or by families (possibly infinite) of random variables. These ran-
dom variables will in general be vector valued, say Rm-valued (often called
random vectors). Random variables (or vectors) will be written as column vec-
tors and always be denoted by boldface letters, such as x,y etc. Whenm = 1 we
shall talk about scalar random variables. The abbreviation r.v. will sometimes
be used.

Let y = [y1 · · · ym]> be an m-dimensional random vector defined on the
space {Ω,A} that is, a measurable function from Ω into Rm. The sample space
of y is just the space of possible values of y, that is some subset of Rm, together
with its Borel σ-algebra Bm (the smallest σ-algebra of subsets of Rm contain-
ing all open intervals). If P is any probability measure defined on A, there is a
corresponding probability induced by y, Py, on its sample space {Rm,Bm}which
is defined in Appendix A.4. There is a “canonical” representation of a random
variable on its sample space as the identity function see (A.1.3). This representa-
tion is very handy since it permits to identify y just by assigning its PDF. This
is actually well-known, as one commonly speaks say about a “Gaussian ran-
dom variable” of mean µ and variance σ2, implicitly meaning that the random
variable is the identity function on R

y : R→ R , y(y) := y , ∀y ∈ R ,

defined on the sample (probability) space {R,B, Py}with Py defined by

Py(E) =
1√

2πσ2

∫
E

e
−

(y − µ)2

2σ2 dy

for every E ∈ B.
Note that the sample space representation of a random variable is “sewn up”

about y and every random variable defined on the sample space of y, being a
function of the independent variable y is necessarily a function of y. Note that on
the sample space of y there cannot exist random variables independent of y. In
the following we shall normally assume that all random variables under study
are defined on their sample space. Hence we shall, from now on, only consider
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inference problems where P (or {Pi}) is a family of probability measures on
{Rm,Bm} so that every member P ∈ P (Pk) is uniquely defined by a PDF, F on
Rm. It will henceforth be equivalent to describe P as a family of PDF’s, namely
P := {F (·)}.

A parametric family of PDF’s is therefore

P = {Fθ | θ ∈ Θ } , Θ ⊂ Rp

where the “functional form” (i.e. the analytic dependence on the independent
variable y) of each Fθ is a priori known and in order to individuate F in P it
should be enough to assign the value of a p-dimensional parameter θ. The set
Θ is the set of admissible values of the parameter.

The underlying conceptual scheme is that the experimental data y = {y1, . . . , ym}
come from m measurement devices which are modeled as the (in general cor-
related) components y1 . . . ,ym of anm-dimensional random variable y having
PDF F . We shall assume to have enough a priori information on the joint PDF
F to choose a parametric family of PDF’s to describe the measurement data.
Quite often when it is reasonable to assume that the measured quantities are
affected by many additive accidental errors, resulting from interactions of the
measuring device with the external environment, one may choose the family
{F} to be a family of Gaussianm-dimensional distributions, which is described
by the well-known density function of the form

f(y) = (2π)−m/2 |det Σ|−1/2 exp −1

2

{
(y − µ)> Σ−1(y − µ)

}
.

In this case the mean vector µ ∈ Rm and the covariance matrix Σ ∈ Rm×m are the
parameters which the family depends on.

Repeated measurements

In classical statistics one assumes to be able to perform repeated experiments
and thereby observe sample values yt , t = 1, 2, . . . , yN all coming form experi-
ments governed by the same PDF F . This scheme can equivalently be described
as the observation of a sequence of random variables

{y1, . . . ,yN } ,

where each variable yt has the same PDF F .
Note that the yt’s may in general be correlated. In this respect, a basic ques-

tion for the experimenter is how he/she should conduct the N experiments in
such a way as to obtain the “ maximum information” about the unknown PDF
F . It is clear that in case all measurements were conducted exactly in the same
experimental conditions the measurement errors would be the same and therefore
in the N experiments one would get y1 = y2 = . . . = yN and the experimental
data obtained in the second, third,.. N -th trial would be completely useless.

For this reason one should try to arrange the sequence of experiments in
such a way that the causes of accidental errors should be as different as possi-
ble among each other experiment. One should actually keep in mind that the
probabilistic model one wants to construct (F ) should describe precisely the
probability distribution induced by these accidental errors.
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Assuming that F has a density p(y1, y2, . . . , yN ), this problem can be set up
mathematically as the maximization of the entropy rate of the joint distribution
of the N random variables yt ; t = 1, . . . , N , subject to the constraint that all the
marginals with respect to y1, y2, . . . , yN are the same; i.e.∫
RN−1

p(y1, y2, . . . , yN )dy1dy2 . . . dyk−1dyk+1 . . . dyN = p(yk) , k = 1, 2, . . . , N

where p is the fixed density of F . A result going back to Shannon [82, 83] then
states that the optimal p must be the product

p(y1, y2, . . . , yN ) =

N∏
k=1

p(yk)

that is, the the N random experiments should be independent (and identically
distributed).

Definition 1.1. LetF be a family of PDF’s on Rm and let y1, . . . ,yN bem-dimensional
random variables all having identical PDF F ∈ F , which are mutually independent for
any F in the class F . One says that the (sample values of) y1, . . . ,yN are a random
sample of dimension N drawn from the class F .

In a sense, a random sample provides “maximum information” about the
(unknown) distribution function from which it is drawn. In classical statistics,
it is very common to assume that the observed data form a random sample.
When F is an element of a parametric family {Fθ ; θ ∈ Θ} the joint distribution
of a random sample can be written or any θ ∈ Θ, as:

FNθ (y1, . . . , yN ) = Fθ(y1), . . . , Fθ(yN ) , yt ∈ Rm . (1.1.3)

Techniques for generating measurements which approximate the ideal situation
of a random sample are studied in a branch of statistics called sampling theory
see e.g. [18].

However the situation of main interest for us is when the data are correlated,
that is, the past history at time t, say (y1, . . . , yt) influences the next sample yt+1.
The main object of interest in this course will in fact be the problem of how
to extract from the observed data a mathematical description of this dynamic
“influence”. Classical statistics based on random samples will anyway be a
fundational background for attacking this more general setup.

Definition 1.2. Let (y1, . . . ,yN ) be a sample (not necessarily random) drawn from a
PDF F belonging to a parametric family {Fθ ; θ ∈ Θ}. A statistic, is any (measurable)
function φ, of (y1, . . . ,yN ), say

φ : Rm × · · · × Rm → Rq ,

which does not depend on the parameter θ.

Being a function of random variables, a statistic is itself a random variable,
φ(y1, . . . ,yN ), whose PDF can, at least in simple cases, be computed from the
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joint distribution FNθ of the sample. Some simple examples will be presented
below 1

The sample mean, ȳN ,

ȳN =
1

N

N∑
t=1

yt ; (1.1.4)

is an m-dimensonal statistics. When {yt} is a random sample drawn from an
unknown “true” PDF Fθ0 where Fθ0 ∈ {Fθ ; θ ∈ Θ}, one has E 0ȳN = E 0y,
where E 0 denotes expectation with respect to Fθ0 . By the law of large numbers
(which will be recalled in Chap. ??), the limit

lim
N→∞

1

N

N∑
1

yt

exists with probability one and is equal to E 0y =
∫
Rm y dFθ0(y). In other words,

the limit

lim
N→∞

1

N

N∑
1

yt

exists for “almost all” possible sample sequences {y1, y2, . . ., yt, . . .} and is actu-
ally equal to the mean E 0y of the true distribution Fθ0 . This explains the origin
of the name.

The sample variance, Σ̂
2

N ,

Σ̂
2

N :=
1

N

N∑
t=1

(yt − ȳN ) (yt − ȳN )> (1.1.5)

is a Rm×m+ -valued statistics, in fact a random symmetric positive semidefinite
matrix.

For a random sample, this statistics enjoys similar asymptotic properties of
ȳN . In fact, if {yt} is a random sample drawn from Fθ0 , the limit

lim
N→∞

1

N

N∑
t=1

(yt − ȳN ) (yt − ȳN )>

still exists with probability one, that is for “almost all” possible strings of ob-
servations {yt}, and is equal to E 0(y− E 0y) (y− E 0y)> which is the variance
matrix of y (or of Fθ0 ).

In the following we shall use the notation y ∼ {Fθ} to signify that y is dis-
tributed according to some unknown PDF belonging to the parametric family
{Fθ ; θ ∈ Θ}.

The above are just two typical examples of statistics. We just stress that a
statistic must be a function of the observed data alone and cannot depend on the
parameter θ.

1Often it is of interest to study the behavior of a statistic as a function of N ; in particular for
N → ∞. For this reason a subscript N is often attached to the symbol, e.g. using a notation like
φN .
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Fisher vs Bayes

It is commonly recognized that there are two main philosophical approaches
to statistical inference, the Classical or Frequentist, or Fisherian2 and the Bayesian
approach.

In the Fisherian approach [35] one postulates that the parameter is a deter-
ministic but unknown quantity which by its nature could in principle be de-
termined exactly, ideally by performing an infinite series of experiments. This
viewpoint can be acceptable when θ has an instrumental role in the mathemat-
ical description of the experiment, say the mode or the variance of a PDF, or, as
we shall often see, the coefficients of a difference equation describing the dy-
namics of a random signal. One classically postulates the existence of a “true”
value, θ0, of the unknown parameter indexing a ”true PDF”, Fθ0 , which is the
PDF according to which the data are truly distributed. Clearly, since any model
can only be an approximate description of reality, this postulate may lead to
logical contradictions. Nevertheless it formalizes an ideal situation wherein it
is possible to assess in a simple way certain basic properties of statistical pro-
cedures like unbiasedness, consistency etc. which have an important practical
significance.

On the other hand, when the parameter is interpreted as a mathematical
variable to describe the possible value taken by physical quantities which are
being measured in the experiment, say voltage, mass or length of a physical ob-
ject, the classical approach may become questionable. Due to the unavoidable
interactions with the surrounding environment and due to the limited precision
of any measurement device, a physical quantity is never measurable “exactly”
and it is in fact doubtful whether it should make any sense at all to to assign
to it a definite, precise numerical value. Bayesian statistics can be seen as a for-
malization of this observation. According to the Bayesian viewpoint θ should
always be regarded as the sample value taken on by some random variable
x. The statistical model {Fθ ; θ ∈ Θ} should then be formally converted to a
conditional probability distribution

Fθ(·) ≡ F (· | x = θ) ,

which is always possible provided the map θ → Fθ is a measurable function
of θ, which in practice is always the case. What remains open is the question
of the probabilistic description of x, which is called the a priori distribution of
the parameter. In some cases this distribution may be known, at least approxi-
mately and in this case the Bayesian approach seems to be the natural approach
to follow. Bayesian statistics then proceeds, based on “Bayes rule” to formulate
statistical inference as a branch of Probability theory. Quite often however the
a priori distribution of the parameter is not obvious. There is a century long
debate about what one should do about this. The so-called subjectivistic school
[31] insists that one always has a degree of belief about the possible parameter
values and this belief should always be imposed on the problem formulation.
We shall not dwell into these ramifications of the Bayesian philosophy.

The Bayesian approach requires the computation of the a posteriori proba-
bility of the random parameter x which is just the conditional probability dis-
tribution of x given the observations. In the past, this calculation has been a

2Frm R.A. Fisher one of the founding fathers of statistical theory.
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major stumbling block for the practical application of the Bayesian philosophy
since the explicit calculation of the posterior distribution can be done only for
a very limited class of priors (the so called conjugate prior distributions). Now-
days, ultrafast computers and efficient optimization algorithms permit to apply
the Bayesian philosophy to a much wider class of problems, without worrying
about the explicit calculation of the posterior distribution. This has led to an
explosion of papers on Bayesian techniques in statistics and some of these new
techniques are finding application also in system identification.

In this book we shall deal with inference problems regarding probabilis-
tic models which are to be selected from parametric classes which are often
imposed on the data on the basis of mathematical simplicity or convenience.
These parameters very seldom have a physical interpretation and very seldom
we have a priori informations about the parameter distribution of these mod-
els. For these reasons, in this context we shall normally follow the classical
approach.

On the other hand, many signal estimation problems occurring in data pro-
cessing for telecommunication, automatic control, navigation and tracking and
econometric forecasting (to name just a few), are more realistically modeled and
solved within a Bayesian approach. For this reason we shall also devote a good
part of this book to Bayesian Statistics.

1.2 Classical Theory of Parameter estimation
Consider a sample (y1, . . . ,yN ) drawn from an element of the parametric fam-
ily {Fθ ; θ ∈ Θ}, Θ ⊆ Rp.

Definition 1.3. An estimator of the parameter θ is any statistic φ with values in Θ.
The value taken on by the random variable φ(y1, . . . ,yN ) corresponding to the sample
values (y1, . . . , yN ) of y1, . . . ,yN ,

θ̂ = φ(y1, . . . , yN ) , (1.2.1)

is the estimate of θ, based on the data (y1, . . . , yN ).

One would of course like that the estimates based on the observed data ob-
tained in an hypothetical series of many measurement experiments, should be
“close” to the true parameter value, θ0. One would in particular like that the
average estimate corresponding to a large set of experimental measurements,
say, (y′1, . . . , y

′
N ), (y′′1 , . . . , y

′′
N ), . . ., should be equal to θ0. This condition can be

expressed as
E θ0 φ(y1, . . . ,yN ) = θ0 , (1.2.2)

where E θ0 is the expectation operator with respect to the true PDF of the obser-
vations, FNθ0 . However, since θ0 is unknown, this condition cannot be verified.
A (quite restrictive) way out is to require that (1.2.2) should hold for all possible
values of the parameter, which leads to the following notion,

Definition 1.4. An estimator φ is said to be (uniformly) unbiased if

E θ φ(y1, . . . ,yN ) = θ , ∀θ ∈ Θ . (1.2.3)
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A desirable class of estimators to consider seems at first sight to be the class
of (uniformly) unbiased estimators. However for certain classes of parametric
PDF’s unbiased estimators may not even exist. Below are some conterexamples.

Example 1.1. Let y be a scalar random variable having an exponential density
with parameter p > 0, that is, let

P{y ≤ a } =

∫ a

0

pe−ptdt .

Assume φ(y) is an unbiased estimator of some function f(p) of the parameter
p, then it must satisfy the unbiasedness condition, that is,

E pφ(y) =

∫ +∞

0

pφ(t)e−ptdt = f(p)

for all p > 0. But this equation can have a solution only if f(p) is the Laplace
transform of φ. There are plenty of functions which are not (real) holomorphic
and therefore cannot be Laplace transforms. For example f(p) = pwould imply
that the Laplace transform of φ should be 1, that is φ should be a delta distribu-
tion at t = 0 which is not a random variable (not a measurable function).

Example 1.2. Here is another counterexample. Let y be a scalar random vari-
able having a binomial distribution with parameter p, that is, for some natural
number n, let

P{y = k } =

(
n

k

)
pkqn−k , k = 0, 1, . . . , n .

Assume φ(y) is an unbiased estimator of some function f(p) of the parameter
p, then it must satisfy the unbiasedness equation, that is,

E pφ(y) =

n∑
k=0

φ(k)

(
n

k

)
pkqn−k = f(p)

for all 0 < p < 1. But in general this equation has no solution φ(k). Take for
example f(p) = 1/p. This function is unbounded for p → 0+ while the sum on
the left must tend to zero.

More practical examples are discussed in the following.

Example 1.3. Suppose y1, . . . ,yN is a random sample from a Gaussian density
with unknown mean and known variance; that is yk ∼ N(θ, σ2) ; k = 1, 2, . . . , N
and consider the sample mean ȳN as an estimator of θ. This is clearly an unbi-
ased estimator since

E θyN = θ ; for all θ ∈ R .

Suppose now that the variance is the unknown parameter and let us denote it
by θ2. We want to see if the sample variance σ̂2

N defined in (1.1.5) is also an
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unbiased estimator. To this end, consider the identity

N∑
k=1

(yk − µ)2 =

N∑
k=1

[ (yk − ȳN ) + (ȳN − µ) ]2 =

N∑
k=1

(yk − ȳN )2 + 2

N∑
k=1

(yk − ȳN )(ȳN − µ) +N(ȳN − µ)2 =

N∑
k=1

(yk − ȳN )2 +N(ȳN − µ)2

which holds since the sum of the deviations from the sample mean is zero.
Dividing by N we find

1

N

N∑
k=1

(yk − µ)2 = σ̂2
N + (ȳN − µ)2

and taking expectations on both sides we get θ2 = E θ2 σ̂
2
N +

θ2

N
so that,

E θ2 σ̂
2
N =

N − 1

N
θ2 (1.2.4)

which shows that the sample variance is not an unbiased estimator. We can how-
ever easily modify the expression to

N

N − 1
σ̂2
N =

1

N − 1

N∑
k=1

(yk − ȳN )2 (1.2.5)

and turn it into an unbiased estimator. The discussion should clarify the origin
of the mysterious division by N − 1 which often appears without explanation
in the formulas of experimental physics.

Another rather natural request is that a good estimator should provide es-
timates φ(y1, . . . , yN ) which are tightly clustered about the their average value.
In other words φ should have a small variance. Naturally for this condition
to make sense one should a priori restrict the class of admissible estimators.
For a constant (deterministic) estimator, not depending on the data, would triv-
ially have zero variance but would surely be a useless estimator. The notion
introduced in the definition below depends on the specification of a class C of
admissible estimators.

Definition 1.5. The estimator φ has (uniformly) minimum variance in the class C
if the variance

var θ(φ) := E θ(φ− E θ φ)> (φ− E θ φ) (1.2.6)

is the smallest among all estimators belonging to the class C, that is

var θ(φ) ≤ var θ(ψ) , ∀ψ ∈ C , (1.2.7)

for all θ ∈ Θ.
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It is obvious that C cannot be the class of all functions of the data since a con-
stant deterministic function will have zero variance but obviously be a totally
useless estimator. Below we will see that if C is taken to be the class of all un-
biased estimators of θ, no such degeneracy is possible. This follows from a
celebrated inequality, called the Cramèr-Rao inequality.

The bias-variance tradeoff

We should in any case remember that an optimal estimator should be as close
as possible to the (unknown) true value θ0 of the parameter. If we denote by
E 0 the expectation with respect to the true probability distribution Fθ0 then a
natural optimality criterion measuring this distance should be the mean square
error (MSE) of an estimator, defined as E 0‖φ − θ0‖2. This is a natural measure
of closedness of an estimator φ to the true parameter value even if, of course,
the expectation is not computable in practice. Nevertheless the considerations
which follow have a great practical significance.

Let µ(θ) := E θ[φ] be the mean value of the estimator φ. We have

E θ‖φ− θ‖2 = E θ‖(φ− µ(θ)) + (µ(θ)− θ)‖2 =

= E θ‖φ− µ(θ) ‖2 + E θ‖µ(θ)− θ‖2 =

= var θ(φ) + bias(θ)2 (1.2.8)

where var θ(φ) is the scalar variance of the random variable φ with respect to
any probability distribution of the family {Fθ}. Naturally, the relation holds in
particular for the true PDF, i.e. for θ = θ0 whereby

MSE(φ) = var 0(φ) + bias(θ0)2

This means that the mean square error is composed of two terms. In this sense,
unbiasedness and minimum variance taken separately are only partial condi-
tions which alone do not imply optimality of an estimator. The two terms can
often be controlled separately and it may sometimes be better to choose a biased
estimator having a reduced variance rather than insisting on unbiasedness.

The Cramèr-Rao Inequality

Let x be a r-dimensional random vector with x ∼ {Fθ ; θ ∈ Θ} (x could in
particular be a random sample as (y1, . . . ,yN ), but the Cramèr-Rao inequality
does not require independence of the components of x). We shall assume that
the following properties hold;

A.1) Fθ admits a density p(·, θ) which is twice differentiable with respect to θ.

A.2) For every statistics φ with E θφ <∞,

∂

∂θi

∫
Rr φ(x) p(x, θ) dx =

∫
Rr φ(x) ∂

∂θi
p(x, θ) dx

for i = 1, . . . , p and fo revery θ ∈ Θ. In particular,

∂

∂θi

∫
Rr p(x, θ) dx =

∫
Rr

∂
∂θi

p(x, θ) dx.
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A.3)
∂2

∂θi ∂θj

∫
Rr p(x, θ) dx =

∫
Rr

∂2

∂θi ∂θj
p(x, θ) dx

for all i, j = 1, . . . , p and fo revery θ ∈ Θ.

Definition 1.6. The Fisher Information Matrix I(θ), of the parametric family of
densities {pθ} is defined as

I(θ) :=

[
E θ

(
∂ log p(x, θ)

∂θi
· ∂ log p(x, θ)

∂θj

)]
i,j=1,...,p

(1.2.9)

which can also be written as

I(θ) =

[
−E θ

∂2 log p(x, θ)

∂θi ∂θj

]
i,j=1,...,p

. (1.2.10)

That (1.2.10) and (1.2.9) are equivalent follows by differentiating the identity∫
p(x, θ) dx = 1 (constant with respect to θ) termwise with respect to θ getting∫

Rr

∂p(x, θ)

∂θi
dx = 0 , i = 1, . . . , p , (1.2.11)

∫
Rr

∂2 p(x, θ)

∂θi ∂θj
dx = 0 , i, j = 1, . . . , p . (1.2.12)

Equation (1.2.10) then follows from

−∂
2 log p

∂θi ∂θj
=
∂ log p

∂θi

∂ log p

∂θj
− 1

p

∂2 p

∂θi ∂θj
,

in force of (1.2.12).
In order to understand the meaning of I(θ) we shall bring in the p-dimensional

random vector of the sensitivities of p(x, θ) with respect to the parameter θ 3,

zθ :=

[
∂ log p(x, θ)

∂θi

]
i=1,...,p

(1.2.13)

and note that
I(θ) = E θ zθ z>θ ≥ 0 . (1.2.14)

where ≥ 0 means that the matrix on the left is positive semidefinite. From
(1.2.11) it easily follows that E θ

∂ log p
∂θi

= 0 for all i’s and so

E θ zθ = 0 (1.2.15)

which implies that I(θ) is actually the variance of the sensitivity zθ.

Theorem 1.1 (The Cramèr-Rao Inequality). Let g be a differentiable function from
Θ to Rq and φ be an unbiased estimator of g(θ). Let V (θ) be the variance matrix of φ
and G(θ) the Jacobian matrix of g,

G(θ) =

[
∂gi(θ)

∂θj

]
i = 1, . . . , q
j = 1, . . . , p

. (1.2.16)

3This is often called score, an horrendous denomination which we shall avoid in this book.
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Then, if the Fisher matrix I(θ) is invertible, one has

V (θ)−G(θ) I−1(θ) G(θ)> ≥ 0 , (1.2.17)

where ≥ 0 means that the matrix on the left is positive semidefinite.

Proof. The proof is based on the classical formula for the error variance of the
linear Bayesian estimator φ̂(x) := E θ [φ(x) | zθ ] of the vector φ(x), given zθ,
that is

Var θ{φ(x)−φ̂(x)} = Var θ{φ(x)}−Cov θ{φ(x), zθ}Var θ{zθ}−1 Cov θ{φ(x), zθ}> .
(1.2.18)

See for example (5.9.4) or [70, p. 27].
Since φ(x) is an unbiased estimator of g(θ); i.e.∫

Rr
φ(x) p(x, θ) dx = g(θ) , ∀θ ∈ Θ ,

by applying property A.3) one gets

E θ φ(x) zjθ =

∫
Rr
φ(x)

∂p(x, θ)

∂θj
· 1

p(x, θ)
· p(x, θ) dx =

∂g(θ)

∂θj
,

j = 1, . . . , p ,

and hence ∂g(θ)
∂θj

is the j-th column of the covariance matrix of φ and zθ,

E θ φ(x) z>θ = E θ φ(x) [z1
θ, . . . , z

p
θ] ,

that is,
E θ φ z>θ = G(θ) . (1.2.19)

The inequality follows since the variance of the random vector φ(x)−G(θ) I(θ)−1 zθ
must be (at least) positive semidefinite.

Remarks

When φ is an unbiased estimator of θ (that is if g is the identity map) one has
G(θ) = I (p× p) and (1.2.17) becomes

V (θ)− I(θ)−1 ≥ 0 . (1.2.20)

Since the scalar variance var θ(φ) =
∑p

1 E θ(φi − θi)2 is the trace of V (θ) and

Tr V (θ)− tr I−1(θ) = Tr
[
V (θ)− I−1(θ)

]
≥ 0

(the trace is the sum of the eigenvectors and the eigenvectors of a positive
semidefinite matrix are all non-negative) it follows that the scalar variance of
any unbiased estimator of the parameter θ cannot be less than the positive number
Tr I(θ)−1,

var θ(φ) ≥ Tr
[
I(θ)−1

]
, ∀θ . (1.2.21)
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This lower bound only depends on the probabilistic model class {p(·, θ) ; θ ∈ Θ}
and is independent of which estimation criterion is used to construct φ.

One should however be aware of the fact that the Cramèr-Rao bound is
just one possible bound for the variance which is not necessarily the tightest
possible bound.There are in fact unbiased estimators whose variance is strictly
larger than Tr [I(θ)−1] but nevertheless have minimum variance.

Example 1.4. Let y ∼ N (θ, σ2) be a scalar random variable with a known vari-
ance σ2. Since

log p(y, θ) = C − 1

2

(y − θ)2

σ2
,

d

dθ
log p(y, θ) =

y − θ
σ2

we have

i(θ) = E θ

(
y − θ
σ2

)2

=
1

σ4
· σ2 = 1/σ2 .

Hence the variance of any unbiased estimator of θ based on a sample of size
one, cannot be smaller that the variance of y. Assume now we have a random
sample of size N from the same Gaussian distribution. Now we have a random
vector x = (y1, . . . ,yN ) of dimension r = N and

p(y1, . . . , yN , θ) =

N∏
t=1

p(yt, θ)

and hence

log p(y1, . . . , yN , θ) = N × Const− 1

2

N∑
t=1

(yt − θ)2

σ2
,

d log p

dθ
=

N∑
t=1

yt − θ
σ2

.

Since the random variables y1, . . . ,yN are independent, it follows that,

I(θ) = E θ

[
d log p(y, θ)

dθ

]2

=
1

σ4
·N σ2 =

N

σ2
.

Let us consider the sample mean

ȳN =
1

N

N∑
t=1

yt

which has distribution N (θ, σ2/N). Since ȳN is an unbiased estimator of θ
with variance σ2/N , exactly equal to the inverse of the Fisher information, we
conclude that the sample mean is the best possible estimator of θ (of course
if the sample distribution is Gaussian). One says that an unbiased estimator
whose variance is exactly equal to the inverse of the Fisher information matrix,
V (θ) = I(θ)−1 is efficient. ♦
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Example 1.5. Let y ∼ N (µ, θ2), where µ is known and (y1, . . . ,yN ) is a random
sample from N (µ, θ2). Consider the unbiased estimator of θ2,

s2
N :=

Nσ̂2
N

N − 1
=

1

N − 1

N∑
t=1

(yt − ȳ)2 ;

in Appendix A we shall see that Ns2N
θ2 has a chi squared distribution with N − 1

degrees of freedom, which has expectation N − 1 and variance 2(N − 1). It
follows that s̄2 hasf variance 2θ4

N−1 . The Cramèr-Rao bound in this case is 2θ4/N

and hence the variance of s2
N is strictly larger than I(θ2)−1. One can however

show [73] that an unbiased estimator of θ2 cannot have a smaller variance than
that of s2

N . From this example it follows that I(θ)−1 is not the best possible
lower bound. ♦

Interpretation of I(θ)

In this section we shall define a measure of deviation of two random variables
x1 ∼ p(·, θ1) and x2 ∼ p(·, θ2) described by the same parametric family of dis-
tributions. We shall use this measure to quantify in rather precise terms, the
ability of observations extracted from the model, to discriminate between differ-
ent values of the parameter θ.

Definition 1.7. Let f and p be probability densities such that p(x) = 0 ⇒ f(x) = 0.
The Kullback-Leibler pseudo-distance between f and p, is

K(f, p) :=

∫
Rr

[ log f − log p] f(x) dx =

∫
Rr

log f/p f(x) dx = E f log f/p ;

(1.2.22)

It is immediate that K(f, p) = 0 if and only if f = p. For proving positivity
we need to review one result of convex analysis.

Jensen’s Inequality

Theorem 1.2. For a real convex function f , arbitrary real numbers x1, . . . , xn in its
domain and positive weights a1, . . . , an, it holds that

f
(∑

akxk

)
≤
∑

akf(xk), .

For a real concave function f the inequality is reversed.

The logarithm is concave so for ak and xk positive

log
(∑

akxk

)
≥
∑

ak log xk

passing to the limit this inequality holds for integrals in place of sums. Since
log is a concave function, from the inequality above we get :∫

log g(x) dµ ≤ log{
∫
g(x) dµ}



16 Chapter 1. CLASSICAL STATISTICAL INFERENCE

which holds for g(x) > 0 and an arbitrary probability measure µ. Apply then
the inequality to the negative Kullback-Leibler distance we get

−K(f, p) =

∫
Rr

log
p

f
fdx ≤ log{

∫
Rr

p

f
f dx} = log{1} = 0

which proves that that K(f, p) ≥ 0.
For this reason K(f, p) can be interpreted as a measure of deviation of the

probability density p from a “reference” density f . Note in fact that K(f, p) is
not symmetric; i.e. K(p, f) 6= K(f, p) and does not satisfy the triangle inequal-
ity. In Information Theory K(f, p) is called divergence and is denoted by the
symbol D(f‖p) (here p is the approximation of f ). The article in Wikipedia on
Kullback-Leibler divergence provides a rather complete overview and a bibliogra-
phy.

Let us assume that the family p(·, θ) satisfies the same regularity assump-
tions listed in Section 1.2 and let f ≡ p(·, θ0) and p ≡ p(·, θ), θ0, θ ∈ Θ. Denoting
K(p(·, θ0), p(·, θ)) by K(θ0, θ) and letting θ = θ0 + ∆θ, one has

K(θ0, θ) = K(θ0, θ0) +
∂K

∂θ

∣∣∣∣
θ0

∆θ +
1

2
∆θ′

[
∂2K

∂θi ∂θj

]
θ0

∆θ + o(‖∆θ‖2) .

Since K(θ0, θ0) = 0 and

∂K

∂θi
= −

∫
Rr
p(x, θ0)

∂ log p(x, θ)

∂θi
dx ,

it follows that
∂K

∂θi

∣∣∣∣
θ0

= −
∫
Rr

[
∂p(x, θ)

∂θi

]
θ0

dx = 0

for all i = 1, . . . , p.
In the same way one can verify that

∂2K

∂θi ∂θj

∣∣∣∣
θ0

= −
∫
Rr
p(x, θ0)

[
∂2 log p(x, θ)

∂θi ∂θj

]
θ0

dx = −E θ0

[
∂2 log p(x, θ)

∂θi ∂θj

]
θ0

and hence the first member of this equality is the (i, j)-th element of the Fisher
matrix I(θ0). Hence, for small variation of the parameter θ, it holds

K(θ0, θ) ∼=
1

2
∆θ> I(θ0) ∆θ ; (1.2.23)

which says that, for small deviations ∆θ of the parameter from the reference
value θ0, the Kullback-Leibler distance between p(·, θ) and p(·, θ0) is a quadratic
form whose weighting matrix is the Fisher matrix I(θ0). In the next section we
will see a remarkable consequence of this fact.

Identifiability

There are situations in which the observations are structurally incapable of
providing enough information to uniquely locate the value of the parameter
θ which has generated them. A rather trivial example could be the follow-
ing. Let θ be a two-dimensional parameter [θ1, θ2]>, ranging on Θ = R2 and
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let Fθ depend on (θ1, θ2) only through their product θ1θ2; for example Fθ ∼
N (θ1θ2, σ

2). It is evident that, for any fixed value θ̄ = (θ̄1, θ̄2)>, the parameters
θ̂ =

(
αθ̄1,

1
α θ̄2

)>, α 6= 0, define the same PDF; that is Fθ̄(x) = Fθ̂(x), ∀x. Hence
a sample observation extracted from this family, irrespective of its size N , will
never be able to distinguish between θ̄ and θ̂. In this section we shall study this
phenomenon in some detail.

Definition 1.8. Two parameter values θ> and θ
′′

in Θ are said to be indistinguishable
if Fθ1(x) = Fθ2(x), ∀x ∈ Rr. Notation: θ> ' θ′′ .

Evidently ' is an equivalence relation in Θ; in fact it is symmetric, reflexive
and transitive. Hence it induces a partition of Θ in equivalence classes [θ ] :=
{θ′ | θ′ ' θ} such that Fθ′ = Fθ′′ if and only if θ′ and θ′′ belong to the same class
[θ ]. The parameters in the same class are said to be indistinguishable.

Definition 1.9. The family of PDF’s {Fθ ; θ ∈ Θ} (sometimes one says improperly
that the parameter θ ∈ Θ) is globally identifiable if θ′ ' θ′′, or, equivalently,
Fθ′ = Fθ′′ , implies that θ′ = θ′′ for all θ′, θ′′ in Θ.

Hence a family of PDF’s {Fθ ; θ ∈ Θ} (or the parameter θ), is globally iden-
tifiable if and only if the equivalence classes under indistinguishability reduce
to singletons in Θ.

For many applications global identifiability is too restrictive. A weaker con-
dition is the following local notion.

Definition 1.10. The family of PDF’s {Fθ ; θ ∈ Θ} is locally identifiable about θ0

if there exists an open neighborhood of θ0 which does not contain parameter values θ
which are indistinguishable from θ0 (of course, except θ0 itself).

In classical parametric statistics the role of this concept is often overlooked.
Identifiability is however an important structural condition of parametric mod-
els, especially in modern applications to Identification of dynamic models in
Engineering and Econometrics, where the models have often a rather complex
parametric structure. Identifiability of linear multi-input multi-output linear
systems and the search for identifiable parametrizations thereof has been a ma-
jor research issue in the past [49, 72, 76, 17]. Identifiability of nonlinear models
is still a very active area of research.

There is a remarkable relation between (local) identifiability and nonsingu-
larity of the Fisher matrix. This relation is the content of the following Theorem.

Theorem 1.3 (Rothenberg). Let the parametric model {pθ ; θ ∈ Θ} satisfy the as-
sumptions A.1, A.2, A.3 of Section 1.2. Then θ0 is locally identifiable if and only if
I(θ0) is non-singular.

Proof. [Sketch] The proof is based on the properties of the Kullback-Leibler
(pseudo)-metrics which guarantees that K(θ0, θ) = 0 ⇔ p(·, θ0) = p(·, θ). For
small deviations ∆θ of the parameter θ about the reference value θ0, the Kullback-
Leibler distance between the two densities p(·, θ) and p(·, θ0) is the quadratic
form 1

2 ∆θ> I(θ0) ∆θ. It follows that in any small enough neighborhhod of θ0



18 Chapter 1. CLASSICAL STATISTICAL INFERENCE

one can have parameter values θ 6= θ0 for which p(·, θ) = p(·, θ0) if and only if
I(θ0) is singular.

In the previous trivial example one has

I(θ) = E θ


(x− θ1θ2)2

σ4
θ2

2

(x− θ1θ2)2

σ4
θ1θ2

(x− θ1θ2)2

σ4
θ1θ2

(x− θ1θ2)2

σ4
θ2

1

 =
1

σ2

[
θ2

2 θ1θ2

θ1θ2 θ2
1

]
.

one sees that det I(θ) = 0, ∀θ ∈ R2 and hence the model is never locally identifi-
able about an arbitrary parameter value θ. In fact, the model is globally uniden-
tifiable as all indistinguishability classes contain infinitely many parameter val-
ues.

Very often the parametric models used to describe the observations only
model the so-called second order statistics; that is the mean and variance of the
underlying distribution. This is indeed a very common situation in dynamic
problems where the observed sample is often a correlated time-series. In this
case it is quite common to assume Gaussian distributions even if there is not
much evidence for Gaussianity anyway. This assumption can often be dis-
pensed with as it is well-known that the mean and variance identify a Gaussian
distribution uniquely. Many concepts in statistics have a wide-sense or second-
order version which does not involve probability distributions but second order
models consisting of a parametric description of mean and variance. In this sense
one can define concepts of second-order identifiability either global or local, just
referring to the second order statistics instead of the complete probability dis-
tribution.

1.3 Maximum Likelihood
Let x be a random vector taking values in Rr (not necessarily a random sample)
distributed according to a parametric family of densities {p(·, θ) ; θ ∈ Θ} and
let x0 be an observed value of x.

Definition 1.11. The Likelihood function of the observation x0 is the function
L(x0, ·) : Θ→ R+ (the nonnegative reals) defined by

L(x0, θ) := p(x0, θ) . (1.3.1)

The “Maximum Likelihood principle”, introduced by Gauss in 1856 [37] and
successively popularized by R.A. Fisher, suggests to assume as estimate of θ,
corresponding to the observation x0, the parameter value θ̂ ∈ Θ which maxi-
mizes L(x0, ·)

L(x0, θ̂) = max
θ∈Θ

L(x0, θ) ;

implicitly assuming that a maximum exists. The parameter value θ̂ renders “a
posteriori” the observation x0 the most probable sample according to the family
{p(·, θ) ; θ ∈ Θ}.

Imagine to run many hypothetical experiments each generating a different
sample value x0. By following the Maximum Likelihood principle one would
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generate a corresponding family of maximizers θ̂ each depending on the par-
ticular observation. Hence θ̂ can be also understood as a map x0 7→ θ̂ from the
sample space of the experiment to the parameter space. This map is called the
maximum Likelihood (M.L.) estimator of the parameter θ. This estimator, θ̂(x), is a
function of the sample and hence is itself a random variable which can in prin-
ciple be computed by maximizing L(x, ·) with respect to θ (assuming of course
that a maximum exists ∀x0 ∈ Rr) that is

L
(
x, θ̂(x)

)
= max

θ∈Θ
p(x, θ) . (1.3.2)

considering x as a free parameter.
To carry on the calculations it is often convenient to maximize the logarithm

of L(x, ·) (since log is a monotone function of L it is maximized for the same
values of θ). The resulting function of θ

`(x, ·) = log L(x, ·) (1.3.3)

is called the log-likelihood function. Sometimes, when p(x, ·) is differentiable with
respect to θ, θ̂(x) can be computed explicitly by solving a system of p equations

∂`

∂θk
(x, θ) = 0 , k = 1, . . . , p , (1.3.4)

and then checking which solutions correspond to a maximum of `(x, ·). In gen-
eral however one can only solve (1.3.4) numerically and be content with finding
a single estimate θ̂, given x0.

ML for a Gaussian random sample

Let x = (y1, . . . ,yN ) be a random sample of size N of scalar random variables
extracted from the Gaussian distributionN (θ1, θ

2
2). The log-likelihood function

corresponding to the observed sample x = (y1, . . . , yN ) is

`(x, θ) = log

{
N∏
i=1

1√
2πθ2

2

exp−1

2

(yi − θ1)2

θ2
2

}

= −N
2

log 2π − N

2
log θ2

2 −
1

2

N∑
1

(yi − θ1)2

θ2
2

.

The necessary conditions (1.3.4) provide the equations

∂`

∂θ1
=

1

θ2
2

(
N∑
1

yi −Nθ1

)
= 0 ,

∂`

∂θ2
2

= − N

2θ2
2

+
1

2θ4
2

N∑
1

(yi − θ1)2 = 0

the first of which is depending only on θ1 which yields

θ̂1 =
1

N

N∑
1

yi = ȳN . (1.3.5)
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Substituting this expression in the second equations we easily find

θ̂2
2 =

1

N

N∑
1

(yi − ȳN )2 = σ̂2
N . (1.3.6)

that is, the maximum likelihood estimator of θ2
2 is the sample variance. It is

immediate to check that the expressions (1.3.5) and (1.3.6) provide an absolute
maximum of `(x, ·). Summarizing:

Proposition 1.1 (Gauss). The M.L. estimators of the mean and variance parameters
of the Gaussian distribution N (θ1, θ

2
2) based on a random sample (y1, . . . ,yN ) are the

sample mean and the sample variance.

As we shall see, the result holds unchanged in the multivariable case. Next
we give a few simple examples.

Example 1.6. The i.i.d. sample observations {y1, . . . ,yN} have a common
Gaussian distribution N (θ, σ2) where the unknown mean is nonnegative that
is Θ = {0 ≤ θ ≤ +∞}. Compute its maximum likelihood estimator.
Solution: Recalling that by summing and subtracting ȳN inside the square you
get

N∑
k=1

(yk − θ)2 =

N∑
k=1

(yk − ȳN )2 +N(ȳN − θ)2

the maximization of the likelihood reduces to solving the constrained mini-
mization

min
θ∈Θ

(ȳN − θ)2

which for ȳN ≥ 0 is solved by θ̂ = ȳN and in case ȳN < 0 is solved by θ̂ = 0.
Therefore θ̂ = max{0, ȳN}.

Example 1.7. Suppose you have a random sample {y1, y2, . . . ,yN } drawn
from a unilateral exponential distribution:

p(y, θ) =

{
(1/θ) exp(−y/θ) y ≥ 0
0 y < 0

Compute the maximum likelihood estimator of the parameter θ. Is this an un-
biased estimator?

Solution: Taking the derivative of the log-likelihood function

`(θ, yN ) = −N log θ − 1

θ

N∑
t=1

yt

we find it is minimized by θ̂ = ȳN (the sample mean). To check unbiasedness
let us first compute the expected value

Ey =

∫ +∞

0

y

θ
exp(−y/θ) dy = θ
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so that E ȳN =
1

N
Nθ = θ. The estimator is unbiased.

Example 1.8. Compute the maximum likelihood estimator of the parameter θ
from a random sample y = {y1, y2, . . . ,yN } drawn from the uniform proba-
bility density

p(x ; θ) =
1

θ
I[ 0, θ ](x) , θ > 0

where IA(x) is the indicator function of the set A, equal to 1 if x ∈ A and zero
otherwise.
Solution: To maximize the likelihood

LN (y, θ) =
1

(θ)N

N∏
k=1

I[ 0, θ ](yk)

we need to make θ as small as possible with the constraint to keep all indicator
functions I[ 0, θ ](yk) equal to one; that is, we need to have yk ≤ θ for all k =
1, 2, . . . , N . This constraint will be satisfied if and only if yMax := maxk {yk} is
smaller or equal to θ. Therefore the minimizer

min
θ≥0
{ θ ≥ yMax }

is obviously θ̂(y) = yMax. Note that this statistic depends on all variables of
the sample. Draw a picture of the likelihood function LN (y, ·) (obviously as a
function of θ).

ML estimators for the multivariate Gaussian density

Theorem 1.4. Let y be an i.i.d. sample of N random vectors from a Gaussian distri-
bution N (µ,Σ), where µ ∈ Rp and Σ ∈ Rp×p are the unknown mean and variance
matrix. Assume Σ > 0 and that N is large enough so that the (matrix-valued) sam-
ple variance Σ̂N is positive definite, then `N (y, µ,Σ) is maximized by the estimator
φ = [ ȳN , Σ̂N ] where ȳN and Σ̂N are the sample mean and the sample variance ma-
trix.

Proof. We shall use the identity

N∑
k=1

(yk−µ)>Σ−1(yk−µ) =

N∑
k=1

(yk−ȳN )>Σ−1(yk−ȳN )+

N∑
k=1

(ȳN−µ)>Σ−1(ȳN−µ)

which holds since 2
∑N
k=1(yk − ȳN )> Σ−1(ȳN − µ) = 0. Moreover

N∑
k=1

(yk−ȳN )>Σ−1(yk−ȳN ) = Trace {
N∑
k=1

(yk−ȳN )(yk−ȳN )>Σ−1} = N Trace Σ̂NΣ−1

so that the negative log-likelihhod can be written

−`N (y, µ,Σ) =
N

2
{log det Σ + Trace Σ̂NΣ−1}+

N∑
k=1

(ȳN − µ)>Σ−1(ȳN − µ) .

(1.3.7)
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The last term is obviously minimized by taking µ = ȳN irrespective of the value
of Σ > 0. We are going to show the the first term is minimized with respect to
Σ for Σ = Σ̂N . To this end we need the following lemma:

Lemma 1.1. Let Y be a p× p symmetric positive definite matrix, then

Trace Y − log detY ≥ p (1.3.8)

Proof. In fact, from the spectral decomposition Y = U∗ diag {λ1, . . . , λp}U with
UU∗ = Ip the inequality (1.3.8) is equivalent to

p∑
k=1

(λk − log λk − 1) ≥ 0

which is true since for any positive number x it holds that log x ≤ x− 1.

We shall use the lemma to prove that for all positive definite Σ’s we have

log det Σ + Trace Σ̂NΣ−1 ≥ log det Σ̂N + Trace Ip

which would prove the minimal property of Σ̂N . In fact after setting Y :=

Σ̂NΣ−1 the above inequality can be rewritten exactly as in (1.3.8).

Properties of ML estimators

A ML estimator is not necessarily unbiased. For example the ML estimator of
θ2

2 in example 1.3 is biased. This is a consequence of the formula

Nσ̂2
N (y) =

N∑
1

(yi − θ1)2 −N (ȳN − θ1)2 . (1.3.9)

which follows from the identity

N∑
1

(yi − θ1)2 =

N∑
1

(yi − ȳN + ȳN − θ1)2

=

N∑
1

(yi − ȳN )2 + 2

N∑
1

(yi − ȳN ) (ȳN − θ1) +N(ȳN − θ1)2

where the term
∑N

1 (yi − ȳN ) (sum of the deviations of the sample values from
the sample mean), must clearly be zero.
Computing the expectation E θ of both members in (1.3.9) and recalling that
ȳN ∼ N (θ1, θ

2
2/N) one finds

E θ {Nσ̂2
N} = (N − 1)θ2

2 ,

and hence
E θ σ̂

2
N = θ2

2

N − 1

N
(1.3.10)
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which shows that σ̂2
N is biased with a systematic error equal to θ2

2/N .
Biasedness of ML estimators is a consequence of the so-called invariance prin-

ciple which is stated below.

Theorem 1.5 (Invariance principle). Let g be a function from Θ to some multidi-
mensional interval Γ ⊂ Rk, (k finite). If θ̂(x) is the M.L. estimator of θ, then g(θ̂(x))
is the M.L. estimator of g(θ).

Proof. We give a simplified proof assuming that g is invertible. A complete
proof can be found in the original article [113]. Let g−1 be the inverse of g and
define

˜̀(x, γ) = `
(
x, g−1(γ)

)
= `(x, θ)

∣∣∣
θ=g−1(γ)

(1.3.11)

which is just a re-parametrization of the likelihood `(x, ·) of x.
It is now obvious that ˜̀(x, γ) has a maximum in γ = γ̂(x) if and only if `(x, θ)

has a maximum (of the same value) in θ = θ̂(x) and the two maximizing points
are related by the transformation θ = g−1(γ), that is

θ̂(x) = g−1
(
γ̂(x)

)
.

It follows that the M.L. estimate of γ is γ̂(x) = g(θ̂(x)).

It is then clear that if θ̂ is an unbiased estimator of θ, g(θ̂) cannot in general
also be an unbiased estimator of g(θ) since the operations E θ and g(·) do not
commute; i.e.

E θ g
(
θ̂(x)

)
6= g

(
E θ θ̂(x)

)
= g(θ) ,

unless g is linear.

Remarks 1.1. The invariance principle comes out handy when one needs to
evaluate the statistical properties of parameter estimates, for example when the
pdf of estimators is of interest. In fact even if an estimator of a parameter θ,
say θ̂(y1, . . . ,yN ), is guaranteed to produce values which are close (in a prob-
abilistic sense) to the true parameter value θ0, since θ̂ is obviously a random
variable, the “closedness” to the true value can in practice only be evaluated by
means of statistical parameters such as the pdf or the variance of the estimate.
Unfortunately the variance of θ̂ is very often itself a function of the unknown
parameter θ, say σ2(θ), where the “true ” value of θ is still unknown. This fact
may at the outset render the expressions of the variance provided by the statis-
tical theory, practically useless.
When however the estimate θ̂ is maximum likelihood, a maximum likelihood
estimate of the variance say σ̂2(θ) is directly provided by the invariance princi-
ple as

σ̂2(θ) = σ2(θ̂) .

For example, let y ∼ N (µ, θ2
2) and let θ̂2

2(y1, . . . ,yN ) be the M.L. estimator of
the parameter θ2

2 based on a sample of size N . As it will be shown in the next
section, the variance of θ̂2

2 , is

s2
N := var {θ̂2

2 } = 2(θ2
2)2N − 1

N2
, (1.3.12)
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which clearly still depends on θ2
2 . This formula, as such, does not look very

useful as it depends on the unknown parameter θ2
2 . Using the invariance prin-

ciple we can however provide an explicit expression for the ML estimate of the
variance s2

N , namely

ŝ2
N = 2(θ̂2

2)2N − 1

N2
. (1.3.13)

Example 1.9 (Cramèr).
In many applications the variables are by nature nonnegative as for exam-

ple concentrations, densities, prices, returns, etc. and cannot be modeled by
Gaussian distributions. In these cases one often takes logarithms and assumes
Gaussianity. Of course at the end of the calculations with Gaussian distribu-
tions one needs to go back to the original variables and compute their means,
variances etc. The following definition is the key to operate in these situations.

A scalar nonnegative random variable y has a log normal distribution if log y ∼
N (µ, σ2) or, more generally, if for some a ≥ 0, log(y−a) ∼ N (µ, σ2). Obviously
in this last case it should be that y ≥ a (w.p.1). Several examples of log-normal
variables can be found in the classical book by Cramèr [22, pag. 219–220]). We
just note that

Proposition 1.2. The product and power with deterministic exponent of log-normal
random variables is still log-normal.

Let for example x, y, z be log-normal scalar random variables. Then the
random variable w := xαyβzγ where α, β, γ are real numbers is still log-
normal. In fact the logarithm of w is a linear combination of the logarithms
of the components and therefore has still a Gaussian distribution.

It is relatively easy to check that the density of a log-normal random variable
has the expression

p(y) =
1

2π σ(y − a)
exp− 1

2σ2
[log (y − a)− µ]

2
. (1.3.14)

Suppose we want to find the ML estimate of the parameters of a log-normally
distributed random variable y (with a = 0) from an i.i.d. sample of size N .
One may take the logarithms of the random sample say, x1 = log y1, . . . ,xN =
log yN which are Gaussian and from these compute the ML estimates of the pa-
rameters θ1 and θ2

2 of the common (Gaussian) distribution of log y. Let ξ and λ2

be the mean and variance of the corresponding log-normal distribution. Their
expressions in function of the Gaussian parameters are given by the formulae

ξ = exp

(
θ1 +

θ2
2

2

)
,

λ2 = ξ2
(
eθ

2
2 − 1

)
, (1.3.15)

which can be derived from the characteristic function E {etx}with x ∼ N (θ1, θ
2
2) .

Let

θ̂1(x1, . . . , xN ) = x̄ =
1

N

N∑
i=1

xi =
1

N

N∑
i=1

log yi
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be the ML estimator of θ1 and

θ̂2
2(x1, . . . , xN ) = S2 =

1

N

N∑
i=1

(xi − x̄)2 =
1

N

N∑
i=1

(log yi − x̄)2

the ML estimator of θ2
2 . By the invariance principle of ML , the ML estimators

of ξ and λ2, denoted respectively ξ̂ and λ̂2, are

ξ̂(y1, . . . ,yN ) = exp

(
θ̂1 +

θ̂2
2

2

)
,

λ2(y1, . . . ,yN ) = ξ̂2
[
exp (θ̂2

2)− 1
]

. (1.3.16)

♦

The Asymptotic Properties of Max Likelihood

The explicit computation of the ML estimates are straightforward for Gaussian
random variables but can turn out to be very hard or impossible for general
pdf’s. One should also say that the properties of ML estimates for small samples
are hard to figure and are in general unknown. Precise results can instead be
proved for the asymptotic behavior as N →∞ (large samples) of the estimates
in quite general situations. One can show that under very general assumptions
the ML estimator is consistent, has minimum variance and has an asymptotic
distribution which is Gaussian. These properties are clearly very important and
in this section we feel obliged to provide at least a sketch of a proof of consis-
tency.

Assume x1, x2, . . . ,xN is an i.i.d. sample from a family of pdf’s { pθ(x) ; θ ∈
Θ} with x ∈ Rn and Θ ⊂ Rp. After performing an experiment you observe a
sequence of sample values x := (x1, x2, . . . , xN ). The likelihood function of θ
corresponding to these sample values is denoted

LN (θ) = LN (θ | x) =

N∏
k=1

pθ(xk) .

so that the log-likelihood function, written `N (θ | x) := logLN (θ | x) is the sum∑N
k=1 log pθ(xk). Recall that a maximum likelihood estimate of θ is any function

θ̂N (x) such that
LN (θ̂N (x)) = sup

θ∈Θ
LN (θ | x)

or equivalently `N (θ̂N (x)) = supθ∈Θ `N (θ | x). This supremum (which by def-
inition always exists) may be +∞ for all x and the MLE as a function of x may
not exist. It certainly exists if Θ is a compact set and LN (θ) is continuous as a
function of θ (minimum requirement: upper semicontinuous).

Suppose the sample is generated by an unknown true value θ0 of the param-
eter and assume the model is locally identifiable about θ0 (in practice we need
to check this condition for all θ), then the KL distance

K(θ0, θ) :=

∫
R

log
pθ0(xk)

pθ(xk)
pθ0(xk) dxk = E θ0 log

pθ0(xk)

pθ(xk)
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is positive (independent of k) and can be zero only if θ = θ0. Consider the
difference

`N (θ0)− `N (θ) =

N∑
k=1

(log pθ0(xk)− log pθ(xk) ) =

N∑
k=1

log
pθ0(xk)

pθ(xk)
;

which, by the law of large numbers 4 has the limit ,

lim
N→∞

1

N

N∑
k=1

log
pθ0(xk)

pθ(xk)
= E θ0 log

pθ0(xk)

pθ(xk)
= K(θ0, θ) > 0 ,

with probability 1, for every θ ∈ Θ. Equivalently, for N →∞,

1

N
(`N ((θ0 | x)− `N ((θ | x))

a.s.→ K(θ0, θ) > 0

which means that for N large and (almost) all fixed sample x, we have `N ((θ0 |
x) > `N ((θ | x) for all θ 6= θ0 that is θ0 is the unique asymptotic maximizer of
the log likelihood. Next, by rearranging and taking exponentials we have the
asymptotic exponential decay:

LN (θ)

LN (θ0)
= O(e−NK(θ0, θ)) ; ∀ θ ∈ Θ

which implies that LN (θ) must converge (almost surely) exponentially fast to
L(θ0). Therefore, at least when Θ is a compact set, this implies that any maxi-
mum, θ̂N , of LN (θ) must converge to θ0. In summary we have the following:

Theorem 1.6. If Θ is compact, pθ(x) is continuous in θ for all x and there is K(x)
such that

log
pθ(x)

pθ0(x)
≤ K(x) ; E θ0K(xk) <∞ (1.3.17)

then any maximizing θ̂N (x) converges almost surely to θ0 as N →∞.

Condition (1.3.17) serves to exclude the possibility that a maximum could
shift to the boundary of Θ see [30]. It allows to generalize the result to the case
when Θ is not compact. For this however we shall have to refer the reader to
the literature.

By virtue of these properties, in classical Statistics the maximum likelihood
principle for parameter estimation is considered to be the preferred method to
construct estimators. Unfortunately in many practical situations the ML esti-
mator can only be computed by numerical procedures.

The method of moments

The method of moments was proposed by K. Pearson [67] in the early days
of statistical theory. It provides a procedure to construct estimators of certain
moments of a known probability distribution based on equating the theoreti-
cal expressions of these moments as functions of the unknown parameters of

4See Theorm A.8 in the appendix.
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the distribution, to the corresponding sample moments which are just functions
of the observed sample. For example, in this setting the theoretical mean and
variance of a distribution are equated to the corresponding sample moments,
as defined for example by the formulas (1.1.4) and (1.1.5). In case of Gaussian
distributions, which are parametrized by their mean and variance (θ1, θ

2
2), this

principle stipulates that the estimators of (θ1, θ
2
2) should be the sample mean

and variance of the sample. Therefore for Gaussian distributions this method is
equivalent to maximum likelihood. More interestingly, even for Gaussian dis-
tributions the moments (µ,Σ) could actually be complicated functions of other
system parameters of interest. This is a typical situation with identification
problems, where one needs to estimate the parameters of a dynamical model
say an ARMA or state space model generating the data. In such situations the
the maximum likelihood principle implemented with respect to the model pa-
rameters, may well result in an impossibly complicated maximization problem.
The method of moments may instead lead to a much simpler procedure than
maximum likelihood.
Example Let {y1, . . . ,yN} be a random sample from a Gamma distribution of
parameter θ = [α, β ], say

pθ(x) =
1

βαΓ(α)
xα−1e−x/β , x ≥ 0

and zero per x < 0. Elementary probability calculations yield the mean value
of the distribution of yk equal to

E θyk = αβ

while the second order moment is

E θy
2
k = β2α(α+ 1) .

The estimators of α and β by the method of moments, are therefore obtained by
equation the theoretical to the sample moments; which amounts to solving the
equations: 

αβ = ȳN =
1

N

∑N
k=1 yk

β2α(α+ 1) = m̄2
N :=

1

N

∑N
k=1 y2

k .

yielding

α̂ =
ȳ2
N

m̄2
N − ȳ2

N

β̂ =
m̄2
N − ȳ2

N

ȳN
. (1.3.18)

Obviously these estimators are (as they always should) functions of the sample
moments. ♦

Later on it will be shown that estimators by the method of moments are, un-
der very mild assumptions, always consistent but in general not asymptotically
efficient.

An important application of estimation by the method of moments occurs
in Subspace Identification. This will be very shortly addressed in Example 2.5.
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1.4 Hypothesis Testing
Let y be an N -dimensional random vector with y ∼ Fθ, where θ is an unknown
parameter ranging on some parameter space Θ ⊂ Rp. Assume we have m +
1 disjoint subregions Θ0, Θ1, . . . , Θm of Θ, each specifying an “Hypothesis”
regarding the unknown distribution Fθ. We shall denote the subset {Fθ, θ ∈
Θk} by the symbol Hk, or simply by the index k where k = 0, 1, . . . , m.

Definition 1.12. The problem of testing the m+ 1 hypotheses

H0, H1, . . . , Hm (1.4.1)

is that of deciding, based on some observed data y drawn from the unknown distribution
{Fθ}, which of the classes {Hk} Fθ belongs to. In other words, a test of the family of
hypotheses (1.4.1) is a function, called the test statistics,

φ : RN → {0, 1, . . . , m}

associating to all possible sample values y from the random observation vector y, just
one of the candidate classes Hk.

Since the experimental evidence on which this decision needs to be based is
a random sample value y = y, even if the decison rule declares which of the
Hk’s is “true”, this decision is, by its very nature, uncertain. The map y 7→ Hk

has always attached a certain probability of making an erroneous decision.
Note that from an abstract point of view there is no conceptual difference be-

tween estimation and hypothesis testing since the map φ can well be regarded
as an estimator mapping the observed sample into the finite parameter set par-
tition, each subset Θk being labeled by a natural number say k taking values
in {0, 1, . . . ,m}. In fact, the principle of Maximum Likelihood can, for exam-
ple, equally well be applied also to a finite parameter space. However the fact
that hypothesis testing deals with finite-valued statistics permits (sometimes) to
quantify the performance of the estimator in a much sharper way by provid-
ing error probabilities instead of bias and variances parameters as it was done in
the estimation problems discussed in the previous and following section. The
two settings differ by the techniques which can be put into play to measure the
performance of the estimators.

Our definition is really in the frame of parametric Fisherian Statistics. In a
Bayesian setting one assumes to have also some a priori probabilities attached
to the given family of hypotheses. In this chapter we shall follow the classical
parametric approach assuming that nothing is a priori known about the be-
longing of Fθ to a particular member of the class {Hk}. The reader should be
advised that there is also a large body of theory and facts about Nonparametric
Hypothesis Testing (which is really a section of general nonparametric Statistics)
where the decision to be made is about a family of distributions which cannot
be parameterized by a finite dimensional vector θ. Think for example of the
problem of testing if a random variable has (or not) a Gaussian distribution.

Definition 1.13. Hypothesis Hk is said to be simple or composite whether Θk is a
singleton or contains more than one element of Θ.

Going back to the elementary example at the beginning of this chapter, let-
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ting y be the sequence of binary results ofN successive independent coin tosses
(y = 0 corresponding to cross and y = 1 to heads) and θ = p ; p ∈ (0, 1); the
hypothesis H0 claiming that p = 1

2 is a simple hypothesis while H1 : {p; p > 1
2}

is composite.

Two Simple Hypotheses

We shall initially study the case of deciding between two simple hypotheses,
H0 and H1. The test statistic is in this case a binary decision rule

φ : RN → {0, 1} .

Traditionally one of the two hypotheses, viz. H0, is given a privileged role,
which is probably a fact rooted in applications to the evaluation of medical
treatments and decisions about their effectiveness. As we shall see, classical
hypothesis testing theory is ideologically strongly asymmetric as it really requires
to privilege only one of the possible decisions.

When φ(y) = 0 one is said to accept H0, while if φ(y) = 1 one refuses H0.
Naturally each of these decisions has a certain probability of being wrong and
the theory, in principle at least, is searching for decision rules which minimize
the probability of error. Traditionally, the set of observations leading to refuse
H0 is called the critical region of the test; this is a subset of the sample space
RN defined as

C : = {y ∈ RN ; φ(y) = 1}. (1.4.2)
Clearly all decision functions φ having the same critical region are equivalent.
One may say that the a test of a simple hypothesis H0 is completely defined by
assigning its critical region.

Discriminant Analysis, Classification and Pattern Recognition: In view of applica-
tions to modern data processing systems it has become more common and in-
tuitive to interpret hypothesis testing as a classification problem of the observed
data. Instead of deciding about probabilistic models, people tend to think about
deciding (or classifying) different kinds of data; for example, determine whether
a given email is "spam" or "non-spam" or classify handwritten digits in postal
codes as one of the first ten natural numbers {0, 1, . . . .9} etc.

Naturally this decision needs to be made on the basis of models; which turn
in fact out to be probabilistic models. Since in general the rough data (as an
e-mail message) are qualitative and as such cannot be described by quantita-
tive models they require a preliminary processing and a coordinatization, which
should lead to a numerical codification of the data so that at the end one should
eventually be dealing with numerical observations. This step, which is more
an art than a science il called feature extraction. It lies at the heart of successful
implementations of the theory to practical problems.

One may ask if (or when) it could ever be possible to find a statistic φ which
discriminates exactly two probability measuresH0 andH1, that is a decision func-
tion φ such that {

φ(y) = 0 iff y ∼ H0

φ(y) = 1 iff y ∼ H1

,

without errors. This can happen only in degenerate situations.
Assume for simplicity that both hypotheses H0 and H1 are simple and the two
probability measures Fθ0 andFθ1 admit densities f0(y) and f1(y).
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Lemma 1.1. One has perfect discrimination between f0 and f1 if and only if f0 and f1

are orthogonal; i.e. ∫
RN

f0(x)f1(x) dx = 0 . (1.4.3)

Intuitively, for continuous functions: f1 must be strictly positive when f0

is zero and, conversely on the region where f1 = 0 then f0 must be strictly
positive. The statement is illustrated in the picture below.

Figure 1.4.1. Orthogonal densities

Proof. We shall assume that f0 and f1 are continuous functions. Let C be the
set on which f1(y) > 0 so that Pθ1(C) =

∫
C f1(x) dx = 1. Clearly for (1.4.3) to

hold, f0 must be zero on C; in other words, if y ∼ f0 then y belongs to C with
probability zero; that is

Pθ0(y ∈ C) = 0 ; and Pθ1(y ∈ C) = 1

Hence it is enough to pick C as a critical region and one has a perfect test.
For general probability measures the lemma is still valid. The general notion

of orthogonality of probability measures is for example in:
Agnes Berger, On Orthogonal Probability Measures Proceedings of the American
Mathematical Society Vol. 4, No. 5 (Oct., 1953), pp. 800-806

Excluding degeneracy, the situation is as follws

- If H0 is true but y ∈ C so that φ(y) = 1, one refuses H0 and incurs in a
so-called error of the first kind.

- If H0 is false (that is y ∼ H1) but nevertheless y belongs to the comple-
mentary of the critical set C̄; one decides for H0 and incurs in an error of
the second kind.
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It can be pictured in tabular form as

True Hyp.
H0 H1

Decide H0 O.K. II
Decide H1 I O.K.

(1.4.4)

These denominations may look a bit convoluted but constitute an entrenched
terminology in traditional statistics. The prescribed symbol for an error of the
first kind is α,

α :=

∫
C
dF0(y) = P0(C)

while β is that of incurring in an error of the second kind:

β :=

∫
C
dF1(y) = P1(RN \ C) = 1− P1(C)

The difference
1− β = P1(C) = P(y ∈ C) (1.4.6)

is the probability that under H1 the observed sample falls in the critical region
(leading therefore to refuse H0 when H0 is actually false) is called the power (or
discriminant power) of the test. Actually when H1 is not a simple hypothesis
so that Θ1 contains may parameter values, the power is in general a function of
θ.

The terminology used in engineering, especially in problems of signal or
radar detection is more symmetric. Here H0 and H1 represent absence or pres-
ence of a target (in case of radar) or of a signal which may be covered by noise.
One defines

PF : the probability of false alarm; deciding that the target is present when it is
not present;

PM : probability of a miss that is acceptingH0, when instead the target is present;

PD: probability of detection i.e. deciding that the target is present when it is
actually present.

Obviously
PF = α, PM = β, PD = 1− β

that is the probability of detection coincides with the power. Note that in certain
applications (detection of hostile aircraft or diagnosis of certain diseases) a miss
may be extremely costly.

In the classical setting, an optimal test to discriminate between H0 and H1

should have both α and β as small as possibile. Unfortunately these are conflicting
objectives.
This can be seen from the simple picture below where H0 ∼ N (µ0, σ

2) and
H1 ∼ N (µ1, σ

2) with µ0 < µ1. Suppose N = 1 and that the critical region C is
an interval of the form

C := {y; y ≥ c }.

(this is actually the shape of the optimal critical region as will be proven in a
few lines).
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Then one clearly sees that one can make α as small as we wish by taking c very
large ,

α =
1√
2πσ

∫ +∞

c

e−
1
2

(y−µ0)2

σ2 dy.

However, the greater c, the greater will be the probability β of classifying incor-
rectly H1 as H0. In fact

β =
1√
2πσ

∫ c

−∞
e−

1
2

(y−µ1)2

σ2 dy

increases as c gets larger.
The classical frequentist way out of this difficulty is to fixα and try to find the

critical region C which minimizes β, or equivalently produces the largest possible
power 1− β. Such a critical region is called the best critical region (B.C.R.) of size
α.

In the Bayesian framework one has instead a priori probabilities π0 and π1 of
the two hypotheses being true (with obviously π0 + π1 = 1) which allow to
compute the a posteriori distribution

P (Hk | y) =
fk(y)πk∫

RN [ f0(y)π0 + f1(y)π1 ] dy
; k = 0, 1 (1.4.7)

by which one can then derive a decision rule based on the standard principles
of Bayesian estimation say MAP or minimum Risk, see Chapter 5.

In the classical setting the design of optimal tests for two simple hypotheses
is based on the following fundamental result:

Lemma 1.2 (Neyman-Pearson). The Best Critical Region of size α to discriminate
between two simple hypotheses H0 ≡ f0 and H1 ≡ f1 is the set of points in the sample
space RN satisfying the inequality

C = {y; Λ(y) ≥ k} (1.4.8)

where Λ(y) is the likelihood ratio

Λ(y) =
f1(y)

f0(y)
(1.4.9)
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the constant k being chosen in such a way that∫
C
f0(y)dy = α. (1.4.10)

The interpretation of this rule is indeed quite intuitive and in a sense follows
from the maximum likelihood principle: you refuse H0 (in fact you choose H1)
whenever the observed sample ȳ corresponds to a probability density (actually
a likelihood) f1(ȳ) which is larger than f0(ȳ). The value of the threshold k
should hence be chosen greater or at most equal to one; k ≥ 1.

There are versions of this Lemma dealing with the case in which H0 and H1

are discrete distributions or, more generally, do not admit densities. We shall
refer the reader to [57] or [56] for details.

Note that by (1.4.8) Cmust contain the points y where f0(y) = 0. The circum-
stance in which also f1(y) is zero is of no interest since these observations have
probability zero under both measures and will (almost) never be observed.

Proof. Let IC(y) be the indicatori function of the critical region C. We want to
maximize with respect to C ⊆ RN the quantity

1− β =

∫
C
f1(y)dy =

∫
RN

IC(y)
f1(y)

f0(y)
f0(y)dy = E 0[ICΛ] (1.4.11)

subject to the constraint
α = E0[IC ]. (1.4.12)

This is a so-called free-boundary problem in the Calculus of Variations. We shall
assume that the boundary of C is a smooth curve.

Introducing the Lagrange multiplier λ, one needs to maximize with respect
to IC

J(C) := E0[ ICΛ ]− λ{E0[ IC ]− α}.

Let C∗ be the best critical region. Perturbing C∗ by an infinitesimal region δC
should induce a zero variation δJ(C∗) = 0, that is

E0[IδC(Λ− λ)] =

∫
δC

[Λ(y)− λ]f0(y)dy = 0, ∀ δC,

from which, recalling that f0(y) ≥ 0, one sees that on the boundary C∗ it should
happen that

Λ(y) = λ y ∈ ∂C∗.
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so that Λ(y) must assume a constant value λ = λ∗ on the boundary ∂C∗. In
particular, the multiplier λ∗ must be positive, since Λ(y) ≥ 0. Rewrite J(C) as

J(C∗) = E0[IC∗(y)(Λ(y)− λ∗)] + λ∗α

where the expectation can be interpreted as an inner product of a positive func-
tion (the indicator of C∗) and the function Λ(y)−λ. We conclude that C∗ can be a
maximum of J(C) only if C∗ contains exactly the points for which Λ(y)−λ∗ ≥ 0.

We study now the simplest example of hypothesis testing.

Example 1.10 (Comparing two means). LetH0 = {N (µ0, σ
2)}, H1 = {N (µ1, σ

2)}
both having the same variance σ2 and known means µ0 6= µ1. We observe a ran-
dom sample y1, . . . , yN of size N and want to decide which of the two means
is more likely to be the true one. One can rewrite the likelihood ratio

Λ(y1, . . . , yN ) = exp− 1

2σ2
{
N∑
1

(yi − µ1)2 −
N∑
1

(yi − µ0)2}.

by using the classical decomposition
∑N

1 (yt−µ)2 =
∑N

1 (yt−ȳN )2+N(ȳN−µ)2,
getting

Λ(y) = exp− 1

2σ2
{N(ȳN − µ1)2 −N(ȳN − µ0)2}

= exp− N

2σ2

[
(ȳN − µ0)2 + 2(ȳN − µ0)(µ0 − µ1) + (µ0 − µ1)2 − (ȳN − µ0)2

]
= exp− N

2σ2
[2(ȳN − µ0)(µ0 − µ1) + (µ0 − µ1)2].

The inequality Λ(y) ≥ k is conveniently rewritten in terms of logarithms as
log Λ(y) ≥ log k, yielding

N

2σ2
[ 2 ȳN (µ1 − µ0) + µ2

1 − µ2
0] ≥ log k

which, in case µ1 > µ0 is equivalent to

ȳN ≥
1

2
(µ1 + µ0) +

σ2

N(µ1 − µ0)
log k

or, conversely, in case µ0 > µ1 the critical region would be defined by

ȳN ≤
1

2
(µ1 + µ0)− σ2

N(µ0 − µ1)
log k .

Therefore, denoting the second member of these inequalities by c1 or c2; the
BCR of the test is a linear half-space defined by

C1 : {y ; ȳN ≥ c1} if µ0 < µ1

C2 : {y ; ȳN ≤ c2} if µ1 < µ0 .
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Figure 1.4.2. Critical regions for the example (1.10)

Note that the critical regions are defined in terms of the sufficient statistic ȳN .
Important remark: In practice, instead of using the complicated expressions
for c1 or c2 in terms of k and the parameters of the distributions, one can argue
directly to determine the boundaries as follows.
UnderH0, ȳN ∼ N (µ0,

σ2

N ) so that, once assigned α and supposing for example
that µ1 > µ0, the constant c1 can be computed from∫ +∞

c1

fȳN (x) dx = α .

Normalizing,
√
N
σ (ȳN − µ0) ∼ N (0, 1), and correspondingly changing variable
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in the integral to make c1 become

a1 =

√
N

σ
(c1 − µ0) , (1.4.13)

the critical region can conveniently be defined in terms of the normalized dis-
tribution N (0, 1) by the inequality

C1 = {y |
√
N

σ
(yN − µ0) ≥ a1} .

Hence, once α is fixed, we can use the standard distribution P0 ≡ N (0, 1) to
find an a1 such that

P0(C1) = P0(

√
N

σ
(ȳN − µ0) ≥ a1) = α .

and then recover c1 from (1.4.13) as

c1 = a1
σ√
N

+ µ0 (1.4.14)

In conclusion, the critical set can be computed by just resorting to the standard
distribution N (0, 1). ♦

There is a handful of practical examples which can be described by a similar
scheme. The design of the optimal receiver in many digital communication
systems implements a threshold decision of the kind just seen. In a variety
of digital transmission systems the yk’s are samples of a continuous known
waveform of period T . The transmitted signal is a series of samples of period
Tc = T/n which is an integer fraction of T .

Figure 1.4.3. Digital transmission
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After demodulation the receiver needs to process a signal {yt}which is the sum
of the transmitted samples plus white Gaussian noise w(t) of mean zero and
known variance σ2. Assuming binary waveforms and synchronous sampling,
the decision problem at the receiver side can be described by two hypotheses{

yt = µ0 + wt, t = 1, . . . , n ∼ H0

yt = µ1 + wt, t = 1, . . . , n ∼ H1

which need to be tested on line at the end of each period T based on the last n
signal samples, y1, . . . , yn.

The receiver is designed by balancing the probability α of wrong classifica-
tion with the power 1− β = PD, which is given by

1− β = P1{y ; y ≥ c1}

where c1 is fixed by optimizing α. In the binary transmission one can use the
formula

C1 = {y;

√
n

σ
(y − µ1) ≥

√
n

σ
(c1 − µ1)}

where
√
n
σ (y − µ1) ∼ N (0, 1), under H1.

There are standardized graphs, called Receiver Operating Characteristic (ROC),
plotting 1 − β = PD versus α = PF parameterized by the ratio d =

√
n |µ1−µ0|

σ .
see e.g. [99, p 38]. They typically look like Figure 1.4.

Figure 1.4.4. Receiver Operating Characteristic (ROC).

We have just seen that when the two hypotheses are Gaussian distributions with
equal variance and the sample is i.i.d. the boundary of the critical region is a hy-
perplane (actually an affine variety) in the sample space. This fact holds also for
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vector valued Gaussian observations and may hold also without the assump-
tion of independent samples. The decision can always be based on checking if
a certain sufficient statistics (the sample mean) of the observed sample falls on
the positive or negative side of an hyperplane.

This decision rule is simple and intuitive and it has been fostered and gen-
eralized by applied statisticians to a large extent. One of the main goals being
application to large amounts of data and nonlinear extensions to data which
are far from being linearly separable. These classification problems are now the
bulk of statistical learning (or as it is more fashionable nowadays Machine Learn-
ingTheory) which has generated an enormous literature, see e.g. [44, 95, 100].
We shall go back to this in Chap. 4.

Example 1.11 (Comparing variances). Consider the following decision prob-
lem: choose between two zero-mean Gaussian distributions having different
variances: H0 = N (0, σ2

0), H1 = N (0, σ2
1). The observed sample consists of N

i.i.d. scalar random variables, so that

fi(y1 . . . yN ) =
1

(
√

2πσi)N
exp−1

2

∑N
1 y2

t

σ2
i

i = 0, 1 .

The likelihood ratio

Λ(y) = (
σ0

σ1
)N exp {−1

2
(

1

σ2
1

− 1

σ2
0

)

N∑
1

y2
t }.

depends on the data through the sufficient statistic
∑N

1 y2
t and the critical region

can be defined by the inequality Λ(y) ≥ k; that is

1

2

σ2
1 − σ2

0

σ2
0σ

2
1

N∑
1

y2
t ≥ N log

σ1

σ0
+ log k ,

which, assuming σ2
1 > σ2

0 turns into

N∑
1

y2
t ≥

σ1
0σ

1
2

σ2
1 − σ2

0

[
N log

σ2
1

σ2
0

+ 2 log k
]

:= c2

The critical region is therefore the set of sample values yielding a sample second
moment falling outside a circular region of radius c2;

The threshold c2 defining the critical region can be computed directly, without
using the complicated formula above, just recalling that under H0∑N

1 y2
t

σ2
0

∼ χ2(N)

(see the appendix Sect. A.2) so that, once α is fixed, one reads from a χ2(N)

table the value of a such that P{
∑N

1 y2
t

σ2
0
≥ a} = α, and obviously sets c2 = aσ2

0 .
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Figure 1.4.5. Critical region for Example 1.11

For the test power, under H1 one has
∑N

1 y2
t

σ2
1
∼ χ2(N) and uses an analogous

procedure to get

P1

[ ∑N
1 y2

t

σ2
1

≥ c2

σ2
1

]
= P

[ ∑N
1 y2

t

σ2
1

≥ aσ2
0

σ2
1

]
= 1− β.

♦

Example 1.12 (The correlation receiver).
In this example the problem formulation is in continuous time. The mes-

sage {s(t)} is a train of continuous waveforms transmitted sequentially on time
intervals of equal length T . It can be completely known, known up to some
unknown parameter; i.e.s(t) = s(t, θ), or be a chunk of a stochastic signal
whose statistics are generally assumed known. The channel distorts the signal
by adding noise w(t) which has zero mean and typically is modeled as a white
Gaussian noise. A typical detection problem in communication engineering is
to decide between the two hypotheses{

H1 : y(t) = s(t) + w(t) 0 ≤ t ≤ T
H0 : y(t) = w(t) 0 ≤ t ≤ T

(1.4.15)

which correspond to presence or absence of signal during a specific observation
interval.
For simplicity assume that s(t) is a known function of time and w(t) is white
Gaussian noise of mean zero and known variance σ2. We shall illustrate an ele-
gant solution due to Ulf Grenander [42]. Introduce a sequence of orthonormal
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functions on L2[0, T ],

φ1(t), φ2(t), . . . , φn(t), . . . ,

∫ T

0

φi(t)φj(t) dt = δij .

where φ1(t) is our signal normalized

φ1(t) =
s(t)

||s(·)||
=

s(t)[∫ T
0
s2(t) dt

] 1
2

(1.4.16)

the denominator is the square root of the energy E, of the signal.
The temporal correlation of y(t) and φk(t) is the inner product

yk := 〈y, φk〉 =

∫ T

0

y(t)φk(t) dt i = 1, 2, . . . .

so that, under H1 one has

y1 =
1√
E

∫ T

0

s(t)s(t) dt+

∫ T

0

w(t)
s(t)

E
dt :=

√
E + w1

and, since s(t) and φk(t) are orthogonal functions for k ≥ 2

yk = wk :=

∫ T

0

w(t)φk(t) dt k = 2, 3, . . . .

Under H0 one has instead

y1 = w1 ,

yk = wk k = 1, 2, . . . .

where all the variables {w1, w2 . . . , wk, . . .} are Gaussian independent. In fact

Ewkwj = E
∫ T

0

w(t)φk(t) dt

∫ T

0

w(τ)φj(τ) dτ

=

∫ T

0

∫ T

0

φk(t)φj(τ)E[w(t)w(τ)] dt dτ

=

∫ T

0

∫ T

0

φk(t)φj(τ)σ2δ(t− τ) dt dτ = σ2

∫ T

0

φk(t)φj(τ) dt = σ2δij .

The detection problem can therefore be reformulated for a sequence of observa-
tions as follows

Under H1 {
y1 =

√
E + w1

yk = wk k = 2, 3, . . .
(1.4.17)

Under H0

yk = wk, k = 1, 2, 3, . . . (1.4.18)
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where now the discrete process {wk} is white Gaussian of mean zero and vari-
ance σ2. Note that the random variables {yk} are Gaussian i.i.d. under both
hypotheses, with y1 having distributions{

y1 ∼ N (
√
E, σ2) underH1

y1 ∼ N (0, σ2) underH0

(1.4.19)

while, for k ≥ 2, under both H1 and H0,

yk ∼ N (0, σ2) (1.4.20)

It easily follows that, for all finite index n, the likelihood ratio Λ(y1 . . . yn) is
just

Λ(y1 . . . yn) = Λ(y1) (1.4.21)

so that the optimal decision is only function of the statistic y1. In terms of the original
data we have,

Λ(y1) = exp− 1

2σ2

[
(y1 −

√
E)2 − y2

1

]
= exp− 1

2σ2

[
−2y1

√
E + E

]
= exp

1

σ2

[∫ T

0

y(t)s(t) dt− 1

2

∫ T

0

s2(t) dt
]
. (1.4.22)

This is a famous formula of continuous-time detection theory known as the
Likelihood Ratio formula. It has been generalized to a variety of situations where
s(t) is unknown-deterministic or stochastic; see [81, 48][57].
The critical region (corresponding to presence of signal) is obtained by impos-
ing

log Λ(y1) ≥ K
that is,

y1 =

∫ T

0

y(t)s(t) dt ≥ 1

2

∫ t

0

s2(t) dt+ σ2K =
1

2
E + σ2K = c.

Since under H0, y1 ∼ N (
√
E, σ2), the threshold c can be computed from c =

a
σ −

√
E, where a is the abscissa where the graph of N (0, 1) covers an area

greater than α.
The scheme of the optimal receiver is in Figure 1.4.6 below.

y(t) H0/H1

∫ T
0
s(T − t)y(t) dt

s(T − ·) -- Comparator -

Figure 1.4.6. Structure of the correlation receiver

This is also called correlation or adapted filter receiver. The name “adapted
filter” coms from the interpretation of y1 as the output at time T of a linear
(non-causal) filter having impulse response h(t) = s(T − t). ♦
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1.5 Composite Hypotheses
Often H1 (and/or H0) is a composite hypothesis involving many parameter val-
ues; i.e.

Hi = {f(·, θ); θ ∈ Θi} i = 0, 1

where Θi are subsets of Θ. The likelihood ratio then becomes a function of θ

Λ(y, θ) =
f(y, θ1)

f(y, θ0)
θ1 ∈ Θ1, θ0 ∈ Θ0 ; (1.5.1)

where, even if for the sake of clarity we have distinguished two parameter vari-
ables θ = (θ1, θ0) ∈ Θ1 × Θ0, it should be kept in mind that the parameter in
our model is just one; θ. It seems natural to substitute in the expression (1.5.1)
in place of θ1, θ0 an estimator θ̂, function of the data y, which takes into account
the two admissible parameter regions defining the two hypotheses.
The natural candidate for θ̂ is a maximum likelihood estimator, this mean-
ing that one should substitute to θi in the ration (1.5.1) the two ML statistics
θ̂i, i = 0, 1, which maximize f(y, θi) in the respective sets Θi, i = 0, 1. This in-
tuitive rule can in fact be shown to have certain desirable optimality properties
such as consistency, asymptotic normality etc which we shall not dig into in this
book but are widely documented in the literature [56, 30].

Definition 1.14. Let H0 = {f(·, θ); θ ∈ Θ0} and H1 = {f(·, θ); θ ∈ Θ1}. The
Maximum Likelihood Ratio (MLR) for the two hypotheses is the function

L(y) :=
f(y, θ̂1(y))

f(y, θ̂0(y))
(1.5.2)

where it is assumed that the statistics θ̂1, i = 0, 1, are (the unique) ML parameter
estimates in their respective domains Θi, that is,

θ̂1(y) := Arg max
{θ∈Θ1}

f(y, θ)

θ̂0(y) := Arg max
{θ∈Θ0}

f(y, θ) .

One may then define the critical region of a MLR test exactly as in the
Neyman-Pearson Lemma,

C := {y; L(y) ≥ k}

where however now the constant k needs to be determined by taking into ac-
count of the fact that α = α(θ) is a function of θ ∈ Θ0.

In general,

α(θ) =

∫
C

f(y, θ)dy θ ∈ Θ0

so that, by maximizing with respect to θ ∈ Θ0 and assuming that the maximum
of the second member is the integral of the pointwise maximum with respect to
θ, one has

α0 = max
θ∈Θ0

α(θ) =

∫
C

f(y, θ̂0(y))dy .
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Denoting f̂0(y) the pdf f(y, θ̂0(y)), if k is fixed in such a way that∫
C

f̂0(y)dy =

∫
{L(y)≥k}

f̂0(y)dy =

∫ ∞
k

p̂0(l)dl = α0,

where p̂0(l) is the pdf of the ratio L = L(y) when y ∼ f̂0(y), one obtains an
upper bound on the error of the first kind: α(θ) ≤ α0.

Luckily, often under H0, L(y) has a distribution which is independent of θ,
that is, the pdf p0(l) of L(y), when y ∼ {f(y, θ), θ ∈ Θ0}, does not depend on θ.
In this case p0(·) is just the same for any value of θ ∈ Θ0, in particular, for the
value θ̂0, corresponding to the maximum of f(y, θ) in Θ0. It follows that once
fixed α, one can define the critical region C = {y; L(y) ≥ kα} by taking∫ ∞

kα

p0(l)dl = α ;

thus getting the same probability α of incurring in a error of the first kind what-
ever θ ∈ Θ0.

In general the pdf of L(y) under H1 depends on θ ∈ Θ1, so that the test
power

[1− β] (θ) =

∫ ∞
kα

p1(l, θ)dl ,

p1(·, θ) being the pdf of L(y) when y ∼ {f(·, θ); θ ∈ Θ1}. This is a function of
θ ∈ Θ1. Note instead that in the situation discussed in the previous paragraph,
when θ ∈ Θ0 one has p1(l, θ) ≡ p0(l) and [1− β] (θ) is independent of θ.

Example 1.13 (The “Student t” Test). Let y ∼ N (µ, σ2) where the parameters
θ ≡ (µ, σ2) are unknown. Consider the hypothesis

H0 : µ = µ0 ,

where µ0 is a fixed mean value. We want to verify the hypothesis H0 against
all possible alternatives, based on N independent observations from the parent
distribution N(µ, σ2). The two parameter regions are

Θ0 =
{
θ; µ = µ0, σ

2 > 0
}

Θ1 =
{
θ; µ 6= µ0, σ

2 > 0
}

so that Θ1 is the open half-plane
{
µ, σ2 > 0

}
, in the parameter space, deprived

of the half-line µ = µ0.

To get the MLR we need to maximize the likelihood function

f(y1, ..., yN , θ) = (2πσ2)−
N
2 exp

{
− 1

2σ2

N∑
1

(yt − µ)2

}
(1.5.3)

separately on Θ0 and on Θ1. On Θ0, this just means to compute the ML estimate
of σ2 when the mean value is known and equal to µ0. As we have seen,

θ̂0(y) = s2
N (y) :=

1

N

N∑
1

(yt − µ0)2
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Figure 1.5.1. Parameter spaces Θ0 and Θ1

so that

f(y, θ̂0(y)) =
[
2πs2

N (y)
]−N2 exp(−N

2
) .

To proceed with the maximization of f(y, θ) on Θ1 let us first maximize on the
whole set Θ =

{
µ, σ2 > 0

}
and then check if θ̂1 may possibly lie on the line

µ = µ0. The overall maximization yields

µ̂(y) = yN =
1

N

N∑
1

yt

σ̂2
1(y) ≡ σ̂2

N (y) =
1

N

N∑
1

(yt − yN )2 .

Now it is obvious that yN = µ0 with probability zero ∀θ ∈ Θ, so that these
estimates are also the maximizers of f(y, θ) on Θ1. Substituting,

f(y, θ̂1(y)) =
[
2πσ̂2

N (y)
]−N2 exp(−N

2
)

and computing the MLR, one finds

L(y) =

[
s2
N (y)

σ̂2
N (y)

]N
2

=

[
σ̂2
N (y) + (yN − µ0)2

σ̂2
N (y)

]N
2

=

[
1 +

(yN − µ0)2

σ̂2
N (y)

]N
2

.

Note now that the random variable

t :=
ȳN − µ0√
σ̂2
N (y)

N − 1

whose square is t2 :=
(ȳN − µ0)2

σ̂2
N (y)

N − 1

(1.5.4)

has, underH0 the remarkable Student distribution withN−1 degrees of freedom.
Amazingly, the pdf of t does not depend on the parameters (µ, σ2) of the parent
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Gaussian distribution. See the appendix A for a definition and basic properties
of the Student distribution. Since L(y) can be expressed as

L(y) =

[
1 +

1

N − 1
t2

]N
2

(1.5.5)

it is clear that it depends on the data y only through the statistic t. The critical
region C := {y; L(y) ≥ k} can then equivalently be expressed as

C :=

{
y; |t(y)| ≥ +

√
(N − 1)(k

2
N − 1)

}
(1.5.6)

which has the form
C := {y; |t(y)| ≥ c} , c > 0 .

Here the lucky circumstance is that under H0, the likelihood ratio L(y) has a
distribution which is independent of the parameters, µ, σ2 and hence the probability,
α, of committing an error of the first kind, does in particular not depend on the
unknown σ2. For each α one can find a cα such that∫ ∞

cα

pN−1(t) dt =
α

2

and this value cα defines a critical region where the probability of refusing the
hypothesis θ = µ0 (when it is true), does not depend on the unknown vari-
ance σ2.

Under H1, the random variable t has a more complicated Student distribu-
tion which now depends on µ and on σ2 through a “non-centrality parameter”’

δ =

√
N

σ
(µ− µ0) .

The “non-central ” Student distribution S(δ) is tabulated, for example in Matlab
[63]. ♦

Remarks It is worth extrapolating from the simple example just discussed,
some general facts. As done so far, we shall assume that the test is defined
in terms of a family of pdf functions f(y, θ) depending on a p-dimensional pa-
rameter θ =

[
θ1 ... θp

]> ranging on some open set of Rp.
The point is how to deal with an hypothesis H0, which is defined by speci-

fying a fixed value to some components of θ. Assume without loss of generality
that one is assigning a value to the first k(≥ 1) components of θ. Then, using
the partitioned notation

θ =

[
β
η

]
β ∈ Rk, η ∈ Rp−k (1.5.7)

we can see H0 as being defined by k equalities

H0 := {θ ; β = β0} , (1.5.8)

where b is a fixed vector in Rk. The alternative hypothesis H1 can then be writ-
ten

H1 := {θ ; β 6= β0} . (1.5.9)
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This parameter structure implies that either Θ0 reduces to a point in the param-
eter space (k = p) or is an affine subspace of Rp having dimension k smaller
than p. In any case it follows that the maximization of f(y, θ) on Θ1 gives with
probability one the same result of a maximization of f(y, θ) performed on the
whole parameter space Θ. The events that f(y, θ) be maximized by functions
θ̂i of the observed data which take values in a thin subspace of Rp have prob-
ability zero, since the maximizers inherit a continuous probability distribution
function and a continuous pdf assigns probability zero to thin sets. Therefore

max
θ∈Θ1

f(y, θ) = max
θ∈Θ

f(y, θ) (1.5.10)

which can be read as: θ̂1(y) is the ordinary ML estimator θ̂(y), of θ computed
by optimization on the whole parameter space. Whence whenever H0 and H1

are of the form (1.5.8), (1.5.9) one can express the MLR as

L(y) =
f(y, θ̂(y))

f(y, β0, η̂(y))
(1.5.11)

where η̂(y) is the “conditioned” ML estimator maximizing f(y, β0, η) with re-
spect to η in the region Θ0, defining the hypothesis H0.

Clearly, since Θ0 ⊂ Θ, one always has that

f(y, θ̂(y)) = max
θ∈Θ

f(y, θ) ≥ max
θ∈Θ0

f(y, θ) = f(y, β0, η̂(y))

and hence L(y) ≥ 1 ∀y ∈ RN (in (1.5.6) we implicitly assume that k ≥ 1).
Intuitively, the larger L(y), the most likely is hypothesis H1. Ideally when
f(y, θ̂1(y))� f(y, θ̂0(y)), one is led to accept H1 in the region where {L(y) ≥ k}
for some prescribed k.

A Critique to the classical approach

In the classical theory of hypothesis testing, H0 and H1 play an unsymmet-
ric role, H0 describing in a sense a “priviledged” hypothesis, which is simple
and very costly to refuse when it is true. The theory allows to fix a priori the
probability α of refusing H0 when H0 is true (i.e. one can fix the probability
of committing an error of the first kind). The freedom of choosing α can how-
ever lead to paradoxes. It may happen that choosing a very conservative policy
(small α) to avoid a possible refusal of H0, one may end by accepting H0 when
deciding for H1 could be a much more reasonable choice. This is the logics be-
hind the Neyman-Pearson Lemma whereby, although in theory one guarantees
minimizing the probability β of an error of the second kind, one has no control
on β. In fact, α says nothing about the probability of choosingH0 when actually
H1 is true. In many problems in science and engineering the two hypotheses
play a symmetric role and one, al least, should have a way to compare the two
decisions. From this point of view, whenever a reasonable guess of probabilities
{p0, p1} measuring the a priori likelihood of the two hypotheses, is available,
the Bayesian approach may be a sounder choice.
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1.6 Problems
1-1 Let I(θ) be the Fisher matrix relative to an arbitrary smooth density p(y, θ).
Show that for a random sample of size N one has IN (θ) = N I(θ).

1-2 Show, without using the χ2 distribution, that the Cramèr-Rao bound for a ran-
dom sample from N (µ, θ2) of size N is 2θ4/N .

1-3 Show that the Cramèr-Rao bound for N (θ1, θ
2
2) is

I(θ)−1 =

[
θ2

2/N 0
0 2θ4

2/N

]
.

1-4 Show that the parametric model Fθ ∼ N (θ1 + θ2, σ
2) is not locally identifiable

about any point of R2. In fact this model is globally unidentifiable. Describe the equiv-
alence classes under indistinguishability.

1-5 Compute the Kullback-Leibler distance between the two Gaussian densities, f ≡
N (µ , σ2

0) and p ≡ N (µ , σ2). Check what happens if you invert the order of the two
densities.

1-6 Same for the two Gaussian densities, f ≡ N (µ1 , σ
2
0) and p ≡ N (µ2 , σ

2).

1-7 Consider the linear model

y :=

[
y1

y2

]
=

[
a1

a2

]
x +

[
e1

e2

]
where x, e1, e2 are three zero-mean mutually uncorrelated random variables of respec-
tive variances:

var {x} = 1, var {e1} = λ2
1, var {e2} = λ2

2 ,

hence the model depends on the 4-dimensional parameter

θ = [a1, a2, λ
2
1, λ

2
2 ] , λ2

1 ≥ 0, λ2
2 ≥ 0 .

Compute the mean and the variance matrix Σ of the vector y using the following nota-
tions:

y :=

[
y1

y2

]
, a =

[
a1

a2

]
, ∆ = diag {λ2

1, λ
2
2 }

Study the (second-order) identifiability of the model by analyzing how Σ depends on
the four parameters. Argue that identifiability must be equivalent to the map θ → Σ
being one-to-one. Is this the case?

1-8 Consider again the linear model

y :=

[
y1

y2

]
=

[
a1

a2

]
x +

[
e1

e2

]
where x, e1, e2 are three zero-mean independent Gaussian random variables of respec-
tive variances:

var {x} = 1, var {e1} = λ2
1, var {e2} = λ2

2 ,
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Using the same notations write the pdf pθ(y) of the output y of the model, depending
on the 4-dimensional parameter

θ = [a1, a2, λ
2
1, λ

2
2 ] , λ2

1 ≥ 0, λ2
2 ≥ 0 .

Suppose you have a random sample of N (independent) measurements {y1, . . . ,yN }.
Write the log-likelihood function, and try to compute the ML estimate of θ by minimiz-
ing it.
Hint: you may use the identity∑
k

y>k Σ−1yk =
∑
k

Trace {Σ−1yky
>
k } = Trace {Σ−1

∑
k

yky
>
k } := Trace {Σ−1Y } .

where Y is a function of the data. Use the calculations in the proof of Theorem 1.4 to
find the ML estimate Σ̂. Then use the invariance principle to compute the estimate of θ
from the theoretical expression of Σ(θ) by solving Σ(θ) = Σ̂. Could you get a unique
answer?

1-9 Suppose you have a random sample {y1, y2, . . . ,yN } drawn from a unilateral
exponential distribution:

p(y, θ) =

{
(1/θ) exp(−y/θ) y ≥ 0
0 y < 0

Compute the maximum likelihood estimator of the parameter θ. Is this an unbiased
estimator?

1-10 Let y = {y1, . . . ,yN} be a random (i.i.d.) sample from a Gaussian distribution
having unknown mean and variance σ2 = 100, that is yk ∼ N (θ, 100). We want to
test the simple hypotheses

H0 ≡ {θ = 2 };
H1 ≡ {θ = 10 }.

using the Neyman-Pearson Lemma. Describe the critical region C of the test.
Determine the number of measurements N in such a way to have α := P0(C) =

0.01 and P1(C) = 0.99.
You may assume that for a Gaussian variable y ' N (µ, σ2), one has P{ |y − µ | ≤
2σ } = 0.98.

1-11 The observations y = (y1, . . . ,yN ) are described by one of the two models

H0 : yt = wt

H1 : yt = a+ wt ,

where a > 0 is a known parameter and {wt} are i.i.d. random variables described by
the exponential distribution

p(x) = C exp{−λ |x|} x ∈ R ,

where λ > 0 is a known parameter. Based on an observed sample of size N , we need to
decide which of the two probability distributions describes the data. Find the decision
rule.
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1-12 Same problem as in Example 1.8 but for a bilateral uniform density p(x, θ) =
1

2θ
I[−θ, θ ](x).

1-13 [The taxicab problem]
You are waiting for a taxi outside of the railway station and while you wait keep notice
of the number impressed on the side wall of each taxi. Assuming that that number is an
enumeration of the cars owned by the taxi company, you would like to estimate the total
number of taxis owned by that company. Call θ that number and let {y1, y2, . . . ,yN }
be the taxi numbers you have been taken notice of while you were waiting. Assume they
are independently drawn from the uniform distribution U [ 0, θ ]. Find the maximum
likelihood estimate of the number of taxis owned by the company.
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Chapter 2

PARAMETER
ESTIMATION FOR
LINEAR MODELS

A large section of classical statistics deals with the so-called linear regression prob-
lems which essentially include various generalizations of the antique problem
of fitting a straight line to observed data points. The mathematics behind the
modern formulation and solution of linear regression problems is essentially
linear algebra and has little to do with probability. For this reason we shall start
this chapter by discussing deterministic regression. As we shall see the math-
ematical apparatus brought in to solve this problem can be transferred almost
verbatim to the statistical setting.

2.1 Deterministic linear least squares
The following is the simplest, yet ubiquitous problem of (parametric) model
building from observed data.

Problem 2.1. Fit, in some “reasonable ” way, a parametric model of known structure
to measured input-output data.

Given: measured output data (y1, . . . , yN ), assumed real-valued for now,
and “input” (or exogenous) variables (u1, . . . , uN ), both collected in N succes-
sive experiments performed on some system, and a class of candidate paramet-
ric models,

ŷt(θ) = f(ut, θ, t) t = 1, . . . , N , θ ∈ Θ ⊆ Rp

where the structure of the function f is assumed from a priori information and
is completely determine by assigning a p-dimensional parameter vector θ. One
wants to fit the observed output data in some optimal way. A reasonable and
quite popular way to do so is to use a quadratic approximation criterion: the
average squared approximation error of the observed outputs,

V (θ) :=

N∑
1

[yt − ŷt(θ)]2 =

N∑
1

[yt − f(ut, θ, t)]
2
.

51
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The “best” model corresponds to the value(s) θ̂, of θ minimizing V (θ̂)

V (θ̂) = min
θ∈Θ

V (θ) .

This is a simple empirical rule for constructing models from measured data. As
we shall see it may come out rather naturally from statistical estimation criteria
in problems where some probabilistic side information is available.
Obviously θ̂ depends on the data (y1, . . . , yN ) (u1, . . . , uN );

θ̂ = θ̂(y1, . . . , yN ; u1, . . . , uN ) ,

Assuming for the moment that a unique minimizer exist, θ̂ is called a Least-
Squares-Estimator of θ. No statistical significance is attached to this word.

Weighted Least Squares
It is reasonable to weight the modeling errors by some positive coefficients qt
corresponding to more or less reliable results of the experiment. This leads to
Weighted Least Squares, criteria of the type

VQ(θ) :=

N∑
1

qt [y(t)− f(ut, θ, t)]
2
,

where q1, . . . , qN are positive numbers, which are large for reliable data and
small for bad data. More generally, we may introduce a symmetric positive-
definite weight matrix Q and form the criterion

VQ(θ) = [y − f(u, θ)]
>
Q [y − f(u, θ)] = ‖y − f(u, θ)‖2Q ,

where we have introduced vector notations

y =

 y1

...
yN

 f(u, θ) =

 f(u1, θ, 1)
...

f(uN , θ,N)

 (2.1.1)

The minimization of VQ(θ) can be done analytically when the model is linear
in the parameters, that is

f(ut, θ, t) =

p∑
1

si(ut, t) θi , t = 1, . . . , N .

In this problem formulation the input ut is assumed to be a known quantity
measured without errors. Therefore we can rewrite this as

f(ut, θ, t) := s>(t) θ ,

with s>(t) a p-dimensional row vector which is a known function of u and of
the index t. Using vector notations, introducing the N × p , Signal matrix,

S =

 s
>(1)

...
s>(N)

 .
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we get the linear model class { ŷθ = Sθ , θ ∈ Θ } and the problem becomes to
minimize with respect to θ the quadratic form

VQ(θ) = [y − Sθ]> Q[y − Sθ] = ‖y − Sθ‖2Q . (2.1.2)

The minimization can be done by elementary calculus. However it is more
instructive to do this by geometric means using the Orthogonal Projection Lemma
which in the present context is a rather intuitive condition. In Sect. 5.5 we shall
provide a general statement in Hilbert space.

Make RN into an inner product space by introducing the inner product
〈x, y〉Q = x>Qy and let the corresponding norm be denoted by ‖ · ‖Q. Let S
be the linear subspace of RN spanned by the columns of the matrix S. Then the
minimization of ‖y−Sθ‖2Q is just the minimum distance problem of finding the
vector ŷ ∈ S of shortest distance from the data vector y. Then the minimizer of
VQ(θ) = ‖y − Sθ‖2Q must render the error y − Sθ orthogonal (according to the
scalar product 〈x, y〉Q) to the subspace S, or, equivalently, to the columns of S,
that is

S>Q(y − Sθ) = 0 ,

See the picture below.

y

S

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
���

PPPPPPq

Sθ̂

Figure 2.1.1. Orthogonali Projectionin in RN .

The orthogonality condition can be rewritten

S>QS θ = S>Qy . (2.1.3)

These are the famous normal equations of the Least-Squares problem.
Let us now assume that

rank S = p ≤ N . (2.1.4)

This is an identifiability condition of the model class. Each model corresponds
1 : 1 to a unique value of the parameter. Under this condition the equation



54 Chapter 2. LINEAR MODELS

(2.1.3) has a unique solution which we denote θ̂(y) given by

θ̂(y) = [S>QS ]−1 S>Qy , (2.1.5)

which is a linear function of the observations y. For short we shall denote
θ̂(y) = Ay. Then Sθ̂(y) := SAy is the orthogonal projection of y onto the sub-
space S = span (S). In other words the matrix P ∈ RN×N , defined as

P = SA ,

is the orthogonal projector, with respect to the inner product 〈·, ·〉Q, from RN
onto S . In fact P is idempotent (P = P 2), since

SA · SA = S · I ·A = SA

however P is not symmetric, as it happens with the ordinary Euclidean metric,
but rather

P> = (SA)> = A>S> = QS [S>QS ]−1S> = QS AQ−1 = QP Q−1 , (2.1.6)

so P> is just similar to P . Actually, this identity just says that the projection
P solving the least squares problem is a self adjoint operator with respect to
the inner product 〈·, ·〉Q as all bona-fide orthogonal projectors in general inner
product spaces P should be. See the appendix B, formula (B.1.2) .

2.2 Linear Statistical Models
In the following sections we shall go back to the statistical setting where the
observations are modeled as random variables. Recall that random quantities
are denoted by boldface symbols.
Let y be a N -dimensional random vector whose probability distribution is an
unknown member of a parametric family {Fθ ; θ ∈ Θ}.

A statistical (or probabilistic) model of y is a representation

y = h(θ,w) , (2.2.1)

where h is a known function and w is a random vector of a known probability
distribution, whose probabilistic structure is simpler than that of y. Typically
one requires w to have independent components or to be Gaussian with uncor-
related components.

A statistical model is usually regarded as a description of the physical de-
vice which generates the observations. In many applications w is a model of the
“noise” affecting the observations; the noise being an aggregate description of a
multitude of unknown, uncontrollable factors which act on the system so as to
make the results of a measurement of y impossible to predict exactly; i.e. uncer-
tain. It is a commonly accepted fact that a reasonable mathematical description
of this aggregate disturbance factor should be probabilistic although the philo-
sophical grounds for this choice are rather subtle and have been challenged by
some [107] see http://www.esat.kuleuven.be/?jwillems. We shall hereafter
assume that some probabilistic description of the noise is available. Very often
this probabilistic description will be limited to the knowledge of the first and
second order moments. In any case the random noise in the model (2.2.1) will be
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the source of uncertainty in the relation linking the parameter θ, which is the
primary object of the measurement experiment, to the observed output y.

In principle knowledge of the model plus the PDF of the noise is equivalent
to the knowledge of the distribution function {Fθ ; θ ∈ Θ}, since one may,
in principle, compute, for each fixed θ, the PDF of y by the well-known rules
of Probability Theory. However in applied sciences and engineering it is more
frequent and much more intuitive to describe the data generation mechanism
by a model of the type (2.2.1). Probably the earliest example is the model used
in experimental Physics called theory of errors which was originated by Gauss
[37] while he was experimentally investigating the motion of Jupiter satellites.

Suppose one is performing measurements on a certain apparatus which can
be modeled by assigning the values of a p-dimensional real parameter θ (as-
sumed to stay constant in time) whose components are not directly accessible.
In a perfectly ideal condition (or when there are no precision requirements) it
should be enough to take just one measurement, since by repeating the mea-
surement one would in principle just get the same number. It is a universally
observable fact however that even if the measurements are performed with the
same apparatus, one has to face the fact that the results are not the same and
fluctuate slightly in an unpredictable manner. This is the main reason why it
may look reasonable to take multiple measurements, performing say N succes-
sive experiments. The main question is what one should do with this bunch of
numbers. What is a rational way to process these data? To answer this question
one should refer to a suitable statistical model.

In the theory of errors one postulates that the individual measurements can
be described as

yk = s(θ) + wk , k = 1, . . . , N ,

where s(θ) is the ideal characteristics of the measurement instrument, which is
a known function of θ andwk is an “error” term. The question is how this quan-
tity should be described mathematically. Gauss argues that in many measure-
ment experimentswk can be imagined to be a macroscopic or “aggregate” result
of a large number of independent microscopic “accidental” causes which are
small and their effects can be reasonably assumed to combine linearly. Gauss
then argues (inventing the first known instance of a Central Limit Theorem) that
under these conditions the possible values taken by each error variable wk dis-
tribute according to a bell shaped probability density, which is what we now
call Gaussian.

In short, the wk’s are modeled as values taken by independent Gaussian ran-
dom variables. When there are no systematic errors the random variables wk can
be assumed to be zero-mean.

In this scheme the yk are sample values of a scalar Gaussian random vari-
able yk having mean value s(θ) and variance equal to the variance of wk. The
N observations form then a random vector y :=

[
y1 . . . yN

]> which is rep-
resented in vector notation as

y = s(θ) + w , (2.2.2)

where
s(θ) = [s1(θ), . . . , sN (θ)]

>
, w =

[
w1 . . . wN

]> (2.2.3)

This model representing y as the sum of a deterministic “signal” plus Gaussian
noise is used in a variety of applications such as for example digital communi-
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cation channels. For mere notational simplicity the yk have been assumed to
be scalar but models describing vector valued observations are often of inter-
est. The generalization of model (2.2.2) to describe vector valued observations
is however straightforward and will be left to the reader.
The covariance matrix of the full vector y is clearly the same as the covariance
of the noise vector

R := Eww>

which also describes a possible correlation of the variables of different index
and need not necessarily be diagonal. In practice, in general R may be partially
unknown or poorly known. The simplest case occurs when the noise compo-
nents are independent and identically distributed and R is then a scalar multi-
ple of the identity say R = σ2IN . The variance σ2 may in general be unknown.
One may then treat σ2 (or σ) as an additional parameter to be estimated and
rewrite the model as

y = s(θ) + σw , (2.2.4)

where w ∼ N (0, IN ). On the other extreme, models in which the whole noise
covariance matrix is completely unknown lead to very difficult estimation prob-
lems since the whole variance needs now to be considered as an additional un-
known parameter. We shall consider an intermediate situation where the noise
variance is partially unknown of the form σ2R with σ2 unknown and R = R>

known and positive definite. This model can in principle be reduced to the i.i.d.
noise model (2.2.4) by scaling all members of (2.2.2) multiplying from the left
both members by the inverse of a square root of R; i.e.

R−1/2y = R−1/2s(θ) +R−1/2 w , (2.2.5)

where R1/2(R1/2)> = R and R−1/2w ∼ N (0, σ2IN ).
In practice however this operation is not to be recommended especially for

large values of N since the explicit computation of the inverse of a square root
and the scaling itself may be time consuming and numerically poorly condi-
tioned.

In what follows we shall consider the case where s(θ) is a linear function of
the parameter θ, that is

s(θ) = Sθ , S ∈ RN×p , (2.2.6)

where S is a known N × p real matrix. We shall henceforth discuss parameter
estimation for the Gaussian stochastic linear model

y = Sθ + w , w ∼ N (0, σ2R) (2.2.7)

which naturally should be compared with the deterministic least-squares model
fitting of Section 2.1. Before launching into the details of statistical parameter
estimation it will however be appropriate to discuss some interpretations, gen-
eralizations and limits of the model (2.2.7).

The Classical Notation

In almost all books a linear model is written

Y = Xβ + ε
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where Y is the measurement (random) vector and X is called the design matrix.
Both are normally written boldface which may induce the idea that both could
be matrix valued of arbitrary dimensions. More dangerously, that X could also
be a random array, a situation which in the special but frequent case of regres-
sion models (see below) leads into the setting of Error be in Variables problems
a much more difficult setting which is so far poorly understood and cannot be
dealt with by standard techniques like those discussed in this chapter.
This classical notation is, in our modest opinion, very bad, incoherent and and
confusing. We shall not use it.

On regression models

In analogy to what discussed in Section 2.1, often the observations {y1, . . . , yN},
are the response of a physical system to external stimuli, i.e. the result of appli-
cation of a sequence of exogenous inputs say {ut ; t = 1, . . . , N ; ut ∈ Rq} which
may either be generated by some external mechanism, possibly also affected by
noise, or decided by the experimenter. In this last case the u’s are known exactly
and one is really after a model relating the data (ut ; yt) where only the outputs
y are affected by measurement uncertainties. This leads to a noisy generaliza-
tion of the parametric class considered earlier of the type

yt = f(ut, θ, t) + wt , t = 1, . . . , N (2.2.8)

where s(θ, t) now denoted f(ut, θ, t), is a known function, up to the assignment
of a parameter value to θ, that is, a known function of ut, t = 1, . . . , N and
of a p-dimensional unknown parameter θ. One says that we are regressing y on
u. Of course when f depends linearly on θ the model is just a noisy version
of the deterministic model (2.2.6) and is called a Linear Regression model. Here
wt represents the uncertainty affecting the measurement of the output variable
yt but may also serve as a rough description of model uncertainty at time t.
Naturally this interpretation cannot have a clear probabilistic justification as
was the case for the wt term in the theory of errors. Note that linearity in the
input variable is not required at all.

Error In Variables models

Let us observe that the structure (2.2.8) of a statistical model that we have de-
scribed so far, is quite restrictive since it assumes that only the output variables
y are subject to errors while the inputs in the function f or more specifically,
forming the rows of the S matrix, are assumed to be known i.e. measured
exactly. Often regression models are fitted routinely to the input-output data
without paying much attention to this issue. In some applications this may not
be realistic and may lead to questionable results.

Assuming instead that one wants to discover a model relating certain “true”
output and input variables both of which are not directly accessible but only
observed corrupted by additive random noise. Denoting such true variables
by hatted symbols one ends up with a so-called Error In Variables (EIV) model
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structure of the following form

ŷt = f(ût ; θ) (2.2.9a)
yt = ŷt + ỹt (2.2.9b)
ut = ût + ũt (2.2.9c)

where ŷt , ût are the unobservable “true” output and input variables and yt , ut
their available observations. The subscript t is indexing repeated measure-
ments.The terms ỹ and ũ represent measurement errors which are normally
assumed mutually uncorrelated or even independent and also uncorrelated or
even independent of the true signals ŷ , û. There are several variations on this
model class which are discussed in the literature and we shall only briefly touch
upon the linear class where the function f is just a linear map represented by
some deterministic unknown matrix A.

In particular, assume we want to describe two scalar zero-mean random
variables u and y having a positive definite covariance matrix

Σ =

[
σ2
u σuy

σyu σ2
y

]
by a scalar linear EIV model

ŷt = a ût ; (2.2.10a)
yt = ŷt + ỹt (2.2.10b)
ut = ût + ũt (2.2.10c)

where a is an unknown parameter, σ̂2
u, σ̂

2
y are the variances of the true variables

û and ŷ and λ2
u, ; λ

2
y are the variances of the corresponding additive errors.

Since E ŷ û = aσ̂2
u and E ŷ2 = a2σ̂2

u, it must hold that

Σ = σ̂2
u

[
1 a
a a2

]
+

[
λ2
u 0

0 λ2
y

]
(2.2.11)

The expression on the right depends on four parameters (some of which need
to be positive). A basic question is how many EIV models can represent the
same covariance matrix Σ and therefore be indistinguishable (or equivalent)
from knowledge of the joint second order statistics of the observations. It is
intuitively clear that since any 2 × 2 covariance matrix Σ depends on three pa-
rameters there may be a multitude of EIV models representing the same ran-
dom variables u and y. Indeed, introduce an equivalent parameterization by
setting

a1 = σ̂u ; a2 = aσ̂u ; a :=
[
a1 a2

]>
so that equation (2.2.11) is rewritten in a more symmetric form as

Σ = aa> +

[
λ2
u 0

0 λ2
y

]
. (2.2.12)

This means that by modeling with an EIV model one wants to represent the
covariance Σ > 0 as the sum of a rank deficient plus a diagonal matrix. In particular
aa> being rank deficient is equivalent to the condition

det

[
σ2
u − λ2

u σuy
σyu σ2

y − λ2
y

]
= 0
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constraining the noise variance parameters λ2
u, λ

2
y to satisfy the equation

(σ2
u − λ2

u)(σ2
y − λ2

y) = σ2
yu

which describes an hyperbola which all feasible noise variances must belong to.
Actually they need to stay only on a tract of an hyperbola

Figure 2.2.1. EIV Hyperbola

lying in the positive quadrant. To each feasible pair λ2
u, λ

2
y there corresponds

a distinct EIV model with a different “true parameter" vector a obtained by

factoring the matrix Σ −
[
λ2
u 0

0 λ2
y

]
. The vector a is determined modulo a mul-

tiplicative constant of absolute value one. You may then set σ̂u = a1 and then
the unknown regression parameter a will be given by the formula

a = a2/σ̂u .

It is clear that there are as many a’s as there are feasible pairs λ2
u, λ

2
y lying on

the hyperbola. For example one may pick λ2
u = 0 to get

λ2
y = σ̃2

y := σ2
y −

σuyσyu
σ2
y

(2.2.13)

which is the modeling error variance of a a regression model for y in terms of u
with noiseless input5. The “true” a for this model is

a =
σyu
σ2
u

By choosing λ2
y = 0 one would instead get a regression model of u in terms of

y and a modeling error variance σ̃2
u having a dual expression of (2.2.13). The

so-called “total-least squares" model is obtained by picking the point λ2
u = λ2

y

in the hyperbola and will have yet a different regression parameter a (which can
be computed by the factorization procedure outlined above) etc. In conclusion,

5The expression on the right has a Bayesian modeling interpretation which will be studied in
great detail in Chapter 5, in particular see Sect.5.6.
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any EIV model representing the two variables y, u can be fixed by, say, fixing
the ratio λ2

u/λ
2
y of the two noise variances.

Note that this is about stochastic modeling and has absolutely nothing to do
with statistical parameter estimation. In general an estimation method, say,
least squares or total least squares or other, may be the correct approach to esti-
mate only one of these models.

Factor Analysis (F.A.) models, to be discussed later, are related to EIV. These
models involve an extra “factor ” latent variable but lead to the same kind of
decomposition of the observation covariance as a sum of a rank deficient plus
a diagonal matrix. In certain cases and under a minimality condition, the fac-
tor variable can be eliminated leading to an EIV model. FA models belong to
Bayesian modeling philosophy and we shall discuss them in Section 5.8.1. 2

A distinction which is often made in the literature is between grey box and
black box models. In the first category one classifies models whose structure is
dictated by the physics or biology or by the economic theory etc. governing the
system. Often in these models the unknown parameters have a precise phys-
ical or biological significance and the scope of the statistical procedures is just
to get information about these parameters rather than discovering the system
structure. Very often however the parameters enter in these models in a non-
linear fashion and standard estimation methods, say ML , can only be applied
by iterative numerical algorithms.

Black-box models are instead used when the physical (or biological etc.) laws
governing the phenomenon of interest are little known or uncertain and also
when they maybe known but would lead to a very complicated set of equations
involving a large number of unknown parameters thereby leading to identifi-
ability issues and to very unreliable estimated models. In this case the model
class is imposed by the experimenter, usually assuming the simplest paramet-
ric structure so as to allow for the application of simple estimation algorithms.
Note a fundamental difference: now the model parameters are no longer the
primary object of interest. The predictive accuracy of the model is instead the
main goal of the statistical exercise. The parameter estimation criterion in this
case comes out from the minimization of some measure of the statistical predic-
tion error.

In Black-box estimation one may have to proceed by several trials, first try-
ing structures which are simple and linear in the parameters. Then the theory
exposed in this and following chapters becomes relevant. This “utilitaristic”
philosophy of model estimation necessarily requires a successive phase of model
validation which may well lead to increase the parametric complexity. The main
principles of model validation will be discussed later in this book. Sometimes
it may be necessary to resort to nonlinear models.

Examples of grey-box models are for example the state equation of a gas
pV γ = kT where one should determine experimentally the constants γ and k
from measurements of the variables p, V , T or the experimental determination
of the parameters (R,L,C) of an electrical network starting from recordings
of the electrical voltage at the output terminals during a discharge. While in
the first example the model can be made linear in the parameters by taking
logarithms, here the parameters enter nonlinearly in the time constants and in
the amplitudes of the theoretical transient

y(t) = A1 e
−t/T1 +A2 e

−t/T2 + . . . ,
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and the estimation problem turns out to be essentially nonlinear.

2.3 Maximum Likelihood estimation of the linear model
We want to compute the ML estimates of the parameters θ ∈ Rp and σ2 ∈ R+ of
the linear model (2.2.7); where S ∈ RN×p is a known matrix and w is a Gaussian
random vector of mean zero and known variance matrix R, assumed positive
definite.

Since y ∼ N (Sθ, σ2R) the log-likeliohood function is readily obtained as

`(y, θ, σ2) = −N
2

log 2π − 1

2
log
[
det(σ2R)

]
− 1

2
(y − Sθ)> (σ2R)−1 (y − Sθ)

= −N
2

log 2π − N

2
log σ2 − 1

2
log detR− 1

2σ2
(y − Sθ)>R−1 (y − Sθ) ,

(2.3.1)

so that, writing the gradient with respect to θ as a column vector, one gets

∂`

∂θ
=

1

σ2
S>R−1 (y − Sθ) , ∂`

∂σ2
= − N

2σ2
+

1

2σ4
(y − Sθ)>R−1 (y − Sθ) .

From these expressions one can compute the Fisher matrix I(θ, σ2). Letting,

zθ :=
∂`(y, θ, σ2)

∂θ
, zσ :=

∂

∂σ2
`(y, θ, σ2) ,

one needs to compute the entries of the matrix

I(θ, σ) = E θ,σ

[
zθz
>
θ zθzσ

z>θ zσ z2
σ

]
. (2.3.2)

which turn out to be

E zθz
>
θ =

1

σ4
S>R−1 E θ,σ{(y − Sθ) (y − Sθ)>} R−1S

=
1

σ4
S>R−1 σ2R R−1S =

1

σ2
S>R−1S .

Further define the scaled variable

ỹ := R−1/2 (y − Sθ) ∼ N (0, σ2I)

whereby

E θ,σ zθzσ = E θ,σ

{
1

σ2
S>R−1/2 ỹ

(
− N

2σ2
+

1

2σ4
ỹ>ỹ

)}
=

1

2σ6
S>R−1/2 E θ,σ ỹỹ>ỹ = 0 ,

which follows since ỹ has zero mean and the third order moments of a zero-
mean Gaussian variable are zero. Note now that the quadratic form

‖ỹ‖2 = (y − Sθ)>R−1 (y − Sθ) ,
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has a χ2 distribution with a number of degrees of freedom equal to N , the di-
mension of y; i.e. ‖ỹ‖2

σ2 ∼ χ2(N). See Appendix A.4 for a definition of the
chi-squared distribution and for a proof of this fact. Hence, since the expected
value of ‖ỹ‖

2

σ2 is exactly N it follows from (A.2.3) that

E θ,σ z2
σ = E θ,σ

{
1

2σ2

[
‖ỹ‖2

σ2
−N

]}2

=
1

4σ4
Var

[
‖ỹ‖2

σ2

]
=

N

2σ4
. (2.3.3)

Putting these results together one finds a formula for the information matrix

I(θ, σ2) =

[
1
σ2 S

>R−1S 0
0 N

2σ4

]
. (2.3.4)

Clearly I(θ, σ2) is non-singular if and only S>R−1S is also non-singular which
in turn happens if and only if S is full column rank. The following proposition
is an immediate consequence of Rothenberg’s Theorem 1.3.

Proposition 2.1. Let (2.2.7) be a model with N ≥ p scalar observations. Then θ is
globally identifiable if and only if

rank S = p. (2.3.5)

Whenever the nullspace of S contains a nonzero vector ξ 6= 0, then θ and
θ + ξ would be indistinguishable.

In this section we shall assume that rank S = p i.e. the p columns of S
are linearly independent, which is equivalent to the existence of the inverse
I−1(θ, σ2). Therefore the variance matrix of any unbiased estimator of θ cannot
be smaller (in the matrix ordering) than σ2[S>R−1S]−1. Similarly, 2σ4

N is a lower
bound for the variance of any unbiased estimator of σ2 although it turns out that
this lower bound is not sharp.

From ∂`/∂θ = 0, in force of the invertibility of S>R−1S, one obtains the
expression for the ML estimator of θ:

θ̂(y) = [S>R−1S]−1 S>R−1y . (2.3.6)

which provides indeed the absolute maximum of `(y, θ, σ) since the Hessian
matrix

∂2`

∂θi ∂θj
= − 1

σ2
S>R−1S

is negative definite. This expression of θ̂ is exactly the same as that found in
Section 2.1. We shall use again the compact notation

θ̂(y) = Ay , A := [S>R−1S]−1 S>R−1 . (2.3.7)

Theorem 2.1. The ML estimator (2.3.6) of the parameter θ in the linear model (2.2.7)

1. is an unbiased estimator of the parameter θ. In fact, E θ,σ Ay = θ for all
θ ∈ Rp.
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2. The variance matrix of θ̂(y) is

Var {θ̂(y)} = σ2[S>R−1S]−1 (2.3.8)

and coincides with the Cramèr-Rao lower bound. Therefore θ̂(y) is a minimum
variance estimator.

3. The random vector θ̂(y) is normally distributed, in fact,

θ̂(y) ∼ N
(
θ, σ2 [S>R−1S]−1

)
.

Proof. Property 1 follows from the fact that A is a left-inverse of S since

AS = I . (2.3.9)

Property 2 follows from

E θ,σ(Ay − θ) (Ay − θ)> = E θ,σ (ASθ +A(σw)− θ) (ASθ +A(σw)− θ)>

= E θ,σ A(σw) (σw)>A> = σ2ARA> = σ2[S>R−1S]−1 ,

while property 3 is a consequence of linearity.

Geometric interpretation and Least Squares

Just by looking at the expression of the log-likelihood (2.3.1) it is evident that
θ̂(y) is the function which minimizes with respect to θ the quadratic form

(y − Sθ)>R−1(y − Sθ) = ‖y − Sθ‖2R−1 , (2.3.10)

which can again be interpreted as a distance in RN , once equipped with the
inner product 〈x, y〉R−1 := x>R−1y. As observed already in Sec. 2.1, for any
y ∈ RN the minimizer Sθ̂(y) := S Ay of the distance (2.3.10), is just the vector
v ∈ S := span (S) (the vector space spanned by the columns of S) equal to the
orthogonal projection of y onto the subspace S = span (S). In other words the
matrix P ∈ RN×N , defined as

P = SA , (2.3.11)

must be the orthogonal projector (with respect to the inner product 〈·, ·〉R−1 )
from RN onto S. In fact P is idempotent (P = P 2), since

SA · SA = S · I ·A = SA

and

P> = (SA)> = A>S> = R−1S [S>R−1S]−1S> = R−1SAR = R−1PR ,
(2.3.12)

which is the property of being self-adjoint with respect to the inner product
〈·, ·〉R−1 .
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The characterization of an orthogonal projection is the orthogonality of the
error, y − Sθ, to the subspace S

S ⊥ (y − Sθ) . (2.3.13)

which, is equivalent to

S>R−1y − S>R−1 Sθ = 0 (2.3.14)

and, by the invertibility of S>R−1 S, provides the expression (2.3.6). In other
words, θ̂(y) is a weighted least-squares estimator with weight matrix equal to
the inverse of the noise covariance.

Theorem 2.2. Under the identifiability assumption (2.3.5) the ML estimator of the
parameter θ in the linear-Gaussian model (2.2.7) is the unique vector function y →
θ̂(y) minimizing the distance (2.3.10).

The variance estimator

From the second log-likelihood equation ∂`/∂σ2 = 0 one gets

σ̂2(y) =
1

N

(
y − Sθ̂(y)

)>
R−1

(
y − Sθ̂(y)

)>
=

1

N
‖y − Py‖2R−1 , (2.3.15)

Hence σ̂2(y) is the average squared norm of the residual approximation error of the
observed data y when using the value of θ equal to the ML parameter estimator,
that is, when approximating y by Py = Sθ̂(y). We shall now need to find the
pdf of the random variable σ̂2(y).

Theorem 2.3. The normalized ML estimator of the variance σ2 in the linear model
(2.2.7) is χ2-distributed. More precisely,

Nσ̂2(y)

σ2
∼ χ2(N − p) . (2.3.16)

In particular, the mean and variance are given by

E θ,σ2 σ̂2(y) = σ2 N − p
N

, (2.3.17)

Varθ,σ2 σ̂2(y) = σ4 2(N − p)
N2

. (2.3.18)

Proof. Notice that y − Py = (y − Sθ) − P (y − Sθ) = σ(I − P ) w. Define the
random vector

z := R−1/2 w ∼ N (0, I)

and use (2.3.14) to get the representation

Nσ̂2(y)

σ2
= w>(I − P )>R−1(I − P ) w = z>

[
R−1/2(I − P ) R1/2

]
z ,
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where we have used the similarity P> = R−1 PR established in (2.3.12). The
matrix between square brackets, say Q, is idempotent since by (2.3.12), one has

Q2 = R−1/2(I − P )2R1/2 = R−1/2(I − P ) R1/2 = Q

and has rank N − p. In fact I −P projects onto the subspace S⊥, the orthogonal
complement of S and since we have identifiability dimS = p. Proposition A.7
in Appendix A.4 then implies that z>Qz ∼ χ2(N − p).

Remark 2.1. As shown by equation (2.3.17), the estimator σ̂2(y) is biased implying
a systematic bias, equal to −σ2 p/N , which however tends to zero as the sample size N
tends to infinity. The bias can easily be compensated by modifying σ̂2 to

s2(y) :=
1

N − p
‖y − Sθ̂(y)‖2R−1 ,

which is clearly unbiased. The correction has however a price in terms of a larger
variance. In fact from (N − p) s2(y)/σ2 ∼ χ2(N − p) it easily follows that

var θ,σ2 s2(y) =
2σ4

N − p
,

which is strictly larger than 2σ4 (N − p)/N2. Incidentally, note that the variance of
σ̂2(y) is actually smaller than the Cramèr-Rao bound, which is 2σ4/N .

In conclusion we have shown that the computation of the ML estimator of
the parameter θ in the linear Gaussian model (2.2.7) can be reduced to the so-
lution of a weighted least-squares problem. As for the general deterministic
least-squares problem dealt with in Sec. 2.1 the ML estimator turns out to be a
linear function of the data. However now this linear function is, in terms of error
variance, the best possible function of the data, in the class of all measurable func-
tions of y which includes arbitrary nonlinear functions. This strong optimality
is a consequence of Gaussianity and would not hold for non-Gaussian noise
distributions.

Statistical Least Squares with partial information
When the distribution of w is not Gaussian the ML estimator is no longer linear;
in practice the distribution may actually be unknown or we may have only
partial statistical information. Typically we may assume that only information
on the first and second order moments is available. In this case it is reasonable
to look for an estimator of θ which is a linear function of the data.

In this section we shall discuss parameter estimation on the usual linear
model

y = Sθ + σw (2.3.19)

assuming only that the first and second order noise statistics

Ew = 0 , Var (w) = Eww> = R . (2.3.20)

are known, but without assuming anything on the noise distribution. As for the
Gaussian model, σ2 is the unknown parameter in the noise variance matrix, to
be estimated from data.
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Remarks 2.1. Note that w having known zero mean is not an essential as-
sumption. For example, assuming for simplicity that µ := Ewt is the same
for all t = 1, 2, . . . , N , we may augment the vector θ by the additional unknown
scalar parameter µ by adding an additional column to the matrix S. Setting
w̃t := wt − µ one may rewrite the model as

yt = s>(t) θ + µ+ σw̃t , t = 1, . . . , N ,

where w̃ has mean zero and the same variance matrix σ2R of the original model.
Introducing the new parameter θp+1 := µ and attaching a column of 1’s to S one
obtains the model

y =
[
S 1

]
[θ1, . . . , θp, θp+1]> + w̃ ,

where w̃ has mean zero. Obviously the same remark applies to the previous
section.

Guided by the structure of the solution for the Gaussian case, which is a
linear function of the observations depending only on the first and second order
moments of y, it is reasonable to look also in this case for an estimator of θwhich
is a linear function of the data.

Definition 2.1. A best linear unbiased estimator (BLUE) is a linear function of the
data y say φ(y) = Ay, A ∈ Rp×N which,

• Is unbiased; i.e for all θ ∈ Rp,

E φ(y) = θ, that is AS = I .

• Has minimal variance, with respect to the semidefinite ordering of matrices; i.e.
A ≥ B iff A−B is positive semidefinite. The (matrix) variance being defined as

Var φ̂(y) := E [ (φ(y)− θ) (φ(y)− θ)>] .

It is then natural to bring in the Least-Squares estimator θ̂ defined in the pre-
vious Section 2.1. The question to ask is what statistical properties this estimator
may have.

Proposition 2.2. No matter what Q > 0, the weighted least squares estimator (2.1.5)
is unbiased..

Proof. In fact, since Ew = 0, and

θ̂(y) = [S>QS]−1 S>Q[Sθ + w] = θ + [S>QS]−1 S>Qw ⇒ E θ̂(y) = θ

When Q = R−1 the least squares estimator of θ is called the Markov esti-
mator. Obviously when R is diagonal, i.e. R = diag{r1, . . . , rN}, the diagonal
weight Q with entries qt = 1

var yt
= 1

σ2
1
rt
, t = 1, . . . , N. is a most natural

choice. Note that the unknown factor 1/σ2 does not influence the estimator.
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Theorem 2.1 (Gauss-Markov). Assume S is of full rank p. The BLUE of θ for the
linear model (2.3.19) is the Markov estimator θ(y), whose variance is

Var θ̂(y) = σ2(S>R−1S)−1 . (2.3.21)

Proof. Since A must be a left-inverse of S it must have the form (??) for some
positive definiteQ, that is, A = S−L = [S>QS]−1 S>Q . The variance of φ̂(y) =
Ay is then

Var φ̂(y) = [S>QS]−1 S>Q σ2R QS[S>QS]−1 ;

We shall show that for all Q = Q> > 0; i.e. for all left inverses A,

σ2ARA> ≥ σ2 (S>R−1S)−1 = Var θ̂(y) (2.3.22)

(a wide-sense Cramèr-Rao bound).
Proof of (2.3.22) :
The proof is based on the error variance formula for liner Bayesian estimation
to be seen in the next Chapter. Let n be a random vector with orthonormal
components, x := AR1/2n and y := CR1/2n. The variance of the Bayesian
estimation error x̃ := x−E [x | y], is displayed in formula (5.5.13) , which is just
Σx−ΣxyΣ−1

y Σ>xy . Substituting the expressions for the various variance matrices
as defined above and recalling that the error variance must be nonnegative we
get,

ARA> ≥ ARC>(CRC>)−1 CRA> ,

which holds for an arbitrary full rank matrix C ∈ Rp×N .
Choose C = (S>R−1S)−1S>R−1 and use the fact thatAS = I to obtain (2.3.22).

Note that the Markov estimator of θ coincides with the ML estimator but
in the present context we can only say that it is the best linear function of the
data which is of course a much weaker statement than saying that it is the best
function in the huge class of all measurable functions of the data. This holds
true only in case w has a Gaussian distribution. When w is not normally dis-
tributed its variance may actually be much larger than the variance of the true
ML estimator.

Estimation of σ2 for the Markov estimator

We may still refer to the formula for the average residual estimation error (2.3.15)

σ̂2(y) =
1

N
‖y − Py‖2R−1 =

1

N
VR−1(θ̂) .

Now σ̂2(y) may no longer have a χ2distribution. We may however compute its
expectation. By using the properties of the projection operator P we find

NE
(
σ̂2(y)

)
= E

(
y>(I − P )>R−1(I − P ) y

)
= E

(
w>(I − P )>R−1(I − P ) w

)
= E

(
w>R−1(I − P ) w

)
= E tr{w>R−1(I − P ) w} = E Tr {R−1(I − P ) ww>}
= E Tr {(I − P ) (ww>) R−1} = Tr {(I − P ) E (ww>) R−1}
= σ2 Tr (I − P ) ; (2.3.23)
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which follows fro the identity (I − P ) y = (I − P )Sθ + (I − P ) w = (I − P ) w.
Since Tr P = dim S = p

E σ̂2(y) =
N − p
N

σ2 . (2.3.24)

which is the same formula found for the ML estimator. Of course N
N−p σ̂

2 will
be an unbiased estimator of σ2.

Remarks 2.2. Note that the BLU estimator of any linear function c>θ of θ (c> is a
known vector), is simply the same linear function of the Markov estimator, say c>θ̂. Of
course this would be no longer true for a non-linear function c(θ), of θ which would
instead hold for the ML estimator.

2.4 The Case of Vector-valued Data
Suppose now that the observations and the inputs are vector-valued. We col-
lect at each instant t, m simultaneous observations which may be the result of
measurements made simultaneously on m different output channels and simi-
larly record the p-dimensional input components fed to the system at time t. To
arrange for vector valued quantities it will be convenient to change notations
slightly and stack the vector data y(t) and the additive noise m-vectors w(t)
into “fat” N -column matrices as follows:

Y :=
[
y(1) . . . y(N)

]
W :=

[
w(1) . . . w(N)

]
Here we want to model each row yk of Y as a linear function θ>k S where
S is a signal matrix with rowspace S spanned by p known N -vectors possi-
bly depending on u. The additive errors w(t) ; t = 1, 2, . . . , N are in general
assumed to be mutually uncorrelated each having a known variance matrix
Ew(t)w(t)> := R(t) which is positive definite. A common unknown scalar
factor σ2 (independent of t) can be dealt with by the techniques seen in the pre-
vious section but here we shall for simplicity assume that all R(t)’s are known.
With the above notations the standard linear model can be rewritten compactly
as

Y = ΘS + W . (2.4.1)

A matrix generalization of the linear least squares problem follows.

Matrix least-Squares Problems
In the real vector space ofm×N matrices, Rm×N , we can introduce the Frobenius
inner product defined as

〈X,Z〉 := Trace {XZ>}

which coincides with the usual Euclidean inner product of the vectors in RmN
obtained by stacking the columns of each matrix X and Z on top of each other.
Using elementary properties of the trace operator you can easily show that

〈X,Z〉 := Trace {X>Z} = Trace {Z>X} .
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This Inner product can be generalized introducing a positive definiteQ ∈ RN×N
to define

〈X,Z〉Q := Trace {XQZ>} = Trace {ZQX>}

which defines the weighted Frobenius norm of a matrix X as

‖X‖2Q := Trace {XQX>}.

Let now Y ∈ Rm×N and S ∈ Rp×N be known real matrices. One may
generalize the standard LS problem to matrix-valued data as follows: consider
the problem

min
Θ∈Rm×p

‖Y −ΘS ‖F , (Frobenius norm) (2.4.2)

where Θ ∈ Rm×p is an unknown matrix parameter. The Frobenius norm could
actually be weighted by a positive definite weight matrix Q.

The problem can be solved for each row yk by the orthogonality principle.
Let S be the rowspace of S and denote a row vector in S by θkS ; θk ∈ Rp (also
a row vector). Then the optimality condition is

yk − θkS ⊥ S ; i.e. ykQS
> = θkSQS

> k = 1, 2, . . . ,m

so that, assuming S of rank m, by the orthogonality principle we obtain the
following solution:

Θ̂ = Y QS> [SQS>]−1 . (2.4.3)

Example 2.1 (A vector linear regression problem). We consider a simple time-
invariant situation where we want to fit to the measurements a static linear
model described by a m × p-dimensional matrix parameter Θ, plus additive
noise

y(t) = Θ u(t) + w(t) , t = 1, . . . , N, Θ ∈ Rm×p (2.4.4)

where we assume u(t) a random zero-mean p-vector having finite second order
moments for all t and w(t) and u(s) uncorrelated for all t, s. Stacking the data
into “fat” N -column matrices as follows:

Y :=
[
y(1) . . . y(N)

]
U :=

[
u(1) . . . u(N)

]
W :=

[
w(1) . . . w(N)

]
the model can be rewritten compactly as

Y = ΘU + W . (2.4.5)

The best fit can be defined in terms of a quadratic functional

V (Θ) = ‖Y −ΘU‖2Q := 〈Y −ΘU, Y −ΘU〉Q (2.4.6)

where Y, U are the sample input-output data and Q is a weighting N ×N pos-
itive definite matrix, perhaps having a block-diagonal structure. The scalar
product in the vector space of m×N matrices in this context is defined as6

〈X,Z〉Q := Trace {XQZ>} = Trace {ZQX>}
6There is also an equivalent symmetric definition, namely 〈X,Z〉R := Trace {X>RZ} which

however should use a different weighting matrix R of dimension m×m.
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which is just the inner product defining the weighted Frobenius norm ‖ · ‖Q.
As for the deterministic problem seen at the beginning of this section, the esti-
mate Θ̂ minimizing the Frobenius distance (2.4.6) can be computed by imposing
the orthogonality of each error row vector yk − [ ΘU ]k ∈ RN to the subspace
spanned by the rows of the U matrix. This leads to the matrix equation

Y −ΘU ⊥Q U

where ⊥Q means orthogonality with respect to the Frobenius inner product
(2.4.6). Assuming that U has linearly independent rows (no superfluous input
channel) we get

Θ̂ = Y QU>[UQU>]−1 (2.4.7)

See (2.4.3). In case Q = I , this formula can be rewritten by plugging in a
1

N
factor, so that

Θ̂ =
1

N
Y U>[

1

N
UU>]−1 (2.4.8)

which is a sample covariance version of a probabilistic formula for the estimate
of Θ. This probabilistic formula is derived from the equation of the theoretical
model (2.4.4) taking cross correlation of both members with u(t):

Ey(t)u(t)> = ΘEu(t)u(t)> + Ew(t)u(t)> ,

given that the last term is zero by assumption. Formula (2.4.8) can then be
interpreted as an estimate obtained by the method of moments.

If the sample covariances converge for N → ∞, the estimate Θ̂ will con-
verge to the true value. This is a first example of a consistent estimator see Sect.
2.6.6. The result has for example applications to statistical state-space system
identification. See Example 2.5 below.

2.5 Empirical Prediction Error minimization
Very often statistical model building from data is not done with the goal of
estimating parameters or regression functions but rather for the very purpose
of prediction. In the jargon of Machine Learning a predictor is said to per-
form a generalization of the training data. Suppose that we have used the N -
dimensional vector y in a standard linear Gaussian model to compute an esti-
mator of θ, say a ML estimator. Then one can say that

ŷ = Sθ̂(y)

is an optimal approximation of the full vector y based on the known signal ma-
trix S. This fact does not look particularly interesting per se. Suppose however
that an N + 1-th row vector, sN+1, possibly depending on the last observations
of some regression variables, is added at the bottom of matrix S and that one
would like to guess (or predict) the value of the corresponding output random
variable yN+1 which is not observed. It is then natural to suggest as a prediction
of the N + 1-th component yN+1, the linear function of the past data y given by

ŷN+1 = sN+1θ̂(y) . (2.5.1)



2.6. Recursive Estimators 71

One rational of this formula is that, by the invariance principle of ML, one could
generalize the linear estimator sN+1θ̂(y) of sN+1θ by considering instead an
arbitrary non linear function g(θ) of which g(θ̂(y)) could then be interpreted as
the ML estimate based on the N past output measurements.

Proposition 2.3. The Prediction Error incurred by the ML (or by the Markov) pre-
dictor (2.5.1), namely

yN+1 − ŷN+1 = sN+1

[
θ − θ̂(y)

]
+ σwN+1 (2.5.2)

has the smallest variance among all (linear) predictors, which are functions of the past
data y.

Proof. By assumption wN+1 is uncorrelated with the previous noise vector w
and hence with the previous observations y. Just compute the variance of the
expression on the right and recall that θ̂(y) has minimal variance.
By the invariance principle of ML, one could generalize the linear estimator
s>N+1θ̂(y) of s>N+1θ by considering instead an arbitrary non linear function g(θ)

of which g(θ̂(y)) could then be interpreted as the ML estimate based on the N
past output measurements.

2.6 Recursive Estimators
In many applications, especially those involving time series, the data are ac-
quired sequentially in time. Suppose the time epoch is indexed by an integer
variable t = 0, 1, 2 . . . and that at each time t one needs to produce an estimate,
which we denote θ̂(t), of the unknown parameter θ of the linear model (2.3.19)
based on measurements up to the current time t, which we denote by yt. Each
scalar measurement being described by the linear relation

y(t) = s(t)>θ + σw(t) , t = 1, 2, . . . ,

where we shall assume that {w(t)} is an uncorrelated sequence of unit variance
(that is assumeR to be the identity). The vectors s(t) could in particular depend
on past data yt and the model could well encompass the structure described in
the previous section. Since the dimension of the matrix to be inverted in the
expression (2.3.6) grows with N (wich we shall now denote by the current time
epoch t) the computation complexity grows with t. In fact grows approximately
as O(t p2 + p3) that is linearly in the dimension t. Consequently one must look
for computational schemes which could possibly update the current parameter
estimate sequentially when new data become available, by an algorithm which
requires a fixed finite number of operations at each step, which we call a fixed
memory algorithm. In more precise terms, one would like to express θ̂(t+1) as a
function of the previous estimate θ̂(t) and of the new data y(t+1).

Since R = I , formula (2.3.6), written assuming measured data available up
to time t, involves only the row vectors s(k)> of the matrix S up to instant t and
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the estimate θ̂(t) is expressed as:

θ̂(t) =

[
t∑

k=1

s(k)s(k)>

]−1 t∑
k=1

s(k)y(k) . (2.6.1)

The matrix

P (t) :=

[
t∑

k=1

s(k)s(k)>

]−1

,

is referred to as the Normalized Variance of θ̂(t), whereby θ̂(t) = P (t)
∑t
k=1 s(k)y(k).

When the next datum y(t+1) is acquired, we bring in the new element s(t+1)
of S which is a known (possibly input-dependent) vector and we can form the
next estimate by the same formula, written for time t+ 1:

θ̂(t+1) =

[
t∑

k=1

s(k)s(k)> + s(t+1)s(t+1)>

]−1 [ t∑
k=1

s(k)y(k) + s(t+1)y(t+1)

]
.

where the first matrix on the right side is P (t+ 1) so that its inverse can be
expressed as

P (t+1)−1 = P (t)−1 + s(t+1)s(t+1)> . (2.6.2)

To transform this recursion into one for the actual normalized variances we
shall use the Matrix Inversion Lemma (see Appendix D) which (assuming all
indicated inverses exist) states that :

[A+BCD]
−1

= A−1 −A−1B [C−1 +DA−1B ]−1DA−1

Apply it to (2.6.2) letting A = P (t)−1 , B = s(t+1) = D>, and C = 1. One finds

P (t+1) = P (t)− P (t)s(t+1)
[
1 + s(t+1)>P (t)s(t+1)

]−1
s(t+1)>P (t) . (2.6.3)

Note that the term between square brackets, denoted for short

β(t) := 1 + s(t+1)>P (t)s(t+1)

is a scalar so the indicated inverse is trivial. Substitute now (2.6.3) in the expres-
sion for θ̂(t+1):

θ̂(t+1) = P (t+1)

[
t∑

k=1

s(k)y(k) + s(t+1)y(t+1)

]

and define the“gain vector”

k(t) := P (t)s(t+1)
[
1 + s(t+1)>P (t)s(t+1)

]−1
= P (t)s(t+1)

1

β(t)

then after some algebra one finds

θ̂(t+1) = θ̂(t) + k(t) [ y(t+1)− s(t+1)>θ̂(t) ] (2.6.4a)

P (t+1) = P (t)− P (t)s(t+1)
[
1 + s(t+1)>P (t)s(t+1)

]−1
s(t+1)>P (t) .

(2.6.4b)
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The term s(t+ 1)>θ̂(t) is the one-step-ahead prediction of y(t+ 1) based on
the information available up to time t and the difference e(t+1) := y(t+1) −
s(t+1)>θ̂(t) is the one-step-ahead prediction error. The algorithm updates the old
estimate θ̂(t) by applying a correction term k(t)e(t+1) which is proportional
to the prediction error adjusted via the “gain" matrix k(t). Equations (2.6.4a),
(2.6.4b) are known as the deterministic Kalman Filter for the model{

θ(t+1) = θ(t) ; θ(0) = θ0

y(t) = s(t)>θ(t) + w(t)

Note that the unknown variance σ2 does not enter in the equations.
The “unnormalized” variance matrix

Σ(t) := σ2P (t)

satisfies the same equation as P (t) with the only correction on the definition of
β(t) which needs to be changed to

β(t) := σ2 + s(t+1)>Σ(t)s(t+1)

Then we have

Σ(t+1) = Σ(t)− Σ(t)s(t+1)
[
σ2 + s(t+1)>Σ(t)s(t+1)

]−1
s(t+1)>Σ(t) .

How do we initialize the algorithm? One should in theory wait up to an instant
t0 such that

∑t0
s=1 s(k)s(k)> is invertible, to compute P (t0) and θ̂(t0). As we

shall see, in many situations one can start by taking P (0) = αIp, α > 0 and, say,
θ̂(0) = 0. This has to do with the asymptotic behaviour of the algorithm which
we shall now try to analize.

Theorem 2.4. Assume that {w(t)} is an iid sequence and that

lim
t→∞

1

t

t∑
k=1

s(k)s(k)> = V <∞ (2.6.5)

where V is non singular. Then both P (t) and Σ(t) tend monotonically to zero for
t→∞. Moreover, the gain k(t) converges to zero and θ̂(t) converges almost surely to
a deterministic constant vector.

Assuming that the data are generated by a “true” parameter θ0, the least squares
estimator θ̂(t) is strongly consistent that is

lim
t→∞

θ̂(t) = θ0 . (2.6.6)

almost surely.

Proof. Assume t is large enough so that P (t) is well defined. Since (2.6.5) is

the same as limt→∞
1

t
P (t)−1 = V is follows that P (t)−1 ∼ O(t) and hence

P (t)→ 0 as 1
t .

To prove that k(t)→ 0 just rewrite equation (2.6.3) as

P (t)− P (t+1) = k(t)
[
1 + s(t+1)>P (t)s(t+1)

]
k(t)> ≥ k(t)k(t)>
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since the term between square brackets is always positive and greater than 1.
Now both P (t) and P (t+1) tend to 0 as t → ∞ so that also k(t)k(t)> and its
trace, ‖k(t)‖2, must tend to zero.

In equation (2.6.4a) the prediction error e(t) (the term between square brack-
ets) is a process of variance σ2 + s(t+1)>Σ(t)s(t+1) which tends to σ2 as t→∞
and hence is uniformly bounded. Then it is not difficult to see that the variance
of k(t)e(t) must tend to zero as t → ∞ and hence k(t)e(t) → 0 almost surely.
Therefore θ̂(t+1)−θ̂(t)→ 0 almost surely as well, so that the limit must be a con-
stant (possibly random) vector. That this constant must be the true parameter θ0

can be shown by substituting the “true model ” equation y(t) = s(t)>θ0 +σw(t)
into (2.6.1) which can then be rewritten as

θ̂(t) = θ0 + σ

[
1

t

t∑
k=1

s(k)s(k)>

]−1
1

t

t∑
k=1

s(k)w(k) . (2.6.7)

The process w̃(t) := s(t)w(t) ; t = 1, 2, . . . has independent variables and be-
cause of assumption (2.6.5) has bounded variance ‖s(t)‖2 = Trace s(t)s(t)> <
Trace V . Therefore, by the law of large numbers the last sum converges almost
surely to its mean value which is zero. Hence (2.6.6) follows.
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2.7 Examples

Example 2.2. A version of the popular Cobb-Douglas model in macroeconomics
[14, 109] describes the relation between production Y , physical capitalK, labour
L and natural resources H in an economy by an equation of the following form

Y ∼= αLθ1Kθ2Hθ3 (2.7.1)

where L,K,H are intrinsically positive and the exponents are unknown real
variables which we would like to estimate using a data base consisting of a
series of 86 measurements. 7 The model can be recast as a linear model by
logarithmic transforms defining:

y = log Y , x1 = logL , x2 = logK , x3 = logH , θ0 : logα ,

by which (2.7.1) can be rewritten

y ' θ0 + θ1x1 + θ2x2 + θ3x3

that is
yt = θ0 + θ1x1t + θ2x2t + θ3x3t + εt , t = 1, ..., 86 . (2.7.2)

We shall assume that the errors εt are independent zero-mean Gaussian random
variables all having the same unknown variance σ2. The estimation problem
becomes then just a standard linear Gaussian regression problem. Introduce
the sample means of the three variables xi, i = 1, 2, 3

x̄i =
1

86

86∑
1

xit , i = 1, 2, 3

and subtract from (2.7.2) the equation for the sample means,

ȳ = θ0 + θ1x̄1 + θ2x̄2 + θ3x̄3 + ε̄

we obtain

yt − ȳ =

3∑
1

θi(xit − x̄i) + (εt − ε̄) , t = 1, 2, . . . , 86 . (2.7.3)

In tis way we have reduced the parameters to 3; once the estimates (θ̂1, θ̂2, θ̂3)
are computed, θ̂0 can be obtained by the formula

θ̂0 = ȳ − (θ̂1x̄1 + θ̂2x̄2 + θ̂3x̄3) . (2.7.4)

The reader should verify that when in the standard linear model y = Sθ + ε
the first column is all made of ones, the estimator of the first component of the
parameter vector θ has an expression of the form (2.7.5)). We shall rewrite (2.7.3)
using a vector notation as

∆y = Sθ + σw , w ∼ N (0, I) .

7The data are taken from an example in Rao’s 1973 book [73, pag.227] where one has to recon-
struct the cranial capacity of skulls from damaged or partially recovered specimens. One wants to
estimate the cranial capacity C as a function of three linear dimensions, L,B,H , using a candidate
model of the form (2.7.1).
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Subtracting the sample means of y and of the three linear dimensions computed
from the 86 measurements:

ȳ = 3.17 ; x̄1 = 2.275 ; x̄2 = 2.15 ; x̄3 = 2.11

one can form the matrix S ∈ R86×3 and compute

S>S =

0.0187 0.0085 0.0068
0.0085 0.029 0.0088
0.0068 0.0088 0.029

 S>∆y =

0.030
0.044
0.036


from which the inverse

[
S>S

]−1
=

 64.21 −15.57 −10.49
−15.57 41.71 −9.00
−10.49 −9.00 39.88


and the estimate θ̂ =

[
S>S

]−1
S>∆y, is found to have components

θ̂1 = 0.88 , θ̂2 = 1.04 , θ̂3 = 0.73

and from (2.7.5)
θ̂0 = −2.618

so that the estimated function is

Y = 0.00241L0.88K1.04H0.73 .

This model can be used to make predictions from new measured data. We shall
make the assumption that the factors are measured with negligible error and
can therefore be considered to be deterministic. The matrix S is then also con-
sidered to be a deterministic quantity. The main sources of randomness is the
approximation due to the chosen simple model structure.
To get an estimate of the variance of the additive error in the linearized model
(2.7.3) we need to compute

R2
1 := ‖∆y‖2 − ‖Sθ̂‖2 = ‖∆y‖2 − 〈Sθ̂, ∆y〉 = ‖∆y‖2 − θ̂>S>∆y (2.7.5)

which yields

R2
1 =

86∑
t=1

(yt − ȳ)2 − (θ̂10.030 + θ̂20.044 + θ̂30.036) (2.7.6)

= 0.127− 0.099 = 0.028 . (2.7.7)

An unbiased variance estimate is then

σ̂2 =
R2

1

N − 4
=

0.028

82
= 0.00034

where the denominatorN−4 is due to the fact that the number of unknown pa-
rameters θi is actually 4 even if we have used the trick of reducing their appar-
ent number to three. The ML estimate of the variance matrix of

[
θ1 θ2 θ3

]>
is obtained as σ̂2

[
S>S

]−1. For example one gets

var θ̂1 = 64.21× 3.4 · 10−4 ∼= 220 · 10−4 = 0.022 .
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The variance of θ̂0 can be estimated based on (2.7.5). We shall leave the details
to the reader.
One should recall now that the original model has been linearized by a loga-
rithmic transform. The quantity of interest here is the variance of the prediction
error incurred when predicting the variable Y with the estimated model, but
using the data coming from a 86 + 1-th measurement triple made now only on
the variables L,K,H . To this purpose recall the formula for the predictor of the
vector y in a N -dimensional standard linear Gaussian model

ŷ = Sθ̂(y)

which can be particularized to express the prediction of the N + 1-th (not yet
observed) component yN+1 as

ŷN+1(y) = sN+1θ̂(y) (2.7.8)

where sN+1 is the N + 1-th row vector made with the last measurements of the
regression variable which would have to be added at the bottom of matrix S
to make a model describing a N + 1-dimensional vector y. The formula is a
consequence of the invariance principle. 2

Example 2.3. Some observed data {y(t)} are described by the following linear
model,

y(t) = a+ bt+ e(t), t = 1, . . . , N

where a, b are unknown parameters and {e(t)} is a Gaussian i.i.d. sequence
of mean zero and unknown variance σ2. We are only interested in estimating
the angular coefficient b. To this end we model the discrete derivative z(t) :=
y(t)− y(t− 1) of the data by the following model:

z(t) = b+ w(t), t = 1, . . . , N

where w(t) = e(t)− e(t− 1).
Write the vector form of the two linear models, in particular identify their

S-matrices and the nois e variances σ2R.
Compare the (M.L.) estimates of the two b parameters obtained by using the
two models. In particular find the variances of the estimates b̂ and in case they
may result different explain why.

Solution : The original model,

y(t) = a+ bt+ e(t), t = 1, . . . , N

can be written in vector form as:

y =


1 1
1 2
1 3
...

...
1 N


[
a
b

]
+ e :=

[
s1 s2

] [a
b

]
+ e .

By applying the standard formula (2.3.8) the variance of the M.L. estimate of
the vector parameter θ := [a b]> is found to be

Var {θ̂N} = σ2

[
s>1 s1 s>1 s2

s>2 s1 s>2 s2

]−1
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From which the variance of the second component b̂N is found to :

var {b̂N} = σ2 s>1 s1

s>1 s1s>2 s2 − (s>1 s2)2
= σ2 N

Ns>2 s2 − (
∑N
k=1 k)2

= σ2 1∑N
k=1 k

2 − 1/N(
∑N
k=1 k)2

.

The model for the discrete derivative in vector form is:

z =


1
1
...
1

 b+ w := s1b+ w

where w can be expressed in function of e := [e(1) e(2) . . . e(N)]>, as

w :=


1 0 0 . . . 0
−1 1 0 . . . 0
0 −1 1 . . . 0

. . .
. . . . . .

0 . . . −1 1

 e := Le .

the first component of w has been set equal to e(1) since e(0) is not available.
The variance matrix of w is hence σ2R = σ2LL>. According to this alternative
model, the variance of b̂ is found to be:

var {b̂N} =
[
s>1 (σ2R)−1s1

]−1
= σ2/‖L−1s1‖2 .

Here the inverse of L can be readily computed. One sees then that L−1s1 has
the form

L−1s1 =


1 0 0 . . . 0
1 1 0 . . . 0
1 1 1 . . . 0

. . .
. . . . . .

1 1 . . . 1

 s1 =


1
2
3
...
N


which leads to the formula

var {b̂N} = σ2/

N∑
k=1

k2 .

Note that this variance is smaller than that computed using the first linear model.
The reason of this fact being that the second model is parametrized more parsi-
moniously than the first one. 2

Example 2.4. Consider again the linear model

y(t) = a+ bt+ e(t), t = 1, . . . , N (2.7.9)

where a, b are unknown parameters and {e(t)} is zero-mean i.i.d. Gaussian
noise of variance σ2. We are again interested only in estimating the angular
coefficient b.
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It may seem logical to introduce a fake observation vector z constructed by
centering the true observation y by subtracting an estimate of the offset a, say,
āN , and define z := y − s1āN . This vector is described by a model where there
is no mean; just as

z = s2 b+ w

where w is still white noise.
A simple way to find an estimate āN is to take the sample mean of y. Check that
this coincides with the estimate obtained for the linear model (2.7.9) when b is
set equal to zero. Then compute the ML estimate b̂N of b based on the reduced
model and give necessary and sufficient conditions for its unbiasedness. Of
course keeping in mind that the true model has two parameters.

Solution : Rewrite the model (2.7.9) in vector form as:

y =


1 1
1 2
1 3
...

...
1 N


[
a
b

]
+ e :=

[
s1 s2

] [a
b

]
+ e

Without the regressor s2b, the estimate āN is

āN =
1

s>1 s1
s>1 y := ȳN

which is in fact the sample mean of y. When the second regressor is present one
has instead

āN =
1

s>1 s1
s>1 {

[
s1 s2

] [a
b

]
+ e} = a+

1

s>1 s1
s>1 s2b+

1

s>1 s1
s>1 e

which shows that the sample mean āN is unbiased if and only if s>1 s2 = 0.
Now using the model z = s2 b+ w, we obtain

b̂N =
1

s>2 s2
s>2 (y − s1āN )

and hence

E θ b̂N =
1

s>2 s2
s>2 E θ(y − s1āN ) =

1

s>2 s2
s>2 [(s1(a− E θâN ) + s2b ]

which shows that b̂N is unbiased only if āN is; i.e. only if s>1 s2 = 0.
An alternative argument is based on the following expression

b̂N =
1

s>2 s2
s>2

[
I − s1

1

s>1 s1
s>1

]
(s2 b+ w) .

which again shows that b̂N is unbiased if and only if[
I − s1

1

s>1 s1
s>1

]
s2 = s2
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where the term between square brackets is the orthogonal projector onto span {s1}.
Hence b̂N can be unbiased if and only if s2 belongs to the orthogonal comple-
ment of the subspace span {s1}; again, if and only if s>1 s2 = 0. 2

Example 2.5 ( From Subspace Identification).
Assume you observe the trajectories of the state, input and output variables,

of respective dimensions n, p,m, of a linear Multi-Input-Multi-Output (MIMO)
stationary stochastic system[

x(t+1)
y(t)

]
=

[
A B
C D

] [
x(t)
u(t)

]
+

[
K
J

]
w(t) (2.7.10)

where w is normalized white noise. With the observed trajectories from some
time t onwards one constructs the data matrices (all having N + 1 columns)

Yt := [ yt, yt+1, yt+2, . . . , yt+N ] Ut := [ ut, ut+1, ut+2, . . . , ut+N ]
Xt := [ xt, xt+1, xt+2, . . . , xt+N ]q Xt+1 := [ xt+1, xt+2, . . . , xt+N+1]

If these data obey the linear equation (2.7.10), there must exist a corresponding
white noise trajectory Wt := [ wt, wt+1, wt+2, . . . , wt+N ] such that[

Xt+1

Yt

]
=

[
A B
C D

] [
Xt

Ut

]
+

[
K
J

]
Wt

From this model one can now attempt to estimate the matrix parameter Θ :=[
A B
C D

]
based on the observed data. This leads to a matrix LS problem of

the kind formulated above. Assuming that the noise is Gaussian, a Maximum
Likelihood estimate would need to use a weighting matrix Q constructed form
the noise covariance. Unfortunately the covariance of the last (noise) term in
this regression model depends on the unknown parametersK, J and an explicit
ML estimate of (A,B,C,D) looks very hard to get. The Frobenius LS solution
with say Q = I will generally not be ML but will provide a consistent estimator
anyway.
The procedure sketched in this example is by no means the whole story since in
practice the state trajectory is not observable and must be previously estimated
from input-output data. See [98], [58, Chap. 13] 2
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2.8 Problems

2-0 Consider the dual LS problem

min
θ
‖y − θ>S‖Q

where y is an N -dimensional row vector and S ∈ Rp×N . Assume that rank S = p
and describe its solution.

2-1 Suppose that the noise sequence {w(t) ; t = 1, 2, . . . , N} is Gaussian i.i.d. each
vector having a positive definite covariance matrix R. In the model (2.4.4) the variables
u(t) are known deterministic vectors. Show that (2.4.7) is a ML estimate of Θ if Q has
a special structure. Describe the structure of this matrix.

2-2 Show that if in the usual linear model

y = Sθ + w Var {w} = σ2I Ew = 0

the columns of S =
[
s1 . . . sp

]
are orthogonal vectors, i.e. s>i sj = ‖si‖2δi,j ,

then the components θ̂i , i = 1, . . . p of the least squares estimator of θ, are mutually
uncorrelated. In fact they can be computed independently of each other.

2-3 You want to estimate the parameters µ and θ ∈ Rp of the linear regression model

yk = µ+ u>k θ + wk , k = 1, . . . , N

where {uk ∈ Rp ; k = 1, . . . , N} is an observed signal and {wk ; k = 1, . . . , N} is a
sequence of independent zero-mean Gaussian variables of variance σ2.

Consider the following two procedures:

• Rewrite the model using an augmented parameter β =
[
µ θ

]>, define a suitable
enlarged matrix S and apply the standard estimation procedure.

• Let ȳN and ūN be the sample means of the sequences {yk} and {uk} so that

ȳN = µ+ ū>Nθ + w̄N

where w̄N is still Gaussian. Consider subtracting this from the original regres-
sion model to eliminate µ and then compute the ML estimate θ̂N of θ on the
resulting model. Define then the estimate µ̂ := ȳN − ū>N θ̂N . Would you get
the same result as before?

2-4 Consider the recursive least squares algorithm (2.6.4a), (2.6.4b). Show that the
variance estimate can also be updated by a recursive equation of the form

σ̂2(t+1) =
t

t+ 1
σ̂2(t) +

1

t+ 1
[ y(t+1)− s(t+1)θ̂(t+1) ]2 .

To be really useful this recursion should be rewritten in terms of the (square of the)
prediction error involving θ̂(t) instead of θ̂(t+1). Find the corrected version.
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Chapter 3

CONDITIONING AND
REGULARIZATION

3.1 Numerical Conditioning
Solving the normal equations

S>QS θ = S>Qy

could be problematic for large dimensional datasets as numerical errors (and
noise) in the data could be dramatically amplified in the solution. Need to be
aware of when/why problems may arise and of possible solutions.

Most computational problems can be formalized in the following way: one
has a function say f : Rk → Rp defined mathematically and a k-dimensional
vector of “data” α. One wants to compute x = f(α). For example one may
want to solve numerically a linear system

Ax = b , (3.1.1)

Here the data are α = (A, b) and the function f is defined mathematically by
the expression f(α) = A−1 b.

Now there are two main aspects of the problem to be taken into account.

A) The data, α, may be affected by errors. For example, numerical analysts
say that real-valued data must always be represented in the computer by
finite arithmetics and hence are affected by rounding errors. In the com-
puter you can only store α+ δα, where δα is the rounding error, not α.

B) In general there are no numerical procedures which implement exactly the
function f or even if exact procedures are available , it may be inconve-
nient or uneconomical to use them. In practice f is computed approxi-
mately by some algorithm which implements an approximation, say, g(·),
of f(·).

These are of course two distinct causes of errors which, however, always tend
to sum up. Nevertheless it is convenient to discuss them separately.

Definition 3.1. The numerical problem x = f(α) is ill-conditioned if small percent-
age errors on α generate large percentage error on the solution x. In other terms, letting

83



84 Chapter 3. CONDITIONING AND REGULARIZATION

x = f(α) and x+ δx = f(α+ δα) one has

‖δx‖
‖x‖

� ‖δα‖
‖α‖

. (3.1.2)

Example 3.1. Consider the linear equation[
1 1
1 1.0001

] [
x1

x2

]
=

[
2

2.0001

]
;

whose (exact) solution is x =

[
1
1

]
. Introducing a small perturbation on b, say

b+ δb =

[
2

2.0002

]
,

the solution x becomes

x+ δx =

[
0
2

]
.

In thi scase ‖δb‖/‖b‖ ∼= 10−4, while ‖δx‖/‖x‖ = 1/
√

2. Clearly, the error in the
data δb is amplified by many orders of magnitude in the (exact) solution of the
system.

Example 3.2. Consider now inverting the matrix

A =

[
100 100

100.2 100

]
A quick calculation shows that

A−1 =

[
−5 5
5.01 −5

]
Now suppose we want to invert the perturbed matrix

A+ δA =

[
100 100

100.1 100

]
The inverse now is

(A+ δA)−1 =

[
−10 10
10.1 −10

]
Evidently a 0.1% change in one entry of A has resulted in a 100% change in the
entries of A−1. This obviously affects in the same way the solution of the linear
equation Ax = b.

J.H. Wilkinson, in his book The Algebraic Eigenvalue Problem (Oxford U.P.
1963), shows that the amplification factor in the solution of

0, 501 −1 0
0 0, 502 −1

. . . −1
0, 600

 x =


0
...
0
1
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is of the order of 1022 !
N.B. Ill-conditioning is an intrinsic characteristic of a numerical problem which

cannot be modified by the use of special or “specially smart” algorithms. Errors
due to ill-conditioning cannot be reduced or modified by the algorithm used to
implement the computation of x = f(α). Nevertheless a well-conditioned prob-
lem can be “ruined” by a poor algorithm. Intuitively a “good” algorithm should
perturb the theoretical f so little that the perturbation could well be attributed
to rounding errors in the data.

Definition 3.2. An algorithm g fo rthe numerical problem x = f(α), is numerically
stable if for every α ∈ Rk there is a perturbation δα, of the same order of magnitude of
the underlying rounding errors, such that f(α+ δα) differs from g(α) percentagewise
of a quantity of the same order of f(α+ δα)− f(α).

In other words, the errors introduced by a numerically stable algorithm can
always be attributed to errors due to the finite precision arithmetics. In other
words, g is numerically stable if the computed solution y = g(α) can in principle
be obtained by an “exact solver” using perturbed data, namely y = f(α + δα)
where ‖δα‖/‖α‖ is of the same order of the underlying rounding errors.

Clearly no algorithm, no matter how numerically stable, can provide accurate solu-
tions to an ill-conditioned problem. An unstable algorithm can however easily destroy
a well-conditioned problem.

Remarks 3.1. In Numerical Linear Algebra the perturbations considered are due to
finite precision arithmetics (rounding errors) however the theory which follows does
not depend at all on this interpretation and the perturbations on the data may have in
fact any origin, say measurement noise or approximation errors of various kinds.

Numerical Conditioning and the Condition Number

The normal equations are a special case of the ubiquitous linear system Ax = b.
So we shall first discuss this problem assuming for the moment that A ∈ Rn×n
is nonsingular so that the solution of this problem is well-defined.

Assume for the moment that A has no perturbations (δA = 0); say can be
stored exactly in the computer. Want to get an estimate of how much the relative
error on the data ‖δb‖/‖b‖ influences ‖δx‖/‖x‖. For this purpose we shall use
Euclidean norms

Recall that ‖A‖ (normally denoted ‖A‖2 when there is a danger of confusion)
is the smallest number k > 0 for which the inequality ‖Ax‖ ≤ k ‖x‖ holds. It
can be computed as follows:

‖A‖2 = sup
x 6=0

x>A>Ax

x>x
. (3.1.3)

the second member is known as a Rayleigh quotient and is actually equal to max-
imal eigenvalue of A>A, hence to the square of the maximal singular value of
A:

‖A‖2 = max
i

λi(A
>A) = σ2

1(A) (3.1.4)

Problem 3.1. Prove this equality.
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From the relations x = A−1 b and b = Ax one easily gets the estimates
‖δx‖ ≤ ‖A−1‖‖δb‖ and ‖x‖ ≥ ‖A‖−1‖b‖, so that

‖δx‖
‖x‖

≤ ‖A‖ ‖A−1‖ ‖δb‖
‖b‖

(3.1.5)

The number c(A) := ‖A‖ ‖A−1‖ can be interpreted as an amplification gain
of the errors on the right hand side of the linear system Ax = b. It is called
condition number of the problem Ax = b (or, of the matrix A). As we shall see
in a moment, c(A) has a more general meaning. First, let us observe that from
I = AA−1 it follows that

1 = ‖I‖ ≤ ‖A‖ ‖A−1‖ = c(A)

so that c(A) is always an amplification coefficient.
Recalling that

‖A‖2 = λMAX (A>A) ,

‖A−1‖2 = λMAX (A−>A−1) = λMAX (AA>)−1 =
1

λMIN(AA>)

one immediately sees that

c2(A) =
λMAX(A>A)

λMIN(A>A)
=
σ2

1(A)

σ2
n(A)

(3.1.6)

where σ1 and σn are the maximal and minimal singular values of A. In particular
when A is symmetric,

c(A) =
λMAX(A)

λMIN(A)
. (3.1.7)

From this formula one sees that when A is nearly singular, the minimum singu-
lar value is near zero and c(A) may become large. However this is not always
the case since for example A = εI with ε→ 0 has numerical conditioning equal
to one. In any case the best conditioned matrices are those for whichA>A = αI .
In this case one has c(A) = 1. These matrices are sometimes called orthogonal
while those for which AA> = I are orthonormal. Orthogonal matrices play a
fundamental role in Numerical Linear Algebra.

Problem 3.2. Compute the numerical conditioning of the 2×2 matrix in Example 3.1.

Problem 3.3. Assume that A is symmetric and b is parallel to the eigenvector of A
corresponding to λMAX, while δb is parallel to the eigenverctor of A corresponding to
λMIN. Show that one has exactly:

‖δx‖
‖x‖

= c(A)
‖δb‖
‖b‖

.

Let’s now examine the effect of rounding errors on A. Assume for the mo-
ment that δb = 0. It is immediate to see that a perturbation δx in the solution of
(A+ δA) x̄ = b satisfies, up tho first order the relation

δA δx = b ,
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where of course x = x+ δx and Ax = b. From this it readily follows that

‖δx‖
‖x‖

≤
c(A) ‖δA‖‖A‖

1− c(A) ‖δA‖‖A‖

.

and when c(A) ‖δA‖/‖A‖ is much smaller than 1,

‖δx‖
‖x‖

≤ c(A)
‖δA‖
‖A‖

, (3.1.8)

which is an estimate of the same kind of (3.1.5). Hence the condition number
c(A) describes the effect of perturbations both on b as well as on the matrix A.

Case of A singular. This includes also the situation where A may be non-
square and the solution is actually to be interpreted in the least-squares sense.
We shall agree to look always for least-squares (LS) solutions of minimum norm.
In this case the proper inverse to consider is the Moore-Penrose.

Problem 3.4. Show that the formula for numerical conditioning in case of a general A
(and solution to be interpreted in the LS sense) is

c(A) = ‖A‖ ‖A+‖ (3.1.9)

where A+ is the Moore-Penrose pseudoinverse, see the end of Sect. B.2 for a formula
defining the Moore-Penrose pseudoinverse.

Conditioning of the Least Squares Problem

I an attempt to solve an overdetermined system Ax = b by multiplying both
members of the equation by A> one gets

A>Ax = A>b

which has the same form of the normal equations. Now the numerical condi-
tioning of this problem is no longer the one of A but that of A>A. Just to get a
rough estimate of what happens, let us suppose A is square. One has

c(A>A) = ‖A>A‖ ‖(A>A)−1‖ = λMAX(A>A)/λMIN(A>A) = c2(A) .

It follows that even when the problemAx = bmay be moderately well-conditioned,
the normal equations may turn out to be badly ill-conditioned. Writing in ex-
ponential form c(A) ∼= 10c, c is a natural number which measures how many
significant digits one looses in the numerical solution of Ax = b. Since c(A)2 =
102c, by solving the problem (seemingly identical) A>Ax = A>b one actually
looses twice as many significant digits as in the solution of the original problem.

This means that solving the normal equations of a least squares problem y '
Sθ is in general not a good idea. In the early 60’s Gene Golub [39] has developed
a different approach for attacking LS problems which is now universally used
and extensively implemented e.g. in the Matlab package.
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The QR Factorization

The imperative is to forget about the normal equations and work directly on the
system!

Let’s for the moment consider unweighted L S and a full column rank matrix
S. Generalizations will be considered in the problems at the end of the section.
We want to compute the LS estimate of a parameter θ by fitting N scalar obser-
vations y by the linear model

y = Sθ + ε ,

where ε is a vector denoting the approximation errors incurred in describing y
by Sθ.
The p columns of S = [s1, . . . , sp] are linearly independent but in general not
orthonormal. If they were so, 〈si, sj〉 = s>i sj = δij and one would have S>S = I

so that the LS estimate θ̂ could be immediately written down as,

θ̂ = S>y =

〈s1, y〉
. . .
〈sp, y〉

 .
Note that in this case, θ̂ is just the vector of the first p coordinates of y with
respect to the orthonomal basis {s1, s2, . . . , sp} spanning the column space of S

S := span {s1, s2, . . . , sp} = Im (S) ⊂ RN

The idea of the QR factorization is simply to orthonormalize the columns
of S. This can be done by a well-known procedure called the Gram-Schmidt algo-
rithm. This algorithm orthogonalizes sequentially the columns df S = [s1, . . . , sp]
producing orthonormal vectors {q1, . . . , qp} defined by the relations

v1 = s1 , q1 := v1/‖v1‖

v2 = s2 − 〈s2, q1〉 q1 , q2 := v2/‖v2‖

...
...

vk = sk − 〈skq1〉 q1 + . . .+ 〈skqk−1〉 qk−1 , qk := vk/‖vk‖ .

Solving with respect to (s1, . . . , sp) one obtains:

s1 = ‖v1‖ q1

s2 = 〈s2, q1〉 q1 + ‖v2‖ q2

...

sp = 〈spq1〉 q1 + . . .+ 〈sp, qp−1〉 qp−1 + ‖vp‖ qp ,

which can be written in matrix form as

[s1, . . . , sp] = [q1, . . . , qp]



‖v1‖ 〈s2, q1〉 . . . 〈sp, q1〉
0 ‖v2‖
... 0
...

...
0 0 ‖vp‖

 ;
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or, more compactly,
S = Q̄ R̄ , (3.1.10)

where Q̄ := [ q1, . . . , qp ] is aN×pmatrix with orthonormal columns; i.e. Q̄>Q̄ = I
(p× p) and R̄ is upper triangular.
Completing the basis {q1, . . . , qp} by adding N − p vectors {qp+1, . . . , qN} so as
to obtain an orthonormal basis for RN and introducing the matrices

Q :=
[
Q̄ | qp+1 . . . qN

]
, R :=

[
R̄
0

]
,

we can express S as
S = QR , (3.1.11)

which is the product of an orthonormal times an upper triangular matrices. This is
the famous QR factorization of S.

Now we can use the QR factorization of S to solve our LS problem without
forming the normal equations. Multiply both members of y = Sθ+ ε by Q> to get

Q>y = Q> Sθ +Q>ε ,

which we rewrite in partitoned form as[
y1

y2

]
=

[
R̄
0

]
θ +

[
ε1

ε2

]
, (3.1.12)

Here y1 and y2 are the vectors of the components of y with respect to the two
bases { q1, . . . , qp } and { qp+1, . . . , qN } spanning S and S ⊥, namely

span {q1 . . . qp} = span {s1 . . . sp} = S

span {qp+1 . . . qN} = S ⊥ .

It follows that
[
y1

0

]
is the orthogonal projection of y onto S (expressed with

respect to the coordinates {qi}) and
[

0
y2

]
is the projection of y on the orthogonal

complement S ⊥ and therefore coincides with the residual estimation error ε̂ =
y − Py. The meaning of ε1 and ε2 will be discussed in a moment.

Recall now that solving our LS problem for θ just requires to minimize the
norm of the approximation error ε = ε(θ) = y − Sθ. Hence, since Q> is an
orthonormal matrix which preserves norms, this is the same as minimizing

‖Q>y −Q>Sθ‖2 =

∥∥∥∥[y1

y2

]
−
[
R̄θ
0

]∥∥∥∥2

= ‖y1 − R̄θ‖2 + ‖y2‖2 . (3.1.13)

Since the second term does not depend on θ, θ̂ can be computed by solving the
p-dimensional system

R̄θ = y1 , (3.1.14)

which is particularly simple since R̄ is upper triangular and the solution can be
computed by successive substitutions starting from the last(lowest) equation.
The estimation residual ε̂ = ε(θ̂) has norm equal to

‖ε̂‖2 = ‖y2‖2 . (3.1.15)
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Morale: In the new coordinate system, ε1(θ) := y1− R̄θ is the part of the approx-
imation error which can be made null by chosing θ = θ̂. In other words, with
this choice one can describe exactly the first p components of the data y1 with
he model Q>Sθ.
One may argue that, sinceN is generally very large, formingQ, which isN×N ,
could be very expensive. However in the actual solution algorithms, Q is never
formed explicitly. In practice one starts with the data in a table

[S | y] (3.1.16)

and by successive orthonormalization steps transforms it to the structure[
R̄ y1

0 y2

]
. (3.1.17)

where R̄ is p × p upper triangular. Besides the Gram-Schmidt algorithm there
are several other procedures to accomplish this upper triangularization, such as
the so-called Housholder algorithm or the Givens rotations. For these we shall
refer to classical textbooks such as [54].

When an a priori statistical description of the error is available, ε becomes a
random variable, say

ε ≡ w , Ew = 0 , Var (w) = σ2I .

In this case it is of interest to compute the variance of the estimate Var θ̂ =
σ2 [S>S]−1 which, using the QR-factorization is a function of R̄ alone

Var θ̂ = σ2 (R̄>R̄)−1 . (3.1.18)

and can also be computed by the QR factorization.

The role of orthogonality

This example is from Strang’s book [?]. Assume that we want to approximate
a real function f(x) on the interval [0, 1] by a polynomial of fixed degree n, say
Pn(x). Let us choose as an approximation measure the mean square deviation
which leads to solving the minimization problem

min
Pn(x)

∫ 1

0

|f(x)− Pn(s) |2 dx .

This is also a linear Least-Squares problem on finite dimensional inner product
spaces. Expressing Pn(x) as

Pn(x) = θ0 1 + θ1x+ . . .+ θn x
n = [1 x . . . xn]

θ0

...
θn

 := s>(x) θ ,

where s>(x) = [1 x, . . . xn] it is clear that Pn is just one element of the n + 1-
dimensional inner product space:

S := span {1 , x . . . , xn } x ∈ [ 0, 1 ]
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with the scalar product of functions on the interval [0, 1] defined by 〈f, g〉 =∫ 1

0
f(x) g(x) dx.

Imposing the orthogonality pronciple

f(x)−
n∑
0

θi x
i ⊥ span {1 x . . . xn}

one finds the normal equations for this problem 〈1, 1〉 〈1, x〉 . . . 〈1, xn〉
...

...
〈xn, 1〉 . . . . . . 〈xn, xn〉


θ0

...
θn

 =

 〈1, f〉...
〈xn, f〉

 .
which have the explicit expression

1 1/2 . . . 1
n+1

1/2 1/3 1
n+2

...
1

n+1
1

n+2 . . . 1
2n+1

 θ =

 〈1, f〉...
〈xn, f〉

 .
The symmetric matrix on the left is the analog of S>S. It is the celebrated Hilbert
matrix which is terribly ill-conditioned. For n = 10 the numerical conditioning
of this matrix is about 1013. This seems to render polynomial approximation an
impossible problem!

In reality we know very well that this actually is a routine problem in nu-
merical analysis. The key tool which makes this a standard problem is the use
of orthogonal polynomials. If instead of (1 x . . . xn) we start with linearly indepen-
dent polynomials p0(x) p1(x) . . . pn(x) such that 〈pi, pj〉 = δij , the least squares
approximation

f(x) ∼=
n∑
0

θi pi(x)

can simply be obtained by computing the scalar products

〈f −
n∑
0

θi pi(x) ; pj〉 = 0 j = 0, 1, . . . , n ,

and using the parameter estimates

θ̂j = 〈f, pj〉 , j = 0, 1, . . . , n .

This is a universal idea which lies at the grounds for example of the Fourier
series expansion.

Problem 3.5. Show that a weighted LS problem

min
θ
‖y − Sθ‖W

with weighting matrix W = W> > 0, can be solved by a QR factorization algo-
rithm based on Gram-Schmidt with inner product 〈·, ·〉W . In particular what proper-
ties should the Q matrix have?



92 Chapter 3. CONDITIONING AND REGULARIZATION

Fourier series and least squares

Considerthe following Problem: Given a continuous function y(t) on the inter-
val [−T/2, T/2], find a linear combination of the functions 1, sin 2π

T t, . . . , sin 2nπ
T t,

cos 2π
T t, . . ., cos 2nπ

T t, with coefficients θi, i = 0, 1, . . . , 2n, say

fn(t, θ) := θ0 + θ1 sin
2π

T
t+ θ2 cos

2π

T
t+ . . .

+ θ2n−1 sin
2nπ

T
t+ θ2n cos

2nπ

T
t

which approximates y. This was the original approach of Joseph Fourier 8 to
Fourier series expansion. The approximation criterion is actually the average
squared error

V (θ) =
1

T

∫ T/2

−T/2
| y(t)− fn(t, θ) |2 dt .

Consider the vector space CT of continuous functions on [−T/2, T/2] with scalar

product 〈f, g〉 =
∫ T/2
−T/2 f(t) g(t)

dt

T
. The functions {sin k 2π

T t ; cos k 2π
T t; k =

0, 1, . . . , n} are orthonormal with respect to this inner product and hence form
an orthonormal basis for a 2n+ 1-dimensional subspace S of CT .Then V (θ) can
be interpreted as the distance in CT of the function y to a generic element fn(·, θ)
of the subspace S.

We are therefore considering a least squares problem with a linear paramet-
ric model fn(t, θ) ' Sθ to approximate y. Due to orthonormality, the solution
parameters can be obtained simply by computing the inner products of y with
the basis functions. The components of the Least Squares Estimate θ̂ are then exactly
the first 2n + 1 Fourier coefficients of y. Fourier went on trying to extend the ex-
pansion to an infinite sequence of sinusoids but the mathematicians of his time
did not appreciate his efforts.

Use of the SVD in Linear Least Squares

The Singular Value Decomposition (SVD) is probably the most important in-
strument to analyze linear regression problems in depth. It has been brought
into this field by G. Golub and co-workers [39] followed by a long series of con-
tributions which are now classical, see e.g. [62, 54]. Let us consider again a
standard linear model where we shall not need to assume that S is of full rank

p but we shall keep the assumption that N > p. Let S = U

[
Σ
0

]
V > be the

SVD of the signal matrix where U is a N ×N matrix with orthonormal columns
and Σ is a p × p diagonal matrix exhibiting the (ordered) singular values of S.
Change basis in the observation space RN and in the parameter space Rp by the
orthonormal matrices U and V to get

ŷ := U>y β := V >θ , w̄ := U>w

so that the standard linear model is transformed into

ȳ =

[
Σ
0

]
β + σww̄ (3.1.19)

8Joseph Fourier, Mémoire sur la propagation de la chaleur dans les corps solides (1807)
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( the noise standard deviation σw is the same as that of the original model) and
the unweighted Least Squares problem minθ ‖y − Sθ‖2 is equivalent to

min
β
‖
[
ȳ1

ȳ2

]
−
[
Σ
0

]
β ‖2

where ȳ1 := Σβ are the first p components of ȳ and ȳ2 is made of the last N − p
components of w̄. One may actually partition conformably U as

U =
[
U1 U2

]
(3.1.20)

where U1 is N × p and has orthonormal columns. Then ȳ1 = U>1 y. As we have
already seen, the LS minimization is equivalent to Σβ = ȳ1. Hence, when Σ is
non singular (i.e. rank S = p) one gets the solution

β̂ = Σ−1 ȳ1 , ⇔ θ̂ = V Σ−1U>1 y .

In this way the parameter estimates are found by inspection:

β̂i(y) =
1

σi
ȳ1,i; var {β̂i} =

σ2
w

σ2
i

i = 1, . . . , p . (3.1.21)

where σi are the singular values of S. This relation actually holds even when
rank S = r < p; just by discarding the last p− r equalities.
It is easy to check that the variance matrix of β̂ is proportional to Σ−2; therefore
the estimators β̂i(y) ; i = 1, . . . , p are uncorrelated (or independent in a Gaus-
sian model). Since the singular values are ordered in decreasing magnitude
one may say that the variance of the parameter estimates increases with the
model complexity p. With N fixed, by increasing the number of parameters in
the model one does in general worsen the quality of the parameter estimates.
In particular, adding one more regressor; that is adding one more column sp+1,
although the σi will in general change, one will add a smaller singular value
σp+1 [93] and incur in a larger variance of the parameter estimates, in fact not
just of the additional β̂p+1. Note that in the orthonormalized model (3.1.19) the
estimator variance ratio is equal to the condition number of the Least Square problem:

var β̂p

var β̂1

= c2(S) (3.1.22)

So badly conditioned linear models will yield parameter estimates of large vari-
ance. In other words ill-conditioning is directly related to the variance of the esti-
mates.

We should stress that the variance matrix of the original parameter estimator
θ̂ = V β̂ is V Var {β̂}V >, so that , since V is an orthonormal matrix, the trace
of the variance matrices of θ̂ and β̂ are the same. In other words, the scalar
variances of the two estimators are the same.

In conclusion, we have learned that complicated regression models with
many parameters may generally lead to ill-conditioned regression problems
and to parameter estimates with a high variance. When it is necessary to attach
more regressors one should try to introduce new columns which are “almost or-
thogonal“ to the existing columns of S so as to keep the condition number of S
within reasonable limits. This issue will be discussed in more detail in Chap. 7
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3.2 Introduction to Linear Inverse Problems
Inverse Problems are extremely common in Engineering and applied sciences. In
general they arise when one wants to recover inputs/cause from output/effect;
e.g. recovering forces acting on an object from its motion (Newton), in image
deconvolution (deblurring) and, quite often in statistical problems where one
wants to recover a model from measured data. Typical inverse problems which
are a prototype of the problem of system identification are:
Recovering initial conditions from given solutions to ODE or PDE
Recovering the differential or difference equation governing a dynamical sys-
tem from (measurements of) a solution trajectory or from an input-output pair
of trajectories.

The most elementary example is the ubiquitous linear algebra relationAx = b.
Here we can look at the equation in two ways:
1. Given A and x, compute b = Ax (Direct problem). The solution only requires
matrix multiplication.
2. Given A and b recover x (Inverse problem). The solution requires inversion
of the matrix A.

In more general problems when there are functions involved, inverse prob-
lems require an operator inversion.

Inverse problems are sensitive to perturbations. For the Ax = b problem this
sensitivity is captured by the notion of ill-conditioning. We need a more general
concept for physical problems where A is an operator acting on functions and
x and b may be functions (often b might be the discretization of an observed
function).

Ill-posed problems

We shall consider only linear inverse problems. There is some linear operator
A acting on a Hilbert space X and taking values in some other Hilbert space Y.
The following is Hadamard’s definition of an ill-posed problem.

Definition 3.3. The problem

Ax = y; x ∈ X, y ∈ Y; A : X→ Y

is said to be well-posed (in the sense of Hadamard) if the following conditions
hold:

1. For each y ∈ Y there exists x ∈ X, such that Ax = y (existence)

2. For each y ∈ Y there exists a unique x ∈ X, such that Ax = y (uniqueness)

3. The solution depends continuously on the data y.

When at least one of the three conditions above does not hold the problem is said to be
ill-posed .

Examples of ill-posed problems which are often encountered in signal pro-
cessing are :
Recovering a continuous function f(t) from its sample values {f(tk); k =
1, 2, . . .}. Here the sampling operator does not have an inverse. Even worse:
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Recovering the derivative of a function f(t) from its sample values {f(tk); k =
1, 2, . . .}.
Solving an integral equation

y(t) =

∫
T

k(t− s)x(s)ds

possibly from sampled values {y(tk); k = 1, 2, . . .} is generally ill-posed. An
important example is deconvolution which is the prototype problem of Dynamic
System Identification from input-output data and occurs in many other scien-
tific areas such as Medical Imaging, Physical Chemistry, Extragalactic Astron-
omy etc. see [68], [9], [19].

From ill-posed to ill-conditioned

In practice all problems need to be solved by discretization. So one needs to
transform Ax = y into Ax = b. If the original problem was ill-posed then the
discretized one is normally ill-conditioned. The solution need not exist and even
if it does, the effect of small perturbations on b can be large variations of x.

Example 3.3. Consider the problem of recovering a signal x(t) ; t ∈ [0 , T ] from
its integral, say

y(t) =

∫ t

0

x(s) ds that is y(t) =

∫ T

0

1(t− s)x(s) ds

where 1(t) is the unit step function equal to 1 for t ≥ 0 and zero elsewhere. The
problem of recovering x from y is ill-posed. There are several reasons why it is
so. Give at least one.

In practice you only have discrete measurements {y(kh) ; k = 1, . . . , N =
T/h } (assumeN is an integer). Write the discretized problem as a linear system

y = Ax , y ∈ RN ; x ∈ RN

and describe the structure of A ∈ RN×N . What can you say about the condition
number of A. Would it get better for h→ 0 ?

Solution: The inverse of the integral transform is obviously the derivative x(t) =
d

dt
y(t) which we write symbolically as a linear operator x = Dy. Now unless

y is a function in special spaces, this operator is never continuous. For exam-
ple, assuming y is a continuous function, its derivative may not be continu-
ous, could jump very wildly and there is in general no constant k such that
‖x‖ ≤ k ‖y‖. This actually happens in a large variety of situations.

The matrix A in the discretized problem has the form A = hL where

L =


1 0 . . . . . . . . . 0
1 1 0 . . . . . . 0
1 1 1 . . . . . . 0
1 . . . . . . . . . . . . 1

 :=


a>1
a>2
. . .
a>N

 (3.2.1)

and for N very large the first columns (or equivalently the last rows) are nearly
linearly dependent, the more so the larger is N . The condition number can be
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roughly estimated as follows. Since

LL> ≡
[
a>i aj

]
i,j=1,...,N

=


1 1 . . . . . . 1 1
1 2 2 . . . . . . 2
. . . . . . . . . . . . . . . . . .
1 2 . . . . . . N − 1 N − 1
1 2 . . . . . . N − 1 N

 ,

picking v1 :=
[
1 0 . . . . . . . . . 0

]> and v2 :=
[
0 0 . . . . . . 0 1

]>, by
the Rayleigh quotient theorem we have

N = v>2 LL
>v2 ≤ σ2

max(L) , 1 = v>1 LL
>v1 ≥ σ2

min(L)

and hence, since σk(A) = hσk(L) , k = 1, 2, . . . , N ,

c(A)2 =
σ2
max(L)

σ2
min(L)

≥ N

which tends to∞ with N . Therefore, the smaller we choose h the worse is the
condition number of A. This somewhat counter-intuitive argument applies to a
multitude of inverse problems involving discretization and needs to be kept in
mind. 2

How do we treat an ill-posed problem which has no solution? The main
idea is to “relax” it by turning it into an optimization problem. One looks for
a best approximate solutions which is guaranteed to exist. Typically convert it
into a least squares problem say:

min
x
‖y −Ax‖

yet the solution can still be very wild. Recall what happens with finite-dimensional
linear least squares problems: Random perturbations on y are generally ampli-
fied by ill-conditioning. We want to constrain the solution to be smooth! This is done
by regularization.

3.3 Regularized Least Squares problems
The idea of regularization is attributed to Tikhonov but Tikhonov regularization
has been invented independently in many different contexts. It became widely
known from its application to integral equations from the work of A.Tikhonov
and D. L. Phillips [97], [68], [96].

Definition 3.4. A regularization of the Least Squares problem minx ‖y − Ax‖Y is
an optimization problem having the form

min
x

{
‖y −Ax‖2Y + λ ‖x‖2X

}
, λ ≥ 0 (3.3.1)

where the norm ‖x‖X should weight large variations of the solution but may otherwise
be arbitrary. The variable λ, called the regularization parameter is a design parameter
which can be chosen by the user.
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The norm ‖x‖2X can be chosen in many different ways, say as L2 or `2 norms
but the most perspicuous choice is done within the theory of Reproducing Ker-
nel Hilbert Spaces (RKHS) which we can only touch very superficially in these
notes; see Section 6.6 and e.g. [44, p. 167] for a short survey.

Theorem 3.1. A necessary and sufficient condition for x to be a solution of the opti-
mization problem (3.3.1) is that it should satisfy the Euler equation

(A∗A + λI)x = A∗y (3.3.2)

where A∗ is the Hilbert space adjoint operator of A.

Proof. Assume that λ has been fixed and let us denote by ϕ(x, y) the quadratic
functional between braces in (3.3.1). Then x is an optimal solution if for arbi-
trary real number α and any arbitrary element αh ∈ X one has

ϕ(x, y) ≤ ϕ(x+ αh, y) . (3.3.3)

Using linearity in the second argument of the inner product we obtain

ϕ(x+ αh, y) = ‖y −Ax‖2Y + λ ‖x‖2X+

− 2α{ 〈y −Ax,Ah〉Y − λ 〈x, h〉X }+
+ α2{‖Ah‖2 + λ‖h‖2}

Now for the inequality (3.3.3) to hold the middle term must be greater or equal
to zero for arbitrary real number α and any arbitrary element αh ∈ X. Clearly
this can be true only if the term between braces is zero, which is equivalent to

〈y −Ax,Ah〉Y − λ〈x, h〉X = 0

for all h ∈ X. Now the adjoint A∗ is a (possibly unbounded) operator mapping
Y into X which can be moved to the left side of the inner product to yield

〈A∗y −A∗Ax− λIx, h〉X = 0

for all h ∈ X. This is equivalent to the Euler equation (3.3.2).

Corollary 3.1. Assume X, Y are finite dimensional inner product spaces with

〈ξ, η〉Y = ξ>Qη 〈ξ, η〉X = ξ>Wη ,

where Q and W are positive definite. Then the solution of the regularized least squares
problem (3.3.1) is

x̂ =
[
A>QA+ λW

]−1
A>Qy (3.3.4)

When λ→ 0
lim
λ→0

[
A>QA+ λW

]−1
A>Q = A+

where A+ is the Moore-Penrose pseudoinverse of A.

We will see later an interpretation in terms of linear Bayesian estimation.
For this material good references are [9],[101] and the web site
https://en.wikipedia.org/wiki/Inverse_problem.
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One thing that is usually overlooked when fitting linear regression mod-
els to data is that often the inputs are not properly normalized and may have
widely different ranges of variation resulting in some columns of the matrix
S to have entries which are of several order of magnitudes smaller (or larger)
than the others. The opposite then usually happens with the parameter esti-
mates which may turn out to be of exceedingly large (or exceedingly small)
magnitude. This, as we shall see below, should be avoided either by proper
normalization or by changing the measurement units.

Example 3.4. In a two-parameter linear model with i.i.d. error of variance σ2, the two
columns [s1, s2] of the matrix S ∈ RN×2 are orthogonal and

‖s2‖ = 10−6‖s1‖

Show that for any measurement y, the components of the parameter θ̂, least squares
solutions of y = Sθ + w, are related by θ̂2 = αθ̂1. Find α.
Solution: By orthogonality we get the formulas

θ̂1(y) =
1

‖s1‖2
s>1 y θ̂2(y) =

1

‖s2‖2
s>2 y

so that

θ̂2(y)

θ̂1(y)
=
‖s1‖2

‖s2‖2
s>2 y

s>1 y
=

θ2 +
s>2 w

‖s2‖2

θ1 +
s>1 w

‖s1‖2

It is clear that the random error on θ̂2 can generally be much larger than that on θ̂1,
roughly by a factor of 106. In fact, no matter the values of true parameters θ1, θ2, we
have

var (θ̂2(y)) ' 1012 var (θ̂1(y)) .

Hence the sample value of θ̂2 could be millions of times larger than that of θ̂1, in spite
of the fact that both estimators are unbiased. 2

More generally, that some components of θ̂ may take on very large values,
happens in poorly conditioned problems when the columns of S are nearly de-
pendent. In this case the parameter estimate θ̂ will have a large variance and
some parameter estimates my have large size and almost cancel with other pa-
rameter components which have also large values but of opposite sign. For this
reason it is a good idea to add to the least squares cost a penalty term which
penalizes too large values of the components of θ. In fact the penalty term will,
as we shall see, improve the conditioning of the problem.

A Ridge Regression Problem is a regularized Least Squares problem where the
penalty term is a quadratic norm of θ. Usually one takes the plain `2-norm
leading to the minimization problem

min
θ
{‖y − Sθ‖2Q + λ‖θ‖22} (3.3.5)

where ‖θ‖22 =
∑
k θ

2
k. This is equivalent to minimization of ‖y − Sθ‖2Q subject

to the constraint ‖θ‖22 ≤ c for some c which corresponds to a spherical region
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in Rp. At the optimum the iso-cost lines of the Least Squares functional will be
tangent to the surface of this sphere.

The Ridge estimate θ̂R, solution of the minimization problem (3.3.5), is just a
particularization of formula (3.3.4), namely

θ̂R =
[
S>QS + λIp

]−1
S>Qy := Aλ y (3.3.6)

Clearly, forQ = R−1 and when S has full column rank, the limit for λ→ 0 ofAλ
is just the matrix A of (2.3.7) and the ridge estimator will tend to the ordinary
least squares estimator θ̂. Note that θ̂R is biased as are in general all regularized
least squares estimators. We shall examine this property in detail in Section
5.9. However the variance matrix may actually turn out to be smaller than the
variance of the Least Squares estimate.
Shrinkage: Assume for simplicity that Q = I ; then from the SVD analysis of
Section 3.1 one can see that S>S = V Σ2V > and hence

θ̂R =
[
V Σ2V > + λIp

]−1
V ΣU>1 y =

= V Σ
[
Σ2 + λIp

]−1
ȳ1 := Aλ y (3.3.7)

so that the components of the ridge estimator in the basis spanned by the columns
of V are

β̂i =
σi

σ2
i + λ

ȳ1,i , i = 1, 2, . . . , p (3.3.8)

This is called Shrinkage. Comparing with (3.1.21) one sees that the smaller is σi
the more the components of β̂ are shrunken with respect to their LS counter-
parts.

The LASSO

LASSO stands for least absolute shrinkage and selection operator. It is a similar
regularization problem to the Ridge Regression but wit the `2 norm of the pa-
rameter substituted by the `1 norm:

min
θ

{
‖y − Sθ‖2 + λ

p∑
k=1

|θk|

}
(3.3.9)

where we have taken Q = I for simplicity. There are also weighted versions of
the cost and more general penality function which are discussed in the literature
[44, p.68], [112] but we shall not deal with. As for the ridge functional, the form
(3.3.9) can be interpreted as the Lagrangian formulation of the minimization of
the square norm ‖y − Sθ‖2 subject to the constraint

p∑
k=1

|θk| ≤ c .

One can see that the constraint region defined by the `1 norm is a rotated hy-
percube (in general a convex polytope), so that its corners lie on the axes while
the region defined by the `2 norm is a p-sphere, which is rotationally invariant
and, therefore, has no corners. As seen in the figure,
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    -norm       -norm

Figure 3.3.1. Lasso vs Ridge

a convex object that lies tangent to the boundary, such as the line shown, is
likely to encounter a corner (or in higher dimensions an edge or higher-dimensional
equivalent) of a hypercube, for which some components of θ are identically
zero, while in the case of a p-sphere, the points on the boundary for which some
of the components of θ are zero are not distinguished from the others and the
convex object is no more likely to contact a point at which some components of
θ are zero than one for which none of them are.

The parameter c in the constraint equation has a complicated relation with
the multiplier λ although we can say that its effect is roughly like that of the
reciprocal 1/λ. Making c small will make some of the parameter estimates to be
exactly zero. Taking c larger than the sum of the LS estimates, i.e.

c ≥
p∑
k=1

|θ̂k| := c0

will make the Lasso estimates coincide with the θ̂k. One may guess that taking
c = c0/2 will cause a shrinkage of about 50%. There is however no precise rule
describing the amount of shrinkage nor the number of parameters which are
set to zero in the Lasso. As in the ridge regression c or λ need to be adjusted to
minimize (an estimate of) the expected prediction error.
Warning: In regression problems with an unknown mean value µ of y, it does
not make sense to shrink µ. Even if µ is unknown, one should not add the mean
as an extra parameter θ0 (by introducing a column of 1’s in the S matrix) but
should rather center all input and output variables with respect to their sample
mean as done for example in Example 2.2.

Example 3.5. Suppose you have a linear model y = Sθ+σw where S isN×p but the
error has an unknown systematic componente called µ. You augment S with a column
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of 1’s and compute a ridge regression estimate of θ by minimizing the criterion

min
θ,µ
{‖y − Sθ − 11µ‖2 + λ‖θ‖2} .

Compute the estimate of µ. What is its bias?

Solution The minimization with respect to µ, done separately, does not involve the
regularization term. Assuming for the moment θ known, we get

µ̂ = (11>11)−111>(y − Sθ) =
1

N

N∑
k=1

(yk − s>k θ)

where s>k is the k-th row of S. We should really substitute the (regularized) estimate θ̂
in place of θ but it is easy to see that

∑N
k=1 s

>
k θ can be zero and the estimator unbiased

no matter what value of θ, only if all columns of S are centered, that is, to each element
sk,j ; k = 1, . . . , N of the j−th column one subtracts the mean

s̄j =
1

N

N∑
k=1

sk,j

In this case the sk,j are deviations from their mean and their row-wise sum (with respect
to the row-index k) is zero. The estimate of µ is then the sample mean ȳN and its
variance is obviously σ2/N .

If the columns of S are not centered the estimate of µ depends on the estimate of θ
which is biased and µ̂ will also be biased. The regularized estimate of θ is

θ̂ = [S>S + λIp]
−1S>(y − 11µ̂)

this expression is coupled to that for µ̂. In this general case one should use a joint
estimator which could be obtained via Corollary 3.1 by setting W = diag {0, Ip}.
You may show that the formula in fact holds even if W is not invertible. 2

NB: One great advantage of regularization is that we do not need to impose the
limit p ≤ N and in this way we may even be able to treat problems with more
unknowns than data. This may well be the case in biological or bio-medical ap-
plications see [36, Sec. 5.2]. In this context, the Variable Selection operated by the
Lasso is particularly useful and is one reason of its great success in applications.

3.4 Algorithms for the Lasso and Variable Selection
In this section we shall describe a family of techiques to compute the Lasso
estimate, the solution of the optimization problem (3.3.9). We shall survey an
efficient algorithm for computing the estimate discussed in [44, p. 73-78]. More
details can be found in the book [94].

Let us recall the original problem formulation set as a constrained "Primal"
optimization problem

minimize
θ

1

2N
‖y − Sθ‖22

subject to ‖θ‖1 ≤ t,
(P)
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where y ∈ RN , S ∈ RN×(p+1), θ ∈ Rp+1 and we have added a normalization
factor 1

2N for convenience.
The optimization problem can be written in standard Lagrangian form

minimize
θ

1

2N
‖y − Sθ‖22 + λ‖θ‖1 (L)

where the regularization parameter λ > 0 has now the meaning of Lagrange
multiplier. Since we want to compare the "size" of various components of θ and
try to eliminate inessential variables, a preliminary data normalization is essen-
tial. To this end, from the p + 1-dimensional problem (1 is a column vector of
ones) :

minimize
θ

1

2N
‖y − 1θ0 − Sθ‖22 + λ‖θ‖1

eliminate the intercept θ0 (which does not make sense to shrink or eliminate) by
centering, that is subtracting from this equation the sample averages from both
sides so as to achieve the conditions

1

N

N∑
i=1

yi = 0,
1

N

N∑
i=1

sij = 0, j = 1, 2, . . . , p.

and then do normalization of the remaining p columns of S (which is clearly
very important for the sake of comparison of the various parameter size),

1

N

N∑
i=1

s2
ij = 1, j = 1, 2, . . . , p.

Keep in mind that the intercept θ0 can be omitted after data centering, and can
be recovered by θ̂0 = ȳ −

∑p
j=1 s̄j θ̂j with θ̂ optimal.

Problem 3.6 (Relation between problems (P) and (L)).
Show that a minimizer θ̂λ of (L) is also a minimizer of (P) with t = ‖θ̂λ‖.
Claim: For each t > 0, there exists a λ > 0 such that a minimizer of (L) would also
solve (P).
This can be shown by duality theory, see Appendix C in particular, the KKT conditions
in terms of subdifferentials.

Coordinate descent: single variable

Assume normalization, 1
N ‖z‖

2 = 1 and consider the one-dimensional problem

minimize
θ∈R

1

2N
‖y − zθ‖22 + λ|θ| (3.4.1)

Lemma 3.1. The solution to the above problem is

θ̂ =


1
N 〈z,y〉 − λ if 1

N 〈z,y〉 > λ

0 if 1
N |〈z,y〉| ≤ λ

1
N 〈z,y〉+ λ if 1

N 〈z,y〉 < −λ
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Proof. First note that the cost function is continuous and convex and therefore
has a unique minimum for arbitrary values of λ. Computing the subdifferential
with respect to θ of (3.4.1) and recalling that ‖z‖2 = 1 one finds

θ =
1

N
〈z,y〉 − λ sign (θ) .

and if 1
N 〈z,y〉 > λ the right hand member is certainly positive so that θ is also

positive and sign (θ) = 1. A dual reasoning holds if 1
N 〈z,y〉 < −λ. Since for

θ = 0 the subdifferential λ sign (θ) can take an arbitrary value between +λ and
−λ, that 1

N 〈z,y〉 is between +λ and −λ can only mean that θ = 0.

One can write compactly the solution as θ̂ = Sλ( 1
N 〈z,y〉), where S is the

soft-thresholding operator:

Sλ(x) = sign(x)(|x| − λ)+ = sign(x) max{|x| − λ, 0}

6

-
x

�
�
�
�
�
�

�
�
�

�
�
�

−λ

+λ

Figure 3.4.1. Soft Thresholding

For multivariable problems one can then do cyclic coordinatewise update
according to the following scheme composed of two steps:

1. Inner loop optimization:

minimize
θj

1

2N

N∑
i=1

(yi −
∑
k 6=j

sikθk − sijθj)2 + λ
∑
k 6=j

|θk|+ λ|θj |

2. coordinate descent: First define the partial residual

ri(j) = yi −
∑
k 6=j

sikθk , i = 1, . . . , N,

Then, in each inner loop let

θj = Sλ(
1

N
〈sj , r(j)〉) .
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For j = 1 : p update θj while holding other coefficients fixed. Need to
check data normalization 1

N

∑N
i=1 s

2
ij = 1, j = 1, . . . , p at each step.

The update can be equivalently written as

θj ← Sλ(θj +
1

N
〈sj , r〉)

where r = y − Sθ is the full residual.

Convergence of coordinate descent:

Suppose the objective function f has the additive decomposition

f(θ1, . . . , θp) = g(θ1, . . . , θp) +

p∑
j=1

hj(θj)

where g is differentiable and convex, and the univariate functions hj are con-
vex (but not necessarily differentiable), then the coordinate descent algorithm
is guaranteed to converge to the global minimizer. Cf. [94, Section 5.4.1].

Proximal methods

This is is a general class of methods for minimization by a gradient-type algo-
rithm, of a function having the structure:

f = g + h

where g is convex and differentiable and h is convex but nondifferentiable.
Generalized gradient update:

θ(t+ 1) = Argmin θ ∈ Rp

g(θ(t)) + 〈∇g(θ(t)), θ − θ(t)〉+
1

2s(t)
‖θ − θ(t)‖22︸ ︷︷ ︸

local approximation of g

+h(θ)


where s(t) is a stepsize. Define the proximal map of a convex function h as

proxh(z) := Argmin θ ∈ Rp
{

1

2
‖z − θ‖22 + h(θ)

}
This is a generalized projection operator such that for s > 0:

proxsh(z) = arg min
θ∈Rp

{
1

2s
‖z − θ‖22 + h(θ)

}
moreover for

h(θ) =

{
0 if θ ∈ C
+∞ otherwise

we have proxh(z) = arg minθ∈C ‖z − θ‖22, the usual Euclidean projection onto C.
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Problem 3.7. Show that the generalized gradient update is equivalent to

θ(t+ 1) = proxs(t)h{θ(t)− s(t)∇g(θ(t))}.

Consider now the Proximal gradient descent for `1-penalty. This is computa-
tionally efficient when it is easy to evaluate the proximal map.
Take h(θ) = λ‖θ‖1. The t-th iteration consists of two steps:

1. First, take a gradient step z ← θ(t)− s(t)∇g(θ(t));

2. Second, evaluate the proximal map

proxs(t)h(z) = Argmin θ ∈ Rp
{

1

2
‖z − θ‖22 + s(t)λ‖θ‖1

}

= Argmin θ ∈ Rp


p∑
j=1

[
1

2
(zj − θj)2 + s(t)λ|θj |

]
.

A closed-form solution can be obtained by solving the p univariate prob-

lems separately.

Problem 3.8. Verify that the proximal map can be evaluated by the element-wise soft
thresholding operator Sτ : Rp → Rp with coordinates

[Sτ (z)]j = sign(zj)(|zj | − τ)+

with τ = s(t)λ.

In general the algorithm has sublinear convergence: If g continuous differentiable
with a Lipschitz gradient

‖∇g(θ)−∇g(θ′)‖2 ≤ L‖θ − θ′‖2 for all θ, θ′ ∈ Rp

with a constant stepsize s(t) = s ∈ (0, 1/L], then there exists a constant C
independent of the iteration number, such that

f(θ(t))− f(θ∗) ≤ C

t+ 1
‖θ0 − θ∗‖2 for all t = 1, 2, . . . ,

where θ∗ is an optimum.
Linear convergence holds if in addition g is strongly convex, that is, there exists
γ > 0 such that

g(θ + ∆)− g(θ)− 〈∇g(θ),∆〉 ≥ γ2‖∆‖22, for all θ,∆ ∈ Rp

then there exists constant C > 0 and κ ∈ (0, 1) such that

f(θ(t))− f(θ∗) ≤ Cκt‖θ0 − θ∗‖2 for all t = 1, 2, . . . .

Cf. [94, Section 5.3.3] for details.
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Proximal gradient for the Lasso. We have:

g(θ) =
1

2
‖y − Sθ‖22 and h(θ) = λ‖θ‖1

Then the proximal gradient update becomes:

θ(t+ 1) = Ss(t)λ
(
θ(t) + s(t)

1

N
S>(y − Sθ(t))

)
Remark:

1. This is a batch update version of the coordinate descent if we take s(t) ≡ 1
with data standardized;

2. The Lipschitz constant L here is the maximum eigenvalue of
1

N
S>S.

Some computational consideration

Strategies to improve efficiency:

1. Naive vs covariance updating

N∑
i=1

sijri = 〈sj ,y〉 −
∑

k: θk 6=0

〈sj , sk〉θk

2. Warm start. When compute a sequence of lasso solutions for a decreasing
sequence {λ`}L0 , take θ̂(λ`) as a starting point for θ̂(λ`+1).
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Ex. Verify that the largest value one needs to consider is

λ0 =
1

N
max
j
|〈sj ,y〉|.

Hint: Take initial iterate θ0 = 0 and check the coordinate descent.

3. Active set convergence. After one iteration through all p variables at a
new value λ` starting from θ̂(λ`−1), define the active set A to optimize
only over indices of nonzero coefficients.

Concluding Remarks: Since traditional statistical methods assume many obser-
vations and a few unknown variables, they can not cope up with the situations
when p > N . The Lasso is a powerful and general method to analyze such re-
gression problems with many variables some of which may be redundant and
could possibly be discarded. Naturally the difficult part is the final choice of a
resonable value of λ. This problem can be addressed by a technique called Cross
Validation which is briefly described in the next chapter but is still a hot area of
research.

An excellent survey paper on this topic is [36].

3.5 Regression and Smoothing Splines
In a general regression problem one wants to find a continuous function f(x) of
the input variable x ∈ Rn, which interpolates in some “optimal” way a discrete
training set {(x1, y1), . . . , (xN , yN )} whose graph looks so far from any linear
pattern to make a linear approximation unacceptable. One should note from the
outset that the recovery of a continuous nonlinear function from a discrete set
of values is clearly a very ill-posed problem since the problem can trivially have
infinitely many solutions. Nevertheless a multitude of practical inference prob-
lems are naturally formulated in this way and one has to attempt some form of
solution anyway. A classical approach is by approximating the unknown func-
tion by an expansion in series of basis (not necessarily orthogonal) functions
{ϕk(x) ; k = 0, 1, 2, . . .}, say

f(x) ∼
p∑
k=0

θkϕk(x) . (3.5.1)

Clearly this model is linear in the parameter θ := {θk} and hence the fitting of
the model to data can be done by the least squares theory seen in Chapter 2.
Assuming i.i.d. errors, the least squares formulation

min
θ

N∑
k=1

[
yk −

p∑
i=0

θiϕi(xk)

]2

leads to the standard formulas of Chapter 2 and if you assume that there is a
"true model"

yk =

p∑
i=0

θ0,iϕi(xk) + wk , k = 1, . . . , N (3.5.2)
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the estimates are amenable to standard statistical analysis.
The difference here is that one wants to understand the influence of the input
variables on the statistical properties of the solution. Hence we must bring in ex-
plicitly some structural information on the regressors. For pedagogical reasons
in this section we shall discuss this issue only for the case of one dimensional
input data. In a sense we are considering a problem which is also called curve
fitting in the literature.

Below we shall study an elementary case where we just take two basis func-
tions, ϕ0(x) = 1 (that is a constant) and and ϕ1(x) = x.

Example 3.6 (A simple linear regression problem).
Suppose you measure scalar data pairs {xk, yk ; k = 1, 2, . . . , N}where the xk’s
are known exactly but the yk are affected by errors. You would like to describe
approximately these data by a straight line say y = α+β x. Suppose you model
the measurement process by a statistical model

yk = α+ β xk + ek , k = 1, 2, . . . , N (3.5.3)

where the errors ek are zero-mean independent random variables with vari-
ances σ2

k. In a given experimental condition ω you have observed the values
yk(ω) = yk ; k = k = 1, 2, . . . , N corresponding to errors ek(ω) (which of course
you do not know). The least squares (Markov) estimator of the parameter (α, β)
is the solution of the minimization problem

min
(α, β)

N∑
k=1

[ yk − (α+ β xk) ]2

Following the same procedure of Example 2.4 and Problem 2-3 we shall decou-
ple the optimization problem for the two parameters by first introducing the
sample averages on both sides of (3.5.3) to get

ȳN = α+ βx̄N + ēN

and then subtracting this from the model equations. One then gets a model for
the deviations ỹk := yk − ȳN

ỹk = β(xk − x̄N ) + ẽk

where the intercept α is eliminated. The sequence {ẽk} is no longer indepen-
dent but approximately so for large N (check that the covariance matrix has off
diagonal elements which are proportional to 1

N ). The two minimizers can then
be computed separately:

α̂N = ȳN − β̂N x̄N , β̂N =

∑
k(xk − x̄N ) yk∑
k (xk − x̄N )2

In the numerator of the second expression we should have yk − ȳN but the
sample mean ȳN gives zero contribution to the product. Next, you may imagine
these to be sample values of the random variables

α̂N = ȳN − β̂N x̄N , β̂N =

∑
k(xk − x̄N ) yk∑
k (xk − x̄N )2

. (3.5.4)
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We shall first directly check that these estimators are unbiased. This follows
from the expressions

E α̂N = E (ȳN − β̂N x̄N )

E β̂N =

∑
k(xk − x̄N )E yk∑
k (xk − x̄N )2

since the errors are zero-mean E (ȳN ) = α+ β x̄N and hence

E α̂N = α+ E (β − β̂N ) x̄N .

On the other hand, E yk = α+ β xk, and so

E (β̂N − β) =

∑
k(xk − x̄N ) (α+ β xk)∑

k (xk − x̄N )2
− β = β

∑
k(xk − x̄N )xk∑
k (xk − x̄N )2

− β = 0

since
∑
k(xk − x̄N )α = 0 and likewise

∑
k(xk − x̄N ) x̄N = 0.

We now ask the following
Question: are these consistent estimators of the parameters (α, β)?
As we shall see the answer depends (obviously) on the error statistics but also
on how the input data are distributed on the line.

Let us first look at the estimate

β̂N =

∑
k(xk − x̄N ) yk∑
k (xk − x̄N )2

:=
∑
k

wk yk

since the yk are independent (as the ek are) we have

var (β̂N ) =
∑
k

w2
k var (yk) =

N∑
k=1

w2
k σ

2
k

where σ2
k = var (ek). For convergence in probability of β̂N to β we need

lim
N→∞

N∑
k=1

w2
k σ

2
k = 0

which, in case σ2
k = σ2 independent of k, implies

N∑
k=1

w2
k =

∑
k(xk − x̄N )2

[
∑
k (xk − x̄N )2 ]2

=
1∑

k (xk − x̄N )2
→ 0 .

This is the same as
+∞∑
k=1

(xk − x̄N )2 =∞

which means that in order to have consistency of β̂N , the points xk should not
remain too close to their sample mean. Since

α̂N = α+ (β − β̂N ) x̄N +
1

N

N∑
k=1

ek



110 Chapter 3. CONDITIONING AND REGULARIZATION

under this same condition, both the last two terms converge to zero in proba-
bility and it is easy to see that the estimator α̂N is also consistent in probability.
2

Hence, it turns out that, in order to have consistency (and a reasonable error
variance), one needs to have data points {xk} which do not cluster to form a
too concentrated data set. On the other hand, if the approximation is meant
to involve a wide range of possible input values, the result may turn out to be
unsatisfactory. In particular, an unbalanced data distribution with too few data
at the extremes of the regression intervals may result in a poor fit and very high
variance. This is especially true with polynomials as they have unpredictable
tail behavior which can be very bad for extrapolation. See for example Fig. 3.5
below One may conclude that a better policy could be just to try juxtaposition

Lecture 7: Splines and Generalized Additive Models
Simple approaches
Polynomials

Result, d = 2
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Figure 3.5.1. Polynomial fit

of functions which do local approximation of the data on a short range of input
values. This is called Local Regression and can be done in a variety of ways.
Below we shall describe a rational way to choose local approximating functions.

Splines

Let now {x1 < x2, . . . < xN} be a sequence ofN points in the interval of interest
which will be called knots. These points will act as internal boundaries for lo-
cal approximation. Instead of a single polynomial in x over the whole domain,
we can rather use different polynomials of the same degree in regions defined
by knots. They form a function s(x) made by patching together a sequence of
polynomials sk(x) k = 0, . . . , N , each defined on the interval [xk, xk+1] with x0

and xN+1 being boundaries of the approximation interval. Such functions are
called splines, in particular linear, quadratic, cubic etc. splines depending on
the degree of the polynomial pieces. We shall ask that this function should have
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a maximal degree of smoothness imposing continuity of all (non constant) exist-
ing derivatives at the boundary points, that is, impose that for k = 1, 2, . . . , N ,

sk−1(xk) = sk(xk) , s′k−1(xk) = s′k(xk) , . . . , sn−1
k−1(xk) = sn−1

k (xk) (3.5.5)

where n := deg{s(x)}which means that the consecutive polynomial pieces join
smoothly at each knot xk together with all their (non constant) existing deriva-
tives. In a sense they have a maximum degree of smoothness. In particular,
a cubic spline is a piecewise cubic polynomial which has a continuous second
derivative.
It is claimed that cubic splines are the lowest-order spline for which the knot-
discontinuity is not visible to the human eye. In applications there is seldom
any good reason to go beyond cubic-splines and in what follows we shall mostly
discuss them.

In general splines of degree n with knots {x1 < x2, . . . < xN} involve N + 1
local polynomial sk(x) (of degree n) each of which depends linearly on n + 1
parameters. These objects form a vector space whose dimension can be com-
puted noting that the continuity constraints (3.5.5) impose nN linear conditions
on a spline of degree n with N knots. Therefore the vector space has dimension
(n + 1)(N + 1) − nN = N + n + 1 and hence for cubic splines there are local
polynomial bases consisting of N + 4 elements. B-Splines are a particularly
convenient such basis which we shall describe next.

B-Splines

The (B)-splines are a nice basis for the space of splines, in fact for splines of any
order.
They are defined recursively in the following fashion:

Bi,0(x) := {1 ifxi ≤ x < xi+1; 0 otherwise}

Bi,k(x) :=
x− xi

xi+k − xi
Bi,k−1(x) +

xi+k+1 − x
xi+k+1 − xi+1

Bi+1,k−1(x).

Here each function has compact support, the B-spline of order k, Bi,k(x) being
zero for x < xi and for x ≥ xi+k+1, see Fig. 3.5 where the picture represents
just one sequence of B-functions of compact support of increasing order k =
0, 1, 2, 3, the leftmost knot being xi = 0.3 and the knot intervals have length 0.1.
In the picture Bk is denoted yk+1.

A cubic spline with N knots is then represented as

s(x) =

N+3∑
i=0

Bi(x)θi (3.5.6)

where Bi(x) is a short for the cubic basis function Bi,3(x). The first and second
derivatives of s(x) have a similar expansion in terms of lower order B-Splines.
Both are continuously patched at the knots.
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Algorithm 3.1 B-Splines Computation
1: function B(i, k, knots)(e, L)
2: e = eps(0.0)
3: L = knots[end]− knots[1]
4: knots = [knots..., (L+ knots[2 : 2 + k]− knots[1])...]

. pad the knots vector for periodic case
5: if k = 0 then
6: x→ float(knots[i]− e⇐ x < knots[i+ 1] + e)
7: else
8: if k 6= 0 then
9: x→ (B(i, k−1, knots)(x)∗(x−knots[i])/(knots[i+k]−knots[i])+
B(i+1, k−1, knots)(x)∗(knots[i+k+1]−x)/(knots[i+k+1]−knots[i+1]))

10: function Bder(i, k, knots, p)(e, L)
11: e = eps(0.0)
12: L = knots[end]− knots[1]
13: knots = [knots..., (L+ knots[2 : 2 + k]− knots[1])...] . pad the knots

vector for periodic case
14: if p > k then
15: x→ zero(x)
16: else
17: if p = 0 then
18: x→ B(i, k, knots)(x)
19: else
20: x → ((Bder(i, k − 1, knots, p)(x) ∗ (x − knots[i]) + Bder(i, k −

1, knots, p−1)(x))/(knots[i+k]−knots[i])+(Bder(i+1, k−1, knots, p)(x)∗
(knots[i + k + 1] − x) − Bder(i + 1, k − 1, knots, p − 1)(x))/(knots[i + k +
1]− knots[i])
End

Smoothing Splines

As we have just hinted at, a basis expansion like (3.5.1), chosen without any a
priori insight, irrespective of the distribution of the input data, could be a rather
poor modeling choice. In this section we want to describe a special technique
of local regression which turns out to be particularly successful. To understand
the basics of the method we shall rephrase the problem in more general terms
as a non-parametric estimation problem. This just means that we want to look for a
function of the input data f(x) which approximates in a suitable statistical sense
the scattered points {(xk, yk) , k = 1, 2, . . . , N} of the training set. We shall not
ask f to obey exactly the interpolation conditions f(xk) = yk k = 1, 2, . . . , N
as this would obviously lead to an absurd overfitting but instead formulate an
“approximate interpolation problem" say f(xk) ' yk k = 1, 2, . . . , N requiring
that f should obey some extra smoothness constraints. Since this interpola-
tion problem is clearly ill-posed, we shall invoke the idea of Tikhonov regular-
ization, and, as anticipated in Section 3.3.1, reformulate it as an optimization
problem. The optimization will no-longer be a parametric linear least squares
but will be formulated directly in terms of an unknown function f . This func-
tion, besides interpolating the training data, should have a certain degree of
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Figure 3.5.2. B-Splines

smoothness. To filter out the noise i.e. avoid overfitting, we shall impose that
the candidate function should be smooth; in fact, we shall constrain it to be
twice differentiable and add a penalty on the average amplitude of its second
derivative. This turns out to be a particularly convenient choice. In formulas,
we shall formulate the following variational problem:

min
f∈C2

{
N∑
k=1

[ yk − f(xk) ]2 + λ

∫
f
′′
(x)2dx

}
, (3.5.7)

where the integral is extended to an interval containing the field of possible
input values and λ is the regularization parameter controlling the smoothness
of the solution. Obviously, for λ small we will recover the least squares inter-
polation problem. Although we shall not go into the details of the proof, this
variational problem can be solved explicitly.

Theorem 3.2. The solution of the problem (3.5.7) is a cubic spline, with knots the
input points {xk, , k = 1, 2, . . . , N} of the training set.

A proof can be found in Wahba’s book [101].
In general the solution s(x) does not interpolate exactly the values yk at the

knots. This is why these functions are called smoothing splines. Note that each
cubic polynomial sk(x) approximates f(x) locally in the interval [xk, xk+1] in a
way which is “almost decoupled” from its neighbors. This is in sharp contrast
with the naive approximation (3.5.1) where each basis function ϕk(x) is sup-
posed to approximate f(x) on the whole interval of interest which is clearly a
heavier task. This explains the better behaviour of spline approximation.
Spline approximation is discussed in great detail in the book [101] where the
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regularization integrand is also generalized to the square of an arbitrary m-th
order derivative of f(x).

The numerical solution of the problem (3.5.7) can be reduced to the solution
of a generalized ridge regression problem. Expressing the solution spline in a
cubic B-spline basis as in (3.5.6), after introducing the matrices

B := [Bi(xk)]i=1,k=...,N , Ω :=

[∫
B
′′

i (x)B
′′

k (x)dx

]
i,k=1,...,N

(3.5.8)

which are banded matrices (for example Ω is symmetric tridiagonal and posi-
tive definite), the problem (3.5.7) can be recast in the regularized least squares
form

min
θ
{‖y −Bθ‖2 + λθ>Ω θ} (3.5.9)

which has the solution

θ̂ =
[
B>B + λΩ

]−1
B> y . (3.5.10)

Note that both B and Ω, only depend on the input data. Although banded,
these matrices are of possibly very high dimension. The smoothness of the
approximant may however allow to discard a sizable subset of the original xk’s.
To this end the choice of the regularization parameter is crucial; see the pictures
in Fig 3.5.3. Here we shall only discuss this issue rather superficially.

The regularization parameter λ

The behaviour of the solution depends heavily on the choice of the regulariza-
tion parameter λ (see e.g. Figure 3.5.3 below). In practice one has only empirical
rules to choose it. One is based on a comparison with the least squares solution.
Note that the solution vector s :=

[
s(x1) . . . s(xN )

]> is given by the formula

s = B
[
B>B + λΩ

]−1
B>y

and that for λ = 0 the matrix Aλ := B
[
B>B + λΩ

]−1
B> is an orthogonal

projection onto the Image space of B. Now this matrix is squareN×N but may
generally have a numerical rank

d0 := rank A0

of much smaller dimension than N which in fact can be considered as the “nu-
merical dimension" of the solution. This dimension reduction is equivalent to
eliminating some “redundant" inputs {xk}. The rank of Aλ denoted

d(λ) = rank Aλ

has a similar interpretation as numerical dimension of the solution. One can
tentatively fix d(λ) < N as a guess of the number of “important" input points
and then compute numerically the corresponding value of λ using the formula
for Aλ. This value of λ can then lead to the estimate of the model by shrinking
parameters to very small values or, equivalently, by weighting very little some
input points.



3.5. Regression and Smoothing Splines 115
46 CHAPTER 4

0.80

0.60

0.40

0.20

0.00

-0.20

-0.40

-0.60

-0.80

-1.00

-1.20

0.00 1.00 1.50 2.50 3.00

.FIG. 4.1. Data generated according to the model (4.1.7). Doshed curae is J@). Solid
cuttte is fi.tted spline with A too small.

0.80

0.60

0.40

0.20

0.00

-0.20

-0.40

-0.60

-0.80

-1.00

-r.20

0.00 0.50 1.00

FIG. 4.2. Same data as in Figure 4.L

1.50 2.00 2.50 3.00

Spline (solid cune) is fitted with \ too big

tr o tr'o, Et rn
n ^trtE- A

y". tr; 
-- '% " "' atr

g tr o "a, Er ,',
g Bqil g -o-

,n B - g--*p-1;6rffi
"U4 sr -oo, iru ;

Figure 3.5.3. From Wahba’s book [101]

The MATLAB curve fitting toolbox contains several functions for spline ap-
proximation. The smoothing spline algorithm is based on the function csaps.
More details can be found in the book by Hastie et al. : https://web.stanford.
edu/~hastie/ElemStatLearn/ pages 186-189.
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3.6 Problems
3-1 Suppose the matrix S =

[
s1 . . . sp

]
has orthogonal columns which are ordered

by decreasing norms
‖s1‖ ≥ . . . ≥ ‖sp‖

and let Var w = σ2IN . Find an expression for the variance ratio
var θ̂1

var θ̂p
in terms of

these norms.

3-2 Consider the ridge regression estimator

θ̂R(y) =
[
S>QS + λIp

]−1
S>Qy := Aλ y

where Q = Q> is positive definite. Show that if λ > 0, SAλ cannot be idempotent,
that is, cannot be a projection matrix.
Similarly, AλS 6= I and the ridge estimator cannot be unbiased.

3-3 Consider the ridge regression estimator with weight Q = IN and λ > 0. Using
the SVD of S, in particular the fact that its squared singular values are eigenvalues of
S>S, give an expression for the eigenvalues of SAλ and for its spectral decomposition
say

SAλ = UΛU> , UU> = I

where Λ is the diagonal eigenvalue matrix.

3-4 Let p = 1 and suppose the unique column s of S is normalized so that ‖s‖2 = 1.
Try to solve the Lasso problem

min
θ
{‖y − sθ ‖2 + λ| θ | }

by setting the derivative with respect to θ equal to zero, using the "almost-everywhere"
derivative

d|θ|
dθ

=

{
1 if θ > 0

−1 if θ < 0

The right hand side is called the sign function, so that
d|θ|
dθ

= sign (θ) a.e..

3-5 Write a Matlab program to compute the matrices B, Ω in (3.5.6), for a given se-
quence of knots.



Chapter 4

LINEAR HYPOTHESES
AND LINEAR
CLASSIFICATION

4.1 Hypothesis Testing on the Linear Model
We shall initially discuss hypothesis testing on the standardN -dimensional lin-
ear model

y = Sθ + σw , w ∼ N (0, IN ) (4.1.1)

where the additive noise has independent components. Recall that this is no
loss of generality whenever the variance matrix of w is of the form σ2R with
a kown R > 0. See the normalization procedure discussed at the beginning
of Chapter 2 formula (2.2.5). Later we shall generalize our discussion to linear
models with arbitrary variance.

It is customary to call linear hypotheses those which can be expressed in terms
of linear functions of the parameter θ. For example, H0 is a linear hypothesis if
it can be expressed as,

H0 := {θ ; Hθ = β0 } . (4.1.2)

for some matrix H ∈ Rk×p, k ≤ p and β0 some fixed vector in Rk.
It should be quite obvious that it is no loss of generality considering only hy-

potheses which can be expressed in terms of a full rank matrixH ; i.e. rank H =
k ≤ p. In other words, we shall consider only hypotheses described in a non-
redundant way. Testing linear hypotheses on the linear model (4.1.2) is an im-
portant problem area which pops up in a variety of situations; typically occur-
ring in the diagnostics of linear models estimated from the data by M.L. (or
Least Squares). Some typical examples are:

1. Adequacy of a linear model; can be expressed as

H0 := {θ = 0} (4.1.3)

(in which case H = I , β0 = 0). The question is whether a linear model
is adequate to explain the data. Accepting H0 means that you decide that
the measurements y are constituted by white noise. Refusing H0 means
that a nontrivial linear model of the form (4.1.2), should be adequate.

2. Hypothesis on the number of significant parameters

H0 := {θk+1 = θk+2 = ... = θp = 0} . (4.1.4)

117
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AcceptingH0 means deciding that the last p−k parameters are redundant;
i.e. the model is overparameterized. The alternatives can be several different
structures compatible with the general model. It may actually make sense
to compare different parametric structures. For example one may want to
compare two regression models of the form

yt = θ0 + θ1ut + wt (4.1.5)

yt = θ0 + θ1ut + θ2u
2
t + wt (4.1.6)

from inputs {ut} and outputs {yt} observed for t = 1, ..., N . The two
alternative hypotheses to be tested could be linear versus nonlinear struc-
ture: H0 : θ2 = 0 and H1 : θ2 6= 0.

3. Analysis of Variance Here one wants to test the equality of the means, say
µ1, . . . , µp, of p mutually uncorrelated sequences of observations having
Gaussian distribution and the same scalar variance. One can formalize
the problem by setting up a large linear model and testing the hypothesis
µ1 = µ2 = . . . = µp.

Let us consider the normalized linear model (4.1.1) and examine the effects
of the constraint Hθ = β0 (that is H0) on the ML estimate of θ. Obviously, by
Gaussianity of the observations, ML reduces to unweighted (R−1 = I)Least
Squares.

Hence under H0, the estimator θ̂0 is found by minimizing the Euclidean
distance of the vector y from the columnspace S, of S, but by taking into account
the constraint (4.1.2). In other words the linear combination of the columns of S
which minimizes ‖y − Sθ‖2 canno longer use arbitrary coefficients θ ∈ Rp but
needs instead to use parameters (θ1, ..., θp) satisfying the equation Hθ = β0.

θ̂0(y) = Arg min
θ∈{θ ;Hθ=β0}

‖y − Sθ‖2 . (4.1.7)

If rank H = k, the constraint Hθ = β0 is made of k independent linear equa-
tions in θ and hence provides only p − k free parameters among the p compo-
nents of θ and hence θ̂0(y) will use only p− k independent linear combinations
of the columns of S. This means that the minimum of ‖y − Sθ‖2 subject to
Hθ = β0 is found by projecting y not any longer onto the whole space S but
instead onto an affine subspaceH ⊂ S of dimension p− k, defined by

H := span {Sθ ; Hθ = β0} . (4.1.8)

All of this, obviously under the assumption that the constraint (4.1.2) is actually
present, that is under the hypothesis H0. If H0 is not true, say the constraint
(4.1.2) does not act (i.e. under H1) the M.L. estimator say θ̂1(y) = θ̂(y) is just the
usual projection of y onto S. See tha Fig. 4.1.1

Since S ⊃ H, the distance of y from S must clearly be smaller than that from
H. It should then be clear that the sum of squared residuals in the two situations
must be differen. Since under H1 we can use a larger space to construct our
approximation of the data y. Therefore underH1 the norm of the approximation
error of y by Sθ̂ must be smaller than that of the residual error ‖y − Sθ̂0(y)‖2
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Figure 4.1.1. Orthogonal projection on the affine subspace H

under H0. Let us then introduce the sum of squared residual errors under the
two hypotheses

H0 : R2
0(y) = ‖y − Sθ̂0(y)‖2

H1 : R2
1(y) = ‖y − Sθ̂(y)‖2

(4.1.9)

The following lemma provides a rather obvious formalization of the geometry
of the problem.

Lemma 4.1. The vector Sθ̂0(y) is the orthogonal projection of Sθ̂(y) onto H and
therefore

R2
0(y) = R2

1(y) + ‖Sθ̂(y)− Sθ̂0(y)‖2 (4.1.10)

Proof. Introduce for convenience the symbols

µ̂0 := Sθ̂0(y) , µ̂1 := Sθ̂(y) . (4.1.11)

To prove the first statement just observe that y− µ̂1 is orthogonal to S and hence
in particular toH. Moreover y − µ̂0 is orthogonal toH ⊂ S by construction. By
linearity of the scalar product, 〈y − µ̂1 − (y − µ̂0), H〉 = 0⇒ 〈µ̂1 − µ̂0, H〉 = 0.
Therefore

R2
0 = ‖y− µ̂1 + µ̂1− µ̂0‖2 = ‖y− µ̂1‖2 +‖µ̂1− µ̂0‖2 +2 〈y − µ̂1, µ̂1 − µ̂0〉 (4.1.12)

where the inner product on the right is zero since µ̂0 and µ̂1 ∈ S and likewise
does their difference. Since µ̂1 is the orthogonal projection onto S, y − µ̂1 is
orthogonal to S . Hence (4.1.12) reduces to

R2
0 = R2

1 + ‖µ̂1 − µ̂0‖2

(a version of Pithagora’s theorem) which indeed is just (4.1.12).

Note that ifH0 is true, the difference ‖µ̂1− µ̂0‖2 (which is obviously random
as it depends on the sample y) will in the average be small since the estimate,
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Sθ̂(y), even if computed without taking into account the constraint (4.1.2) tends,
by the law of large numbers, to get close to Sθ0 as N → ∞ since θ0 is the true
value of the parameter and by assumption Sθ0 lays onH.

Conversely, if H0 is false, Sθ̂(y) keeps on lying outside of the subspace H
even if N →∞. From this, one deduces that the ratio

‖µ̂1 − µ̂0‖2

R2
1

=
R2

0 −R2
1

R2
1

(4.1.13)

should in the average be small underH0 and large isH1 is true.As we shall prove
below this intuitive test statistic is actually what prescribes the MLR principle.

Computing the MLR

We assuma that σ2 is unknown The pdf, f(y, θ, σ2) of the random vector y de-
scribed by the linear model (4.1.1), is

f(y, θ, σ2) = (2πσ2)−
N
2 exp− 1

2σ2
‖y − Sθ‖2 (4.1.14)

so that under H1, the ML estimator (θ̂1, σ̂
2
1) of (θ, σ2), can be computed by max-

imizing over the whole parameter space. This just means that θ̂1 and σ̂2
1 are the

ordinary ML estimators of θ and σ2 computed in Sect. 2,

θ̂1 = Arg min
θ
‖y − Sθ‖2 σ̂2

1 =
1

N
‖y − Sθ̂1‖2 =

1

N
R2

1(y) . (4.1.15)

Substituting (4.1.15) into (4.1.14) one finds

f(y, θ̂1(y), σ̂2
1(y)) =

[
2π
R2

1(y)

N

]−N2
exp−N

2
. (4.1.16)

UnderH0, the estimator θ̂0 solves the constrained minimization problem (4.1.7).
To compute f(y, θ̂0(y), σ̂2

0(y)) let’s recall the two steps procedure seen in Sect.??.
Assuming we have computed θ̂0(y) by solving the constrained minimization
problem (4.1.7), the ML variance estimator σ̂0(y) is found by substituting the
expression of θ̂0(y) in the pdf and maximizing with respect to σ2. This maxi-
mization does not depend on the actual expression of θ̂2

0(y) and yields the ex-
pected result

σ̂2
0(y) =

1

N
‖y − Sθ̂0(y)‖ =

1

N
R2

0(y) . (4.1.17)

Substituting in the pdf (4.1.14), one finds

f(y, θ̂0(y), σ̂2
0(y)) =

[
2π
R2

0(y)

N

]−N/2
exp(−N/2)

and hence

L(y) =

[
R2

0(y)

R2
1(y)

]N/2
=

[
R2

0(y)−R2
1(y)

R2
1(y)

+ 1

]N/2
(4.1.18)

which shows that the MLR L(y) is a function of the ratio (4.1.13). In fact, an
invertible function. Therefore (4.1.13) is equivalent to the statistic prescribed by
the MLR test.
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The statistical decision to choose H0 vs H1 requires the knowledge of the
pdf of the MLR statistic R2

0(y) − R2
1(y)/R2

1(y) and to have a chance to see this
distribution we shall need an explicit expression ofR2

0(y)−R2
1(y). This requires

in turn the solution of the constrained minimization problem (4.1.7) which so
far we have avoided.

To this end, let us introduce a k-dimensional parameter β by setting

β := Hθ . (4.1.19)

so that H0 can be described simply as the hypothesis {β = β0 := Hθ0}. Since H
is full rank β is uniquely defined by the position (4.1.19). The ML estimator of
β is clearly

β̂(y) = Hθ̂(y) = H
[
S>S

]−1
S>y (4.1.20)

and its normalized variance matrix is

1

σ2
Var (β̂(y)) = H

[
S>S

]−1
H> := D . (4.1.21)

By substituting the model equation (4.1.1) we have

β̂(y) = H(S>S)−1S>y = Hθ + σH(S>S)−1S>w := β + σe . (4.1.22)

Under H0 we have β = β0 and hence,

Lemma 4.2. Under H0 the ML estimator of the parameter β is given by

β̂(y) = Hθ̂(y) = β0 + σe , e ∼ N (0, D) (4.1.23)

where the random vector e = H(S>S)−1S>w, has variance matrix D defined in
(4.1.21).

Interpretation: We have transformed the problem (4.1.7) into one where the first
variables (θ1...θk) are replaced by (β1...βk) so that the constraint Hθ = β0 re-
duces to fixing certain pre-fixed values say (β01, ..., β0k) to the new parameter.
The constraint will then be acting only on the first k variables of θ leaving the
remaining p− k free.
This can also be seen as introducing a change of basis in the observation space.
Look for a change of basis in RN whereby the first k equations of the model
y = Sθ+σw become like z = Hθ+σe, where z is now a k-dimensional random
vector. We are essentially looking for a matrix Q such that:

QSθ = Hθ , ∀ θ ∈ Rp

that is QS = H , where Q should be of dimension k × N . This problem admits
a soution (not necessarily unique) since the rows of H are k ≤ p linearly in-
dependent vectors in Rp which must then belong to the rowspace of S, which
by assumption is the whole space Rp. Let us then try a solution of the form
Q = CS>, for some C ∈ Rk×p which should therefore satisfy the equation
CS>S = H . By our standard assumption S>S is invertible and hence,

C = H(S>S)−1 Q = H(S>S)−1S> . (4.1.24)
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Lemma 4.3. One has

‖Sθ̂(y)− Sθ̂0(y)‖2 = ‖β̂(y)− β0‖2D−1 (4.1.25)

where β̂(y) and D are defined in (4.1.23).

Proof. We need to solve the constrained minimization (4.1.7). To this end ,
introduce the Lagrange multiplier λ ∈ Rk and consider the Lagrangian

min
θ
{‖y − Sθ‖2 + λ>(Hθ − β0)} .

Setting the gradient with respect to θ to zero one finds the condition

−2S>(y − Sθ) +H>λ = 0

which yields an expression for the extremal

θ̂0(y) = [S>S]−1S>y − 1

2
[S>S]−1H>λ , (∗)

depending on λ. The multiplier is fixed by imposing the constraintHθ̂0(y) = β0

which is equivalent to

1

2
H[S>S]−1H>λ = H[S>S]−1S>y − β0

that is
1

2
Dλ = β̂(y)− β0 .

Substituting into (∗) one finds

θ̂0(y) = θ̂(y)− [S>S]−1H>D−1 [β̂(y)− β0]

that is,
S [θ̂(y)− θ̂0(y) ] = S[S>S]−1H>D−1 [β̂(y)− β0]

which immediately leads to (4.1.25).

Theorem 4.1. The decomposition (4.1.10) can be written as

R2
0(y) = ‖β̂(y)− β0‖2D−1 +R2

1(y) . (4.1.26)

The random variables ‖β̂(y)−β0‖2D−1 andR2
1(y), are independent under bothH0 and

H1.

Proof. Recall that β̂(y) = Hθ̂(y) e R2
1(y) = ‖y − Sθ̂(y)‖2; hence we just need

to show that θ̂(y) and y − Sθ̂(y) are independent. Use now the projector P =
S(S>S)−1S>, to compute

Cov
[
θ̂(y), (y − Py)

]
= E

[
θ̂(y) (y − Sθ̂(y))>

]
= σ(S>S)−1S>E (yw>)(I − P )>

= σ2(S>S)−1S>(I − P )

= σ2
[
(S>S)−1S> − (S>S)−1S>S(S>S)−1S>

]
= 0 .
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Note that under H0 one has β̂(y) ∼ N (β0, σ
2D) (Lemma 4.2), and hence

R2
0(y)−R2

1(y)

σ2
=

1

σ2
‖β̂(y)− β0‖2D−1 ∼ χ2(k) (4.1.27)

One can show that under H1 the random variable (4.1.27) has instead a noncen-
tral χ2 distribution, χ2(k, δ); δ being the so-called non-centrality parameter 9:

δ =
1

σ2
‖Ĥ0θ − β0‖2D−1 .

We are finally in a position to describe the pdf of the ratio (4.1.18).
Recall that the unconstrained sum of squared residuals R2

1(y) has a χ2 distribu-
tion, namely:

R2
1(y)

σ2
≈ χ2(N − p) . (4.1.28)

We now just need to refer to Sec. A.2 in the appendix to conclude that:

Theorem 4.2. Under H0, the ratio

z :=
(N − p)

k

‖β̂(y)− β0‖2D−1

R2
1(y)

(4.1.29)

is distributed according to an F distribution, in fact as F(k,N−p). The critical region
of the test can be expressed as

C := {y ; z(y) ≥ kα} (4.1.30)

where kα is the abscissa defined by

P0(z ≥ kα) = α .

The test based on the ratio (4.1.29) is called F test and is largely used in
Statistics.

In some problems R2
0 and the expression of the numerator of the statistic

F can be obtained directly and there is no need of computing explicitly the
estimator β̂.

Example 4.1 (Known variance). Consider the following linear model with N
observations y1

...
yN

 =
[
s1 s2

] [θ1

θ2

]
+

w1

...
wN


where the wi are Gaussian independent of mean zero and the variance σ2 is
known. We want to test the Hypothesis that two regressors are superfluous,
choosing the null hypothesis as

H0 ≡ θ1 = θ2 .

9The standard reference for this material is the classical old book by Scheffè [79]
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Set s := s1 + s2 and describe the two probability densities under H0 and under
the alternative hypotheses. Use the Maximum Likelihood Ratio test to find a
suitable test statistic and its distribution.

Solution:
The problem assumes that σ2 is known; however the theory of linear hy-

potheses can easily be adapted to this particular case. Set S =
[
s1 s2

]
and

θ =
[
θ1 θ2

]> and let y ∈ RN be the observation. The two likelihood functions
are

f0(y; θ0) = (2πσ2)−N/2 exp− 1

2σ2
‖y − sθ0‖2

f1(y; θ1, θ2) = (2πσ2)−N/2 exp− 1

2σ2
‖y − Sθ‖2

so that
L(y) = exp

N

2σ2

{
R2

0(y)−R2
1(y)

}
where R2

0(y) = ‖y− sθ̂0(y)‖2 and R2
1(y) = ‖y−Sθ̂(y)‖2 and the test statistic can

be chosen ϕ(y) := R2
0(y)−R2

1(y). This can be computed using the formula

ϕ(y) := R2
0(y)−R2

1(y) = ‖β̂(y)− β0‖2D−1 ,

where β̂(y) =
[
1 −1

]
θ̂(y) , β0 = 0 and D =

[
1 −1

] [
S>S

]−1
[

1
−1

]
are all

scalars. By Gaussianness
ϕ(y)

σ2
∼ χ2(1) .

If you assume instead that σ2 is unknown, then the procedure follows exactly
the steps delineated in the above discussion and you end up with a F(1, N − 2)
distribution.

Application to the Analysis of Variance (ANOVA)

The Analysis of Variance (ANOVA) is a statistical method used to test differ-
ences between two or more means. It may seem odd that the technique is called
"Analysis of Variance" rather than "Analysis of Means." As you will see, the
name is appropriate because inferences about means are made by analyzing
variance. It has been used widely since the seminal articles by Ronald Fisher
[32, 33], especially in bio- or medical statistics for comparing medical treatments
or effectiveness of drugs.

Assume we have p samples of size N1, ..., Np extracted from p normal pop-
ulations N (µi, σ

2) with i = 1, ..., p, where the means µ1, ..., µp and the common
variance σ2 are unknown. They could for example be N1, ..., Np measurements
of a physical variable made by p different measurement devices, having how-
ever the same precision. Denote by yi the i-th sample and by θ = [µ1, ..., µp]

>

the p−dimensional vector of the unknown means, one may describe this set-up
by a linear model of the following form

y :=


y1

.

.
yp

 =


eN1

0 0 0
0 . 0 0
0 0 . 0
0 0 0 eNp

 θ + σw (4.1.31)
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where eNi = [1...1]
> ∈ RNi and w ∼ N (0, IN ), isN1+...+Np := N−dimensional

white noise.
One wants to test the hypothesis

H0 : µ1 = µ2 = ... = µp (4.1.32)

against the alternative H1 that (some) means are different.
To set up a linear model denote by {yit ; i = 1, ..., p ; t = 1, ..., Ni } the p strings
of observations obtained in the p experiments and let us compute the residual
sum of squares under H1 and under H0. Under H1, one has:

R2
1(y) = min

µ1,...,µp

p∑
i=1

Ni∑
t=1

(yit − µi)2 =

p∑
i=1

min
µi

Ni∑
t=1

(yit − µi)2 (4.1.33)

and the value of µi which minimizes each sum is µ̂i = ȳNi = 1
Ni

∑Ni
t=1 yit .

Hence

R2
1(y) =

p∑
i=1

Ni∑
t=1

(yit − ȳNi)2 =

p∑
i=1

σ̂2
Ni ,

which is distributed as σ2χ2(N −p). Under H0, the mean is the same and there-
fore

R2
0(y) = min

µ

p∑
i=1

Ni∑
t=1

(yit − µ)2 =

p∑
i=1

Ni∑
t=1

(yit − ȳN )2 ,

which is distributes as σ2χ2(N − 1). The difference R2
0 − R2

1 can be computed
using the identity

Ni∑
t=1

(yit− ȳN )2 =

Ni∑
t=1

[yit− ȳNi + (ȳNi − ȳN )]2 =

Ni∑
t=1

(yit− ȳNi)2 +Ni(ȳNi − ȳN )2

which leads to

R2
0 −R2

1 =

p∑
1

Ni(ȳNi − ȳN )2 (4.1.34)

This is a weighted sum of the deviations of the sample means for each group
from the overall sample mean ȳN . Note that in this problem we have k = p− 1
since (4.1.32) can be written

µ1 − µ2 = 0 ; ... ; µ1 − µp = 0 ,

which are p− 1 independent equations.

Example. Consider p = 3 groups with sample means as described in Table 4.1;
The hypothesis H0 is that the three means are equal. The sum of squared

differences under H0 is R2
0 = 4616.64. Using the formulas just derived one

finds R2
0 −R2

1 = 238.59 . Since k = p− 1 = 2 and N − p = 142− 3 = 139 the test
statistic is computed to be

F =
139

2

238.59

4616.64 + 238.59
= 3.79 .
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Serie Ni
∑
t yit ȳNi

1 83 11,227 135.87
2 51 7,049 138.22
3 8 1,102 137.75

Table 4.1.

α 0.10 0.05 0.025 0.01
kα 2.30 3.00 3.70 4.65
Table 4.2. Quantiles of F (2, 139)

As shown in Table 4.2, unless the probability of an error of first kind α, is
chosen extremely small, we are well inside the critical region and the hypothesis
that the three means are the same should be rejected.

At this point one may ask if the means µi of the three populations are sig-
nificantly different. The answer is that they are (thus rejecting H0), if we do not
require too high “statistical certainty” to this statement. One can say that with a
probability slightly higher than 97, 5 percent the means are to be considered dif-
ferent. There is however not enough experimental evidence to make the same
statement with a statistical certainty of 99 percent of not committing a mistake
by refusing the hypothesis. In this case; i.e. once fixing α = 0.01, we would
be lead to accept H0. Unfortunately now the probability α would not tell us
anything on the risk incurred in choosing H0 when H1 is true. To this end, we
should be able to compute the probability, β, of accepting H0 when H1 is true,
which is normally complicated since H1 is a compound hypothesis. This difficulty
is obviously the same as regarding the calculation of the power of the test. In
any case, β normally increases when α diminishes (see for example Fig. ??) so
that the decision of accepting H0 when α is chosen very small, reveals in gen-
eral to be meaningless, as this may entail very high values for β, and, as argued
in [85] possibly even close to 1− α.

UnderH1 the ratioF defined in (4.1.29) is no longer distributed asF (k,N− p ).
It has instead a non central F distribution depending on a non-centarlity parame-
ter λ, defined as

λ2 = λ2(θ, σ2) =
1

σ2
‖β − β0‖2D−1 =

1

σ2
‖Hθ − β0‖2D−1 . (4.1.35)

A non-central F distribution can however be approximated by an ordinary
(central) F . In many instances it will be enough to refer to the symbolic re-
lation (which obviously needs to be understood as a relation between random
variables)

F (n1, n2, λ) ∼=
n1 + λ

n1
F (n∗1, n2) (4.1.36)

where n∗1 is given by:
n∗1 = (n1 + λ)2/(n1 + 2λ) . (4.1.37)

In this way the power of the test can be computed from F (n∗1, n2). Since n∗1 will
in general not be an integer one may use the closest integer approximation. The
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formula for computing the power corresponding to λ = λ(θ, σ2) is:

1− β(θ, σ2) =

∫ ∞
n1

n1+λaα

dF (n∗1, n2) . (4.1.38)

This formula for λ = 0 (or β = β0) returns α.

Hypothesis Testing and Confidence Regions

A Confidence Region for the parameter θ under some hypothesisH0 (forH1 there
is an equivalent definition), is the complementary set to the critical region. If the
critical region is defined by the error probability equal to α, then it is said that
the confidence region has “size” 1−α. Let θ̂(ȳ) be an estimate of θ corresponding
to the observation ȳ. One may test the goodness of (i.e. validate) the estimate
by testing the hypothesis

H0 :
{
θ = θ̂(ȳ)

}
. (4.1.39)

The complement of the critical region of this test is a confidence region of size
1− α.

4.2 Examples
Consider the linear model of example 2.2. You want to validate the estimates
of the three exponents

[
θ1 θ2 θ3

]> by running a series of statistical tests. For
each problem compute the F statistic and use a table of the F distribution, for
example http://www.socr.ucla.edu/Applets.dir/F_Table.html to compare
the critical abscissa kα for values of α = 0.01, .025, 0.05 and .1. Discuss your
decision.
4-1 Adequacy of the model
Test the Hypothesis

H0 : θ1 = θ2 = θ3 = 0 .

4-2 Equality of the exponents
Test the Hypothesis

H0 = θ1 = θ2 = θ3 .

4-3 All exponents equal to 1
Test the Hypothesis

H0 = θ1 = θ2 = θ3 = 1 .

4-4 The sum of the exponents is equal to 3
Test the Hypothesis

θ1 + θ2 + θ3 = 3

4-5 The exponent of H is zero
Test the Hypothesis

θ3 = 0 .

�



128 Chapter 4. LINEAR HYPOTHESES AND LDA

Solutions Recap: want to model Y as

Y ∼= αLθ1Kθ2Hθ3 (4.2.1)

using 86 measurements ofL,K,H . The logarithms satisfy a linear model: defin-
ing

y = log Y , x1 = logL , x2 = logK , x3 = logH , θ0 : logα ,

gives
yt = θ0 + θ1x1t + θ2x2t + θ3x3t + εt , t = 1, ..., 86. (4.2.2)

The errors εt are Gaussian zero-mean and independent of unknown variance
σ2. After subtracting the sample means

x̄i =
1

86

86∑
1

xit , i = 1, 2, 3

one gets a model for the centered variables

∆yt := yt − ȳ =

3∑
1

θi(xit − x̄i) + (εt − ε̄) . (4.2.3)

The estimate of θ0 can be obtained from

ȳ = θ0 + θ1x̄1 + θ2x̄2 + θ3x̄3 + ε̄ .

Rewrite (4.2.3) in vector form:

∆y = Sθ + σw , w ∼ N (0, I) .

Where

S>S =

0.0187 0.0085 0.0068
0.0085 0.029 0.0088
0.0068 0.0088 0.029

 S>∆y =

0.030
0.044
0.036


from which θ̂ =

[
S>S

]−1
S>∆y, is equal to

θ̂1 = 0.88 , θ̂2 = 1.04 , θ̂3 = 0.73

and
θ̂0 = −2.618

Finally: Y = 0.00241L0.88K1.04H0.73 .
The squared sum of residuals is

R2
1 = ‖∆y‖2 − ‖Sθ̂‖2 = ‖∆y‖2 − 〈Sθ̂, ∆y〉 = ‖∆y‖2 − θ̂>S>∆y (4.2.4)

that is

R2
1 =

86∑
t=1

(yt − ȳ)2 − (θ̂10.030 + θ̂20.044 + θ̂30.036) (4.2.5)

= 0.127− 0.099 = 0.028 (4.2.6)

Will need the unbiased estimate of the variance:

σ̂2 =
R2

1

N − 4
=

0.028

82
= 0.00034 .
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A. Model adequacy

Let us test the hypothesis

H0 : θ1 = θ2 = θ3 = 0

(Testing θ0 = 0, that is α = 1 in (4.2.1) does not make much sense as it would
correspond to Y = 1 +′′ noise′′). H0 is just saying that the data would not sup-
port a model of the form (4.2.1).
TestingH0 requiresR2

0−R2
1 = ‖β̂−β0‖2D−1 = ‖β̂‖2D−1 , where β =

[
θ1 θ2 θ3

]> ≡
θ and β0 = 0. Therefore

D =
[
S>S

]−1

and
‖β̂‖2D−1 = ‖θ̂‖2D−1 = θ̂>S>Sθ̂ = θ̂>S>∆y

the last equality follows from the orthogonality Sθ̂ ⊥ ∆y−Sθ by which 〈Sθ̂, Sθ̂〉 =

〈Sθ̂,∆y〉. It follows that R2
0 − R2

1 is simply the last term in (4.2.4). This can be
checked by noting that under H0,

R2
0 = min

θ0
‖∆y − Sθ‖2 = ‖∆y‖2

which is exactly the firs summand in (4.2.4). Therefore

FA =
N − p
k

R2
0 −R2

1

R2
1

=
86− 4

3

0.099

0.028
= 97.4

Looking in the table of F (3, 82) one finds the following values for kα
which lead to refuse (A) even if α is taken extremely small.

α 0.10 0.05 0.025 0.01 0.005
kα 2.15 2.70 3.90 4.00 4.60

B. Equality of the exponents

Here
H0 = θ1 = θ2 = θ3

which is equivalent to Hθ = 0 whereby

β :=

[
1 −1 0
1 0 −1

]
θ = 0 .

Here we could use the formula ‖β̂‖2D−1 = R2
0 − R2

1, as previously done. It is
however more convenient to compute R2

0 directly. Setting θ1 = θ2 = θ3 = η one
has

θ = 1η ; 1 =

 1
1
1
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since ∆y = (S1)η + σw, the normal equations for this problem are

(1>S>S1)η = 1>S>∆y

so that η̂ is the sum of the elements of S>S and of S>∆y, which gives

0.125η = 0.11⇒ η̂ = 0.887

that is
R2

0 = ‖∆y − S1η̂‖2 = ‖∆y‖2 − η̂(1>S>∆y)

and, by (4.2.4),

R2
0 −R2

1 = 0.099− η̂ · 0.11 = 0.099− 0.098 = 0.001 .

The test statistic has the sample value

FB =
N − p
k

0.001

0.028
=

82

2

0.001

0.028
= 1.4

in the table of F (2, 82) one finds the following values for kα

α 0.10 0.05 0.025 0.01
kα 2.37 3.11 3.86 4.86

For α = 0.10, the critical abscissa of F (2, 82) is 2.37 and we are already well
outside the critical region. For smaller values of α, kα will be even greater.
There is no experimental evidence to refuse the hypothesis that θ1, θ2, θ3 aree
equal. Said in a less cryptic way we should accept the hypothesis that the three
parameters are equal.

C. All exponents equal to 1

In this case
H0 = θ1 = θ2 = θ3 = 1

which can be written
Iθ = vec {1, 1, 1} ,

and yields

R2
0 −R2

1 = ‖θ̂ − 1‖2[S>S] = (θ̂ − 1)>(S>S)(θ̂ − 1) = 0.0026 .

In this case k = 3 and FC = 2.5. The critical values of F (3, 82) are

0.10 0.05 0.025
2.15 2.70 3.30

The hypothesis can be accepted with α = 0.05 e refused with α = 0.10. The
case is dubious.
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D. The sum of the exponents is 3

Want to check if
θ1 + θ2 + θ3 = 3

Letting β := θ1 + θ2 + θ3, one has β0 = 3 and

β̂ = θ̂1 + θ̂2 + θ̂3 = 2.65

while D is a scalar equal to the sum of the elements of
[
S>S

]−1; i.e. D = 75.7,
which yields

‖β̂ − 3‖2/D =
(2.65− 3)2

75 · 7
=

(0.35)2

75.7

and one finds that FD = 4.72.
The critical abscissas of F (1, 82) are

α 0.10 0.05 0.025 0.01
aα 2.77 3.96 5.20 6.95

For α = 0.05 FD is in the critical region. It is reasonable to refuse H0.

E. The exponent of H is equal to zero

H has the smalles exponent. Let us check if

θ3 = 0

In this case β̂ = θ̂3 = 0.73, D = 39.88 and one immediately gets

‖β̂ − β0‖2D−1 =
(0.73)2

39.9
= 0.0135

from which
FE =

0.0135

3.4 · 10−4
= 39.72

From the table of F (1, 82) one sees that FE falls in the critical region even for
very small values of α. Therefore we reject the hypothesis that θ3 = 0. 3
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4.3 Pattern Recognition and Linear Discriminant Analysis
In this section we shall address a class of classification problems which could be
seen as a variant of hypothesis testing but actually have a different flavour and
scope. Typically one has noisy measurements x(t) ; t = 1, 2, . . . , N of certain
features that are used to characterize a finite class of objects each of which we
shall call a pattern. There are M possible distinct patterns to choose from, for
example one would like to classify individuals as “male” or “female” based
on recorded measurements of height and weight or recognize one of the first
ten natural numbers {0, 1, . . . , 9} (M = 10) from features suitably extracted
from a handwritten postal code. The features which characterize a pattern are a
finite fixed number, say p, of real (or categorical) variables. More sophisticated
applications occur in speech recognition and computer vision where the goal is
to recognize objects such as words or human faces from data extracted by ad
hoc signal processing techniques.

In this class of problems we are given a training set of N , p-dimensional
observed samples {x(t) ; t = 1, 2, . . . , N} which have already been classified;
i.e. each vector of feature data x(t) is already assigned to one of the M possible
patterns and has attached an assignement label y(t) perhaps one of the first M
natural numbers. In presence of noise the data sequence will be assumed to be
i.i.d. drawn from one of M possible probability distributions which in this set-
ting are a mathematical description of the different patterns. The classification
problem is then that of deciding which of the M probability distributions de-
scribes a next p-dimensional observation which does not belong to the training
set.

The Automatic classification Problem: One should infer from the training
set, i.e. a given stored sequence of N classified data, a decision rule by which
classify the next incoming p-tuple of measured features; i.e. design an algo-
rithm which decides to which pattern it belongs to. This is called Statistical
Pattern Recognition in Engineering circles, see [75]. A key point is that here the
purpose of the statistical exercise differs from the standard one in classical hy-
pothesis testing where the decision is after the fact as it regards the classification
or validation of a descriptive model (in fact, its parameters) from observed data
which are not classified. In certain circles this is called unsupervised learning since
the test function for deciding the partition of the sample space on which the
decision should be made is designed without any a priori experience. In super-
vised learning instead one uses the past classification experience to train a model
to do prediction.

In order to do this, one first needs to categorize different patterns in terms
of a p-ple of characteristic feature values. This is the Feature Extraction Prob-
lem. Somehow the same as describing the patterns by means of p real or also
integer-valued coordinates. Since in many applications the patterns are origi-
nally described by qualitative attributes, the coordinatization may in practice
turn out to be not obvious and may require a good deal of engineering ingenu-
ity.

In the statistical setting, one should at the end ideally be able to describe
the M patterns by M distinct conditional probability distributions on the fea-
ture space, say Rp, each distribution being conditioned by the observed training
set. Then, infer a decision rule to classify new incoming feature data points as
belonging to one of the M classes.
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To explain this in more detail, we shall assume that the p noisy features of
each pattern are described by M joint Gaussian density functions:

pk(x) =
1

(2π)p/2 det Σ
1/2
k

exp−1

2
(x− µk)>Σ−1

k (x− µk) , k = 1, . . . ,M .

(4.3.1)
where x ∈ Rp and the parameters µk ∈ Rp and Σk ∈ Rp×p+ are in general
unknown. To find the decision rule we may still invoke the MLR principle.
This will prescribe to substitute the unknown parameters µk and Σk with their
sample estimates computed from the training set,

µ̂k :=
1

Nk

Nk∑
t=1

xk(t) , Σ̂k :=
1

Nk

Nk∑
t=1

(xk(t)− µ̂k)(xk(t)− µ̂k)> (4.3.2)

where the subscript k denotes the data in the training set which are classified as
belonging to the k-th class. Based on these estimates one forms a MLR to decide
between classes, say class i and j:

Li,j(x) =
(2π)−p/2 det Σ̂

−1/2
i exp− 1

2 (x− µ̂i)>Σ̂−1
i (x− µ̂i)

(2π)−p/2 det Σ̂
−1/2
j exp− 1

2 (x− µ̂j)>Σ̂−1
j (x− µ̂j)

, (4.3.3)

the boundary between the two classes being defined by the equationLi,j(x) = 1
while the decision (i.e. the test ) statistic is defined by

φ(x) = k ⇔ k = Arg max
i
p̂i(x) (4.3.4)

where p̂i is the Gaussian pdf (4.3.1) with the unknown parameters substituted by
their class estimates. This procedure could be seen as being based on the ratio
of two conditional likelihoods, given the training data. Denoting the training set by
xN this means that the MLR ratio (4.3.4) is equal to the ratio of conditional pdf’s

Li,j(x) =
pi(x | xN = xN )

pj(x | xN = xN )
(4.3.5)

where each conditional pi(x | xN = xN ) is actually equal to p̂i(x) with the un-
known parameters µi,Σi substituted by their ML estimates (4.3.2). This could
be justified basing on the fact that µ̂i and Σ̂i are sufficient statistics for the model
as they contain all relevant information in the training set xN which is sufficient
to predict the next data [85]. The µ̂i’s i = 1, 2, . . . ,M , are called centroids of the
various patterns and the decision rule to classify the observation x is based on
choosing the pattern whose centroid is at smallest Mahalanobis distance from x,
the Mahalanobis distance from the centroid of class i being defined as

(x− µ̂i)>Σ̂−1
i (x− µ̂i) .

This leads to the same decision rule defined in (4.3.4).
Linear Discriminant Analysis arises when the covariance matrices of the vari-
ous class pdf’s (4.3.1) are all the same and can be estimated based on the whole
training data set. After canceling the multiplicative terms in (4.3.3) and taking
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Piero Luchi  

Esercizio 1  

Classificazione di Dati  

Piero Luchi mat.1147875 

Anno 2017/2018 

 

Testo 

Simulare l’estrazione di 500 campioni da due distribuzioni gaussiane bivariate: 

𝜌 𝒩 0
2

,
4 1,8

1,8 1  

𝜌 𝒩 2
0

,
4 1,8
1,8 1  

Stimare la media e varianza campionaria e determinare il confine e la regola di discriminazione. 

Infine simulare l’estrazione di un ulteriore punto nel piano e classificarlo con la regola ricavata 

  

Svolgimento 
Generiamo i 500 punti da ogni distribuzione: 

 

  Figure 4.3.1. Gaussian 2-dimensional feature training setPiero Luchi  

 
 
 
 

Ora prendo un punto a caso nel piano e uso la distanza di Mahalanobis d 𝑦 𝜇 Σ  𝑦 𝜇  
per decidere a quale distribuzione é più probabile che appartenga il nuovo dato. Infatti misurando la 
distanza di Mahalanobis rispetto ad entrambe le distribuzioni, il nuovo dato apparterrà alla 
distribuzione la cui d  è minore. 
Ipotizzo che il nuovo punto sia y 3    1,14  per il quale le distanze sono: 

d 22,26 
d 18,26 

Da cui deduco che il punto appartiene alla distribuzione 2, fatto reso evidente dalla 
rappresentazione grafica : 
 

Figure 4.3.2. Separating region
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logarithms of Li,j(x) = 1 we find that the boundary between class i and classj
is defined by the equation

(x− µ̂j)>Σ̂−1(x− µ̂j)− (x− µ̂i)>Σ̂−1(x− µ̂i) = 0 (4.3.6)

which after defining

βi − βj := Σ̂−1(µ̂i − µ̂j) , γi − γj := −1

2
(µ̂i − µ̂j)>Σ̂−1(µ̂i − µ̂j)

and some algebra can be rewritten as

(βi − βj)>x = γi − γj (4.3.7)

which is the equation of an hyperplane in Rp. One should choose class i when-
ever the left hand side of (4.3.6) is positive since in this case the Mahlanobis
distance of x from µ̂i is smaller than that from µ̂j . In this case x falls in the
region which is the intersection of the half spaces defined by the inequalities

(βi − βj)>x > γi − γj + ki,j , j 6= i (4.3.8)

where ki,j is to be determined by the error probability of accepting class i when
instead the data are distributed according to the pdf of class j. In a Bayesian
setting these numbers are much better defined as just the logs of the ratios of
the a priori probabilities of theM classes, see Sect. 5.12. In any case the decision
regions turn out to be convex polytopes whose boundaries are linear. Examples
of partitions of R2 by this linear decision rule are found in [44], for example see
Fig 4.5.

More examples and Figures can be generated by using the software in the
website
pmtk3support.googlecode.com

4.4 Two Classes Separating Hyperplanes and the
Perceptron

As we have seen, for Gaussian densities having the same variance matrix, the
MLR decision boundaries between classes are hyperplanes. There is a large
literature on classification of observed data based on separating hyperplanes,
mostly without assuming anything about probability distributions. We shall
here briefly discuss the binary situation (M = 2) following essentially the book
[75].

In this context the observed feature vector x ∈ Rp is to be classified as be-
longing to one of two candidate patterns P1 and P2, based on a linear discrimi-
nant function g : Rp → R of the form

g(x) = β>x+ b , x ∈ Rp (4.4.1)

which is a particular case of (4.3.7). The vector β ∈ Rp and the scalar b are called
the weight vector and the bias or threshold of the function. The equation g(x) = 0
defines a linear hyperplane H partitioning Rp in two half spaces. One decides
for alternative P1 if the scalar product β>x exceeds the threshold −b and for
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alternative P2 in the opposite case. Equivalently, alternative P1 is chosen when
g(x) > 0 and alternative P2 if g(x) < 0. Since for x1, x2 ∈ H one has

β>(x1 − x2) = 0

the vector β is normal to the hyperplane; therefore n := β/‖β‖ is the unit vector
pointing into the half spaceH+ where g(x) > 0. Any x can be decomposed as a
sum of its orthogonal projection x̂ ontoH plus a vector which is normal toH

x = x̂+ d
β

‖β‖
= x̂+ dn (4.4.2)

where d ≡ d(x) is the distance (with sign) of x fromHwhich can also be written
as

d =
β>x

‖β‖
. (4.4.3)

Moreover g(x) = g(x̂) + d‖β‖ and, since x̂ ∈ H one has g(x) = d‖β‖ so the
distance with sign of any x ∈ Rp fromH is also given by

d(x) =
g(x)

‖β‖
. (4.4.4)

In particular b/‖β‖ is the distance of the hyperplane from the origin.
A more compact description of the discriminant function is obtained pretending
that the data are p+1-dimensional with a dummy 0-th component, say x0, fixed
equal to 1. Then, introducing an augmented weight vector a :=

[
b β1 . . . βp

]>
one can rewrite the discriminant function as

g(x) := a>x . (4.4.5)

In this way a>x = 0 is a hyperplane through the origin in a p + 1-dimensional
space and the graph of the old discriminant function is the intersection of this
plane with the shifted coordinate plane {x0 = 1}. We shall follow this con-
vention all through the rest of this section and still keep the notation x for the
"augmented" vectors in Rp+1.

Suppose now that we have a training set ofN data x(1), x(2), . . . , x(N) some
of which are labeledP1 and the others labeledP2. We want to use these samples
to estimate the discriminant function (4.4.5). A first naive deterministic solution
could be to try to determine a exactly from the binary sequence of N given
classifications a>x(t) , t = 1, 2, . . . , N . To this end it will be convenient to
replace all samples x(t) which are classified P2 by their negatives −x(t) so that
whenever β>x+ b < 0 we also have

a>x = β>(−x) + b(−x0) = −g(x) > 0 .

Note that the zeroth component of x has also been changed sign.

Remarks 4.1. There is an alternative more precise notation which needs another sym-
bol and will not be used in this section but will be convenient to use later on. Define the
binary decision variable y = y(x) as

y = +1 if x ∈ P1, and y = −1 if x ∈ P2 . (4.4.6)
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Then y(t)x(t) applies the change of sign discussed above. Note that it is based on the
joint information: observed feature plus corresponding classification decision, which
should actually form the content of the training set.

Now, the problem of finding a linear discriminant function for the N ob-
served data can be solved simply by looking for a vector a ∈ Rp+1 such that

a>x(t) > 0 , t = 1, 2, . . . , N . (4.4.7)

This set of inequalities may have no solutions at all or multiple solutions in
which case we shall say that the data set is linearly separable. A unique solution
is exceptional. A vector a ∈ Rp+1 will be said to misclassify a sample x(t) if
a>x(t) < 0. Clearly, if it exists, a solution of (4.4.7) cannot misclassify samples.

This naive idea can be refined in several ways, a natural one being to relax
the solution of the linear inequalities(4.4.7) and transform it into an optimiza-
tion problem. One should then define some optimization criterion. Probably
one of the simplest is the so-called Perceptron Criterion:

J(a) :=
∑
t∈M

(−a>x(t)) (4.4.8)

where M = M(a) is the set indexing samples misclassified by a. Since for a misclas-
sified sample, a>x(t) ≤ 0 this cost function is always nonnegative and can be
zero only when a is a solution vector to (4.4.7). In fact, it is easy to check that
J(a) is proportional to the sum of the distances of misclassified samples to the
decision boundary defined by a.

One can try to minimize the Perceptron criterion by an iterative optimization
algorithm, the simplest being just the steepest descent algorithm which works as
follows.
First compute the gradient with respect to the vector a:

∇J(a) =
∑
t∈M

(−x(t))

and then apply an additive update rule in the direction of the negative gradient

a(k + 1) = a(k) + α(k)
∑
t∈M

x(t) (4.4.9)

where the sequence of stepsizes {α(k)} should be suitably chosen. The algo-
rithm is called the Batch Perceptron; when it converges it can be shown to con-
verge even if all α(k)’s are chosen equal to a constant say 1.

Proposition 4.1. If the training set is linearly separable, the Batch Perceptron algo-
rithm for a suitable α(k) = constant converges to a solution vector of (4.4.7).

Proof. For a formal proof we shall refer the reader to [75, p. 230]. Here we
shall just provide an intuitive argument. Suppose α(k) = 1; then if some x(t̄)
is misclassified by a(k), in the next, k + 1-th step, the inner product a(k)>x(t̄),
which is negative, is increased by a positive quantity since by (4.4.9),

a(k + 1)>x(t̄) = a(k)>x(t̄) + ‖x(t̄)‖2 +B
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where B is a sum including other misclassified samples, not depending on k.
Hence a(k)>x(t̄) has a positive increment so that a(k + 1) will tend to classify
x(t̄) correctly. That α(k) can be taken constant and equal to 1 is proven in [75].

The Perceptron algorithm has many variants which are described and dis-
cussed in great detail in the book [75]. One detail which seems to be important
is that one should avoid converging to a limit point on the boundary of the fea-
ture space. This can be avoided by introducing a margin b > 0; that is requiring
that a>x(t) ≥ b > 0 for all t = 1, 2, . . . , N . If this set of inequalities has a solution
a then by (4.4.4) the corresponding separating hyperplane will be at a distance
of at least b/‖β‖ from the observed feature points in Rp.

One general limitation of the approach is that it only works if the training
set is linearly separable. If it is not, the Perceptron algorithm will not converge.
In this case, to stay within the linear theory, one should either accept some mis-
classification errors in the training set or abandon linearity and go to nonlinear
discrimination functions.
In the first setting, one rough solution could be to estimate a separating hyper-
plane by using least squares. The general idea is that in the attempt of making
all inner products a>x(t) positive one may equivalently be trying to solve N
simultaneous equations

a>x(t) = d , t = 1, 2, . . . , N

for some arbitrary positive constant d (actually one might generally choose dif-
ferent d = d(t) > 0 but this is inessential).
SinceN > p there will be no exact solution and one should seek an approximate
solution say in the Least Squares sense. Introducing the vector notations

X :=


x0(1) x1(1) x2(1) . . . xp(1)
x0(2) x1(2) x2(2) . . . xp(2)

. . . . . . . . . . . .
x0(N) x1(N) x2(N) . . . xp(M)

 , d :=


d
d
. . .
d


the LS problem of finding an approximate weight vector â can be rewritten as

â = Arg min
a
‖d−Xa ‖ (4.4.10)

and, assuming rank X = p + 1, one can use the standard formulas derived in
Sect. 2.1 to obtain

â = (X>X)−1X>d . (4.4.11)

The LS estimated hyperplane â>y = d may in general fail to separate the two
classes exactly but a wise choice of d may lead to satisfactory results.

Example 4.2. Suppose we are given a training set of four vectors in R2 classified
as follows: [

1
2

]
and

[
2
0

]
∈ P1

and [
3
1

]
and

[
2
3

]
∈ P2 .
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The X matrix is then (recall that all training vectors are augmented by inserting
a 1 on top and the vectors in P2 must be changed to their opposite),

X =


1 1 2
1 2 0
−1 −3 −1
−1 −2 −3


and by choosing d =

[
1 1 1 1

]> the Least Squares solution is found to

be â =
[
11/3 −4/3 −2/3

]>. Draw a picture of the hyperplane (actually a
straight line) and check that it separates the two classes exactly. ♦

Whenever the two classes P1 and P2 are linearly separable there are in gen-
eral infinitely many separating hyperplanes. One may attempt to find a unique
optimal one in some reasonable sense. A preliminary normalization discussed
in the following proposition will be instrumental to to this end.

Proposition 4.2. Assume linear separability of the two classes and let a define a sep-
arating hyperplane. Then a can be normalized to obtain a parallel vector â such that
a>x(t) ≥ 1; for all t = 1, . . . , N .

Proof. Let {x(1), . . . , x(N)} be feature vectors in Rp belonging to one of two
classes P1 and P2. If the two classes are linearly separable there is a minimal
distance d̂ = d̂(a) of the N feature vectors from any separating hyperplane
a>x = 0 so that, by (4.4.4)

a>x(t)

‖β‖
≥ d̂(a); t = 1, . . . , N.

Now just recall that the hyperplane is defined by the homogeneous equation
a>x = 0 and hence any vector proportional to a defines the same hyperplane.
Therefore by picking

â :=
a

‖β‖d̂(a)
,

which is equivalent to normalize β so that ‖β‖d̂(a) = 1, or

d̂(a) = 1/‖β‖ , (4.4.12)

linear separability (by the same hyperplane) can be written â>x(t) ≥ 1; for all
t = 1, . . . , N .

In particular, feature points x(t) which are at a minimal distance from the
separating hyperplane will satisfy the equation â>x(t) = 1.
In what follows we shall, without loss of generality, assume that all separating
vectors a are normalized in this way.

4.5 Maximum Margin Hyperplanes and Support Vectors
We shall only provide a brief sketch of this technique. See [44, p. 132-33],[65,
p. 503] and [100] for a more detailed discussion. For conciseness in this and
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in the following sections we shall use a subscript to list the N features in the
training set, e.g. use the symbol xk to denote the p-dimensional vector x(k).
Since we will not have occasion of dealing with the components of x(k), this
should cause no confusion.

Assume the two classes P1 and P2 are linearly separable. We want to find an
optimal separating hyperplane requiring that it should have maximal distance
from all feature points. Recall that the signed distance of the feature xk from a
separating hyperplane described by the equation β>x+ b = 0 can be expressed
as

d(xk) =
β>xk + b

‖β‖
.

Let M be a positive number. Using the convention (4.4.6), if yk = 1 the inequal-
ity

yk(β>xk + b)

‖β‖
≥M (4.5.1)

means that xk is at a (positive) distance greater or equal to M from the decision
hyperplane, while if yk = −1 it means that

d(xk) =
β>xk + b

‖β‖
≤ −M

and hence the the feature xk is under the decision hyperplane at a distance
grater or equal than M . Hence the inequality (4.5.1) covers both cases and de-
fines a slab centered on the decision hyperplane which contains no features. The Mar-
gin M of a separating hyperplaneH is, by definition, such that |d(xk)| ≥M for
all xk’s, that is

|d(xk)| = yk(β>xk + b)

‖β‖
≥M ⇔ yk(β>xk + b) ≥M‖β‖

Recall that the hyperplane is defined by an homogeneous equation and choos-
ing β so that

‖β‖M = 1 (4.5.2)

the inequality (4.5.1) defining a slab (of width 2M ) can be rewritten as

yk(β>xk + b) ≥ 1 . (4.5.3)

Note that to define the same hyperplane the normalization, which depends on
M , must of course modify also b.

Now we want to find a slab of maximal width, which means solving the
problem of maximizing M subject to the conditions that all features lie outside
the slab, that is, consider the

Problem 4.1 (Maximum margin hyperplane problem:). Solve the optimization
problem:

max
β,b

{
M ; subject to: yk(β>xk + b) ≥ 1, k = 1, . . . , N

}
(4.5.4)
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Now, choosing β, b so that (6.6.12) is satisfied, i.e. M =
1

‖β‖
the problem

4.5.4 is equivalent to minimize ‖β‖ (equiv. its square norm) that is, solving:

min
β,b

{
1

2
‖β‖2 ; subject to: yk(β>xk + b) ≥ 1, k = 1, . . . , N

}
(4.5.5)

(where the factor 1
2 is added for convenience) which is a convex quadratic pro-

gramming problem with linear inequality constraints. As such, since the feasi-
ble set is by assumption not empty, it must have a unique solution.

y1

y2

a>x = 0

Figure 4.5.1. Support Vectors

Assuming the data are linearly separable, it is intuitive that the decision
boundary hyperplane should depend only on a few data points, those which
are closest to the decision boundary, which are called support vectors. The margin
of separation d is the the distance between the hyperplane defined by the vector
a and the closest data points (the support vectors).

To solve the optimization problem Introduce N Lagrange multipliers λk to
form the Lagrangian function

L =
1

2
‖β‖2 −

N∑
k=1

λk
[
yk(β>xk + b)− 1

]
.

Setting the derivatives with respect to β and b to zero we obtain

β =

N∑
k=1

λk ykxk ; 0 =

N∑
k=1

λk yk (4.5.6)
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which need to be substituted in the Lagrangian to eliminate the primal variables
β, b to obtain the dual cost

LD =

N∑
k=1

λk −
1

2

N∑
i=1

N∑
k=1

λiλk yiykx
>
i xk =

N∑
k=1

λk −
1

2

N∑
i=1

N∑
k=1

λiλk 〈yixi, ykxk〉

(4.5.7)
which needs to be maximized with respect to the N multipliers λk, constrained
to the positive orthant of RN and by the second relation in (4.5.6). Since there
is standard software to solve this problem called maximum margin classifier, we
shall not dwell too much in the algorithmic aspects.

The optimal Lagrange multipliers λ∗k must satisfy the Karush-Kuhn-Tucker
conditions (see Appendix C), which include the equalities

λ∗k
[
yk(β>xk + b)− 1

]
= 0 , k = 1, . . . , N (4.5.8)

from which we can see that:
· if λ∗k > 0 then yk(β>xk + b) = 1 which means that xk must lie on the boundary
of the optimal slab, that is be a support vector,
· when yk(β>xk + b) > 1 that is xk is not on the boundary, then λ∗k = 0. There-
fore, denoting by SV the index set of the support vectors, the optimal solution
can be written

β∗ =
∑
k∈SV

λ∗k ykxk .

Therefore we have

Theorem 4.3. The optimal (maximum margin) hyperplane in Rp is described by the
affine function

g∗(x) =
∑
k∈SV

λ∗k yk〈xk, x〉+ b∗ (4.5.9)

where the N -vector λ :=
[
λ1 . . . λN

]> is the unique solution of the optimization
problem

max
λk≥0

{
N∑
k=1

λk −
1

2

N∑
i=1

N∑
k=1

λiλk 〈yixi, ykxk〉

}
(4.5.10)

and b∗ is determined by any support vector x̄k, by the constraint (4.5.8) which implies
yk(β∗>x̄k + b)− 1 = 0.

For example, any support vector x̄k such that, yk = 1 yields

b∗ = 1− (β∗)>x̄k .

When the dimension of the feature space is large, one may expect a large num-
ber of nonzero components in the parameter a defining the separating bound-
ary. Hence it makes sense to look for separating hyperplanes defined by the
smallest number of parameters, which seems to imply the smallest number of
support vectors.

In this section we have described an optimal linear classifier for linearly
separable data. There is a far reaching generalization of this technique allowing
to tackle nonlinear problems, which will be described in Section 7.9.
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4.6 Problems
4-1 (Computer simulation)
Simulate two i.i.d. samples of sizes N1 = 500 and N2 = 800 of Gaussian vectors

having distribution p1 = N (

[
1
3

]
,

[
100 24
24 20

]
) and p2 = N (

[
3
−1

]
,

[
40 −10
−10 80

]
)

and find by MLR the equation defining the decision boundary. Plot your results using
different colors for the two patterns.
Generate now 50 more samples of data distributed according to p1 and 50 distributed
according to p2. Classify these samples using the above decision boundary and com-
pute the percentage of misclassified data in the two cases. These are estimates of error
probabilities. What relation do they have with α and β ?

4-2 (Computer simulation)
Same as above but imposing the same covariance estimate to the two populations, com-
puted without distinguishing them. Classify the samples using two different centroids
but using the new linear decision boundary.
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4.7 Deciding the Complexity of a Linear Model
In many practical circumstances the number p, of parameters in the linear model
y = Sθ + σw is not assigned a priori but needs rather to be chosen by the ex-
perimenter in order to satisfy certain requirements among which especially the
predictive accuracy of the model. As a typical example, the order p of an au-
toregressive (AR) model to represent a time series {y(t) ; t = 1, 2, . . . , N}; i.e.

y(t) =

p∑
k=1

ak y(t− k) + w(t)

is usually not known and needs to be estimated from the data together with
the parameter vector θ :=

[
a1 a2 . . . ap

]>. When there are enough data
available, adding more lags y(t− k) (i.e. increasing the order p) may look like a
wise thing to do, since it will certainly correspond to a better fit of the training
data set. More generally, adding more regressors, that is, increasing p in the
linear model does certainly lead to a better description of the data in the sense
that (with N fixed) the residual quadratic error

σ̂2(y) =
1

N
‖y − Sθ̂(y)‖2R−1

decreases as p increases and can eventually even become zero in the limit case of
p = N , when one has as many parameters as data samples. It should however
be clear that the reliability of the estimated model would seriously deteriorate
when fitting models with an excessive number of parameters. Intuitively, one
would not trust the prediction made with a model which fits nearly perfectly all
the data points of the training set. This is called overfitting and is a symptom
that one has been spending too much effort for modeling also the noise which is
unavoidably superimposed to the “true” data.

Overfitting is actually a way of reducing the bias of the estimated model to
the extreme. Since the nearly perfect fit obtained with very large values of p, is
in general paid in terms of variance of the estimate, it will lead to models which
are useless for the purpose of prediction. Here one should keep in mind that
the model will have to be used with data which are different from those forming
the training set.

In this section we shall first examine how the variance of the estimated pa-
rameters increases with increasing p in the context of classical Fisherian statis-
tics. In this setting, the problem of choosing p can be formulated as an hypothesis
testing problem: one should decide the complexity of the “true” model which has
generated the data, based on a given fixed observed sample. We shall formu-
late this problem as a choice between two alternatives. First however we shall
need to discuss how to update the estimates by adding regressors. This is called
Stagewise Linear Regression.

4.8 Stagewise Linear Regression
Consider two linear Gaussian models in standard form:

M1 : y = S1θ1 + ε θ1 ∈ Rp

M2 : y = [S1 S2]

[
θ1

θ2

]
+ ε θ2 ∈ Rk.

(4.8.1)
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where ε is the random vector σw which is assumed to be Gaussian, zero-mean
and with variance matrix σ2IN (the N × N identity matrix). The formulas for
non-standardized models can be obtained from those which will be derived be-
low by just substituting y with L−1y and S with L−1S, where L is a left square
root (say a Cholesky factor) of the variance matrix R of w. The assumption of
Gaussian distribution will be needed only later when formulating the choice of
complexity as a hypothesis testing problem.

In the “simple” model M1, we shall assume as usual that rank S1 = p while
in the “complicated” modelM2, one may without loss of generality assume that
the matrix S2 ∈ RN×k is such that

rank [S1 S2] = p+ k . (4.8.2)

In case this does not happen we can eliminate the linearly dependent columns
in S2 and reparameterize the model by suitably redefining θ2.

We shall now derive updating formulas for the parameter estimate and the
relative error variance matrix of model M2. These will be given in form of cor-
rections to the corresponding estimates for the model M1.

Denote by S the column space of the matrix S := [S1 S2] and let θ be the
p+ k-dimensional parameter [θ>1 θ

>
2 ]> in the enlarged model M2 in (4.8.1). The

Least Squares (Markov) estimate of θ and its Variance matrix are given by the
well-known formulas

θ̂(y) = (S>S)−1 S>y

Var θ̂ = σ2(S>S)−1 ,

where now the matrix to be inverted has dimension (p + k) × (p + k). In force
of (4.8.2) the subspace S can be decomposed as a direct sum

span [S] = span [S1 S2] = S1 ⊕ S2 = span [S1]⊕ span [S2] (4.8.3)

and this decomposition can actually be rendered orthogonal by introducing the
two orthogonal projectors

P1 : RN → S1 , P1 = S1(S>1 S1)−1 S>1 ,
P⊥1 : RN → S⊥1 , P⊥1 = I − S1(S>1 S1)−1 S>1 .

(4.8.4)

We shall denote by Q1 the matrix P⊥1 = I − P1. Since P1 +Q1 = I , we have the
orthogonal decomposition

S2 = P1S2 +Q1S2 .

Since the columns of P1S2 belong by construction to S1, the last term in (4.8.3)
can be replaced by span [Q1 S2]. Therefore,

span [S] = span [S1]
⊥
⊕ span [Q1 S2] (4.8.5)

where the symbol
⊥
⊕means orthogonal direct sum.

Let now ŷ be the orthogonal projection of y onto the column space, S, of the
matrix S. Given that the columns of S1 and S2 are linearly independent, it must
be possible to express ŷ uniquely in the form

ŷ = S1 θ̂1 + S2 θ̂2 , (4.8.6)
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so that θ̂1 and θ̂2 must obviously be the LS estimates of the parameters θ1 and
θ2 of the augmented model M2 with p + k parameters. By the orthogonality
principle of Least Squares it must be that y − ŷ ⊥ S and hence we must also
have orthogonality separately to the two components, i.e.

y − ŷ ⊥ S1 , y − ŷ ⊥ Q1 S2 ,

which can be rewritten

S>1 (y − S1θ̂1 − S2θ̂2) = 0 , (4.8.7)

S>2 Q1(y − S1θ̂1 − S2θ̂2) = 0 . (4.8.8)

These formulas yield

θ̂1 = (S>1 S1)−1 S>1

[
y − S2θ̂2

]
, (4.8.9)

θ̂2 = (S>2 Q1S2)−1 S>2 Q1 y . (4.8.10)

That S>2 Q1S2 is invertible is readily seen by just remembering that Q1 is a pro-
jection matrix. In fact, if for some a 6= 0 we could have that

0 = a>S>2 Q1S2a = a>S>2 Q
>
1 Q1S2a = ‖Q1S2a‖2

from the last equality it would follow that S2a belongs to the nullspace of Q1 =
P⊥1 . Since Ker (P⊥1 ) = Im (P1) = S1 = span [S1], it would happen that S2a ∈
span [S1], which can happen only if a = 0, since the columns of S1 and S2 are
independent.

Denoting by the symbol θ̄1 the estimate of θ1 obtained by describing the data
with a p parameter model like M1, equation (4.8.9) can be rewritten as

θ̂1 = θ̄1 − (S>1 S1)−1 S>1 S2θ̂2 . (4.8.11)

which is expressing the estimate of the first component θ1 of the p+k-dimensional
parameter θ of the model M2, as the sum of θ̄1 and a correction term due to the
introduction of the new component θ2.

Oblique Projections

In the decomposition (4.8.6) the two terms S1 θ̂1 and S2 θ̂2 have the meaning of
oblique projections respectively, of y onto S1along S2 and of y onto S2 along S1.

From (4.8.10), rcalling that Q>1 Q1 = Q2
1 = Q1, one in particular sees that θ̂2

can be obtained form the orthogonality relation

Q1y −Q1S2θ2 ⊥ Q1S2

from which the oblique projection of y onto S2 along S1, can be computed by
first projecting orthogonally the error vector Q1y = y − P1y onto the subspace
(I − P1)S2 = Q1S2 spanned by the columns s̃2,i := (I − P1) s2,i , i = 1, . . . , k
which can also be interpreted as estimation errors of estimates of the s2,i ; i =
1, . . . , k, based on S1 which can in turn be computed by solving an ordinary



4.8. Stagewise Linear Regression 147

least squares problem. The actual oblique projection of y is obtained by succes-
sively multiplying by S2 the parameter θ̂2 which is found by solving the above
least squares problem 10.

As we shall see, in the Bayesian setting oblique projections correspond to
conditional expectations.
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Figure 4.8.1. Oblique Projection

It follows that the oblique projection operator onto S2 along S1 has the matrix
representation

P2‖1 := S2(S>2 Q1S2)−1 S>2 Q1 . (4.8.12)
One can in fact easily check that P 2

2‖1 = P2‖1, while

P>2‖1Q1 = Q1P2‖1 .

which, in force of the fact that Q1 is an orthogonal projector so that Q1 = Q>1 ,
can be rewritten as (Q1P2‖1)> = P>2‖1Q

>
1 = Q1P2‖1. In other words, Q1P2‖1 is

symmetric idempotent and is therefore an orthogonal projection which must,
by force, project onto Q1S2, which is the orthogonal complement of S1 in S. The
following is an interpretation of the matrix Q1P2‖1 which will be useful later
on.

Proposition 4.3. Let P be the orthogonal projection from RN onto the subspace S and
P1 the orthogonal projection onto S1 ⊂ S. Then P − P1 is the orthogonal projection
which projects onto the orthogonal complement S ∩ S⊥1 . It has the representation

P − P1 = Q1P2‖1 (4.8.13)

where P2‖1 is the oblique projector defined in (4.8.12).

Proof. We only need to prove (4.8.13). Using (4.8.4) and (4.8.9) we obtain

ŷ = Py = S1(S>1 S1)−1 S>1 y − S1(S>1 S1)−1 S>1 S2θ̂2(y) + S2θ̂2(y)

= P1y +
[
I − S1(S>1 S1)−1 S>1

]
S2θ̂2(y)

= (P1 +Q1P2‖1) y

10We warn the reader that S2 θ̂2 cannot be the orthogonal projection of Q1y = y−P1y ontoQ1S2. In
fact Q1S2 is not even a subspace of S2.
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which shows that indeed P−P1 = Q1P2‖1. The decomposition P = P1+Q1P2‖1
is clearly orthogonal given that P>1 (P − P1) = P1Q1P2‖1 = 0. Let us note in
passing that an equivalent statement is S = P1S⊕ S ∩ S⊥1 .

Problem 4.2. Check that P2‖1 is idempotent, its kernel is S1 and its image is the
columnspace of S2.

One can give an analogous representation of the oblique projection of y onto
S1 along S2 and prove an analogous decomposition to (4.8.6), like

y = P1‖2y + P2‖1y = S1(S>1 Q2S1)−1 S>1 Q2 y + S2(S>2 Q1S2)−1 S>2 Q1 y (4.8.14)

where Q2 has a dual meaning to Q1. This may appear simpler than the orthog-
onal decomposition which we have just mentioned but is less useful since it is
not orthogonal.

Comparing the Variances

In the following the subscripts θ1 and θ are to indicate the model M1 or M2,
with respect to which the various expectations (and in particular variances) are
computed.
Let us introduce the following notations:

Σ̄1 := [S>1 S1]−1

A1 := [S>1 S1]−1 S>1

Σ2 := [S>2 Q1S2]−1 ;

wherby, θ̄1 = A1y and Var θ1 θ̄1 = σ2 Σ̄1.

Proposition 4.4. Let θ̂1(y) and θ̂2(y) be the Markov estimators defined by formu-
las (4.8.9) and (4.8.10). It holds that

Var θ

[
θ̂1

θ̂2

]
= σ2

[
Σ̄1 +A1S2Σ2S

>
2 A
>
1 −A1S2Σ2

−Σ2S
>
2 A
>
1 Σ2

]
. (4.8.15)

Proof. Let us start by showing that Var θ [θ̂2] = σ2 Σ2. From (4.8.10) one has

Var θ [θ̂2] = Σ2S
>
2 Q1 Var θ[y]Q1S2Σ2 = σ2 Σ2S

>
2 Q1S2Σ2 = σ2 Σ2 ,

since Var θ [y] = σ2 I and Q1 is idempotent.
Let us now show that

Lemma 4.4. The two estimators θ̄1(y) and θ̂2(y) are uncorrelated.

In fact:

Covθ

[
θ̄1(y), θ̂2(y)

]
= Σ̄1S

>
1 Var θ [y] Q1S2Σ2 = σ2 Σ̄1S

>
1 Q1S2Σ2 = 0 ,

since S>1 Q1 = Q1S1 = 0.
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Using now (4.8.11) we find

Covθ

[
θ̂1(y), θ̂2(y)

]
= −A1S2 Var θ [θ̂2] = −σ2A1S2Σ2 .

Finally we take care of Var θ [θ̂1(y)]. Since θ̄1(y) and θ̂2(y) are uncorrelated, one
has

Var θ

[
θ̄1(y)−A1S2θ̂2(y)

]
= Var θ

[
θ̄1(y)

]
+A1S2 Var θ

[
θ̂2(y)

]
S>2 A

>
1

= σ2 [Σ̄1 +A1S2Σ2S
>
2 A
>
1 ] .

which concludes the proof of (4.8.15).

Remark 4.1. Formula (4.8.15) describes the effect of increasing the number of
parameters on the variance of the estimates. In particular the variance of the
estimate θ̄1 of θ1 in a p parameter model is increased when adding more param-
eters. In fact is clear that Σ1 is generally larger than the variance of θ̄1, since

Σ1 = Σ̄1 +A1S2 Σ2 S
>
2 A
>
1

the additional term being in general at least positive semidefinite.
It should be realized however that the variance of the parameter estimates is

not an objective criterion to be used for deciding on the complexity of a model.
In general the purpose of the statistical exercise is not just estimating the model
parameters but faithfully describing the output data, in particular for the pur-
pose of prediction. One may as well change basis in the parameter space at
wish. If it happens that in doing this the columns of S2 become orthogonal to
S1, that is

S>1 S2 = 0 (or S>2 S1 = 0)

the formulas simplify; in particular Q1S2 = S2 and the two estimators θ̂1 and
θ̂2 can be computed independently with the usual formulas

θ̂i(y) = (S>i Si)
−1 S>i y , i = 1, 2 .

In particular one sees that θ̂1 = θ̄1 and therefore also Σ1 = Σ̄1.
This disconcerting phenomenon can be explained whenever one is willing

to accept the fact that the parameterization of a model Sθ can be changed at
will provided it provides the same description of the observed data y. One may
for esample do a QR factorization of S and express it as the product of a N ×
(p + k) matrix with orthogonal columns times an upper triangular factor with
a non-singular upper square sub matrix R ∈ R(p+k)×(p+k) which can be used to
perform a basis change in the parameter space. Define a new parameter β := Rθ

and reparameterize the model in function of β =
[
β1 β2

]>. Clearly in this new
basis the two submatrices S1 and S2 have orthogonal columns and hence the
variance of β̂1 cannot increase by adding k more (orthogonal) regressors in the
model.
The moral of the story is that the variance of the parameter estimates is not
invariant and depends on the basis chosen in the parameter space. Therefore
comparison should be made among variables which are invariant with respect to
change of basis in the parameter space. Quantities of this kind are for example the
predictors and the residual prediction errors. 2
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Solution by the F test

A classical paradigm to approach the problem of choosing which of the two
models (4.8.1) should be selected to describe the data is via the theory of hy-
pothesis testing: Based on the observation y = y decide which of the two para-
metric models M1 or M2 has generated the data. Note that both hypotheses are
composite.

We shall look for a decision rule based on the MLR test statistic. Some of the
calculations will be similar to those done in Sect. 4.1.

We need to compare the quadratic residual errors using estimates computed
according to a model of class M1 (hypothesis H0) or class M2 (hypothesis H1)
defined in (4.8.1).

Let ε̄(y) := y − S1θ̄1(y) = (I − P1)y be the residual error vector using
the p parameter model M1 and let ε̂ = y − S1θ̂1(y) − S2θ̂2(y) = (I − P )y
be the residual error vector of the augmented model M2. Recall that (I − P )
and (P − P1) project onto orthogonal subspaces (Proposition 4.3); in fact, I − P
projects onto the complement S⊥ while (P − P1) projects onto the subspace
S ∩ S⊥1 . We can therefore write,

R0(y)2 = ‖ε̄‖2 = ‖ [(I − P ) + (P − P1)] y‖2 = ‖ε̂‖2 + ‖(P − P1)y‖2

= ‖ε̂‖2 + ‖Q1P2‖1y‖2 = R1(y)2 + ‖Q1P2‖1y‖2 .
(4.8.16)

Using (4.8.12), the last term ‖Q1P2‖1y‖2 can be expressed in function of the
estimator θ̂2(y) as

‖Q1P2‖1y‖2 = θ̂2(y)>Σ−1
2 θ̂2(y)

so R0(y)2 can be written in the form

R0(y)2 = R1(y)2 + θ̂2(y)>Σ−1
2 θ̂2(y) = R1(y)2 + ‖θ̂2(y)‖2

Σ−1
2

(4.8.17)

where σ2 Σ2 is the variance of the estimator θ̂2(y).
How large is the difference term ‖θ̂2(y)‖2

Σ−1
2

in this expression clearly de-
pends on which model has generated the data. In case the true model generat-
ing the data wasM1 the additional regressors S2θ2 and the associated estimator
θ̂2(y) would only describe the superimposed noise. One may guess that in this
circumstance S2 θ̂2 and, in fact, the term ‖θ̂2(y)‖2

Σ−1
2

would result small when

compared to R1(y)2.

Theorem 4.4. Under H0, the two terms on the right side of (4.8.17) are independent
and are both χ2-distributed. Respectively, we have,

‖ε̂‖2

σ2
∼ χ2(N − p− k) (4.8.18)

and
θ̂2(y)>Σ−1

2 θ̂2(y)

σ2
∼ χ2(k) . (4.8.19)

Therefore the ratio

ϕ(y) :=
N − p− k

k

‖θ̂2(y)‖2
Σ−1

2

R1(y)2
(4.8.20)
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has pdf F(k, N − p− k).

Proof. Assume that the true model is M1 (hypothesis H0). The sum of squared
residual errors, ‖ε̄‖2 = ‖(I − P1)y‖2 is equal to ‖Q1ε‖2. Substitute in the last
term of (4.8.16) the M1 model and use the equality P>2‖1Q1 = Q>1 P2‖1 = Q1P2‖1,
to find that Q1P2‖1y = P>2‖1Q1(S1θ1 + ε) = P>2‖1Q1ε.
On the other hand, ε̂ = (I − P )ε and hence ε>(I − P )>Q1P2‖1ε = 0, since
(I − P ) projects onto the orthogonal complement of S. This fact implies the in-
correlation of the random vectors ε̂ and Q1P2‖1ε which by Gaussianity implies
the independence of the two terms in the right member of (4.8.16).

Finally, by Proposition A.7),
1

σ2
‖ε̂‖2 ∼ χ2(N−(p+k)), when the augmented

model is generating the data, and underH0, by Proposition A.6),
1

σ2
θ̂2(y)>Σ−1

2 θ̂2(y) ∼

χ2(k) since the mean value of θ̂2(y) is zero. In fact one has

ϕ(y) ∼ F(k,N − p− k)

where the two arguments in the function F denote the degrees of freedom of
the F -distribution.

An alternative proof can be found in [90, p. 73].

Problem 4.3. Use the independence of the two terms in (4.8.17) to show, in a different
way, that under H0,

1

σ2
‖ε̂‖2 ∼ χ2(N − (p+ k)) .

Solution: It is clear that under H0,
1

σ2
‖ε̄‖2 ∼ χ2(N − p). As we have seen,

under the same hypothesis
1

σ2
θ̂2(y)>Σ−1

2 θ̂2(y) ∼ χ2(k). Since the two ran-

dom variables are independent,
1

σ2
‖ε̂‖2 must necessarily have a χ2 distribution

(TheoremA.2) and the number of degrees of freedom must be N − p− k. ♦

Normally N − p is much greater than k and the F distribution can be ap-
proximated by a χ2 with k degrees of freedom, in the sense that for N →∞, we
have the symbolic equality

k ϕ(y) ∼ χ2(k) under M1 (4.8.21)

Then, once fixed the probability α of deciding M2 when M1 is the true model,
one reads in the tables of the F distribution the abscissa xα for which

Pχ2(k){k ϕ(y) > xα} = α

and whenever ϕ(y) > xα rejects the hypothesis that the data are generated
by the “simple” model M1, with probability α of committing an error. If the
true model is M2, the pdf of the statistic (4.8.20) is complicated. In practice the
probability of an error of second kind

β := P{decide M1 when M2 is true }
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can be estimated by Monte Carlo simulations or by the approximation of the
non-central F distribution described at the end of the ANOVA Section 4.1 in-
volving formula (4.1.35).

Finally, we should mention one aspect of stagewise regression, called in
the literature regressors collinearity [92, 62] which needs to be considered when
increasing the number of regressors. This phenomenon is related to the ill-
conditioning of the underlying LS problem which could seriously hamper the
reliability of the solution and is not immediately visible from the formulas given
above. We shall discuss it at the end of this section.

An algorithm for Stagewise Linear Regression

The updating formulas (4.8.11) suggest a “stagewise” algorithm (someimes called
“stepwise least squares”) based on the sequential introduction (one after the other)
of the columns of S. The estimate based on a model with p parameters is up-
dated at each step by adding to the model one new parameter θp+1 and, of
course, a new regression variable involving only one new column sp+1. It is
thereby possible to obtain a recursive algorithm which sequentially updates (in
fact enlarges) the estimate which allows to monitor the behaviour of the esti-
mated model when gradually increasing itscomplexity.

Suppose one has availble the estimator θk = [θ̄1, . . . , θ̄k]> obtained by fitting
the data with a k parameter model:

y = Sk θ + ε , Sk ∈ Rn×k ,

where as before we use the shorthand ε = σw. Introduce a new linearly inde-
pendent column sk+1, in S so that the model has now k + 1 parameters,

y = Sk+1 θ + ε , (4.8.22)

where
Sk+1 = [Sk sk+1] .

Using the previous updating formula for the estimator one finds

θ̂k+1 =
1

s>k+1Qk sk+1
s>k+1Qky =

1

s>k+1Qk sk+1
s>k+1[y − S>k θ̄k] (4.8.23)

θ̂k = (S>k Sk)−1 S>k [y − sk+1θ̂k+1] = θ̄k − (S>k Sk)−1 S>k sk+1θ̂k+1 , (4.8.24)

where θ̂k+1 and θ̂k represent the estimators of θk+1 and [θ1, . . . , θk]> relative
to the augmented model (4.8.22) and Qk is the orthogonal projector onto the
orthogonal complement of the columnspace of Sk, that is

Qk = I − Sk(S>k Sk)−1 S>k . (4.8.25)

At the next step one adds column sk+2 to the model (4.8.22)), and the updates
the estimate as

θ̄k+1 :=

[
θ̂k

θ̂k+1

]
, (4.8.26)

by formulas analog to (4.8.23)–(4.8.24). The non trivial part of the algorithm is to
find updating formulas for the coefficients, in particular computing the inverse
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(S>k+1Sk+1)−1 starting from (S>k Sk)−1. One may think of using a recursive up-
dating of the Cholesky factorization of S>k Sk, but a moment of thought shows
that this would just be a way to do a QR factorization of the matrix Sk as the
product of an orthogonal Q (which is not explicitly saved) and an upper trian-
gular factor (which is in fact the right Cholesky factor of S>k Sk). In this way one is
actually updating a QR factorization of S. The Golub-Styan Stagewise Algorithm
[41] uses an updating procedure of Householder matrices to do this. We shall
leave the details to the interested reader.

Remarks 4.2. There is an important aspect of linear regression which espe-
cially appears when studying the stagewise procedure, which is called regressor
collinearity [92] which needs to be considered quite carefully whenever one has
to decide the complexity of a linear model. As we have seen, the variance of the
parameter estimates is not a good criterion for this choice and one should either
compare the residual error variances when increasing the model complexity or
change the model parametrization in such a way that the new added columns
are always orthogonal. To monitor the occurrence of this problem one should
compare the condition numbers of the successive stages; in particular compare
the p singular values of the original S1, say σ̄i with the first p singular values
σi ; i = 1, . . . , p, of the augmented matrix. See the remark 4.2.

To analyze this effect correctly one should do a sequential updating of the
Singular Value Decomposition of the matrix S by adding one column at a time
and then comparing the p original singular values σ̄i of S̄1 to the new σ̂i ; i =
1, . . . , p + 1, of the augmented matrix. See [62] and the last subsection of Sect.
3.1 for the SVD analysis of the Least Squares problem.

Algortihms for the sequential updating of the SVD are described in [12, 13].
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4.9 The FPE criterion and Cross Validation
As is evident from the initial paragraph of the previous section, the model com-
plexity estimation problem may be framed in a different setting than the Fish-
erian paradigm, that is, without necessarily postulating the existence of a true
model with a true dimension, which has generated the data. In this setting one
may see the class of different models like (4.8.1) just as a class of simple linear
approximations of an unknown “true” data generation mechanism which may
actually be non-linear or infinite dimensional. One then chooses a model in this
model class according to some optimality criterion. The point of view that we
have enforced so far is to selected a model which best explains the available
data y (or, said otherwise, the model which best explains the training set of
data). Actually, since the ultimate scope of model buildng is to build predictors
of future data, that is, data which have not yet been observed, a more reasonable
criterion to use should be to choose the model which provides the best prediction
of future data. Naturally here one should have some a priori information guar-
anteeing that future data will still be produced by some model belonging to the
class. A crucial ingredient of this philosophy is that any data-based model used
for prediction necessarily uses parameter estimates which are random. Hence
the prediction error incurred by a model estimated from the data will depend
on the statistical uncertainty of the estimated parameters. Hence the optimization
criterion should take into account both the randomness inherent in the stochas-
tic character of future data and the randomness of the estimated model used to
construct the predictor. This point of view leads to the modern solutions of the
model order estimation problem. Here we shall discuss a simple case.

Assume then that we have partitioned our data in two subvectors say y :=
[y>1 y>2 ]> which for simplicity we shall assume of equal length N . The two
vectors may represent observations made sequentially (that is the data y2 are
collected after y1) and let us imagine to use the first N data y1 to estimate a
standard linear model of dimension p. This means that we described the data
y1 by estimating the linear model

y1 = Sθ + ε1 , Var [ε1] = σ2IN (4.9.1)

obtaining the classical parameter estimator

θ̂(y1) = [S>S]−1S>y1 .

We now want to evaluate how well the estimated model, Sθ̂(y1) can predict
the future data y2 which have saved. Of course, for such operation to be logi-
cally consistent we must assume that the nextN samples were generated by the
same mechanism which did produce the past data y1. This can be formalized
by saying that the pdf or, at least the first and second order moments of y1 and
y2 are the same. In particular, we assume that the two components of the over-
all vector [y>1 y>2 ]> have the same mean vector µ (which could be anything)
and that the overall variance of y is σ2I2N . In this way y1 and y2 result to be
uncorrelated.

Let’s then consider the so-called final prediction error of the future data
given the past,

ε := y2 − Sθ̂(y1) (4.9.2)
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which has mean µ − S[S>S]−1S>µ. Subtracting the mean and computing the
variance of ε one finds

Var [ε] = σ2IN + S[S>S]−1S>σ2INS[S>S]−1S> = σ2
[
IN + S[S>S]−1S>

]
.

As a scalar measure of the final prediction error let us take the normalized scalar
variance of ε, which has the expression

1

N
var [ε] = σ2 1

N
Tr
{
IN + S[S>S]−1S>

}
= σ2

{
1 +

1

N
Tr ([S>S]−1S>S)

}
= σ2(1 +

p

N
) . (4.9.3)

From this expression one sees that the normalized scalar variance of ε depends
linearly on the model dimension p.

However, to be coherent, in this formula we should actually substitute the
theoretical variance σ2, which is an unknown parameter, with an estimate nat-
urally also based on a model with p parameters. We shall use the unbiased
estimator of (2.3.24)

N

N − p
σ̂2
p =

1

N − p
‖y1 − Sθ̂(y1)‖2 =

1

N − p
‖ε̂p‖2

where ε̂p is the residual error of the p parameter model. Substituting in (4.9.3)
one arrives at the following expression for the final prediction error variance
[NOTATION]

FPE(p) :=
1

N
‖ε̂p‖2

(1 +
p

N
)

(1− p

N
)

:= σ̂2
p

(1 +
p

N
)

(1− p

N
)
. (4.9.4)

This expression, also called final prediction error for short, can be used as a
criterion for model order selection. One needs to compute the FPE for a class of
(finite number of) models of different dimension p and then selects the model
with the minimum FPE. The computations can be organized efficiently proceed-
ing with increasing dimension and using a sequential stagewise least square
algorithm of the type seen in the previous section.

There are more general criteria for model selection based on the same gen-
eral principle but not necessarily relying on a past-future splitting of the data
sequence. A rather extreme case is the leave one out cross-validation algorithm
where one does model fitting using a data string of all measurements except
one, that is leaving out just one element of the sequence and then computing a
global error variance averaging on all possible model errors estimated by leav-
ing out one datum. The method is discussed very clearly in Sect. 4.2 of Wahba’s
book [101] for general regularized least squares problems.
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Chapter 5

BAYESIAN STATISTICS

5.1 Introduction to Bayesian estimation
In this chapter we shall address the Bayesian approach to statistical estimation.
This approach, unlike the Classical Fisherian (or Frequentist) approach, refers
to situations where there is an a priori information of probabilistic nature about
the variable to be estimated. It starts from the assumption that θ should not be
regarded as a “certain but unknown ” parameter which can only be described
by some, deterministic but unknown, true value, but is rather a random variable
which, by its very nature, cannot be assigned an exact numerical value. There
are instead (in general infinitely many) possible values of x, described as deter-
minations of a random variable (or of a finite-dimensional random vector11) x
which is distributed on R or on Rn, according to some probability law.

From a practical point of view one may say that very often we have some
a priori information available on x which is sufficient to justify the adoption
of the Bayesian approach. For example, there is in general a known “nominal
value” of x and its dispersion around the nominal value (say the “ tolerance ”
or “ precision class ” etc.) may also be known. This information can often be
translated into probabilistic parameters like the mean and variance of a proba-
bility distribution and sometimes even into a possible probability distribution.
Beyond any ideological assumption about the nature of x (should it be regarded
as a certain but unknown quantity, or as a random one) which may seem more
or less plausible under the circumstances, the real motivation for the use of the
Bayesian approach lies in the availability of a priori probabilistic information
about x. In many modern applications the data acquisition systems are auto-
matic and work at speeds and with storage capacity which allow to collect an
overwhelming amount of data. Although x is by its very nature not directly
measurable, it may be possible in some circumstances to use these data to es-
timate a probabilistic description of the unknown variable and this may make a
Bayesian approach a natural and convenient choice [28]. It would be a mistake
to disregard it.

We shall now proceed to describe formally what is meant by a Bayesian es-

11To adhere to standard conventions the dimension of this random vector will now be n instead
of p.
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timation problem. Recall that in this book we need to distinguish carefully ran-
dom variables from their sample values. For random quantities we use boldface
characters while for their sample values normal body typefaces. Normally we
shall assume that all random variables involved are of purely continuous type
and can be described by a probability density function.

Let x be an n-dimensional random vector whose probability distribution
for the moment we assume completely known; x is not directly accessible to
observation, which means that we can not observe the sample values x of x.
Denote

px(x) = px(x1, . . . , xn) (5.1.1)

the probability density of x which is also called the a priori probability density.
Let y be the m-dimensional random vector representing the observations. We
assume that the conditional density py|x(y | x = x) of y given a sample value x
taken by x, is a known data of our problem and denote its values by the symbol
f(y | x), say

f(y | x) = P (y ≤ y ≤ y + dy | x = x)/dy . (5.1.2)

This function can be regarded as the mathematical description of the measuring
instrument or of the transmission channel.

The Bayesian estimation problem is to reconstruct the random vector x from
the probabilistic model (5.1.1) and (5.1.2) and from the observation y = y of the
measurement device. This problem formulation can actually be understood in
two ways: either as the problem to calculate the new probability distribution
of x determined by the observation of the sample value y = y, or as the prob-
lem of reconstruction of the sample value x = x(ω) which was determined by
the experimental condition ω at the time when the measuring experiment was
performed.

If px is known completely, the first problem has an obvious solution dictated
by Bayes rule. In fact, from the functions (5.1.1) and (5.1.2) one can get the
conditional density of x given the observation y = y as,

p(x = x | y = y) =
f(y | x) px(x)∫

Rn f(y | x) px(x) dx
=
py,x(y, x)

py(y)
(5.1.3)

and this formula shows how the observation y = y improves our a priori
knowledge of x, described by px. The function (5.1.3) is commonly called the a
posteriori probability density of x.

However Bayes formula (5.1.3) does not solve the problem of reconstructing
the sample value x which (in a probabilistic sense) determined the specific ob-
served sample value y of the observation. In practice one often has only access
to one measurement sample and needs a point estimate of xwhich should ideally
be the sample value of x which has been giving rise to the observation y = y.

The problem of point estimation can be better visualized when the cou-
pling mechanism between the measured variable y and the unaccessible x is
described by a statistical model; which now we write

y = h(x,w) (5.1.4)

where the parameter θ in (2.2.1) is substituted by a random vector x. The mea-
surement process is affected by measurement noise described by the random vec-
tor w, which represents the interaction of the physical environment with the
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measuring device. The random noise vector w is causing uncertainty in the
measurement and for w = 0 (5.1.4) the measurement becomes a certain and
predictable function of x. Note that whenever the noise distribution and a prior
density for x are given one can in principle determine from the relation (5.1.4)
the conditional density f(y | x) and the posterior (5.1.2) by the well-known
rules of Probability Theory.

The effect of the random experimental conditions ω at the time of perform-
ing the experiment is thereby condensed into a sample value of the noise w(ω) =
w which makes the observation y depend on the value x = x(ω) as prescribed
by the model (5.1.4), namely

y = h(x,w) , (5.1.5)

In this scheme, the problem of Bayesian point estimation appears as that of
solving the equation (5.1.5) for x in terms of a collection of observation values
y = y. This is clearly an impossible task since in virtually every situation of
practical interest w is inherently impossible to be known and so x can never
be recovered exactly from the model (5.1.5). One can see that point estimation
should be formulated as an approximation problem.

Naturally all approximation problems require the choice or the definition
of a criterion function establishing how good the approximation is. We shall
denote by ξ := z − x the approximation error incurred by approximating x by
z, both variables ranging in Rn. A reasonable class of approximation criteria is
defined below.

Definition 5.1. A cost (or loss ) function for the Bayesian point estimation problem
is any scalar function c : Rn → R of the variable ξ ∈ Rn, which is strictly convex,
non-negative and zero at the origin. A cost function is symmetric, if c(−ξ) = c(ξ).

A simple symmetric cost function is

c(z − x) = ‖z − x‖2Q , (5.1.6)

where ‖x‖2Q := x>Qx and Q is a symmetric positive definite matrix. Note in
fact that if ‖ξ1‖ ≥ ‖ξ2‖, then c(ξ1) ≥ c(ξ2).

Although x is unknown the probabilistic information in this problem tells us
that certain values of x are more likely than others; better, that the observation
process makes certain values of x more probable than others as described by
the a posteriori density function f(x | y). It is then natural to introduce the
conditional expected risk,

R(z, y) := E [c(z − x) | y = y] =

∫
Rn

c(z − x) f(x | y) dx , (5.1.7)

and for a given observed y, define the Bayesian point estimate of x corresponding
to the observation y, the vector z = x̂ which minimizes, with respect to z, the
expected risk R(z, y),

x̂ = Arg min
z

R(z, y) (5.1.8)

the existence and uniqueness of the minimum being guaranteed by the strict
convexity of the function c. Of course x̂ depends, besides the observation y, on
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the choice of the cost function c. This dependence is however rather mild at
least for a large class of estimation problems.

Theorem 5.1. If the cost function c is symmetric, strictly convex and the posterior
density f(· | y) is unimodal and symmetric about its mode µ(y) (so that the mode
coincides with the conditional mean), then the point estimate x̂ defined by (5.1.8) is the
conditional mean of x given y = y,

µ(y) = E (x | y = y). (5.1.9)

and does not depend on the cost function.

Proof. Assume initially that µ(y) = E (x | y = y) = 0, so the symmetry of f is
written as f(x | y) = f(−x | y). From this it follows that

R(z, y) = E [c(z − x) | y = y] = E [c(z + x) | y = y] = E [c(x− z) | y = y]

the last equality following from the symmetry of c. Therefore, by strict convex-
ity it also holds that

R(z, y) = E
[
c(x− z) + c(x + z)

2
| y = y

]
> E [c(x) | y = y] = R(0, y), z 6= 0

which implies ,minz R(z, y) = R(0, y) and Arg minz R(z, y) = 0 = µ(y).
If µ(y) 6= 0, set ∆x := x − µ(y), ∆z := z − µ(y) so that E [∆x | y = y] = 0

and ∆z −∆x = z − x which implies

R(z, y) = E [c(∆z −∆x) | y = y] > E [c(∆x) | y = y] = R(µ(y), y), z 6= µ(y)

that is µ(y) = Arg minz R(z, y).

The result may be different for non-symmetric probability distributions.

Proposition 5.1. Let x be a scalar random variable and let c(z) = |z|, then

Arg min
z

E [ |z − x| | y = y]

is the conditional median of the a posteriori distribution given y = y.

Proof. First let us do the minimization of the unconditional expectation. We
shall assume that x has a density p(x); then

E |x− z | =
∫ +∞

z

(x− z) p(x) dx+

∫ z

−∞
(z − x) p(x) dx =

=

∫ +∞

z

x p(x) dx− z(1− F (z)) + zF (z)−
∫ z

−∞
x p(x) dx

computing the derivative with respect to z and setting it equal to zero, we obtain

F (z) = 1/2

that is F (z) = 1− F (z) = 1/2, which is the definition of the median. The same
argument works unchanged for the conditional density (or distribution).
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One can show that for symmetric unimodal probability distributions, in par-
ticular if the distributions are Gaussian, Theorem 5.1 actually holds also for non-
symmetric convex cost functions and the minimum conditional risk estimator
is still the conditional mean. See the article by Sherman [84]. On the other hand,
as we shall see below, for a quadratic cost function the statement of the theorem
holds for arbitrary (not necessarily symmetric nor unimodal) distributions. We
just notice that, choosing for c the simple Euclidean distance

c(z, x) = ‖z − x‖2 , (5.1.10)

this fact easily follows from a well-known variational characterization of the
mean of a probability distribution which is the content of the following propo-
sition which should be compared with the statement of Theorem 5.2 below.

Proposition 5.2. For a quadratic cost function like (5.1.10) and, more generally, such
as (5.1.6), one has x̂ = E (x | y = y), for an arbitrary conditional density f(x | y),
provided of course that the conditional mean makes sense.

The estimate x̂(y) minimizing the expected quadratic cost (5.1.10) is often
called a least squares (Bayesian) estimate of x. This terminology is somewhat
ambiguous since in the literature there is a tendency to use the attribute “ least
squares" for too many things. We shall not use it in this probabilistic context.

Remarks 5.1. Since under our assumptions on c there always is uniqueness of
the minimum (5.1.8), the point estimate x̂ of x can be seen as the value of a
function of the observation y, say x̂ : Rm → Rn which is called the (minimum
conditional expected risk) Bayesian estimator of x given y. An estimator is just a
function of the data taking values in the same range space of x which evidently
can be interpreted as a calculation procedure (algorithm) processing the mea-
surement data into point estimates. This is conventionally depicted as a block
diagram of the type shown in Fig. 5.1.1.

measurement y estimate x̂
x̂(·)- -

Figure 5.1.1. Estimator.

Notation : The symbol E (x | y), to be read: the conditional expectation (or
conditional mean) of x given y represents the function of the variable y defined
on the range of y, say Rm, by the assignment

E (x | y) : y → E (x | y = y) .

By Theorem 5.1, for convex symmetric cost functions, this function of the data is
the minimal conditional risk Bayesian point estimator of x given the observed
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value y = y. Actually, for an arbitrary a posteriori probability distribution, the
conditional mean estimator can be also characterized in the following way.

Theorem 5.2. Consider the class of all measurable functions g : Rm → Rn such that
g(y) has a finite variance, then the conditional mean E (x | y) minimizes the expected
mean square deviation of g(y) from the random vector x; in other words,

E (x | y) = Arg min
g(·)

E ‖x− g(y)‖2Q (5.1.11)

for an arbitrary symmetric positive semi definite Q ∈ Rn×n. If Q is positive definite
then E (x | y) is the unique minimizer.

Proof. Note first that

E ‖x−g(y)‖2Q =

∫
Rm

E
[
‖x− g(y)‖2Q | y = y

]
py(y) dy = E {E

[
‖x− g(y)‖2Q | y

]
}

(5.1.12)
and then use the identity

E {‖x− E (x | y) + E (x | y)− g(y)‖2Q | y} = E {‖x− E (x | y)‖2Q | y}+

+2E {[x− E (x | y)]
>
Q [E (x | y)− g(y)] | y}+ E {‖E (x | y)− g(y)‖2Q | y}

where the second term on the right is zero since

E {[x−E (x | y)]>Q [E (x | y)− g(y)] | y} = [E (x | y)− E (x | y)]
>
Q [E (x | y)− g(y)]

by a well-known property of the conditional expectation. Computing the ex-
pected value of both members of (??) one obtains

E ‖x− g(y)‖2Q = E ‖x− E (x | y)‖2Q + E ‖E (x | y)− g(y)‖2Q ,

where both terms on right are nonnegative but the first does not depend on g.
Therefore the minimum is achieved for g(y) = E (x | y).

If we restrict the class of admissible estimators g to the class, which we shall
call mean-unbiased12, for which the estimation error has mean zero, namely

E g(y) = Ex

then for Q = I the expected value of the square norm of the estimation error
x−g(y) is just its scalar variance. On the other hand, as indicated in the following
exercise, the equality above is an obvious necessary condition for g to minimize
the mean square error. Hence one may well say that the conditional mean of x
given y is the estimator that has minimum error variance among all measurable
functions g of the observations.

Problem 5.1. Set x̃ = x− Ex and g̃(y) := g(y)− E g(y). Use the identity

E ‖x− g(y)‖2Q = E ‖x̃− g̃(y)‖2Q + ‖Ex− E g(y)‖2Q ,

to prove that mean-unbiasedness of g is a necessary condition for optimality. ♦
12Note that this is a different notion than unbiasedness in the Fisherian approach.
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5.2 The M.A.P estimator
It is quite obvious that the definition of point estimator as a function of the
observed data that minimizes the conditional expected risk can be replaced by
an equivalent one where instead one maximizes a conditional expected gain of
the type

G(z, y) := E
[
γ(z − x) | y = y

]
=

∫
Rn
γ(z − x) f(x | y) dx , (5.2.1)

where now γ : Rn → R is a function of the variable ξ = z − x, z ∈ Rn, which
is concave, non-negative and has a maximum at the origin (the maximum be-
ing possibly infinite). Taking γ peak -shaped, centered at the origin and zero
outside of a small neighborhood of ξ = 0, we can approximate arbitrarily well
a Dirac δ function and get an expected gain function of the same form as the
conditional density given y = y; i.e.

G(z, y) ' f(z | y)

The corresponding estimator

x̂MAP (y) := Arg max
z
f(z | y) (5.2.2)

is inspired by the principle of choosing as a point estimate the value z = x̂
which maximizes the a posteriori probability distribution of x given the obser-
vation y = y. It is called the Maximum a Posteriori Estimator (MAP) and is widely
used in Bayesian statistics13. The MAP estimator is just the conditional mode of
the a posteriori density of x given the observation y = y. Of course in the case
of a unimodal and symmetric density the mode coincides with the mean and
we do not find anything new.

Example 5.1 (Relation to Maximum Likelihood). Maximum likelihood can be
seen as a special case of MAP estimation which occurs when the a priori density is
uniform. In fact, when p(θ) is a constant, the maximization of the a posteriori density
of the parameter θ,

p(θ | x1, . . . , xN ) =
f(x1, . . . , xN | θ)p(θ)

p(x1, . . . , xN )

reduces to the maximization of the likelihood function f(x1, . . . , xN | θ) with respect
to θ, since the denominator is independent of θ.

In conclusion we have seen that the Bayesian estimator is, at least in a great
majority of cases of interest, a conditional mean and hence Bayesian estimation
can be seen just as a chapter of probability theory without appealing to any in-
ductive reasoning which is instead the rule in classical Statistics. Unfortunately
however the conditional mean E (x | y) can be computed explicitly only in very
few cases. A particularly important one is when the joint distribution of x and
y is Gaussian. This will be discussed in some detail below.

13It is actually closely related to the maximum likelihood estimator in classical parametric Statistics.
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5.3 Conditional Expectation of Gaussian random vectors

Theorem 5.3. Let the n- and m- dimensional random vectors x and y be jointly
Gaussian, that is, let the n + m-dimensional vector z = [x>,y>]> have a Gaussian
distribution with mean,

µz =

[
µx

µy

]
(5.3.1)

and Covariance matrix

Σz =

[
Σx Σxy

Σyx Σy

]
, (5.3.2)

Then the conditional density of x given y is still Gaussian. If Σy > 0, then its (condi-
tional) mean and covariance matrix are:

E (x | y) = µx + Σxy Σ−1
y (y − µy) (5.3.3)

Var (x | y) = Σx − Σxy Σ−1
y Σyx . (5.3.4)

Proof. To simplify notations let us introduce the centered n + m-dimensional
vector z̄ := z− µz, which has components

z̄ =

[
x̄
ȳ

]
.

Obviously z̄ ∼ N(0,Σz) where Σz is displayed in (5.3.2). Introduce a linear
transformation of the variables (x̄, ȳ) of the following form{

x̃ = x̄ +Aȳ

ỹ = ȳ
(5.3.5)

where A ∈ Rn×m is chosen in such a way as to make x̃ and ỹ uncorrelated; i.e.
such that E x̃ỹ> = 0. Imposing this condition one finds the equation

0 = Σxy +AΣy

which, assuming Σy > 0, has the unique solution

A = −Σxy Σ−1
y . (5.3.6)

Clearly z̃ := [x̃> ỹ>]> is Gaussian zero-mean and has covariance matrix

Σz̃ =

[
I A
0 I

]
Σz

[
I 0
A> I

]
=

[
Σx̃ 0
0 Σy

]
.

We want to compute E (x̄ | ȳ). To this end use the first equality in (5.3.5) and
note that by Gaussianness x̃ and ȳ are independent so that E (x̃ | ȳ) = E (x̃) = 0
since both x̄, ȳ are zero mean. Since x̄ = x̃−Aȳ and the second term is trivially
a function of y, it follows by the additivity of conditional expectation that

E (x̄ | ȳ) = −Aȳ = Σxy Σ−1
y ȳ (5.3.7)
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The same expression can be obtained computing the conditional density px̄|ȳ
via the classical Bayes formula. By a well-known property of the Gaussian dis-
tribution, the components x̃ and ỹ are independent so that

pz̃(z̃) = px̃(x̃) pỹ(ỹ) = px̃(x̃) pȳ(ỹ) ,

where x̃, ỹ are dummy variables. From this expression it follows that the con-
ditional density px̃|ȳ is, modulo a change of variables, equal to px̃. We need to
apply the rules for computing the density of a function of random variables.
Since the Jacobian of the transformation (5.3.5) is an upper triangular matrix
with an identity on the main diagonal it has a determinant equal to one. Then

pz̄(z) = pz̃(z̃)
∣∣∣ x̃ = x+ Ay
ỹ = y

= px̃(x+Ay) pȳ(y) (5.3.8)

and the conditional density of x̄ given ȳ = y is just px̃(x + Ay). Since x̃ is a
linear combination of Gaussian vectors, this is a Gaussian density of (condi-
tional) mean −Ay and covariance Σx̃. For the mean we find again (5.3.7) and
the expression for the conditional covariance is

Var (x̄ | ȳ) = Σx̃ = E (x̄ +Aȳ) (x̄ +Aȳ)>

= E x̄x̄> + EA ȳx̄>

= Σx − Σxy Σ−1
y Σyx . (5.3.9)

Finally (5.3.3) is obtained by reintroducing the mean values in (5.3.7).

When Σy is singular one can give similar expressions where the inverse re-
placed by the (Moore-Penrose) pseudoinverse of Σy. See Proposition 5.6.

Now E(x | y) is the Bayesian estimator of x based on the observation vector
y, hence the difference x̃, introduced in (5.3.5) is the residual estimation error

x̃ := x̄− Σxy Σ−1
y ȳ = x− E (x | y) . (5.3.10)

As shown in the proof of Theorem 5.3 the residual has the crucial property of
being independent of the observed data y. The intuition behind this fact is that
x̃ is what is left after subtracting from x its best approximation based on the
knowledge of y. The independence is just a manifestation of the fact that the
data do not contain any more information which may be useful to change the
estimation residual x̃ = x − E (x | y). In other words, this is a proof of the fact
that the data have been exploited in the best possible way.

Incidentally the independence of the residual and the observations explains
the counter-intuitive fact that the conditional covariance (5.3.4) of x given y
does not depend on y. This conditional covariance coincides in fact with the
unconditional covariance of the residual estimation error, Σx̃, just because of
the independence of x̃ and y. Note also that the covariance of the residual
estimation error,

Σx̃ = Σx − Σxy Σ−1
y Σyx ,

is the difference between Σx, the a priori covariance of x, and the covariance
matrix of the estimator E (x | y) as it easily follows from (5.3.3) or (5.3.7), since

VarE (x | y) = Σxy Σ−1
y Σyx . (5.3.11)
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Therefore the difference (5.3.4) can be interpreted as the reduction of the a priori
uncertainty on x provided by the observation y. The smaller this difference; i.e. the
closer the matrix (5.3.11)) is to Σx, the more efficient is the estimator.

Bayesian inference for Gaussian pdf’s.

The calculation of the conditional density in (5.3.8) can be used to discuss Bayesian
inference for Gaussian random vectors.
Suppose we are given a Gaussian conditional density f(y | x = θ) of an ob-
served m-vector y, given the value of a random vector parameter x = θ, to-
gether with a Gaussian a priori density of x. We want to compute the a poste-
riori conditional density of x given y = y. For simplicity we shall assume that
both x and y have zero mean.

It follows from the second part of the proof of Theorem 5.3 that the a pos-
teriori density f(θ | y = y) is still Gaussian, with (conditional) mean and (con-
ditional) variance given by formulas (5.3.3) and (5.3.4). To implement these
formulas however we need the cross- and auto-covariances Σxy and Σy which
are not immediately evident since from f(y | x = θ) and px(θ) we can only
extract the conditional statistics of y given x besides, of course, µx and Σx.

We need to compute Σxy and Σy in function of the parameters of the given
conditional model.
Now since f(y | x = θ) is Gaussian, its conditional mean must be a linear
function of the conditioning vector say

ŷ(x) = Sx (5.3.12)

where S is some m× n deterministic matrix which we shall assume given and,
without loss of generality, of full rank. By what we have just seen, the residual
error difference ỹ := y − ŷ, which we shall re-name w, must be uncorrelated
(in fact independent) of ŷ(x) = Sx and since S is full column rank it must be
uncorrelated with (independent of) x. In other words, given f(y | x = θ) we
discover that y is represented by a linear model

y = Sx + w (5.3.13)

where x and w are uncorrelated and both have known variance matrices. In
fact Σw is just the conditional variance of y given x, which incidentally coin-
cides with the variance of ỹ. From the model (5.3.13) it is immediate to deduce
that Σyx = SΣx. Next, need to compute Σy (which is is not known) from the
available densities or ,equivalently, from the linear model (5.3.13). One way to
go is to exchange the role of x and y in the proof of Theorem 5.3, arriving at the
dual relation

Σỹ = Σw = Σy − ΣyxΣ−1
x Σxy

from which
Σy = Σw + ΣyxΣ−1

x Σxy = Σw + SΣxS
> .

The last relation is anyway evident from the representation (5.3.13). Finally,
assuming a zero-mean prior we get

x̂(y) = ΣxS
> [Σw + SΣxS

>]−1
y , (5.3.14)

Var {x− x̂(y)} = Σx − ΣxS
> [Σw + SΣxS

>]−1
SΣx (5.3.15)



5.4. Linear Estimators 167

An alternative route could have been to compute Σy by marginalizing the joint
density py,x(y, θ) = f(y | x = θ)px(θ) integrating with respect to θ. We have
avoided the explicit computation of this integral.
These formulas will be re-derived later in Section 5.6, in the context of linear
estimation. In particular see the remark 5.2.

Example 5.2. A scalar parameter θ is observed N -times in the presence of additive
uncorrelated Gaussian noise. Letting 1N denote an N -vector of ones, the observation
model is described by the conditional density

f(y | x = θ) ≡ N (1Nθ, σ
2IN ) , (5.3.16)

where the random parameter has a Gaussian a priori distribution px(θ) ≡ N (µ, τ2) .
Compute the posterior density of x given a N -dimensional sequence y of measurements
described by the model (5.3.16) .
Solution: The posterior is still Gaussian with conditional mean and conditional
variance derived by formulas (5.3.14) and (5.3.15). We have S = 1N and Σw =
σ2IN so that

x̂(y) = µ+ τ21>N
(
σ2IN + τ21N1>N

)−1
(y − 1N µ) (5.3.17)

σ2
x̃ = τ2 − τ21>N

(
σ2IN + τ21N1>N

)−1
1N τ

2 (5.3.18)

At first sight the calculation of the inverse needed in these expressions looks
quite demanding. As we shall see it is greatly facilitated by the use of the Matrix
Inversion Lemma which will be introduced later, see Sect. 5.6 and Example 5.4.

5.4 Linear Minimum Variance Estimators
The minimum (error) variance estimator, hereafter the M.V. estimator, of x based
on the observation y has a particularly simple form when x and y are Gaussian.
In this case E (x | y) is a linear function of the observations which can be computed
based only on the first and second order joint moments of the variables x and y.

When the data are not Gaussian this simplicity disappears as E (x | y) is in
general a non-linear function of the observations which can actually be computed
explicitly only in very few cases. It is then natural to ask wether restricting a
priori the candidate function of the data, g, to minimize the expected squared
error E ‖x − g(y)‖2, one could get estimators which are easier to compute. In
fact the obvious first choice is to look for functions which are linear (or affine) in
the data.

Definition 5.2. The linear minimum (error) variance estimator (LMV) of the ran-
dom vector x, based on the observation vector y is the affine function

g(y) = Ay + b , A ∈ Rn×m , b ∈ Rn

which minimizes the expected squared estimation error E ‖x− g(y)‖2.

This minimum variance linear estimator of x must therefore be a solution of
the optimization problem

min
A , b

{
E ‖Ay + b− x‖2 | A ∈ Rn×m , b ∈ Rn

}
. (5.4.1)
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which we shall now proceed to solve. Note first that when x and y have zero
mean, the value of b for which the minimum is attained is zero. In fact, assume
that

g∗(y) = A∗y + b∗

is the optimal m.v. estimator. Since Ex = 0, Ey = 0, one has

E ‖A∗y + b∗ − x‖2 = E ‖A∗y − x‖2 + 2E (A∗y − x)> b∗ + ‖b∗‖2

= E ‖A∗y − x‖2 + ‖b∗‖2 ≥ E ‖A∗y − x‖2

with strict inequality unless b∗ = 0 which implies that unless b∗ = 0,A∗y would
be a strictly better estimator than g∗(y).

Hence it will be enough to look for the LMV estimator of x̄ = x−µx based on
the centered data ȳ = y−µy. Once found the optimal linear function g(ȳ) = Aȳ
for the centered variables, we may just add the mean value of x to get x̂ = ˆ̄x+µx

and substitute back ȳ = y − µy to obtain the formula valid for non zero mean
values (see Problem 5.2 below for a formal justification). We are henceforth to
consider the minimization problem with zero-mean variables,

min
A

E ‖Aȳ − x̄‖2 . (5.4.2)

Problem 5.2. Note that

min
A,b

E ‖Ay + b− x‖2 = min
A,b

E ‖Aȳ − x̄ + c‖2

where c := Aµy + b − µx. Using the relation E (Aȳ − x̄) = 0 show that the mini-
mization reduces to

min
A,b

(
E ‖Aȳ − x̄‖2 + ‖Aµy + b− µx‖2

)
.

Show that the minimum is achieved when A∗ minimizes the first term and the vector b
is taken equal to

b∗ := µx −A∗ µy . (5.4.3)

5.5 Geometric formulation and the Orthogonal Projection
Lemma

The minimization problem (5.4.2) can be solved by elementary means. Nev-
ertheless it motivates the introduction of a geometric setting which, although
at this point may look a bit unnatural, will become a fundamental tool when
dealing with linear estimation problems for stochastic processes.

Let us consider the family of real-valued random variables defined in the
same probability space {Ω,A, P}which in our setting is to be interpreted as the
space of all possible experimental conditions under which our measurement
experiment could be performed.
We shall just consider random variable which have finite variance and (for con-
venience ) zero mean. This set has obviously the structure of a real vector space,
which we shall denote by the symbol H. On thi svector space one can introduce
a natural inner product, 〈·, ·〉H defined as

〈x,y〉H := Exy =

∫
Ω

x(ω) y(ω) P (dω) =

∫
R2

xy pxy(x, y) dx dy (5.5.1)
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Figure 5.5.1. A. N. Kolmogorov.

This inner product satisfies the usual axioms of an inner product, in particular
the triangular inequality and induces the variance norm

‖x‖2H = Ex2 = var (x) , (5.5.2)

where the equivalence between ‖x‖H = 0 and x = 0 holds once we agree to
declare a random variable equal to zero iff it is zero with probability one. For
zero-mean random variables this is in turn equivalent to their scalar variance
being equal to zero.

In this way we end up with an inner product space which is actually a real
Hilbert space14, as it follows from the definition of the inner product (5.5.1) which
makes it an L2 space of real measurable functions defined on the abstract set Ω.
This space will still be denoted with the symbol H. The convergence of ran-
dom variables in H with respect to the norm ‖ · ‖H is known as mean-square
convergence; H is in fact complete with respect to mean square convergence. It
will be called the Hilbert space of second order random variables on the experiment
{Ω,A, P}. Note that the orthogonality relation in H corresponds to uncorrela-
tion; it will be denoted by the symbol ⊥H; i.e. x ⊥H y⇔ σx,y = Exy = 0.

The idea of introducing this geometric setting is due to Andrej Nicolayevich
Kolmogorov [50]; it has allowed to phrase the linear estimation theory of ran-
dom processes in a geometric setting with a great gain in simplicity and con-
ceptual clarity.
The observation subspace: Given an m-dimensional random vector y the vector
subspace of H generated by the scalar components yk, i = 1, . . . ,m, is the set of

14Some basic notions on Hilbert spaces are reported in Appendix D.
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all linear combinations with real coefficients of the scalar components yk ; k =
1 . . .m. This subspace is denoted by the symbol H(y); notation:

H(y) := span {y1 . . .ym} =

{
m∑
i=1

akyk ; ak ∈ R

}
. (5.5.3)

When the {yk k = 1, . . . ,m}, are linearly independent (as functions of the vari-
able ω), H(y) has dimension m. It is well-known that this happens if and only
if the Gramian matrix

G(y) := [ 〈yk,yj〉H]kj=1...m

is non-singular. In fact G(y) is just the covariance matrix Σy, of the random
vector y; hence:

Proposition 5.3. The scalar components of the random vector y are linearly indepen-
dent (equiv. the subspace H(y) has dimension m) if and only if the covariance matrix
Σy = Eyy> is non singular (i.e. strictly positive definite; written Σy > 0).

In this case one may say that the data are non redundant as none of them can
be expressed as a linear function of the others.

Consider now the following basic approximation problem.

Problem 5.3. Given a scalar random variable x ∈ H, find the linear function a>y,
of the random vector y, which has minimal distance from x. Precisely, find an element
z ∈ H(y) such that the squared norm

‖x− z‖2H = E [x− z]2

is minimal.

Here we need not assume that y has a finite number of components;m could
be +∞ (in which case we could have an infinite sequence of observations) and
H(y) could well be infinite dimensional. This generalization will be important
later on when dealing with random processes. The solution is provided by the
classical

Theorem 5.4 (Orthogonal projection Lemma). Let H(y) be a closed subpace of H.
There is a unique random variable z∗ ∈ H(y) which minimizes ‖x−z‖2H; this variable
is the orthogonal projection of x onto H(y).

A necessary and sufficient condition for z∗ to be the orthogonal projection of x onto
H(y) is that

x− z∗ ⊥H H(y) (5.5.4)

which is equivalent to

E (x− z∗) yk = 0 k = 1, 2, . . . (5.5.5)

where yk, k = 1, 2, . . . are generators of H(y). This is called the Orthogonality
Principle.



5.5. Geometric formulation and the Orthogonal Projection Lemma 171

Proof. Let z∗ ∈ H(y) satisfy (5.5.4) and let z be an arbitrary element of H(y).
Since z∗ − z belongs to H(y), by (5.5.4), one has:

‖x− z‖2H = ‖x− z∗ + z∗ − z‖2H = ‖x− z∗‖2H
+ 2 〈x− z∗, z∗ − z〉H + ‖z∗ − z‖2H

= ‖x− z∗‖2H + ‖z∗ − z‖2H (5.5.6)

and this expression is clearly minimal when z = z∗.
Conversely, assume that z∗ ∈ H(y) minimizes ‖x− z‖2H. Let ei := yi/‖yi‖ and
define the variable

zi := z∗ + 〈x− z∗, ei〉H ei

Compute ‖x− zi‖2H to find

‖zi − x‖2H = ‖z∗ − x‖2H + 2〈(z∗ − x), 〈x− z∗, ei〉Hei〉H + |〈x− z∗, ei〉H|2

= ‖z∗ − x‖2H − 2〈z∗ − x, ei〉H〈z∗ − x, ei〉H + |〈x− z∗ ei〉|2H
= ‖x− z∗‖2H − |〈x− z∗, ei〉H|2

and note that, by assumption ‖zi − x‖2H ≥ ‖z∗ − x‖2H so that 〈x− z∗ ei〉H must
be zero; i.e.

x− z∗ ⊥H yi ; i = 1, 2, . . . .

which is the orthogonality condition of (5.5.5) . Note that uniqueness follows
directly from (5.5.6). For letting z1 ∈ H(y) to be another minimum of ‖x− z‖2H,
would imply that ‖x − z1‖2H = ‖x − z∗‖2H and (5.5.6) with z = z1 implies
‖z∗ − z1‖2H = 0 .

Remark 5.1. Naturally, when y has finite dimension m, H(y) is obviously a closed
subspace of the Hilbert space H.

It is to be stressed here that the orthogonality principle continues to be valid also
in the case when dim H(y) =∞, when the subspace H(y) is generated by an infinite
family of random variables {yα}, provided the subspace H(y) generated by this family
is a closed subspace of H. For more details see Halmos book [43, Theorem 1, p. 23].

Theorem 5.4 has the same intuitive geometric interpretation which was il-
lustrated for the deterministic linear least squares problem in Sect. 2.1 of the
previous Chapter. See Fig. 5.5.2.

By imposing the orthogonality condition (5.5.5) in our finite-dimensional
setting, one sees that a randpom variable in H(y),

z =

m∑
1

ai yi = a>y

is the orthogonal projection of x onto H(y) if and only if the vector a = [a1 . . . am]>

satisfies the linear equations

Exyi = E a>y yi , i = 1, . . . ,m
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Figure 5.5.2. The Orthogonality Principle.

namely a>Eyy> = Exy> which can be written in matrix notation as

a>Σy = σxy (5.5.7)

where σxy = [σxy1
. . . σxym ] is the row vector of cross covariances of x e y. If

Σy > 0 equation (5.5.7) can be solved , getting

a>∗ = σxy Σ−1
y (5.5.8)

and the minimum variance linear estimator of x based on the observation vec-
tor y (both zero-mean) is

z∗ = a>∗ y = σxy Σ−1
y y . (5.5.9)

When x is also a vector-valued, say n-dimensional, the formula above can be
applied to each component xk ; k = 1, . . . , n separately since the minimization
of the sum

n∑
k=1

‖zk − xk‖2H = E

(
n∑
1

(zk − xk)2

)
= E ‖z− x‖2 (5.5.10)

is accomplished only when each term ‖zk−xk‖2 is minimized separately. Using
a matrix notation for n-dimensional random vectors with components in H(y),

z = Ay , A ∈ Rn×m

it follows that the rows of the optimal A are obtained from (5.5.8) so that

A∗ = Σxy Σ−1
y

where Σxy is now the n×m cross covariance matrix of x and y. The m.v. linear
estimator is then

x̂(y) = Σxy Σ−1
y y . (5.5.11)

Introducing the mean values in this expression, we obtain the general expres-
sion of the linear m.v. estimator.
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Proposition 5.4. In case of arbitrary mean values, the minimum variance estimator of
x based on the observation y is the affine function

x̂(y) = µx + Σxy Σ−1
y (y − µy) . (5.5.12)

This function depends only on the joint first and second order moments of x e y.

This expression is clearly the same that was obtained for Gaussian variables.
This should come as no-surprise if only we knew a priori that in the Gaussian
case the conditional expectation was a linear function of the data since then it
could have been derived by the same argument exposed above. The highly
non obvious fact is that for Gaussian random variables, among all measurable
functions of the data, g : Rm → Rn, the one which minimizes the expected
mean square deviation of g(y) from the random vector x happens to be linear
(or affine).

It follows that the covariance matrix of the residual error x̃ := x− x̂(y) must
have the same expression found for the Gaussian case, that is

Var (x̃) = Σx − Σxy Σ−1
y Σyx (5.5.13)

which also depends only on the joint second order moments of the two random
vectors x and y.

Since linear m.v. estimators only depend on the first and second order joint
moments, when working in this linear setting there will be no need to ask for
more detailed probabilistic information about y and x. Hence, we shall nor-
mally assume that this is the only probabilistic information available for solv-
ing the inference problem we are studying. Evidently, whenever the additional
information of a joint Gaussian distribution is available the estimator (5.5.12)
is not only the best linear function but, indeed, the optimal one among all pos-
sible nonlinear functions of the data. This is so since a Gaussian distribution is
completely determined by its first and second order moments.
Notations: The fact that, when the distributions are Gaussian, the linear m.v.
estimator x̂(y) coincides with the conditional mean E (x | y), has led to a
widespread use of the notation

x̂(y) ≡ Ê (x | y) , (5.5.14)

where the hatted symbol has been named by Doob [27], the wide sense conditional
mean (or expectation) of x given y. The analogy of names is based on the fact that
the properties of the two operators Ê (x | y) and E (x | y) are formally very
similar at least on a superficial ground. One just needs to substitute the word
“independence” with “uncorrelation” (or orthogonality) and “general measur-
able function” with “linear function” of the data.
Moreover, the true conditional mean E (x | y) can also be defined as an orthog-
onal projection on a suitable subspace of H, see for example [58, Lemma 2.2.1].
We should however warn the reader that the two settings are quite different
and the formal similarity may lead to false conclusions. When the underlying
distributions are far from Gaussian it is to be expected that the linear approxi-
mation Ê (x | y) of the conditional expectation E (x | y) could very well have
no meaning. See the example 5.6 below.

We also need to introduce notations for vector valued random variables (i.e.
random vectors). Although strictly speaking the Hilbert space H is made of
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scalar (real valued) random variables, we shall nevertheless use notations like
z ∈ H(y), z ⊥ H(y) etc., where z is a random vector, to mean that all compo-
nents {zk} of z belong to, or, are orthogonal to, the subspace H(y). Similarly,
the symbol Ê (x | y) in case of a vector valued x, is to be interpreted as the
vector with components the orthogonal projections Ê (xk | y) of the scalar com-
ponents xk, k = 1, . . . , n of x.
Finally we shall reserve the word Covariance to mean cross-covariance of two
random vectors while a matrix such a s Σz = E zz> will just be referred to as
the Variance matrix of z.

The following is a re-statement of the orthogonal projection lemma in vector
notations. It will be useful for further reference.

Corollary 5.1. Let x and y be second order random vectors of respective dimensions
n and m; then the linear m.v. estimator Ê (x | y) is the uinque vector z ∈ H(y) such
that

E (x− z) y> = 0 . (5.5.15)

The random vector Ê (x | y) has the smallest error variance matrix among all linear
functions of y, that is

E {[x− Ê (x | y) ] [x− Ê (x | y)]>} ≤ E [(x− z) (x− z)>] (5.5.16)

for every n-dimensional vector z ∈ H(y). The inequality A ≤ B among symmetric
matrices is to be understood to mean that B −A is positive semidefinite.

Proof. Obviously (5.5.15) is just the orthogonality principle (5.5.5), written in
matrix notation.

To prove (5.5.16) let z = Ay be any n-dimensional linear function of y. The
relative error variance has the expression

Var (x− z) = Var (x− Ê (x | y) + Ê (x | y)−Ay)

= (Σx − Σxy Σ−1
y Σyx) + (A− Σxy Σ−1

y ) Σy (A> − Σ−1
y Σyx)

which evidently has the minimum for A = Σxy Σ−1
y .

Block-diagonalization of Symmetric Positive Definite matrices

The estimation error x̃ := x − Ê [ x | y] is orthogonal to y; hence Var {
[
y
x̃

]
} is

block-diagonal

Var {
[
y
x̃

]
} =

[
Σy 0
0 Λ

]
, Λ = Σx − Σxy Σ−1

y Σyx.

In matrix language the block Λ is called the Schur Complement of Σy in Σ. The
order here is immaterial; one can exchange x̃ with y.
Generalization:

Lemma 5.1. Let

X =

[
A B>

B D

]
∈ R(n+m)×(n+m)
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be symmetric positive definite (a covariance matrix). If A is invertible, then[
I 0

−BA−1 I

]
X

[
I −A−1B>

0 I

]
=

[
A 0
0 D −BA−1B>

]

Proof. via Bayesian Estimation Theory. Think of A as Σy, D as Σx and B as
Σxy.

Therefore:
1. X is positive definite if and only if A and S := D − BA−1B> are positive
definite.
2. IfA is invertible,X is positive semi-definite if and only ifA is positive definite
and S := D −BA−1B> is positive semi-definite.

Problem 5.4. Show, only assuming X symmetric, that,
1. X is positive definite if and only if D and S := A−BD−1B> are positive definite.
2. If D is invertible, X is positive semi-definite if and only if D is positive definite and
S := S := A−B>D−1B is positive semi-definite.

One can generalize the bock-diagonalization formulas to non-necessarily
symmetric nor positive definite matrices. Consider a square block matrix

X =

[
A B
C D

]
∈ R(n+m)×(n+m)

Definition 5.3. Assume that A is non-singular. The matrix S1 := D − CA−1B is
called Schur complement of A in X .
Assume that D is non-singular. The matrix S2 := A − BD−1C is called Schur
complement of D in X .

Proposition 5.5. Assume that A is invertible. Then X is invertible if and only if also
the Schur complement D − CA−1B is invertible.
Dually, if D is invertible X is invertible if and only if also the Schur complement
A−BD−1C is invertible.

Proof. If A is non-singular, we have,

X

[
I −A−1B
0 I

]
=

[
A B
C D

] [
I −A−1B
0 I

]
=

[
A 0
C D − CA−1B

]
,

[
I 0

−CA−1 I

] [
A 0
C D − CA−1B

]
=

[
A 0
0 D − CA−1B

]
so that [

I 0
−CA−1 I

]
X

[
I −A−1B
0 I

]
=

[
A 0
0 D − CA−1B

]
and the first statement follows since the two block-triangular matrices are both
invertible. The second statement is proven in the same way.
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Then, if A and D − CA−1B are non-singular, X−1 is given by[
I −A−1B
0 I

] [
A 0
0 D − CA−1B

]−1 [
I 0

−CA−1 I

]
=

=

[
I −A−1B
0 I

] [
A−1 0

0 (D − CA−1B)−1

] [
I 0

−CA−1 I

]
.

Therefore:

X−1 =

[
A−1 +A−1B(D − CA−1B)−1CA−1 −A−1B(D − CA−1B)−1

−(D − CA−1B)−1CA−1 (D − CA−1B)−1

]
.

Dually, if D and A−BD−1C are non-singular, then

X−1 =

[
(A−BD−1C)−1 −(A−BD−1C)−1BD−1

−D−1C(A−BD−1C)−1 D−1 +D−1C(A−BD−1C)−1BD−1

]
From these formulas the famous Sherman-Morrison-Woodbury formula, more
commonly called the Matrix Inversion Lemma follows:

Lemma 5.2. If A, D, and one of the Schur complements (A − BD−1C) and (D −
CA−1B) is non-singular, then the other Schur complement is non-singular and

(A−BD−1C)−1 = A−1 +A−1B(D − CA−1B)−1CA−1 (5.5.17)

This formula is useful when the“perturbation” BD−1C of A has low rank,
in particular whenD is a scalar (1×1) matrix. It is used for example in recursive
least squares and in Kalman filtering.

5.6 The linear model
Let us consider observation models (5.1.4) which are linear; that is, assume that
the observation vector y is related to the unknown variable x by a linear relation
of the type

y = Sx + w (5.6.1)

where S is a known (deterministic) matrix, x and w are uncorrelated random
vectors of respective variances, P := Var (x) and R := Var (w) also assumed
to be known. For notational simplicity we shall initially assume that x and w
have zero mean. The model (5.6.1) is widely used to represent measurements
obtained by a linear sensor, which are corrupted by additive (non-observable)
noise (w). We want to compute the best linear estimator of x based on the
measurement y. To this end we shall rely on formula (5.5.12) which requires
knowledge of the variance matrices Σxy and Σy.
These matrices can be computed directly from the parameters of the model (5.6.1).
Let us first note that, the orthogonality of x and w, implies that Σyx is readily
obtained by right multiplication of (5.6.1) by x and taking expectation, as

Σyx = S Σx = SP

whence
Σxy = PS> . (5.6.2)
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It then follows that
Σy = SPS> +R (5.6.3)

which is certainly positive definite (Σy > 0) ifR > 0, that is there are no “perfect
measurements” which may be physically justifiable in most circumstances. The
linear m.v. estimator of x given y is then given by

Ê (x | y) = PS>(SPS> +R)−1 y . (5.6.4)

The residual error variance, denoted Λ, follows readily from the general for-
mula (5.5.13) and is given by

Λ = P − PS>(SPS> +R)−1 SP . (5.6.5)

Remark 5.2. One may ask how general is the model (5.6.1) assuming knowledge
of the joint second order moments of the vectors x and y. It is actually not hard
to see that any linear estimation problem initially formulated in terms of the
joint statistics of x and y can be phrased as an estimation problem on a linear
model of the form (5.6.1).

Let us just represent y as the sum of its orthogonal projection onto the sub-
space H(x) and an error term ỹ = y − Ê (y | x), say

y = Ê (y | x) + ỹ (5.6.6)

Since Ê (y | x) is a linear function of x it can be written as Sx for some matrix
S. In fact, if Σx > 0 S can actually be expressed by the formula

S = Σyx Σ−1
x .

Further identify w with the error term ỹ which is uncorrelated with x by the
orthogonality principle. Then (5.6.6) is formally identical to (5.6.1). When Σx >
0 the variance R, of the noise term can be expressed by the formula Σy −
Σyx Σ−1

x Σxy.
This construction parallels that described at the end of Section 5.3 for the deriva-
tion of the posterior density in case of jointly Gaussian variables. ♦

There is an alternative expression of the formulas (5.6.4) and (5.6.5) which
is more transparent and easier to compute, especially in certain special cases
which are common in the applications. One such special case occurring for ex-
ample whenR is a diagonal matrix. The derivation of these alternative formulas
uses the Matrix Inversion Lemma 5.2.

Theorem 5.5. Assume that the a priori variance matrix P of the random vector x in
the model (5.6.1) is invertible. Then the linear m.v. estimator of x can also be expressed
in the form

Ê (x | y) = µx + (P−1 + S>R−1S)−1 S>R−1(y − µy) (5.6.7)

and the relative error variance matrix as

Λ = (P−1 + S>R−1S)−1 . (5.6.8)
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Proof. Formula (5.6.8) is immediately obtained from (5.6.5) just by setting A =
P−1,B = S> and C = R−1 in the the Matrix Inversion Lemma formula (5.5.17).

The expression (5.6.7), can be obtained by the following sequence of steps

Ê(x | y) = PS>
[
R−1 −R−1 S(S>R−1S + P−1)−1 S>R−1

]
y

=
[
P − PS>R−1 S(S>R−1S + P−1)−1

]
S>R−1y

=
[
P (S>R−1 S + P−1)− PS>R−1S

]
(S>R−1S + P−1)−1 S>R−1 y

and noting that the last term between square brackets is the identity.

Formulas (5.6.7) and (5.6.8) show very clearly the influence of the a priori
variance of x on the estimate. Roughly speaking, when the variance P is very
large; i.e. the a priori knowledge of x is very uncertain, P−1 can be neglected in
comparison to the other addend S>R−1S and formula (5.6.7), assuming S is of
full column rank, reduces to

Ê (x | y) = (S>R−1S)−1 S>R−1y (5.6.9)

which is the weighted least-squares estimate of classical parametric Statistics
(2.3.6) with weighting matrix equal to R−1, which has variance

Λ = (S>R−1S)−1 . (5.6.10)

Examples of use of these formulas will be seen later.

5.7 Linear Models and Marginal Gaussians
In a Bayesian setting the density of a random variable y having mean θ and
variance σ2 is written as a conditional density p(y | x = θ) where x is another
random variable, so that the joint density of y and x is

py,x(y, θ) = p(y | x = θ)px(θ) (5.7.1)

It is clear that if y ∼ N (θ, σ2) and x ∼ N (µ, τ2) then the joint density is again
Gaussian. Often one needs to compute the marginal distribution of y which could
formally be obtained by integrating with respect to θ (of course this distribution
does not depend on θ any more). The calculation in terms of density functions
even in the Gaussian case is quite complicated but for Gaussian variables there
is a very simple way to do this by using linear models.

We can express both y and x by means of two linear models as

y = x + e , x = µ+ w

where e ∼ N (0, σ2) is a random variable independent of x and w ∼ N (µ, τ2) is
another random variable of mean µ and variance τ2. The multiplicative relation
(5.7.1) implies that e and w must be independent (show this). Therefore from

y = µ+ w + e ,
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one can easily conclude that y has mean µ and variance σ2 + τ2. In other words
y ∼ N (µ, σ2 + τ2). Naturally here because of Gaussianness one can substitute
everywhere the world "independent" with "uncorrelated".

Problem 5.5. Compute the marginal distribution of an N -dimensoinal random vector
y described by

p(y | x = θ) ≡ N (Sθ, σ2IN ) ,

where x has the prior distribution x ∼ N (θ0, τ
2Ip).

5.8 Factor Analysis Models
A (static) factor model (or Factor Analysis model) is a representation

y = Ax + w (5.8.1)

of m observed variables y = [ y1 . . . ym ]>, having zero-mean and finite vari-
ance, as linear combinations of n common factors x = [ x1 . . . xn ]>, plus uncor-
related “noise" or “error" terms w = [ w1 . . . wm ]>. The m components of the
error vector w should be zero-mean and mutually uncorrelated random vari-
ables, i.e.,

Σxw := E {xw>} = 0, (5.8.2a)

∆ := E {ww>} = diag {σ2
1 , . . . , σ

2
m}. (5.8.2b)

The big difference with the standard linear model (5.6.1) is that all quantities
in the right hand side of (5.8.1) are unknown and should be estimated from the
data vector y. This makes Factor Analysis models much harder to estimate
and in fact to understand. The introduction of models of this type was initially
motivated by mathematical psychology and goes back to the beginning of the
twentieth century [?]. Their purpose is to provide an explanation of the mutual
dependence of the components of an m-dimensional observed random vector
y in terms by an (hopefully) small number n of common factors x. To see that
this could indeed be the scope, let a>i be the i-th row of the matrix A and set

ŷi := a>i x = Ê [ yi | x ] ; (5.8.3)

then one has exactly
E {yiyj} = E {ŷiŷj} (5.8.4)

for all i 6= j. This just means that the Bayes estimates of the components of y in
terms of the factor vector have the same mutual correlations as the components
of the observed vector y itself. This property is equivalent to

〈wi, wj〉 = 〈yi − ŷi, yj − ŷj〉 = 0, i 6= j .

The property (5.8.4) is called conditional uncorrelation, (or conditional orthogonal-
ity) of the random variables y1,y2, . . . ,ym given x [58]. It is rather easy to see
that y admits a representation of the type (5.8.1) if and only if y1,y2, . . . ,ym are
conditionally orthogonal given x. Note that this property is really a property of
the subspace of random variables linearly generated by the components of the
vector x, namely

X := {a>x | a ∈ Rn}, (5.8.5)
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which could be called the factor subspace of the model. One could say that the
components of y are conditionally orthogonal given X. The estimates ŷi are
then just the orthogonal projections ŷi = Ê [ yi | X ], i = 1, 2, . . . ,m.

Generally n � m and the matrix A is tall. Therefore, introducing a matrix
A⊥ such that A⊥A = 0 one can eliminate the factors from the model (5.8.1) to
obtain an external description of the form

y = ŷ + w, A⊥ŷ = 0, (5.8.6)

in terms of “true" variables ŷ (which are still not observed) and additive errors
w. Solving the relationA⊥ŷ = 0 with respect of one of the true variables you get
an explicit linear Error-In-Variables (EIV) model of the class (2.2.10a). Hence
linear EIV models can be understood as the result of elimination of the latent
variable x from a FA model.

A factor subspace may be unnecessarily large just because it carries redun-
dant random variables which are uncorrelated (i.e., orthogonal) to the vector
y to be represented. This redundancy can be eliminated by imposing a non-
redundancy condition. Set

X̂ = span{Ê [yi | X ]; i = 1, 2, . . . ,m} := Ê [Y | X ] (5.8.7)

or, equivalently X̂ = span{(Ax)i; i = 1, 2, . . . ,m}. Then X is non-redundant
or minimal if X = X̂. It can easily be shown that an arbitrary factor space X can
always be substituted by its non-redundant subspace X̂ preserving the condi-
tional orthogonality property. So, without loss of generality one can assume
that the condition X = X̂ is satisfied.

Any set of generating variables for X can serve as a common factor vector.
In particular it is no loss of generality to choose the generating vector x as a
normalized basis in X, i.e.,

E {xx>} = I, (5.8.8)

which we shall do in the following. The dimension n = dim x = dim X will
be called the rank of the model. Obviously, by virtue of the non-redundancy
condition X = X̂, we automatically have rank A = n for a model of rank n, i.e.,
A will always be left-invertible.

Two factor models for the same observable vector y whose factors span the
same subspace X will be regarded as equivalent. Hence, with the imposed no-
tational conventions, the factor vectors of two equivalent factor models are re-
lated by multiplication by a real orthogonal matrix.

The common factors are nonobservable quantities (also called latent variables
in the literature) which, although representing the same output variables y,
could in principle be chosen in many different ways giving rise to represen-
tations (i.e., models) with different properties and of a different complexity. In
applications one would like to have models with n � m and possibly have
some idea about the minimal possible number of factors necessary to represent
y. Models with a minimal number of factors correspond to factor subspaces X
of minimal dimension. These models will be called minimal henceforth.

A rather disturbing fact is that there are in general many (in fact infinitely
many) minimal factor subspaces for a given family of observables y1,y2, . . . ,ym.
Hence there are in general many nonequivalent minimal factor models (with
normalized factors) representing a fixed m-tuple of random variables y. As a
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trivial example, choose for each k = 1, 2, . . . ,m, the (m− 1)-dimensional vector
x := [ y1 . . . yk−1 yk+1 . . . ym ]> as a factor vector, then one obtains m “ex-
tremal" models, called elementary regressions, of the form

y1 = [ 1 . . . 0 ] x + 0
...
yk = â>k x + wk

...
ym = [ 0 . . . 1 ] x + 0

(5.8.9)

where â>k = E {ykx>}E {xx>}−1. Note that in each elementary regression
model there is just one nonzero element in the error variance matrix ∆. Clearly,
the elementary regression (5.8.9) corresponds to an EIV model with errors af-
fecting only the k-th true variable.

In this example the factor subspaces are spanned by m− 1 observable vari-
ables. A subspace X contained in the data space Y := span{y1 . . . ym} (i.e.,
generated by linear functions of y) is called internal. Accordingly, factor models
whose factor x is a linear functionals of y are called internal models. Elementary
regressors are internal models.

Identifiability. The inherent nonuniqueness of factor models brings up the
question of which model one should use in identification. This is called fac-
tor indeterminacy (or unidentifiability) in the literature, and the term is usually
referred to as parameter unidentifiability as in these models there are always
“too many" parameters to be estimated. It may be argued that once a model (in
essence, a factor subspace) is selected, it can always be parametrized in a one-
to-one (and hence identifiable) way. The difficulty seems to be more a question
of understanding the properties of the different possible models, i.e., a question
of classification. Unfortunately, the classification of all possible (minimal) factor
subspaces and an explicit characterization of minimality is, to the present time,
not fully understood.

We shall address here only very superficially the question of identifiability.
To this end, we need to consider the additive decomposition of the covariance
matrix Σ := E {yy>} of the observables induced by a factor model, namely

Σ = AA> + Λ (5.8.10)

where Λ is a diagonal matrix with positive entries and A ∈ Rm×n with n ≤ m
is full column rank. This is called a Factor Analysis decomposition of Σ. The rank
of A is also called the rank of the decomposition.

Note that for any fixed diagonal matrix Λ such that rank {Σ − Λ} = n, the
matrix A in the decomposition (5.8.10) is just a full rank factor of Σ − Λ. Such
a factor can be rendered unique by choosing an appropriate canonical form in
the equivalence class15 of A ∈ Rm×n∗ defined modulo right multiplication by
n× n orthogonal matrices. Hence a canonical factor of rank n < m is uniquely
determined by a choice of the m positive numbers in Λ = diag {λ2

1, . . . , λ
2
m}

such that
rank {Σ− Λ} = n .

15We denote by Rm×n
∗ the space of full rank m× n real matrices.
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Hidden rank

The following is the main question concerning identifiability. What is the mini-
mal n for which a given positive definite variance Σ admits a factor analysis decomposi-
tion of rank n. This number, n∗(Σ), (sometimes denoted mr(Σ) in the literature)
is called the hidden rank of Σ. Clearly n∗(Σ) ≤ m− 1 for all Σ. Trivially a diago-
nal Σ admits a (unique) factor analysis decomposition of rank zero. Conditions
for Σ to admit a factor analysis decomposition of rank one have been known
since the beginning of the 20th century. In the literature a positive definite co-
variance matrix admitting a factor analysis decomposition of rank one is called
a Spearman matrix.

The decompositions of rankm−1 are particularly simple to describe. In fact,
the solutions are described in terms of the coordinates (λ2

1, . . . , λ
2
m) in the space

Rm+ (that is of nonnegative definite diagonal matrices Λ = diag {λ2
1, . . . , λ

2
m}) by

the polynomial equation det(Σ − Λ) = 0. This algebraic equation, in analogy
to what was found in (2.2.12), defines a smooth hypersurface (an hyperboloid
with concavity facing the origin) in the positive orthant of Rm. This hypersur-
face intersects the k-th coordinate axis exactly at the value λ2

k equal to the error
variance of the k-th elementary regressor. Hence the m elementary regressors
are in a sense “extremal” solutions of the FA decomposition problem of rank
m− 1.

In general, to the equation det(Σ − Λ) = 0 one must couple the additional
constraints that all minors of orderm−1, . . . ,m−n+1 of the symmetric matrix
Σ − Λ should be zero. This also defines an algebraic surface intersecting Rm+
which is a subset of the hyperboloid mentioned above. If n > n∗(Σ) there are
in general many equivalent FA decompositions of Σ of rank n.

One may ask whether there may be a unique such decomposition and, in
particular, if n = n∗(Σ) implies uniqueness.

There was a popular conjecture that if

n ≤ 2m+ 1− (8m+ 1)1/2

2

then the model would be locally identifiable; that is the set of algebraic equa-
tions above would have, for a generic Σ, a unique solution {λ2

1, . . . , λ
2
m}. In other

words there would be a unique minimal FA model representing Σ. The upper
bound is known as the Ledermann bound; the inequality is actually equivalent to
m+ n ≤ (m− n)2. A derivation of the bound and some relevant references can
be found in [8]. However A. Shapiro in [87] and [88] shows that the bound is
not universal and points out some counterexamples.

The general hidden rank question is unsolved. One may however estimate
n∗(Σ) by minimizing with respect to {λ2

1, . . . , λ
2
m} the trace of Σ − Λ which is

interpreted as a convex surrogate of the rank, see [16] for an exhaustive bibliog-
raphy.

Example 5.3. Consider the linear FA model

y :=

[
y1

y2

]
=

[
a1

a2

]
x +

[
w1

w2

]
where x,w1,w2 are zero-mean uncorrelated scalar random variables having vari-
ances

var {x} = 1, var {w1} = σ2, var {w2} = σ2
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but the three scalar parameters

θ = [a1, a2, σ
2 ] , σ2 > 0 .

are all unkown. Assume that the (joint) covariance matrix Σ of y1, y2 is given
and positive definite. Show that the model is identifiable and that you can
uniquely compute its parameters from the spectral decomposition of Σ:

Σ =
[
u1 u2

] [λ2
1 0

0 λ2
2

] [
u1 u2

]>
where u1, u2 are the normalized eigenvectors and λ2

1 > λ2
2.

Solution: We need to solve for a decomposition Σ = aa> + σ2I ; which means
that we must solve for a and σ2 the two equations

a(a>ui) = (λ2
i − σ2)ui , i = 1, 2

Take σ2 = λ2
2 so that a>u2 = 0, which means that a must be parallel to u1

(the eigenvector which is orthogonal to u2). Then write a = αu1 and substitute
in the other equation to get α2 = λ2

1 − λ2
2. In conclusion we have the unique

solution (modulo sign of the square root)

a = u1

√
(λ2

1 − λ2
2) and σ2 = λ2

2 .

The model is therefore identifiable.
A faster but more abstract solution is to consider Σ − λ2

2I which must be
positive semidefinite and of rank one. 2

5.9 Comparison of the Bayesian and the ML estimators
It is instructive to compare the formulas of the MV estimator for the Bayesian
linear model (5.6.1) with those derived in Chap. 2 for the ML (or Markov) es-
timators. For ease of comparison we shall assume that in the Fisherian setting
the scalar parameter σ2 is known and included in the noise variance matrix R
and that the a priori covariance P is invertible. The estimators with the two
approaches are compared below:

BAYES

{
x̂(y) = (S>R−1S + P−1)−1 S>R−1y

Λ = (S>R−1S + P−1)−1
(5.9.1)

FISHER
(MARKOV)

{
θ̂(y) = [S>R−1S]−1 S>R−1y

Σ = [S>R−1S]−1 .
(5.9.2)

One can immediately note that when P → ∞ (meaning that the prior informa-
tion about x becomes more and more vague) the Bayesian formulas coincide
with the Fisherian counterparts. It is also evident that for any P one has

Λ ≤ Σ ,

since
P−1 + S>R−1S ≥ S>R−1S .
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hence (not surprisingly) the Bayesian estimator has always smaller variance
than that of the Fisher estimator which is derived in the absence of any a priori
information about x. Therefore the Fisherian formulas are a limit case of the
Bayesian expressions. This is however true only in a restricted sense. For regu-
larized linear least squares problems we have the followiing remarkable fact:

Theorem 5.6. The ridge estimator for a linear model y = Sθ + w, with a general
quadratic penalty term on θ defined by a symmetric positive definite matrix W ,

θ̂R(y) := Arg min
θ

{
‖y − Sθ‖2R−1 + λ‖θ‖2W

}
(5.9.3)

is the Bayes MV estimator of x for the model (5.6.1) where the inverse of the a priori
variance matrix is given by P−1 = λW .

This correspondence is based on formula (3.3.4). It has far reaching conse-
quences for the interpretation and solution of many linear ill-posed problems.
The interested reader may want to look at the book [101].

As we have seen the Bayesian estimator has always smaller (or equal) vari-
ance of that of the Fisher estimator. One may then wonder about the bias. It
is immediate to see that the linear Bayesian estimator x̂(y) in (5.9.1) can never
be unbiased (in the uniform sense). In fact, computing the mean with respect
to the conditional density f(y | x) = N (Sx,R) (now the analog of pθ(y) in the
Fisherian setting) of x̂(y) one gets

E (x̂(y) | x = x) = (S>R−1S + P−1)−1 S>R−1Sx

which cannot be identically equal to Ix unless P−1 = 0.
There is room here for some additional remarks. The first concerns the ex-

pression of the error covariance Λ, in general given by the difference

Λ = Σx − Σxy Σ−1
y Σyx , (5.9.4)

which is always at least positive semidefinite since it must be a covariance ma-
trix. The term Σxy Σ−1

y Σyx, which is subtracted off (Σx) is actually the estimator
variance Var x̂ so that one may say that a good estimator should have a large
variance, the closer to the a priori variance of x the better. This may look para-
doxical since it says that in the Byesian setting a good estimator should have
a large variance. This is so since the sample values of x̂ should not be concen-
trated about the mean (as in the classical philosophy) but rather approximate
as much as possible those of the variable x making E ‖x − x̂(y)‖2 as small as
possible.

It is also instructive to ask if there could be a Fisherian interpretation of the
Bayesian estimation formulas. To this end, imagine that the Markov estimate
could be obtained by introducing a fictitious additional measurement say

y0 = S0x+ w0 , (5.9.5)

which is available prior to the actual measurements described by the standard
model

y = Sx+ w .

In this model w0 and w are uncorrelated and now we interpret x as an unknown
n-dimensional deterministic parameter.
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Let us choose S0 and R0 := Var {w0} in such a way that

P = (S>0 R−1
0 S0)−1 , (5.9.6)

thereby making P equal to the variance of the Markov estimator x̂(y0) for the
model (5.9.5).

Write the linear Fisher estimator of x given the augmented observation vec-
tor (y0,y). Since y0 and y are uncorrelated we obtain

x̂(y0,y) = x̂(y0) + PS>(R+ SPS>)−1 [y − Sx̂(y0)] ,

Σ = P − PS>(R+ SPS>)−1 SP . (5.9.7)

Note that the second formula is equivalent (via the Matrix Inversion Lemma)
to the expression of the Bayesian error covariance Λ in (5.6.8) but the first one
coincides with the Bayes estimator if and only if the variance of x̂(y0) is equal
to zero so that it could be interpreted as a constant mean value. But by assump-
tion this variance is not zero. Hence there cannot be an additional measurement
doing the job.
Of course this is reasonable; in the Bayesian setting the a priori information is
not an additional sample measurement but only concerns the probability distribu-
tion of x. As we have seen the two things are not equivalent.

5.10 Examples

Example 5.4 (Direct sensing).
This is the simplest estimation problem which may for example occur when

measuring physical quantities like length, mass, resistance etc. In this case one
has direct measurements of the unknown (scalar) variable x plus noise so that
the function h in (??) is the identity. In other words, letting yi represent the i-th
measurement and assuming that x is real valued, one can model the observa-
tions as

yi = x + wi , i = 1, . . . , n (5.10.1)

where the wi’s are assumed to be zero-mean mutually uncorrelated random
variables representing “accidental errors”. We may allow the experimental ap-
paratus to change from one trial to another so that the error (or noise) variances
may be different.

To set up the experiment and actually to be able to choose the right appa-
ratus, one should always know a nominal value, say x0, of the variable under
measurement. Quite often there is also enough information about the range of
possible variations of x about its nominal value to guess a confidence interval
about it of the form of an interval x0 ± ∆x where the measured value will fall
with some fixed probability, say 95% . Assuming a Gaussian distribution one
may estimate its standard deviation σx by using a formula of the type

nσx = ∆x

where n may be equal to 2 or 3. A similar assessment can be made for the
standard deviation of the measurement errors based on the specifications of the
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measurement instruments. Usually in this case the confidence interval ampli-
tude, ∆w, is a certain fixed percentage say 1 or .5 % of the maximum reading of
the instrument. Hence we may well assume that in the model (5.10.1), P ≡ σ2

x is
known and, assuming that the measurement errors are mutually uncorrelated
the overall noise variance Ri,j = σ2

i δi,j ; i = 1, . . . , n with each σ2
i estimated by

a similar reasoning as for σ2
x, so that

R = diag {σ2
1 , . . . , σ

2
n} .

It is normally reasonable to assume that x and w are uncorrelated. As seen
already in Example 5.2, the model (5.10.1) can then be written in vector form as

y =


1
1
...
1

 x + w

with µx = x0, P = σ2
x and R as above.

Applying formula (5.6.7) we find

Ê (x | y) = x0 +

(
1

σ2
x

+

n∑
1

1

σ2
i

)−1 n∑
1

1

σ2
i

(yi − x0) .

When σ2
i = σ2 ; i = 1 . . . n; i.e. when the n measurements all have the same

precision, this expression reduces to

Ê (x | y) = x0 +
1

σ2

σ2
x

+ n

n∑
1

(yi − x0)

which, when σ2/σ2
x � n is just the sample mean. The variance of the estimate

is

λ2 = σ2
x

(
1 +

n∑
1

σ2
x

σ2
i

)−1

.

which, whenever σ2
x is very large, reduces to

λ2 ∼=

(
n∑
1

1

σ2
i

)−1

which is just equal to σ2/n when all measurements have the same precision.
In practice the computed value of λ is used to express the uncertainty on the

estimate x̂ = Ê (x | y = y), by reporting the result of the n measurements in the
form of a confidence interval centered on x̂; for example x = x̂± 2λ. When the
variables are Gaussian (or approximately such) one may say that x lies, with a
probability of about 95%, in the interval [ x̂− 2λ, x̂+ 2λ ]. ♦

Example 5.5 (Delay Estimation).
This is a common problem occurring in radar/sonar applications where the

delay in receiving a reflected wave (an “echo”) signal is twice the distance L of
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Figure 5.10.1. Radar

the object from the source instrument divided by the speed of light (or sound)
c. A sinusoidal waveform sent at time zero, after reflexion from the target is
received back with a time delay 2L/c so that the received signal is,

y(t) = A sin(Ωt− θ) + w(t) , t ∈ R (5.10.2)

where t is continuous time, Ω is the fixed carrier angular frequency, A is a
known normalized amplitude; and

• θ is the phase delay: θ = 2π
2L

λ
, where L is the distance and λ =

Ω

c
the wavelength, which we shall model as a random variable uniformly
distributed on the interval [0, 2π];16

• The signal at the receiver is actually sampled with period Ts and made
into a finite sequence of samples of lenght N so that, setting t = Tsk, the
actual measurement is

y(k) = A sin(ω0k − θ) + w(k) , k = 1, . . . , N (5.10.3)

where ω0 := ΩTs.

• Here w(k) is additive noise assumed i.i.d., independent of θ and of known
variance σ2.

The problem we are facing is to estimate the phase delay θ. This problem
is actually non linear but can be addressed by the linear estimation methodol-
ogy which we have discussed in this chapter, by introducing a fictitious two-
dimensional variable

x = [cosθ − sinθ]> (5.10.4)

16Since by periodicity we can discard the largest integer included in the wave number
2L

λ
.
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and by rewriting (5.10.2), using the trigonometric identity

sin(ω0k − θ) = sinω0k cosθ − cosω0k sinθ .

In this way we get the standard linear model y = Sx + w where

y =

 y(1)
. . .
y(N)

 , S = A

 sinω0 cosω0

. . . . . .
sinω0N cosω0N

 , w =

w(1)
. . .

w(N)

 . (5.10.5)

The first and second order moments of x are readily obtained from the distri-
bution of θ. They turn out to be

µx = 0 , P =

[
1/2 0
0 1/2

]
; (5.10.6)

while R = σ2 IN , where IN is the N × N identity matrix. Substituting in the
formulas (5.6.7) and (5.6.8) one gets

S>R−1S =
A2

σ2

[ ∑N
1 sin2 ω0k

∑N
1 sinω0k cosω0k∑N

1 sinω0k cosω0k
∑N

1 cos2 ω0k

]

S>R−1y =
A

σ2

[∑N
1 y(k) sinω0k∑N
1 y(k) cosω0k

]
.

From these formulas we can obtain a simple asymptotic expression for the esti-
mator. Rewriting (5.6.7) as

Ê (x | y) =

[
1

N
(P−1 + S>R−1S)

]−1
1

N
S>R−1y (5.10.7)

and letting N →∞, assuming ω0 6= kπ for k integer, we have

1

N

N∑
1

sin2 ω0k →
1

2
,

1

N

N∑
1

sinω0k cosω0k → 0 ,
1

N

N∑
1

cos2 ω0k →
1

2
,

(5.10.8)
which lead to the asymptotic expression (µx = [0 0]>)

Ê (x | y) ∼=
2

A

[
1
N

∑N
1 y(k) sinω0k

1
N

∑N
1 y(k) cosω0k

]
(5.10.9)

which can be shown to converge to the parameter (5.10.4). In fact, by indepen-
dence, the law of large numbers implies that asN →∞, 1

N

∑N
1 w(k) sinω0k →

Ew(k) sinω0k = 0 almost surely (and likewise for the cos function). Then by
just substituting the noiseless signal A sin(ω0k − θ) in (5.10.9) and using the
asymptotic expressions (5.10.8) we can conclude that

lim
N→∞

2

A

[
1
N

∑N
1 y(k) sinω0k

1
N

∑N
1 y(k) cosω0k

]
=

[
cosθ
− sinθ

]
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almost surely. The asymptotic error variance is

Λ ∼=
2σ2

A2N
I2 . (5.10.10)

Using a result due to Cramèr, see e.g [30, Theorem 7, p. 45] this formula can
be used to compute an asymptotic expression for the variance of the random
variable θwhich is expressible as arctan x2

x1
. However we shall not insist further

on this point. ♦

Example 5.6 ( A case when the linear estimator is meaningless).
Consider the stochastic process {x(t)} := {sinωt , t ∈ Z} where ω is a

random variable uniformly distributed on the interval [−π, π] and assume we
want to construct the linear estimator of a variable x(t) for some fixed t, based
on a fixed but arbitrary number of observations {x(s) , s < t} (or even s 6= t).

Since, for s 6= t

〈x(t) x(s)〉H =
1

2π

∫ π

−π
sinωt sinωs dω = 0

the random variables x(t) and {x(s) , s < t} are uncorrelated. The linear m.v.
estimator of x(t) given any number of variables {x(s) , s < t} is then Ex(t) = 0
and its error variance is therefore equal to the whole a priori variance of x(t).

Note on the other hand that {x(t)} satisfies the linear difference equation

x(t)− 2 cosω x(t− 1) + x(t− 2) = 0 , t ∈ Z

from which one can obtain the angular frequency ω as

ω = arccos
[

x(t) + x(t− 2)

2x(t− 1)

]
and hence we can reconstruct exactly the sample value of ω corresponding to a
sample trajectory of the process {x(t)}. This means that we can construct a non
linear estimator of x(t) based on the variables x(t− 1),x(t− 2),x(t− 3)}

x̂(t) = sin

{
arccos

[
x(t− 1) + x(t− 3)

2x(t− 2)

]
t

}
which reconstructs exactly the variable x(t) and obviously has error variance
equal to zero. ♦

Example 5.7. Consider the standard linear minimum variance estimator x̂(y)
of the n vector x in the usualN -dimensional liner model where all variables are
zero-mean and Var {w} = I ,

y = Sx + w .

Is it true that you can also write

y = Sx̂(y) + ŵ

for some other random noise vector ŵ uncorrelated with x̂(y)? What would be
the variance matrix of this noise vector?
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Solution This would clearly be true in the classical (non-Bayesian) context since
in this case x̂(y) = (S>S)−1S>y and, recalling that ŵ = y − Sx̂(y) = (I −
Π)y where Π = S(S>S)−1S> is the orthogonal projection onto span S, it is
immediate to check that

E (I −Π)yy>S(S>S)−1 = 0 .

This is not necessarily true in the Bayesian case. Recall that Σy = SPS> + I
(here we use P for the a priori variance of x) and

ŵ := y − SΣx,yΣ−1
y y = (I − SPS>Σ−1

y )y ,

so that

E ŵx̂(y)> = (I − SPS>Σ−1
y )ΣyΣ−1

y SP =

= SP − SPS>Σ−1
y SP = SP (I − S>Σ−1

y SP )

which (assuming P non singular) could be zero only if S>Σ−1
y S = P−1. Using

the matrix inversion lemma, this can be rewritten

S>S − S>S(S>S + P−1)−1S>S = P−1

which, denoting V := S>S (an invertible n × n matrix) and using the matrix
inversion lemma again, leads to

(V −1 + P )−1 = P−1 ,

that is, V −1 + P = P which can happen only if V −1 = 0, which means that x is
a deterministic parameter.
This calculation could be done more easily in the scalar case with N = 1.

Example 5.8 (Comparing Bias and Variance). Consider the usual linear regres-
sion problem with data {S ∈ RN×p, y ∈ RN}, which is modeled under the
Bayesian setting as a sample from a Gaussian conditional distribution, given
the random parameter x:

f(y | x = θ) ≡ N (Sθ, σ2IN ) ,

where x has the prior distribution x ∼ N (θ0, τ
2Ip).

We want to compute the Bayes estimate of x and compare its bias and vari-
ance with those of the classical parameter estimate θ̂. You may assume p = 1
(scalar parameter and S ≡ s a vector in RN ).

Solution:
Assume p = 1 and for the moment θ0 = 0; then the Bayes estimator is

x̂(y) =
s>y

‖s‖2 +
σ2

τ2

which has expected value

E θx̂(y) =
‖s‖2θ

‖s‖2 +
σ2

τ2
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This can be equal to θ only for τ2 →∞. The relative bias is

θ − E θx̂(y)

θ
=

σ2

τ2

‖s‖2 +
σ2

τ2

=
1

1 + ‖s‖2 τ
2

σ2

.

The ratio ‖s‖2 τ
2

σ2
could be called the signal to noise (power) ratio. The higher this

ratio the smaller the error.
For θ0 6= 0 the bias is

θ − E θx̂(y) =

σ2

τ2
(θ − θ0)

‖s‖2 +
σ2

τ2

and we can get the same conclusion normalizing with respect to θ− θ0 which is
the deviation with respect to the a priori nominal value.

The comparison of the two variances is easily done by the theory exposed
above.

5.11 Bayesian Linear Algebra
We shall start by discussing the operation of change of basis in a finite dimen-
sional subspace of H. Assume that the n components of the vector y = [y1, . . . ,yn]>

are linearly independent. Consider n other linearly independent random vari-
ables in H, z1 , . . . , zn , collected in a random vector z, which are such that

H(z) = H(y) . (5.11.1)

It is quite obvious that each component z being a linear function of y, there
must be a linear relation between y and z

z = Ty (5.11.2)

where T ∈ RN×N must be non-singular since by (5.11.1) it must also be pos-
sible to write y = Sz with S ∈ Rn×n, which entails y = STy, and by right-
multiplying by y> and taking expectation, Σy = ST Σy implies ST = I). The
components of z form a new basis in H(y). It follows from (5.11.2) that T can
actually be computed from the joint moments of z and y, since from Σzy = T Σy

we obtain
T = Σzy Σ−1

y (5.11.3)

which is equivalent to saying that z = Ê (z | y), that is z coincides with its
orthogonal projection onto H(y)). Likewise, we have

Σz = T Σy T
> . (5.11.4)

Let now x be any random vector in H and let’s see how the orthogonal projec-
tion operator Ê (x | y) = Ay changes by introducing a new basis in H. Let then
Ê (x | z) = Âz where

Â = Σxz Σ−1
z . (5.11.5)



192 Chapter 5. BAYESIAN STATISTICS

From (5.11.2) we have Σxz = Σxy T
> and, using (5.11.4), it readily follows that

Â = Σxy Σ−1
y T−1 = AT−1 . (5.11.6)

Hence, the transformation mapping Ê (x | y) = Ay to Ê (x | z) induced by the
change of basis, simply applies the change of basis transformatio (5.11.2) to the
variable y. In other words, the linear map A remains invariant and the change
of basis is only applied to the argument y.
This property is actually a “wide sense” form of a general property of condi-
tional expectation in Probability Theory. In this setting, the conditional expec-
tation E (x | y), only depends on the σ-algebra induced by the random vector y and
this σ-algebra is the same as that induced by any invertible measurable function
z = ϕ (y) of y. In other words, the conditional expectation given z is obtained
by just applying the change of variable formula; i.e.

E (x | z) = [E (x | y)]y=ϕ−1(z) .

Problem 5.6.
Let y be a zero-mean random vectors in H. Again denote Ê (x | y) := Ay but now

assume that z := Ty + b, with T invertible and b ∈ Rn. Now since z is not zero mean,
Ê (x | z) cannot, strictly speaking, be interpreted as an orthogonal projection. Show
that

Ê (x | z) = AT−1(z− b) .

so that the m.v. estimator still depends on the centered random variable z − b and is
therefore an orthogonal projection. More generally, Ê (x | y + b) does not depend
on b. For this reason, even when the mean of y is not zero, one can safely use the
same symbol Ê(x | y) to denote the linear m.v. estimator given y and the orthogonal
projection of x onto H(y) whose definition requires instead Ey = 0. ♦

Linear estimation with linearly dependent data

In this section we want to generalize formula (5.5.9) to linearly dependent data;
i.e. to the situation when Σy may be singular.
Let’s then assume that rank Σy = r with r ≤ m, in which case there are only
r components of y which are linearly independent random variables and let
z := T̄y, T̄ ∈ Rr×m be a r-dimensional basis of H(y) for example made by
extracting r components of y, so that

H(z) = H(y) . (5.11.7)

As we have just seen, since z and y span the same Hilbert subspace, it must
hold that

Ê [x | y] = Ê [x | z] = Σxz Σ−1
z z. (5.11.8)

where Σz is invertible by construction. Hence, in order to compute Ê [x | y]
we need to find a suitable z and then apply formula (5.11.8). In more concrete
terms, we need a procedure to compute the matrix T̄ which selects a basis for
H(y).

Let V ∈ Rm×(m−r) be a matrix whose columns form a basis for the nullspace,
ker Σy, of Σy; in other words, Σyv = 0, v ∈ Rm, if and only if v is a linear combi-
nation of the columns of V . Since Σy is symmetric, Im Σy = [ker Σy ]⊥, where
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Im denotes the range (or image) space. We can therefore produce another ma-
trix, U ∈ Rm×r whose columns are a basis for the complementary image space
of Σy. In this way the matrix

S := [U | V ]

is non-singular by construction. We shall now prove the following lemma.

Lemma 5.3. The random vectors z which form a basis for H(y) are all expressible as

z = U>y (5.11.9)

where U is a matrix whose columns form a basis for Im Σy.
Given any such matrix U , the linear m.v. estimator of x can be written in the form

Ê [x | y] = ΣxyU(U>ΣyU)−1U>y (5.11.10)

where the matrix U(U>ΣyU)−1U> does not depend on the particular choice of U but
only depends on the image space Im Σy.

Proof. Let y
U

:= U>y and y
V

:= V >y where U and V are the matrices as
defined before. Observe that y

V
:= V >y = 0 (with probability one). In fact,

Σy
V

= E [V >yy>V ] = V >E [yy>]V = V >ΣyV = 0

which just says that the variance of y
V

is zero. It follows in particular, that

S>y =

[
U>

V >

]
y =

[
y
U

0

]
(5.11.11)

Now, since S> is non singular, H(y) = H(S>y). On the other hand, the last
m− r components of S>y are zero so that H(S>y) = H(y

U
) and hence

H(y) = H(y
U

) .

Note that Σy
U

= U>ΣyU is positive definite (non singular). For if w ∈ ker Σy
U

then ΣyUw = 0. But the columns of U belong to the orthogonal complement of
ker Σy, and hence this implies Uw = 0 which, given that the columns of U are
linearly independent (they are in fact a basis for [ker Σy]⊥), implies in turn that
w = 0. To conclude just note that

Σxz Σ−1
z z = E

[
xy>U

]
(E [U>yy>U ])−1U>y

which proves the equality (5.11.10).

Observe that there are infinitely many ways to choose the matrix U and
that to each such choice there corresponds a different z; nevertheless the last
member of (5.11.10) is independent of this choice.

The use of formula (5.11.10) requires a preliminary calculation of a basis
matrix for Im Σy. An alternative way to compute the estimator is to use the
Moore-Penrose pseudoinverse. See Appendix B.2 for a definition and a review
of the main properties of this pseudoinverse.

Proposition 5.6. For a possibly singular Variance matrix Σy, the linear m.v. estimator
can be expressed as

Ê [x | y] = Σxy Σ+
y y. (5.11.12)
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where Σ+
y is the Moore-Penrose pseudoinverse of Σy.

Proof. By Lemma 5.3, it will be enough to show that U(U>ΣyU)−1U> = Σ+
y

for whatever basis matrix U for the subspace Im Σy. Recall that, by the very
definition of V , V >Σy = 0 and ΣyV = 0 and that, without lossof generality we
may choose the columns of V and of U in such a way the S =

[
V U

]
is an

orthogonal matrix. Then by known properties of the pseudoinverse, see (??),

Σ+
y =

S−>
[
U>

V >

]
︸ ︷︷ ︸

S>

Σy [U | V ]︸ ︷︷ ︸
S

S−1


+

= S

[[
U>

V >

]
Σy[U | V ]

]+

S> =

S

[
U>ΣyU 0

0 0

]+

S> = [U | V ]

[
(U>ΣyU)−1 0

0 0

] [
U>

V >

]
=

U(U>ΣyU)−1U> (5.11.13)

which is what we wanted to show.

Let us note that since the Moore-Penrose pseudoinverse is unique, formula
(5.11.12) shows once again that the m.v. estimator does not depend on the
choice of the basis z.

When Σy is singular most numerical statistical packages automatically com-
pute the pseudoinverse.

Problem 5.7. Let

X =

[
A B
B> D

]
∈ R(n+m)×(n+m)

be symmetric. Prove that X is positive semi-definite if and only if D ≥ 0, kerD ⊆
kerB and the generalized Schur complement S := A−BD+B> is positive semidef-
inite.

Innovations

When the components (y1, . . . ,ym) of the observation vector y are orthonormal;
i.e. uncorrelated and of unit variance, the variance matrix Σy is the m × m
identity and the calculation of the m.v. estimator becomes trivial. In fact, in this
case formula (5.5.11) reduces to

Ê (x | y) = Σxy Σ−1
y y = Σxy y (5.11.14)

whence the matrix A is simply the covariance Σxy, of x and y.
A natural idea is then to change basis in H(y), to get an orthonormal one. We

shall describe a procedure, the Gram-Schmidt orthogonalization on H(y), which
orthonormalizes the components of y in a sequential fashion. The result of this
procedure depends on the ordering of the components and has important gen-
eralizations and applications to stochastic processes. In this setting one may
interpret the components y1, . . . ,ym as scalar observations which are made
sequentially in time y1 being the first and ym the last one. We shall assume



5.11. Bayesian Linear Algebra 195

throughout that {y1, . . . ,ym} are linearly independent so that the variance ma-
trix with elements σij = E (yiyj),

Σy =

σ11 σ12 . . . σ1m

σ21

σm1 . . . . . . σmm

 ,

is positive definite (and of course symmetric). We shall extensively use the no-
tation yt := [y1, . . . ,yt]

>; (t ≤ m). Evidently ym ≡ y.

The Gram-Schmidt Orthonormalization in H(y) works as follows: set

e1 := y1 ; ε1 := e1/‖e1‖

e2 := y2 − 〈y2, ε1〉 ε1 ; ε2 := e2/‖e2‖

. . . . . . . . . . . . . . . . . . . . .

et := yt −
∑t−1
k=1 〈yt, εk〉 εk ; εt := et/‖et‖

t = 2, 3, . . . ,m .

(5.11.15)

then

Theorem 5.7. The random variables {et , t = 1, 2, . . . ,m} defined by the recursion
(5.11.15) are one-step ahead linear prediction errors of yt based on yt−1, in the sense
that

et = yt − Ê (yt | yt−1) , t = 1, 2, . . . ,m (5.11.16)

and {εt , t = 1, 2, . . . ,m} are the corresponding prediction errors normalized to unit
variance.
There is a lower triangular non-singular matrix Lt which, for each t relates εt to yt by
a linear causal relation

yt = Lt ε
t (5.11.17)

“causality” being defined as the subspace equality

H(εt) = H(yt) . (5.11.18)

holding for each t = 1, 2, . . . ,m. The matrix L ≡ Lm is a lower triangular factor
of Σy,

Σy = LL> . (5.11.19)

Proof. Orthonormality of the sequence {εt} can be shown by induction, being
trivially true for t = 1 and, based on the last relation in (5.11.15) one can argue
as follows. Assume {εt−1} has orthonormal components; then

〈et, εk〉 = 〈yt, εk〉 − 〈yt, εk〉 = 0 , for all k < t

so that 〈εt, εk〉 = 0 for k = 1, 2, . . . , t − 1 and hence εt has also orthogonal
components. That εt is also normalized is obvious.

Next, solving (5.11.15) with respect to yt we find
y1

y2

...
yt

 =


‖e1‖ 0 0
〈y2, ε1〉 ‖e2‖0 0

...
〈yt, ε1〉 . . . ‖et‖



ε1

ε2

...
εt

 (5.11.20)
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which shows the lower triangular structure of the matrix Lt in (5.11.17). Note
that the diagonal terms must all be non-zero; i.e. ‖et‖ > 0 for all t, since et = 0
would imply yt ∈ H(εt−1) ⊂ H(yt−1) in force of (5.11.15) and this is clearly
impossibile since the components {yt} are linearly independent. In conclu-
sion, the transformation (5.11.20) is invertible and this proves the validity of
the causality relation (5.11.18).

Since the {εk , k ≤ t} are orthonormai, (5.11.14) provides

Ê
[
yt | εt−1

]
=

t−1∑
k=1

〈yt, εk〉 εk

which is the change of variables formula (5.11.6) for the projection Ê [yt | yt−1].
Finally, (5.11.19) is an immediate consequence of (5.11.17) (written for t = m)

and of the orthonormality of εm.

The sequence of prediction errors {et} defined in (5.11.16) has been named
the innovation sequence of the observation vector y while ε is called the nor-
malized innovation sequence of y. This terminology was introduced by Norbert
Wiener and Pesi Masani in their famous paper [106] on prediction theory. In
a sense the prediction error et or its normalized counterpart εt represent the
“new information” brought in by the t-th observation yt, once the previous
t − 1 preceding observations are available and used for linear prediction. The
predictable part (in fact the linearly predictable part ) of yt based on yt−1 being
just the m.v. estimate Ê [yt | yt−1].

A consequence of the causal equivalence relation is that by solving sequen-
tially the equations (5.11.15), εt can be represented as a linear function of the
past and present observations yt but also, conversely, yt can be expressed as a
linear function of past and present normalized (or unnormalized) innovations
εt. This representation can be computed by extracting the t-th row, say gt of
L−1 (which is still lower triangular, see Problem ??) thereby expressing εt as a
causal linear function of yt

εt = gty = gt y
t

since the lower triangular structure ofL−1 = [ gt,s ]t,s=1,...,m implies that gt,t+1 =
gt,t+2 = . . . , gt,m = 0. The property of causal equivalence of the innovation ε
and the obseravtions y, expressed by (5.11.18), is of fundamental importance in
prediction theory.

Problem 5.8.
a) Prove that the product of two lower triangular matrices is lower triangular.
c) Prove that the inverse of an invertible lower triangular matrix is lower triangular.
d) Prove that the inverse of a lower triangular matrix of 1’s is a lower triangular matrix
of 1’s.

We shall now briefly look into the question of uniqueness of the innovation
sequence.

Let then ε̄ = {ε̄t , t = 1, . . . ,m} be another orthonormal basis in H(y).
Since H(y) = H(ε) = H(ε̄), the vectors ε and ε̄ are related by a non-singular
transformation Q ∈ Rm×m,

ε̄ = Qε .
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Since Σε̄ = I and Σε = I , Q must be an orthogonal matrix; i.e.:

QQ> = I . (5.11.21)

Now to be an innovation sequence ε̄ must also satisfy the causal equivalence
condition (5.11.18) which clearly implies that Q must have a lower triangular
structure. However since Q is orthogonal; i.e. Q−1 = Q>, it follows that Q−1

must be at the same time lower and upper triangular, that is a diagonal matrix
and hence Q must be a signature matrix that is a diagonal matrix with elements
±1. This means that the innovation sequence is essentially unique. Therefore:

Proposition 5.7. There is a unique (modulo sign) m-tuple of orthonormal random
variables {εt} which satisfies the causal equivalence condition (5.11.18).

Cholesky factorization: As we have seen, the orthonormalization of the obser-
vation vector requires a lower triangular factorization (5.11.19) of the variance
matrix Σy (which we shall assume positive definite throughout). Once calculat-
ing L the innovation vector is obtained as ε = L−1y. We shall here address the
calculation of L via a popular algorithm called Cholesky Factorization.

In general, finding a matrix T such that I = T Σy T
> is the same as finding

an invertible S ∈ Rm×m such that SS> = Σy and then T = S−1. There are
many such square roots of Σy.

Theorem 5.8. Let Q = Q> be positive definite. There is a unique lower triangular
matrix L, with positive diagonal elements such that Q = LL>.

Proof. By induction on the dimension k of Q. Let

Qk+1 =

[
Qk r
r> q

]
∈ R(k+1)×(k+1)

be symmetric and positive definite. Then a factorization Qk+1 = Lk+1L
>
k+1 can

hold with lower triangular factors of the form :

Lk+1 =

[
Lk 0
`> λ

]
L>k+1 =

[
L>k `
0 λ

]
if and only if

Lk L
>
k = Qk

Lk ` = r

`>`+ λ2 = q .

the first of which is true by the inductive hypothesis since Qk is symmetric and
positive definite. The second equation yields ` = L−1

k r which substituted into
the third yields a unique positive solution λ, since the difference

q − `>` = q − r>(L>k )−1 L−1
k r = q − r>Q−1

k r

is the positive Schur complement of Qk. In fact

q − r>Q−1
k r = [r>Q−1

k − 1]

[
Qk r
r> q

] [
Q−1
k r
−1

]
≥ 0 .
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An equivalent proof of positivity is obtained by interpreting Q as the variance
matrix of a zero-mean random vector y (which is always possible) so that λ2 =
q− r>Q−1

k r becomes just the error variance of the m.v. estimate of the variable
yk+1 based on yk (see formula (5.5.13)). This error variance must be positive
since the components of yk+1 are lineary independent for all k.

The factor L = [`ij ] can be computed by the following algorithm which
works sequentially starting from the upper left element `1,1 :=

√
q11 descending

and working from left to right.

Algorithm 5.1. 1. The diagonal elements `ii are computed by

`ii =

√√√√qii −
i−1∑
j=1

`2ij i = 1, . . . , n . (5.11.22)

2. Assuming the first i− 1 rows of L have been computed, the elements of the following
i-th row are given by

`ij =
1

`jj

(
qij −

j−1∑
k=1

`ik `jk

)
j = 1, . . . , i− 1 (j < i) . (5.11.23)

This equation requires the elements of the i-th row `i1, . . . , `i,j−1 and the previous
elements `j1, . . . , `j,j−1 of the j-th row which are all known since the j-th row lies
above the i-th.

Note that the algorithm has a recursive structure and can be continued in-
definitely as it is independent of the dimension m. It can in fact be applied to
perform the orthonormalization of stochastic processes.

Solution of some algebraic equations by Cholesky factorization

Consider an algebraic linear equation

Qx = b (5.11.24)

where Q ∈ Rn×n is symmetric and positive definite. Equations of this kind are
fairly common in Statistics and frequently occur in computations of probabilis-
tic quantities where Q is typically a Variance matrix.

A standard algorithm to solve (5.11.24) goes as follows.

1. Compute the Cholesky factorization

Q = LL> .

2. Define L>x = z (z is an intermediate variable to be determined) and solve
the triangular linear system

Lz = b .

Because of the triangular structure this system can be solved easily start-
ing from the top equation proceeding downward by successive substitu-
tions.
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3. Once z is found, solve
L>x = z .

Again, since L> is upper triangular, the calculations can be done by suc-
cessive substitutions upward starting from the solution of the bottom equa-
tion.

In particular, the algorithm can be used to compute the inverse ofQ by solv-
ing the n linear equations for the columns of Z :=

[
z1 . . . zn

]
, one for each

column of the identity matrix on the right hand side of

LZ = I .

This provides Z = L−1 (lower triangular) so that

Q−1 = Z>Z .

One application of the algorithm is to compute the matrix A = Σxy Σ−1
y repre-

senting the m.v. estimator of a random vector of x based on y. Since A is the
solution of

Σxy = AΣy (5.11.25)

so the transpose of this equation is of the standard form discussed above. In
particular one can see that the solution of (5.11.25) corresponding to the solution
via the Cholesky factorization Σy = LL> has the structure

A =
(
Σxy L

−T ) L−1 . (5.11.26)

This formula has a far reaching generalization to the case where x and y are
two stationary stochastic processes, as it will be seen in Chapter ??. The reader
is invited to appreciate that the estimator written in the form (5.11.26) does a
preliminary “whitening” of the observations y by calculating the product L−1y
and then uses the cross-covariance of x and of the innovations process ε; in fact,
Σxy L

−> = Σx,ε.
The preliminary whitening of the observation signal is a basic step in the

dynamic estimation theory of stochastic processes. See e.g. Chap 4 of [58].
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5.12 Bayesian Hypothesis Testing
In the Bayesian framework the partition of the parameter space is chosen at ran-
dom by “nature” according to some a priori discrete probability distribution on,
say, the finite set 1, 2, . . . ,M indexing the subsets (1.4.1). The hypothesis testing
problem becomes then the estimation of the sample value of a discrete random
variable which can possibly take M values on which one has an a priori distri-
bution. We are given a complete joint probabilistic description of this random
variable and of the observation vector y so we can compute the a posteriori
probability distribution

fk(y) := P{Hk | y = y} , k = 1, 2, . . . .M . (5.12.1)

A natural estimation criterion in this finite setting is to choose as best estimate
the value of k which maximizes the conditional distribution (5.12.1) for each
fixed observed sample y. This is actually the same Maximum A Posteriori
(MAP) estimate discussed in Sect. 5.2 but applied to estimation of a discrete
(often just binary-valued) random variable.
Two Simple Hypotheses: Suppose that we need to decide between two hypotheses
H0 and H1. In the Bayesian setting the two hypotheses are the two possible
determination of a binary random variable (the “randomized” parameter). We
assume that we know the prior probability distribution of this random variable.
That is, we know P (H0) = p0 and P (H1) = p1, where of course p0 + p1 = 1. We
observe a N -dimensional random vector y (the data) and we assume we know
the conditional distribution of y under the two hypotheses, denoted p(y | H0)
and p(y | H1).

Using Bayes’ rule, we can obtain the posterior probabilities of H0 and H1:

P (H0 | y = y) =
p(y | H0)P (H0)

p(y)
, P (H1 | y = y) =

p(y | H1)P (H1)

p(y)
.

(5.12.2)
and the decision between H0 and H1 is just to accept the hypothesis with the
highest posterior probability. As noticed before, this is exactly maximum a pos-
teriori estimation and the procedure could be called MAP test. Note that one
could equivalently say to accept H1 if the observation y is such that

P (H1 | y = y)

P (H0 | y = y)
≥ 1

which is the same as
p(y | H1)P (H1)

p(y | H0)P (H0)
≥ 1 or, choose H1 if and only if the Like-

lihood Ratio satisfies the inequality:

Λ(y) :=
p(y | H1)

p(y | H0)
≥ p0

p1
(5.12.3)

This inequality is very similar to the Neyman-Pearson decision rule (1.4.8), with
the threshold k being now determined by the a priori distribution. It determines
the region of the sample space RN where one acceptsH1 (or rejectsH0). We shall
still denote this region by the symbol C. Now the probabilities of missclassifica-
tion are

α =

∫
C

p(y | H0) dy , β =

∫
C̄

p(y | H1) dy
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(here C̄ is the complement of C) so that the the overall error probability is Pe =
αp0 + βp1.

Proposition 5.8. A Maximum a Posteriori test minimizes the overall error probability.

Proof. The expression for the overall error probability

Pe =

∫
RN

IC p(y | H0)p0 dy +

∫
RN

[1− IC ] p(y | H1)p1 dy (5.12.4)

can be rewritten∫
RN

IC {p(y | H0)p0 − p(y | H1)p1} dy +

∫
RN

p(y | H1) dy p1

where the last term is equal to p1 and does not depend on C; i.e. does not depend
on the decision rule. The minimum is achieved when the first integrand has the
largest possible negative value; that is when C coincides exactly with the set
where p(y | H0)p0 − p(y | H1)p1 ≤ 0. This is precisely the decision region
dictated by the MAP test (5.12.3).

The result actually holds also when y is a discrete random variable. In this
case one uses probability mass functions instead of the PDF.
The MAP test can be easily generalized to multiple hypotheses and the propo-
sition continues to hold also in this case.

Exercise: Prove proposition 5.8 in the case of M simple hypotheses.

Utility and Minimum Cost Hypothesis Testing
It should be clear from the MAP decision rule that Bayesian Hypothesis test-

ing is not privileging one particular hypothesis with respect to the other. Some-
times however one should actually consider this possibility. Suppose that you
are building a sensor network to detect fires in a forest. Based on the informa-
tion collected by the sensors, the system needs to decide between two opposing
hypotheses:
H0: There is no fire,
H1: There is a fire.

There are two possible types of errors that we can make: We might accept
H0 while H1 is true, or we might accept H1 while H0 is true. Note that the cost
associated with these two errors are not the same. In other words, if there is a
fire and we miss it, we will be making a costlier error. To address situations like
this, one may associate a cost to each error type:

c1|0: The cost of choosing H1, when H0 is true.
c0|1: The cost of choosing H0, when H1 is true.

Of course the cost incurred by a decision will be a random variable c(y)
depending on y. Its expected value can be written as

E c(y) = P (chooseH1 | H0)p0c1|0 + P (chooseH0 | H1)p1c0|1.

where the conditional probabilities can be expressed as

P (chooseH1 | H0)=

∫
RN
IC p(y | H0) dy , P (chooseH0 | H1) =

∫
RN

[1−IC ] p(y | H1) dy
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and one may look for a decision rule minimizing the expected overall cost.
Luckily, this can be done easily since the above expression of E c(y) is very
similar to the overall error probability of the MAP test of (5.12.4). The only
difference is that now we have p0c1|0 in place of p0, and p1c0|1 instead of p1.
Therefore, we can use a decision rule similar to the MAP decision rule. More
specifically, we choose H0 if and only if

p(y | H0)p0c1|0 > p(y | H1)p1c0|1 . (5.12.5)

Here is another way to interpret the above decision rule. If we divide both sides
of Equation (5.12.5) by p(y) and apply Bayes’ rule, we conclude the following:
We choose H0 if and only if

P (H0 | y = y)c1|0 > P (H1 | y = y)c0|1. (5.12.6)

Note that P (H0 | y = y)c1|0 is the posterior conditional expected cost of accepting
H1 whenH0 is the true probability. We call this the posterior risk of acceptingH1.
Similarly, P (H1 | y = y)c0|1 is the posterior conditional expected cost of accepting
H0 whenH1 is the true probability. Therefore, we can summarize the minimum
cost test as follows: We accept the hypothesis with the lowest expected posterior cost.

Example 5.9. Suppose that a binary random variable x is transmitted over a
communication channel. Assume that the received signal is given by

y = x + w,

where w ∼ N (0, σ2) is independent of x. Suppose that x = 1 (H1) with prob-
ability p, and x = 0 (H0) with probability 1 − p. The goal is to decide between
x = 1 and x = 0 by observing the random variable y. Find the MAP test for
this problem.
Generalize to a random sample y of size N .
Solution :
The two conditional densities are

p(y | H1) = N (1, σ2) , p(y | H0) = N (0, σ2)

and the critical region is then

C = {y | exp
1

2σ2

[
y2 − (y − 1)2

]
≥ 1− p

p
}

which can be easily computed by taking logarithms and turns out to be a half
line.
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Composite hypotheses

Suppose now that the decision regards two (disjoint) subsets of the parameter
space say

H0 ≡ {θ ∈ Θ0} ; H1 ≡ {θ ∈ Θ1} (5.12.7)

assuming that Θ0 and Θ1 are well behaved subsets of Rp and that we are given
an a priori density p(θ) on the parameter space.

A MAP decision procedure should again be based on the rule: accept H1 if
the inequality

P (H1 | y = y)

P (H0 | y = y)
> 1 (5.12.8)

is satisfied and accept insteadH0 in the opposite case. Now however we cannot
transform this into a Likelihood Ratio inequality like (5.12.3) since the condi-
tional probabilities there are well defined only for simple hypotheses. We can
instead proceed as follows: first compute the a posteriori conditional probabil-
ity density f(θ | y = y) by Bayes rule and then integrate over the two subsets
(5.12.7) using the prior. The following example should clarify the procedure.

Example 5.10. Given a random sample {y1, y2, . . . ,yN } drawn from a Gaussian
density N (θ, 1) and a Gaussian a priori distribution on the parameter

θ ∼ N (0, σ2)

where σ2 is known, you need to decide which of the two composite hypotheses

H0 ≡ {θ ≤ c, };
H1 ≡ {θ > c }.

has generated the data. Describe your decision policy using a MAP criterion.

Solution: By independence the Gaussian conditional probabilities will depend
on the data only through the sample mean (a sufficient statistics). We just need
to compute the two a posteriori probabilities P{H0 | ȳN} and P{H1 | ȳN} by
integrating the conditional density

p(θ | x̄N = x̄N ) =
1

p(x̄N )

NN/2

[(2π)N+1σ2]1/2
exp− {N

2
(x̄N − θ)2 +

θ2

2σ2
}

on the two sets Θ0 and Θ1. Since the denominator cancels, the ratio (5.12.8)
reduces to

P{H1 | ȳN = x̄N}
P{H0 | ȳN = x̄N}

=

∫ +∞
c

exp− {N2 (x̄N − θ)2 +
θ2

2σ2
} dθ∫ c

−∞ exp− {N2 (x̄N − θ)2 +
θ2

2σ2
} dθ

.

The calculations are left to the reader. One can show that the ratio depends on
the data only through ȳN . We should choose H1 if the ratio is greater than 1
and H0 otherwise.

Note that the priors are

p0 =

∫ c

−∞

1√
2πσ2

exp−1

2

x2

σ2
dx p1 =

∫ +∞

c

1√
2πσ2

exp−1

2

x2

σ2
dx

so that p0 > p1 iff c > 0 and p0 < p1 in the other case. 2
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5.13 Classification by Logistic Regression
As we have just seen, in Bayesian classification, the assignment of an hypothesis
(or a pattern) in a class is performed based on the posterior probabilities, P (· |
y). This is in general, not an easy task since calculation of the posteriors requires
the a priori distribution and the conditional pdf’s of the observations given the
pattern, which is lots of information often not available in practice. The idea of
logistic regression is to model the posterior probabilities directly, via a simple
log-linear model and estimate them directly from the data.

In this section, following [95, p. 291] we shall discuss a simple such model
called logistic regression model. This name has been established in the statistics
community, although the model refers to classification and not to regression. It
is a typical example of empirical, sometimes called discriminative, modeling ap-
proach, where the distribution of the data is of no interest and is not estimated.

We shall only discuss the two-class case: Assume the feature measurements
y are p-dimensional. The starting point is to model the log of the ratio of the
posteriors as a linear function of the observation,

log
P (H1 | y)

P (H0 | y)
= θ>y (5.13.1)

where θ is a p + 1-dimensional parameter with constant term θ0 absorbed in
the vector θ. The likelihood ratio is then an exponential function of θ>y so that
whenever θ>y > 0 one chooses H1 and instead when θ>y < 0 one decides
for H0. The decision boundary is therefore the hyperplane θ>y = 0. This can
be made into a more general affine hyperplane boundary by augmenting the
dimension of the feature space introducing an artificial zeroth-index coordinate
x0 = 1. Since

P (H1 | y) + P (H0 | y) = 1

dividing both members by P (H0 | y) one finds

P (H0 | y) =
1

1 + eθ>y
:= σ(θ>y) (5.13.2)

P (H1 | y) =
eθ
>y

1 + eθ>y
= 1− σ(θ>y) (5.13.3)

These formulas involve the function

σ(x) :=
1

1 + exp(x)

which is a symmetric version of the ubiquitous sigmoid function σ(−x) widely
used in Neural Network models. Although it may sound a bit mystical as to
how one thought of such a model, it suffices to look more carefully at (5.13.2)
to demystify it. Assuming the data in the two classes follow Gaussian distribu-
tions with Σ1 = Σ0 = Σ and for simplicity that the priors are equal, i.e. p0 = p1,
the log of the Gaussian likelihood ratio is written as in Section 4.3

log
P (H1 | y)

P (H0 | y)
= (µ1 − µ0)>Σ−1y + constant (5.13.4)

which is a linear function of the data. In other words in logistic regression we
adopt a Gaussian likelihood ratio irrespective of the data distribution. However, even
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if the data are distributed according to Gaussians, it may still be preferable to
adopt the logistic regression formulation instead of that in (5.13.4). In the lat-
ter formula, the covariance matrix and the means have to be estimated from
the training set while the logistic regression formulation only involves estima-
tion of p + 1 parameters (which however enter non-linearly in the model). Of
course, assuming that the Gaussian assumption is valid, if one can obtain good
estimates of the covariance matrix, employing this extra information can lead to
more efficient estimates, in the sense of lower variance. This is natural, because
more information concerning the distribution of the data is exploited. In prac-
tice, it turns out that using the logistic regression is, in general safer compared
to the linear discriminant analysis (LDA).

Logistic parameter estimation

We assume an i.i.d. sample y := {y(t) ; t = 1, . . . , N} of p-dimensional clas-
sified features (actually we make each feature vector p + 1-dimensional letting
the first component y0(t) of y(t) equal to 1, allowing a constant intercept θ0 in
the linear function θ>y), each y(t) coming together with a classification vari-
able, say x(t), equal to 0 or 1 according to which class, H0 or H1, was selected
based on y(t). In accordance with the definitions in (5.13.2), let us introduce the
notation

p0(θ; y) := P (H0 | y = y) = σ(θ>y) ; p1(θ; y) := P (H1 | y = y) = 1−σ(θ>y)

The decision sequence x := {x(t) ; t = 1, . . . , N} has a time-varying Bernoulli
probability distribution with random parameter p = σ(θ>y(t) ) which is a func-
tion of the current observed feature. This can be represented as

P (x | y = y) =

N∏
t=1

σ(θ>y(t) )1−x(t) [1− σ(θ>y(t) ) ]x(t) (5.13.5)

which yields a log-likelihood

`(θ;x, y) =

N∑
t=1

{
(1− x(t)) log σ(θ>y(t) ) + x(t) log[ 1− σ(θ>y(t) ) ]

}
(5.13.6)

=

N∑
t=1

{
x(t) θ>y(t)− log(1 + eθ

>y(t) )
}

(5.13.7)

Unfortunately this is a non-linear function of the parameter θ which can only be
maximized by numerical methods. To maximize `(θ;x, y) we set the gradient
with respect to θ equal to zero, i.e.

∇θ`(θ;x, y) =

N∑
t=1

y(t) {x(t)− p1(θ; y(t))} = 0 .

This is a system of p+1 non linear equations in θ. Since wheneverH0 is chosen,
x(t) is equal to 0, the equation of index 0 yields

N1

N
=

1

N

N∑
t=1

p1(θ; y(t))
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where N1 is the number of decisions for H1 in the training set. This has an
intuitive interpretation as an empirical frequency estimate. For the next de-
velopments it will be convenient to introduce vector notations. Introduce the
N×(p+1) matrix Y having rows y(1)>, . . . , y(N)> and theN -vector x−p(θ, y)
having components x(t)− p1(θ; y(t)) ; t = 1, 2, . . . , N so that

∇θ`(θ; x,y) = Y >[x− p(θ, y) ] .

To solve the full log-likelihood equation∇θ`(θ; x,y) = 0 we shall use a Newton
algorithm which uses the second derivatives. Since

∇θσ(θ>y) = σ(θ>y) [1− σ(θ>y) ] y , y ∈ Rp+1

the Hessian can be written

H(θ,y) :=
∂2

∂θ ∂θ>
`(θ; x,y) =

N∑
t=1

y(t)y(t)>σ(θ>y(t)) [1− σ(θ>y(t) ]

which, after introducing the (p+ 1)× (p+ 1) diagonal matrix

Q(θ, y) := diag {σ(θ>y(1)) [1− σ(θ>y(1) ] . . . , σ(θ>y(N)) [1− σ(θ>y(N) ] }

can be written

H(θ,y) =

N∑
t=1

y(t)Q(θ, y)y(t)> = Y >Q(θ, y)Y . (5.13.8)

We shall assume that forN large enough, this matrix is invertible. Then the k-th
step of the Newton algorithm

θk+1 = θk −H−1(θk,y)∇θ`(θk; x,y)

can be rewritten

H(θk,y)θk+1 = H(θk,y)θk − Y >[x− p(θk, y) ] =

= Y >Q(θk, y)Y θk − Y >[x− p(θk, y) ] =

= Y >Q(θk, y)
{
Y θk −Q(θk, y)−1[x− p(θk, y)

}
.

This equation, after setting zk := Y θk −Q(θk, y)−1[ x− p(θk, y) ], can be inter-
preted as the normal equation

Y >Q(θk, y)Y θk+1 = Y >Q(θk, y)zk (5.13.9)

which is generated as k-th step of an iterative solution of the weighted least
squares problem

min
θk+1

‖Y θk+1 − zk ‖2Q(θk,y) , k = 1, 2, . . . . (5.13.10)

This algorithm is called the iteratively reweighted least squares (IRLS). Since the
log-likelihood is concave this Newton algorithm with a suitably designed step-
size sequence converges. The estimate is maximum likelihood so that, if the
true model belongs to the model class, the asymptotic properties of ML such as
consistency and asymptotic normality are guaranteed.

In general, when the model complexity is not assigned a regularization penalty
such as shrinkage or Lasso can be added to the iterative least squares procedure.
Details can be found in Sect. 4.4.4 of [44].
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5.14 Problems
5-1 Consider the standard linear model with uncorrelated Gaussian noise w(k) ∼
N (0, σ2)

y(k) = s(k)θ + w(k) , k = 1, . . . , N

where θ is the scalar unknown parameter with prior the (centered) Laplace distribu-
tion L(0, λ) having density

pL(θ) =
1

2b
exp{−| θ |

b
} , b > 0

which has mean zero and variance 2b2. We would like to compute the MAP estimate of
θ given the N independent observations yN . Use Bayes rule to write the the posterior
distribution and compute its logarithm disregarding the log of the denominator p(yN )
which does not enter in the calculation of the MAP. What kind of regularized least
squares problem you end up with ?

In order to generalize your answer to a linear model with a p-dimensional vector
parameter θ, what kind of prior should you choose?

5-2 Let y =

[
y1

y2

]
be a zero-mean random vector with both var (y1) and var (y2)

positive but with a singular joint variance matrix. Show that y1 = αy2 for some
α 6= 0.

5-3 Let y =

[
y1

y2

]
be a zero-mean random vector with a non-singular variance matrix.

Find necessary and sufficient conditions on y1,y2 for the validity of the relation

Ê [x | y] = Ê [x | y1] + Ê[x | y2]

for an arbitrary zero-mean random variable x.

5-4 Assume that the covariance function σ(τ) is a simple exponential

σ(τ) = σ(0)λ
−|τ |
0 , τ ∈ Z ,

where 0 < λ0 < 1 (the reader should check that this is a positive definite function).
Then, assuming that t1 ≤ . . . ≤ tn, show that the matrix

Σn+1 = σ(0)


1 λt2−t10 . . . λtn−t10

λt2−t10 1 . . .

. . .
. . .

λtn−t10 1

 .
is always non singular but is singular for n ≥ 2 if λ0 = 1, independently of the choice
of the time instants t1 ≤ . . . ≤ tn.

5-5 Consider the two-blocks linear model[
y1

y2

]
=

[
S1

S2

]
x +

[
w1

w2

]
where the observations yi are mi-dimensional, Var (x) := P > 0, Var (wi) := Ri >
0, i = 1, 2, and w1 ⊥ x ⊥ w2 (all random variables are zero-mean). Use the matrix
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inversion Lemma to show that the m.v. estimator x̂ = Ê [ x | y1,y2] is a linear function
of the decentralized estimators x̂i = Ê [ x | yi], i = 1, 2, of the form

x̂ = Q−1[A x̂1 +B x̂2] .

Find expressions for Q, A, B.

5-6 (Distributed Estimation). The subvectors y1, . . . ,yN form a partition of the ob-
servation vector y which is described by a linear model y = Sx + w for wich all stan-
dard assumptions (zero-mean, R > 0 etc.) are assumed to hold. Let x̂k = Ê [ x | yk]
be the local estimators of x based on knowledge of the parameters of the overall model
but each using only the local observation vector yk, k = 1, . . . , N .

Find conditions on the model for the validity of the relation, called fusion of the
estimates,

Ê [x | y1, . . . ,yN ] = Ê [x | x̂1, . . . , x̂N ] =

N∑
k=1

Ak x̂k .

In other terms, when is the global estimator x̂ = Ê [ x | y] expressible as a (linear)
deterministic function of the local estimators {x̂k} ?
• Show that wk ⊥ x ⊥ wj , ∀k 6= j (wk being the noise subvector of w corrupting yk)
ia a sufficient condition and find the parameters of the linear relation between x̂ and
x̂1, . . . , x̂N .
• Is this condition also necessary?

5-7 The three scalar random variables (y1,y2,y3) are zero-mean and have a non-
singular variance matrix Σ. Consider the three othogonal projections Ê [y1 | y2 y3],
Ê [y2 | y1 y3], Ê [y3 | y1 y2], each of which depends on two scalar parameters. Un-
der what conditions do they determine Σ (note that Σ, being symmetric, depends on
six parameters). Can one assign arbitrarily the three functions and thereby uniquely
determine Σ?

5-8 Let y := {y(τ) | τ ∈ R} be a continuous time stochastic process of zero mean
and covariance function σ(t, s) which is finite at every point {t, s} of R2. Show that

1. y is continuous in mean square ( i.e. limt→s ‖y(t) − y(s)‖ = 0 for every t, s ∈
R2), if and only if σ is continuous at every point of the diagonal t = s of the
{t, s} plane.

2. y is mean square differentiable if and only if the mixed second derivatives ∂2σ/∂t∂s
exist at all points of the diagonal t = s of the {t, s} plane.

3. Let y(t) be piecewise mean square continuous on the interval [ 0, T ]. Define the
mean square integral x :=

∫ T
0

y(s)d s as the mean square limit of the Riemann
sums. Show that x has finite variance if and only if∫ T

0

∫ T

0

σ(t, s) dt ds <∞ .

Second order calculus for processes in continuous time is discussed in several books,
e.g. Jazswinsky [47, p. 60-70], Wong,[108, p. 77-80], [59, p. ].

5-9 Again, let y := {y(τ) | τ ∈ R} be a zero-mean continuous-time process with a
covariance function σ(t, s) continuous on R2. The process is sampled with sampling
period h > 0.
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1. Describe the m.v. estimate of the mean square derivative dy
dτ (t0) at a generic time

t0, based on the discrete sample values {y(t0−nh), . . . ,y(t0−h),y(t0),y(t0 +
h), . . . ,y(t0 + nh)}.

2. Describe the m.v. estimate of the mean square integral x :=
∫ T

0
y(s) ds, based on

the discrete values{y(0),y(h), . . . ,y(nh)}, nh = T . In other terms show how
to compute the coefficients c(k) of the mean square quadrature formula

x̂ =

n∑
k=0

c(k)y(kh)

in such a way that the error x− x̂ has minimal variance.

5-10 A surveillance system is in charge of detecting intruders to a facility. There are
two hypotheses to choose from:
H0: No intruder is present.
H1: There is an intruder.

The system sends an alarm message if it accepts H1. Suppose that after processing
the data, we obtain P (H1 | y) = 0.05. Also, assume that the cost of missing an intruder
is 10 times the cost of a false alarm. Should the system send an alarm message (accept
H1)?

5-11 We want to compute the Bayesian MAP estimate of θ from an i.i.d. sample
{y1, y2, . . . ,yN} with yk ∼ N (Sθ, σ2IN ), where σ2 is known, assuming a prior
density for the mean vector θ which is also Gaussian and has a variance τ2Ip, i.e.
x ∼ N (θ0, τ

2Ip) where θ0 ∈ Rp is the a priori mean.
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Chapter 6

PRINCIPAL COMPONENT
ANALYSIS

6.1 Introduction to data compression
In this chapter we shall discuss some general techniques for statistical data com-
pression (or noise reduction). In many practical applications, although the data
seem to reside in a high-dimensional space, the true dimensionality, after sub-
tracting the noise, known as intrinsic dimensionality, can be much lower. As a
trivial example, in a three-dimensional space, the data may cluster around a
straight line, or around a circle or a parabola, arbitrarily placed in R3. In these
cases, the intrinsic dimensionality of the data is equal to one, as any of these
curves can equivalently be described in terms of a single parameter. Learning
the lower dimensional structure associated with a given set of data is gaining
in importance in the context of big data processing and analysis. There is a
multitude of practical examples where it is relevant, such as image processing,
computer vision, medical diagnosis and especially information retrieval, where
one is looking for efficient searching procedure for identifying similar patterns
in large databases.

6.2 Principal Component Analysis (PCA)
Let y be an N -dimensional random vector whose components have finite vari-
ance. The interpretation of y is that of a sequence of rough redundant data from
which we need to extract an hopefully small number of features. A good exam-
ple to keep in mind is the description of handwritten digits in [44, p. 536-537].
Each discretized and numerically coded picture of say, a handwritten “3”, could
be a possible sample realization of the random vector y. We shall look for a lin-
ear expansion of y in terms of a family of deterministic orthonormal column
vectors, ϕk =

[
ϕk(1) . . . ϕk(N)

]>
, k = 1, 2, . . .. Naturally the coefficients of

this expansion will have to be random variables; their role parallels and in fact
extends that of the Fourier coefficients in the deterministic setting.

Problem 6.1. Express the random vector y as a linear combination of deterministic
N -vectors ϕk ∈ RN , k = 1, 2, . . . , N which are orthonormal with respect to the
Euclidean inner product. The linear combination should be by means of uncorrelated
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scalar random coefficients; that is

y(t) =
∑
k

xkϕk(t) t = 1, 2, . . . , N , (6.2.1)

with Exkxj = 0 for k 6= j.

The expansion (6.2.1) is called biorthogonal if view of the fact that the {xk; k =
1, . . . , N} must form an orthogonal basis in H(y) and the modes ϕk are an or-
thonormal basis in RN ; i.e.

ϕ>k ϕj = δk,j k, j = 1, 2, . . .

δk,j being the Kronecker delta. If the xk are ordered in decreasing (variance)
norm the N -vectors components of y, xkϕk, will have the same (scalar vari-
ance) norm of the xk’s and can likewise be ordered assigning the first places in
the list to the components with higher variance. These are called the principal
components of y.

Principal Component Analysis (PCA) is an important tool for feature extrac-
tion and classification in decision processes. In applications to Signal Process-
ing, the sequence the components are indexed by the (discrete) time variable
and y := {y(1), . . . ,y(t), . . . ,y(N)} may represent a (time-sampled) random
signal defined on a discrete finite time interval [1, N ]. The problem addressed
in this section could be seen as a generalization of the Fourier transform of a
random signal by linear combinations of orthonormal deterministic functions
of time which are not necessarily sinusoidal but are instead, in some sense, bet-
ter “tailored” to the signal under analysis. These functions are called the (proper)
modes of of the signal y. They enjoy some natural properties. IfN is large, an ex-
act representation in general requires “too many” modes and the key question
in applications is the optimal approximation of the signal in terms of a small
number of modes. Principal Component Analysis provides the theoretical ba-
sis for such an approximation

We shall initially discuss the (exact) representation of a discrete time random
signal of finite duration since it can basically be treated by linear algebra and
elementary Hilbert space techniques. Principal Component Analysis of infinite
duration signals (or processes) is based on the same general ideas but requires
more sophisticated tools and goes under a different name. It is called Karhunen
Loève expansion and will be discussed in the next section.

Since subtracting the means does not change the construction we shall de-
scribe below, without loss of generality we shall assume that y has zero mean.
Denote by Σy = Eyy> the variance matrix of y, which will be assumed to be
positive definite and known.

Proposition 6.1. The random signal y admits a biorthogonal expansion of the form
(6.2.1) if and only if the modes {ϕk} form a system of normalized eigenvectors for
the covariance matrix, Σy. In this case, letting λk > 0 denote the eigenvalue of Σy

corresponding to the eigenvector ϕk, the random variables xk are given by the formula

xk = ϕ>k y =

N∑
t=1

ϕk(t) y(t), k = 1, . . . , N . (6.2.2)
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Proof. Sufficiency: Let ϕk be the k-th normalized eigenvector of Σy correspond
to the (necessarily positive!) eigenvalue λk > 0, that is

Σyϕk = λk ϕk , k = 1, 2, . . . , N

then define the random variables xk = ϕ>k y. These are uncorrelated since:

Exkxj = Eϕ>k yϕ>j y = ϕ>k E [y y>]ϕj = λk δk,j

We could actually make the {xk}’s into an orthonormal basis for H(y) by nor-
malization

x̂k :=
1√
λk

ϕ>k y

so that

y =

N∑
k=1

〈y, x̂k〉 x̂k =

N∑
k=1

E [y y>]
1√
λk
ϕk x̂k =

N∑
k=1

Σy
1√
λk
ϕk x̂k =

=

N∑
k=1

√
λk x̂k ϕk ,

however keeping the norms ‖xk‖2 = Ex2
k = λk will turn out to be a more

convenient choice.
Necessity: Assume y admits a biorthogonal expansion (6.2.1). From this we
obtain the following expression for the covariance matrix

Σy =

N∑
k,j=1

E [xkxj ]ϕkϕ
>
j =

N∑
k=1

ϕk E [xk]2ϕ>k

= Φ diag {‖x1‖2, . . . , ‖xN‖2}Φ> (6.2.3)

where Φ := [ϕ1, . . . , ϕN ] is an orthonormal matrix (i.e. a matrix with orthonor-
mal columns). It follows that the columns of Φ must be the normalized eigen-
vectors of Σ and ‖xk‖2 , k = 1, 2, . . . , N its eigenvalues, that is λk = ‖xk‖2.

The vectors ϕk may be called the proper modes of the signal y. The eigenval-
ues of Σ will be listed in decreasing order; i.e.

λ1 ≥ . . . ≥ λN > 0

and this ordering is transmitted to the random coefficients xk and to the corre-
sponding modes ϕk. With this convention, the biorthogonal expansion (6.2.1)
is unique. It is commonly called the Principal Components Analysis (PCA) of
the signal y.

Signal approximation

It often happens that the “statistical energy” of the signal

E ‖y‖2 =

N∑
k=1

E {xk}2 =

N∑
k=1

λk



214 Chapter 6. PRINCIPAL COMPONENT ANALYSIS

is concentrated on a few proper modes. In other words it often happens that the
eigenvalues of index larger than some n < N are (relatively) small, for example
they may be such that

λ1 + . . .+ λn � λn+1 + . . .+ λN

and their contribution to the expansion (6.2.1) could therefore be neglected. The
resulting approximate expansion,

y ' ŷn :=

n∑
k=1

xkϕk =

n∑
k=1

(ϕ>k y)ϕk (6.2.4)

is a universal tool used in data compression, source coding, data storage and
especially in pattern recognition.

In practice the covariance matrix Σ is not known but can be estimated from
experimental data. Assume that we have a set of M independent sample mea-
surements of the same random signal, say xk :=

[
xk(1) . . . xk(N)

]>
; k =

1, 2, . . . ,M , one can form the sample N ×N covariance estimate

Σ̂ =
1

M

M∑
k=1

xkx
>
k

and use this estimate in place of the true Σ. The normalized eigenvectors, ϕ̂k
of Σ̂ will form an orthonormal basis in RN which can be used to compute the
sample coefficients of a test signal y as

xk :=

N∑
t=1

y(t)ϕ̂k(t) = y>ϕ̂k , k = 1, 2, . . . N

These yield the orthonormal expansion

y(t) =
∑
k

xkϕ̂k(t) t = 1, 2, . . . , N , (6.2.5)

in terms of the sample modes which can compactly be written as y = Φ̂x where
Φ̂ is an orthonormal matrix and the components of the vector x =

[
x1 . . . xN

]>
can be ordered in decreasing magnitude. In fact we have

‖y‖2 = ‖x‖2 = x2
1 + x2

2 + . . .+ x2
N

where each term x2
k is the contribution of the k-th mode ϕ̂k to the “energy” ‖y‖2

of the signal. In practice one will retain a (hopefully small) number of coeffi-
cients which contribute to most of the energy. The most significant numbers xk
are often used as features for classification of a pattern. See for example [44, p.
536].

Optimality of the PCA

Note that the approximation error vector ỹn := y − ŷn is orthogonal to ŷn, so
that

Σ = Var y = Var ŷn + Var ỹn := Σ̂n + Σ̃n
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and the variance matrix of the approximant ŷn can be expresses as

Σ̂n =

n∑
k=1

λk ϕkE {x2
k}ϕ>k =

n∑
k=1

λk ϕk ϕ
>
k .

A very well-known property of this approximation is recalled in the following
proposition.

Proposition 6.2. The variance matrix Σ̂n, of ŷn, is the best symmetric positive semidef-
inite approximant of rank n, (either in the `2 or Frobenius norm) of the original variance
matrix Σ.

Proof. The statement follows from the well-known optimal approximation
property of the truncated Singular Value Decomposition of a matrix; see the ap-
pendix B.2. One just needs to apply the result to a square root (say the Cholesky
factor) of Σ. 2

It is normally claimed and often given for granted in the literature that the
approximation procedure described above does provide an optimal approxi-
mate representation of the signal. However besides the optimality of the co-
variance approximation described above, we have not been able to find any
clear definition nor exact statement describing what this optimality should be
in terms of random signal approximation.

Below we shall try to understand what kind of approximation criterion should
be natural and reasonable to use in this context. To begin with, let us observe
that the second member of (6.2.4) can be seen as a linear transformation acting
on the random vector y, represented by a certain deterministic matrix say M ,
which is symmetric, positive semidefinite and of rank n.

Any M of this kind can be written in factorized form M = WW> where W
is N × n and of full column rank. That M has rank n (≤ N), implies that the
approximation ŷ := My, generates an n-dimensional subspace of H(y). In this
sense we can say that (6.2.4) provides an approximation ŷ := My, of rank n, of
y.

Motivated by the above, let us consider a problem of optimal rank n approx-
imation of the random vector y, having the following natural formulation.

Problem 6.2. Find a matrix M ∈ RN×N of rank n, solving the following minimum
problem

min
rank (M ) =n

E {‖y −M y‖2} (6.2.6)

Note that an equivalent geometric formulation is to look for an optimal n-
dimensional subspace of H(y) onto which y should be projected in order to
minimize the approximation error variance. Let us stress that this is quite dif-
ferent from the usual minimum error variance approximation problem which
amounts to projecting onto a given subspace.

As for (6.2.4), minimizing the square distance in (6.2.6) requires that the ap-
proximation My should be uncorrelated with the approximation error; namely

y −My ⊥ My (6.2.7)
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which is equivalent to
MΣ−MΣM> = 0 .

Introducing a square root Σ1/2 of Σ and defining M̂ := Σ−1/2MΣ1/2, this con-
dition is seen to be equivalent to

M̂ = M̂ M̂>

which just says that M̂ must be symmetric and idempotent (i.e. M̂ = M̂2), in
other words an orthogonal projection from RN onto some n-dimensional sub-
space. Hence M must have the following structure

M = Σ1/2 Π Σ−1/2, Π = Π2 Π = Π> (6.2.8)

where Σ1/2 is any square root of Σ and Π is an orthogonal projection matrix of
rank n.

Theorem 6.1. The solutions of the signal approximation problem (6.2.6) are of the form

M = W W>, W = ΦnQn

where Φn is a N × n matrix whose columns are the first n normalized eigenvectors
of Σ, ordered according to the descending magnitude ordering of the corresponding
eigenvalues and Qn is an arbitrary n× n orthogonal matrix.

Proof. Let Λ := diag {λ1, . . . , λN} and Σ = ΦΛΦ> the spectral decomposition
of Σ in which Φ is an orthogonal matrix of eigenvectors. We can pick as a square
root of Σ the matrix Σ1/2 := ΦΛ1/2.

Now, no matter how Σ1/2 is chosen, the random vector e := Σ−1/2 y has or-
thonormal components. Hence using (6.2.8) the cost function of our minimum
problem can be rewritten as

E {‖y −M y‖2} = E {‖Σ1/2e− Σ1/2 Π Σ−1/2y‖2}
= E{‖Σ1/2(e−Π e )‖2} = E {‖Λ1/2(e−Π e )‖2}
= E (e−Π e )>Λ (e−Π e ) = Tr

[
ΛE (e−Π e )(e−Π e )>

]
where Tr A :=

∑
akk is the trace of A. Our minimum problem can therefore be

rewritten as
min

rank ( Π ) =n
Tr {ΛΠ⊥}

where Π⊥ := I−Π is the orthogonal projection onto the orthogonal complement
of the subspace Im Π.

Since the eigenvalues are ordered in decreasing magnitude; i.e. {λ1 ≥ . . . ≥
λN}, one sees that the minimum of this function of Π is reached when Π projects
onto the subspace spanned by the first n coordinate axes. In other words,
Πoptimal = diag {In, 0} the minimum being λn+1 + . . . + λN . It is then evident
that

M = ΦΛ1/2 ΠoptimalΛ
−1/2Φ> = ΦnΦ>n .

Naturally, multiplying Φn by any orthogonal n× n matrix does not change the
result. 2

This result confirms in particular that the truncated expansion (6.2.4) is op-
timal in the sense that it provides the best M and the best approximation sub-
space for the criterion (6.2.6). This characterization can be exploited when deal-
ing with subspace approximation problems; see e.g. [110].
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Numerical Implementation by SVD

In practice the calculation of the eigenvectors ϕ̂k can be done without form-
ing the (sample) covariance matrix Σ̂ which can be a costly operation for high
dimensional data. One starts instead from the data matrix:

Y =
[
x1 . . . xM

]
∈ RN×M , N ≤M

where the test signals xk ; k = 1, . . . ,M have been depurated from their sample
mean, and performs a singular value decomposition

Y = U∆V > , ∆ = diag {σ1, . . . , σN } (6.2.9)

It follows readily from Theorem B.2 in the appendix that the columns of U are
just the normalized eigenvectors of Σ̂ and the ordered sequence {σ2

k} is propor-
tional to the sample eigenvalues {λ̂k}. The truncation of the SVD expansion
can be seen as an optimal subspace approximation. This is the linear algebra
version of the optimization problem discussed in the previous section, called
Procrustes Problem, see [40, p. 601].

Application to Feature extraction

Handwritten digit recognition See [44, p. 536-541].

Eigenfaces : Dimensionality reduction usually becomes important when the
number of features is not negligible compared to the number of training sam-
ples. As an example, suppose we would like to perform face recognition, i.e.
determine the identity of the person depicted in an image, based on a training
dataset of labeled face images. One approach might be to treat the brightness
of each pixel of the image as a feature. If the input images are of size 32 × 32
pixels, this means that the feature vector contains 1024 feature values. Classi-
fying a new face image can then be done by calculating the Euclidean distance
between this 1024-dimensional vector, and the feature vectors of the people in
our training dataset. The smallest distance then tells us which person we are
looking at.

However, operating in a 1024-dimensional space becomes problematic if
we only have a few hundred training samples. Furthermore, Euclidean dis-
tances behave strangely in high dimensional spaces as discussed in another
article. Therefore, we could use PCA to reduce the dimensionality of the fea-
ture space by calculating the eigenvectors of the covariance matrix of the set of
1024-dimensional feature vectors, and then projecting each feature vector onto
the largest eigenvectors.

Since the eigenvector of 2D data is 2-dimensional, and an eigenvector of
3D data is 3-dimensional, the eigenvectors of 1024-dimensional data is 1024-
dimensional. In other words, we could reshape each of the 1024-dimensional
eigenvectors to a 32×32 image for visualization purposes. Figure 6.2.1 shows
the first four eigenvectors obtained by eigendecomposition of the Cambridge
face dataset Source: https://nl.wikipedia.org/wiki/Eigenface,

Each 1024-dimensional feature vector (and thus each face) can now be pro-
jected onto the N largest eigenvectors, and can be represented as a linear combi-
nation of these eigenfaces. The weights of these linear combinations determine
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Figure 6.2.1. The four largest eigenvectors, reshaped to images, resulting in so called
EigenFaces. Credit to AT&T Laboratories Cambridge.

the identity of the person. Since the largest eigenvectors represent the largest
variance in the data, these eigenfaces describe the most informative image re-
gions (eyes, noise, mouth, etc.). By only considering the first n (e.g. n=70)
eigenvectors, the dimensionality of the feature space is greatly reduced.

The remaining question is now how many eigenfaces should be used, or in
the general case; how many eigenvectors should be kept. Removing too many
eigenvectors might remove important information from the feature space, whereas
eliminating too few eigenvectors leaves us with the curse of dimensionality. Re-
grettably there is no straight answer to this problem. Although cross-validation
techniques can be used to obtain an estimate of this hyperparameter, choos-
ing the optimal number of dimensions remains a problem that is mostly solved
in an empirical (an academic term that means not much more than “trial-and-
error”) manner. Note that it is often useful to check how much (as a percentage)
of the variance of the original data is kept while eliminating eigenvectors. This
is done by dividing the sum of the kept eigenvalues by the sum of all eigenval-
ues.
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Based on the previous sections, we can now list the simple recipe used to
apply PCA for feature extraction:

Center the data Before applying PCA rotate the data in order to obtain uncor-
related axes, any existing shift needs to be countered by subtracting the
mean of the data from each data point. This simply corresponds to cen-
tering the data such that its average becomes zero.

Normalize the data The eigenvectors of the covariance matrix point in the di-
rection of the largest variance of the data. However, variance is an ab-
solute number, not a relative one. This means that the variance of data,
measured in centimeters (or inches) will be much larger than the vari-
ance of the same data when measured in meters (or feet). Consider the
example where one feature represents the length of an object in meters,
while the second feature represents the width of the object in centimeters.
The largest variance, and thus the largest eigenvector, will implicitly be
defined by the first feature if the data is not normalized.

To avoid this scale-dependent nature of PCA, it is useful to normalize the
data by dividing each feature by its standard deviation. This is especially
important if different features correspond to different metrics.

Calculate the eigendecomposition One of the most widely used methods to
efficiently calculate the eigendecomposition is Singular Value Decompo-
sition (SVD); see above or [44, p. 535].

Project the data To reduce the dimensionality, the data is simply projected onto
the largest eigenvectors. LetU be theN×nmatrix whose columns contain
the largest eigenvectors and let Y be the original data whose columns con-
tain the different observations. Then the projected data Ŷ is obtained as
Ŷ = Uᵀ Y U . We can either choose the number of remaining dimensions,
i.e. the columns of Y , directly, or we can define the amount of variance of
the original data that needs to kept while eliminating eigenvectors. If only
n eigenvectors are kept, and λ1...λn represent the corresponding eigenval-
ues, then the amount of variance that remains after projecting the original
d-dimensional data can be calculated as:

s =

∑n
i=0 λi∑N
j=0 λj

In the previous discussion we saw how PCA decorrelates the data. In fact, we
started the discussion by expressing our desire to recover the unknown, under-
lying independent components of the observed features. Indeed, PCA allows
us to decorrelate the data, thereby recovering the independent components in
case of Gaussianity. However, it is important to note that decorrelation only
corresponds to statistical independency in the Gaussian case.

In general, PCA only uncorrelates the data but does not remove statistical
dependencies. If the underlying components are known to be non-Gaussian,
techniques such as independent Component Analysis (ICA) could be more appro-
priate.
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6.3 Canonical Correlation Analysis
Bayesian regression with redundant data

Suppose you want to do linear regression of a high dimensional (zero-mean
finite variance) random vector y of dimension m based on an input x which
is possibly also high dimensional. A typical situation could be the prediction
of some linear function of the future variables at certain present time t of a
stochastic process given observations of an extended past sequence (before time
t) which theoretically could even be infinitely long.
The regression data can be highly redundant on both sides and there is a natural
data compression problem to be faced. The goal is to describe the interaction
structure of the two vectors in the most succinct and efficient way.
Notation: In this lecture it will be convenient to use the simplified notation EXξ
to denote the orthogonal projection of a random variable ξ ∈ H onto a subspace
X ⊂ H (disregarding the hat on top of E ). Whenever a vector of generators say
x is in evidence, so that X = H(x), then the projection can be expressed as a
linear function of x.

Recall the Bayesian regression formula (conditional expectation in the Gaus-
sian case) assuming all variables are zero mean:

ŷ := E [y | x ] = Σy,xΣ−1
x x := Ax (6.3.1)

where we have used the standard notation Eyx> = Σy,x ≡ Σ. This could be
a very large matrix and you may think that there should be a way to extract
the “essential interaction" information from the two long vectors which may
possibly lead to a dimension reduction by extracting “principal components"
from both vectors. Tis is in principle similar to what we did for PCA but now
we have the different goal of describing the mutual interaction between the two
random vectors which may possibly be concentrated in another random vector
of much smaller dimension than the dimensions of x and y. Motivated by the
above discussion, consider then the following problem

Problem 6.3. Given two zero mean random vectors y and x of dimensions m and p
find the coefficients of linear combinations

η := a>y, and ξ := b>x

so that ξ and η have maximal cross correlation Eηξ. Of course for the problem to make
sense ξ and η should be normalized (otherwise the cross correlation could be made
arbitrarily large). We ask that both norms (equivalently the variances) ‖ξ‖ and ‖η‖
should be equal to one.

In a sense the solution would yield a best linear model to predict a certain
linear function of a>y from observations of b>x. The error variance of estimat-
ing a>y would be 1 − (Eηξ)2 which would be minimal among all normalized
linear functions a>y, b>x. Since the error variance is always nonnegative, the
absolute value of the cross product must always be ≤ 1.

Since both X := H(x) and Y := H(y) are finite dimensional the maximum
exists. It has in fact a nice geometrical interpretation which we shall explore
later on.
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Solution of the unconstrained problem

Let Σ = U∆V > with ∆ = diag {σ1, . . . , σn, 0 . . . , 0} be the singular value de-
composition of Σ with the singular values ordered in decreasing magnitude.
Since

Eηξ = a>Σ b = a>U∆V >b

the (unconstrained) maximum of Eηξ is achieved for vectors a, b such that

a>U =
[
1 0, . . . 0

]
, V >b =

[
1 0, . . . 0

]>
are both the first unit vectors (generically denoted e1) of the canonical bases
of dimensions m and p in Rm and Rp. Since η = a>U U>y = e>1 U

>y and
similarly, ξ = b>V V >x = e>1 V

>x the optimal linear combinations η and ξ are
the first components of the rotated vectors

ŷ := U>y, and x̂ := V >x

which span the same spaces H(y) and H(x) but have mutually orthogonal
components since E ŷx̂> = ∆ that is

E ŷjx̂h = σh δj,h, j, h = 1, . . . , n

and zero otherwise, where δj,h is the Kronecker symbol. 2

Solution of the constrained problem

The previous solution did not take into account the unit norm constraints on the
variables η and ξ. Note that in order to express the inner product of random
elements in X and Y in terms of their coordinates, we must introduce appro-
priate weights in the corresponding Euclidean inner products. In fact, the inner
product of two scalar elements ηi = a>i y ∈ Y, i = 1, 2, induces in Rm the inner
product

Eη1η2 = a>1 Σy a2 = 〈a1, a2〉Σy ,

where Σy := E {yy>}. Similarly, there is an inner product 〈b1, b2〉Σx := b>1 Σxb2
corresponding to the basis ξ for X. To obtain the standard Euclidean inner
product the bases should need to be orthonormal (which in general is not the
case) and it is only in this case that the matrix representation of the adjoint
of the restricted orthogonal projection operator EX|Y is the transpose of the
matrix representation of EY|X.

Let now Lx and Ly be the lower triangular Cholesky factors of the covari-
ance matrices Σx and Σy, respectively; i.e.,

Lx L
>
x = Σx, Ly L

>
y = Σy

and let the corresponding innovation vectors be denoted

νx := L−1
x x, νy := L−1

y y (6.3.2)

which form orthonormal bases in X and Y respectively. Then in this new basis
the cross covariance becomes the matrix

H := E {νyν
>
x } = L−1

y E {yx>}(L>x )−1 . (6.3.3)
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Consider again two scalar random variables

η = a>y = a>Lyνy, ξ = b>x = b>Lxνx

letting â := L>y a and b̂ := L>x b we have ‖η‖2 = ‖â‖2 and ‖ξ‖2 = ‖b̂‖2 where the
last norms are Euclidean, so that

Eηξ
‖η‖‖ξ‖

=
a>LyHL

>
x b

‖â‖‖b̂‖
=

â>Hb̂

‖â‖‖b̂‖
, where ‖â‖ = ‖b̂‖ = 1

Hence, by the well-known Rayleigh-Ritz maximization theorem our constrained
maximization problem 6.3 becomes the problem of finding the maximum sin-
gular value of H .

To complete the discussion, consider the (full rank) singular value decom-
position of H

H = ÛDV̂ >, Û Û> = Im, V̂ V̂ > = Ip

where D = diag {κ1, . . . , κn}, n being the rank of H or of Σ. The elements of D
are called the canonical correlation coefficients of the subspaces X and Y and
the components of the n-dimensional random vectors

u = V̂ >νx, v = Û>νy. (6.3.4)

are called the canonical variables. Obviously the components of u and v are
still orthonormal and have diagonal covariance, that is

Evu> = D =


κ1 0 · · · 0
0 κ2 · · · 0
...

...
. . .

...
0 0 · · · κn

 , (6.3.5)

so that the optimal η and ξ are just the first components, v1 and u1 of the canon-
ical vectors. Since the κk are all covariances and the canonical variables are
normalized, we have

EXvk = κkuk , EYuk = κkvk . (6.3.6)

In particular, (6.3.5) follows from

〈uk,vj〉 = 〈EYuk,vj〉 = κk〈vk,vj〉 = κkδkj .

Note that the canonical correlation coefficients are positive and all less or equal
to 1 while the singular values, σk, of Σ may be arbitrarily large. Uniqueness of
the solution is guaranteed if and only if the singular values {κ1, κ2, . . . , κn} are
distinct. 2

What is the meaning of canonical variables in terms of our Bayesian regres-
sion problem? The answer is obvious if we want to predict a canonical vector
based on our data,

Proposition 6.3. It holds that

E {v | x} = E {v | u} = D u (6.3.7a)
E {u | y} = E {u | v} = D v (6.3.7b)
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and likewise, for the unnormalized canonical variables x̂ := D1/2u and ŷ :=
D1/2v, we have

E {ŷ | x} = E {ŷ | x̂ :} = D x̂ (6.3.7c)
E {x̂ | y} = E {x̂ | ŷ} = D ŷ (6.3.7d)

Hence the (ordered) canonical variables have a decreasing sequence of re-
gression coefficients equal exactly to their mutual canonical correlations. De-
pending on the magnitude of

κ1

κn
one may reasonably discard canonical regres-

sors of sufficiently high order. We shall come back to this point as we first need
to assess this phenomenon in terms of the original variables.

Note that from (6.3.3) we get the following rank factorization of the covari-
ance matrix

Σ = LyHL
>
x = LyÛD(LxV̂ )> := ΩD Ω̄> (6.3.8)

where Ω = LyÛ ∈ Rm×n, Ω̄ = LxV̂ ∈ Rp×n are full rank.This means that the
components of y and of x along the unnormalized canonical variables are

E {y | x} = E {y | u} = Ω x̂ (6.3.9)
E {x | y} = E {x | v} = Ω̄ ŷ (6.3.10)

so that the solution of the regression problem of y in terms of x can be expressed
as the orthogonal sum

y = Ω x̂ + e (6.3.11)

where Var [e] = Ω [I − D] Ω> as it follows from Σy = ΩΩ> and the standard
formula for the error variance. Therefore,

Proposition 6.4. The (prediction) error e in the model (6.3.11) has variance

var {e} = Trace ([I −D] Ω>Ω) =

n∑
i=1

(1− κi) var yi . (6.3.12)

an analogous formula holding for the regression of x in terms of y.

Proof. In computing the trace, one must compute the scalar product of the
vector of the diagonal elements of [I −D] times the vector of diagonal elements
of Ω>Ω which is the same as the vector of diagonal elements of ΩΩ> = Σy,
listing the variances of the scalar components of y.

For high dimensional problems one could then introduce low order approx-
imations by neglecting the (ordered) components of the canonical interaction
vector x̂ which have small variance.

Naturally to solve efficiently our regression problem we should find a se-
quential procedure (algorithm) to compute such a pair of orthonormal sequences
of uncorrelated random variables, each spanning the input and output sub-
spaces. To this end one may follow a “bilateral" Gram-Scmidt procedure. Intro-
duce the notation x1 ≡ x, y1 ≡ y and

X1 := H(x); and Y1 := H(y)
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which we shall assume of full dimensions p and m, respectively. Hence let
u1 ∈ X and v1 ∈ Y be the (scalar random variables) solutions of our problem
6.3, that is

maxu1 ∈ X, v1 ∈ Y

‖u1‖ = 1, ‖v1‖ = 1

〈v1,u1〉 (6.3.13)

and let κ1 be the maximum.
Define next the orthogonal complements

X2 := X1 	H(u1) , and Y2 = Y1 	H(v1) (6.3.14)

which are spanned by the random vectors

x2 := x1 − E [x1 | u1] ; y2 := y1 − E [y1 | v1], (6.3.15)

and look for normalized random variables u2 ∈ X2 and v2 ∈ Y2 which maxi-
mize Ev2u2. This is the same problem solved above but for the error subspaces
X2 and Y2. Continuing in this way leads to a sequential maximization proce-
dure which defines a sequence of orthonormal random variables {uk ∈ X} and
{vk ∈ Y} solving:

〈vk+1,uk+1〉 = max
u∈Xk,v∈Yk

〈v,u〉 (6.3.16a)

subject to: 
〈u,uj〉 = 0, j = 1, . . . , k,

〈v,vj〉 = 0, j = 1, . . . , k,

‖uj‖ = ‖vj‖ = 1, ∀ j
(6.3.16b)

It is not hard to show that this sequential maximization procedure leads exactly
to the same canonical variables and canonical correlation coefficients defined
above.

Theorem 6.2. The sequential maximization procedure (6.3.16) defines two sequences
of orthonormal random variables {u1, . . . ,un} ∈ X and {v1, . . . ,vn},∈ Y} such that

E {uk vj} = κk δkj , k = 1, . . . , n, j = 1, . . . , n.

where n ≤ min{m, p} = rank Σ. The two random vectors u := (u1, . . . ,un)> and
v := (v1, . . . ,vn)> formed from the elements of the two bases, are the canonical vectors
and the numbers κk are the canonical correlation coefficients of the two subspaces X,Y.
Moreover

Σv,u = E {vu>} = D .

where D is the diagonal matrix of ordered canonical correlation coefficients in (6.3.5).

Problem 6.4 (A matrix representation of the operator EY|X).
Choose an arbitrary pair of basis vectors x,y in X and Y, respectively and

an arbitrary random variable ξ = a>x ∈ X; then the Bayesian estimation for-
mula yields

EYξ = a>E {xy>}Σ−1
y y, Σy := E {yy>},

Show that the representation of EY|X in the chosen bases is matrix multiplica-
tion a> → a>ΣxyΣ−1

y acting from the right.



6.4. Bayesian regression on observed samples. 225

6.4 Bayesian regression on observed samples.
So far we have introduced canonical correlation analysis in a random variable
setting, but in practice one should work with observed data.

Suppose we have sequences of i.i.d. observations of the output vector say
{y1(ω) = x1, y2(ω) = x2, . . .yN (ω) = xN} and corresponding i.i.d. observa-
tions of the input {x1(ω) = x1, x2(ω) = x2, . . .xN (ω) = xN} where for sim-
plicity we assume equal leght N . After the sample observed vectors xk ; k =
1, . . . , N and xk ; k = 1, . . . , N have been depurated from their sample mean,
form the data matrices:

Y :=
[
y1 . . . yN

]
∈ Rm×N and X :=

[
x1 . . . xN

]
∈ Rp×N

from which one can get the (sample) covariance matrices

Σ̂ :=
1

N
YX>, Σ̂x :=

1

N
XX> (6.4.1)

which can be used as consistent estimates of the population parameters Σy,x, Σx

to obtain a sample estimate of the regression matrix A in (6.3.1). The sample
canonical correlation coefficients could likewise be computed by first doing
Choleski factorizations of the sample covariance matrices Σ̂x and Σ̂y, respec-
tively; i.e.,

L̂x L̂
>
x = Σ̂x, L̂y L̂

>
y = Σ̂y

and then doing SVD of the normalized sample cross covariance

Ĥ := L̂−1
y Σ̂(L̂>x )−1 . (6.4.2)

The operation can actually be performed sequentially by implementing an evi-
dent sample version of the sequential maximization (6.3.16). It will sequentially
produce the ordered components of the sample canonical vectors. The proce-
dure lies at the background of a variety of algorithms called Partial Least Squares
[?] .

The calculations involved, beside being costly for high dimensional data
may suffer from bad conditioning. One should instead start directly from the
data and apply a QR-type orthogonalization techniques similar to that which
was suggested for least squares problems.

Let us consider the problem of estimating (by least squares) the matrix A ∈
Rm×p in the regression model

Y = AX + E

from the observed samples X,Y . Here all data matrices, including the error E
have N columns, the k-th row being interpreted as a list of i.i.d. observations

from the random scalar components say yk or xk. We assume that
1

N
XE> → 0

asN →∞. The normalization factor 1/N in the covariance estimates like (8.3.3)
will normally be neglected as it will cancel in forming the regression matrix.

Solution by LQ factorization

The LQ factorization, is the transpose of the better known QR factorization, a
well-known procedure in numerical linear algebra. It states that any rectangu-
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lar matrix M of full row rank can be factorized as

M = LQ>

whereL is square lower triangular andQ> has orthonormal rows, that isQ>Q =
I . This factorization turns out to be very useful, especially in computations
involving solutions of least squares problems and orthogonal projections on
large-dimensional data spaces. For example, instead of using Cholesky factor-
izations we can compute the sample innovation matrices from the following LQ
factorizations:

Y = LYN
>
Y , X = LXN

>
X (6.4.3)

where N>X ∈ Rp×N and N>Y ∈ Rm×N are the sample matrices generated by the
random innovation vectors (6.3.2). For our regression problem we generalize as
follows

Proposition 6.5. There is an m×N matrix NE such that[
X
Y

]
=

[
LX 0
L21 LE

] [
N>X
N>E

]
,

where and LX , LE are lower triangular, N>XNX = Ip, N>XNE = 0, N>ENE = Im,
The rows of N>X form an orthonormal basis for the rowspace X := row-span X and

Π [Y | X] = Y NX
[
N>XNX

]−1
N>X = L21N

>
X (6.4.4a)

Π
[
Y | X⊥

]
= Y NE

[
N>ENE

]−1
N>E = L22N

>
E (6.4.4b)

where Π [· | X] denotes row-wise orthogonal projection onto the rowspace X.

From (6.5) we can get the (unnormalized) sample covariance as

N Σ̂y,x = Y X> = L21L
>
X ∈ Rm×p

Assume that rank X = p , then LX is invertible, and from (6.5) one obtains the
estimate of the regression model Y = AX + E in the form,

Y = L21L
−1
X X + LEN

>
E (6.4.5)

so that the sample estimate of the regression matrix is A = L21L
−1
X with sample

regression errorE = LEN
>
E . By construction the rows ofN>X and of ofN>E are a

sequential orthonormal basis obtained by a Gram-Schmidt orthonormalization

procedure starting from the first row of
[
X
Y

]
and proceeding downwards. N>E

is seen to be an orthonormal basis of the row space of the residual error space
Y	Π [Y | X].

Next the normalized matrix Ĥ is obtained by substituting the first of (6.4.3)
into (6.4.5) to get the orthogonal decomposition

N>Y = L−1
Y L21N

>
X + L−1

Y LEN
>
E (6.4.6)

where evidently the first term must be the sample regression of the innovation
matrix N>Y in terms of N>X . In other words

Ĥ = L−1
Y L21 (6.4.7)
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Note that LY is lower triangular and the procedure to get Ĥ involves only op-
erations on the data matrices without forming sample covariances and requires
a much smaller amount of computation than the one alluded at in the previous
paragraph. The "canonical" SVD decomposition could actually be done without
normalizing by the inverse of LY (i.e. essentially directly on L21) by a technique
called the Quotient, or Generalized, Singular Value Decomposition [38, p. 318].

Hypothesis Testing for the rank n

In practice n = rank Σ is unknown and it is important to have a statistical pro-
cedure to estimate it. Since the canonical correlations are naturally a decreasing
sequence, estimating n reduces to deciding if the i-th sample canonical correla-
tion κ̂i with i ≤ min{m, p} is zero or not. One could then implement a testing
procedure starting with the minimum possible index i = min{m, p} and pro-
ceeding upwards. It has been proven, see e.g. [?], that for N →∞ the statistic

ci := −
(
N − 1− 1

2
(m+ p+ 1)

)
log


min{m.p}∏

k=i

(1− κ̂2
k)


has a χ2 distribution with (m − i + 1)(p − i + 1) degrees of freedom. Testing if
ci = 0 is clearly the same as testing if (1− κ̂2

k) = 1, for k = i, . . . ,min{m, p}.

Problem 6.5. Analyze the case in which the canonical correlations κ1 = . . . = κr are
all equal to 1 and κr+1 < 1. Show that this can happen if and only if Y ∩X 6= {0}
and has in fact exactly dimension r.

What happens then to the rank of the matrix
[
Y
X

]
for N →∞?
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6.5 Contimuous parameter: the Karhunen-Loève expansion
The Karhunen-Loève expansion is the analog of PCA for signals depending on
a continuous real parameter, typically continuous-time. Although from a con-
ceptual point of view there are no novelties, more sophisticated mathematics
is needed; in particular the spectral decomposition of the covariance matrix Σ
must be replaced by an eigenfunction expansion of a certain integral operator.
We shall just quote the main results without justification.

Let us consider a continuous time random signal y := {y(t); t ∈ T }, the
variabile t now ranging on the interval [0, T ] , T ≤ +∞ of the real line which
for short we shall denote T. As before we shall assume (w.l.o.g.) that y has zero
mean. The covariance function

R(t, s) := E {y(t)y(s)} (6.5.1)

is assumed to be continuous in both arguments. This condition is equivalent
to mean square continuity of the process. An essential technical assumption is
that ∫

T

∫
T
R(t, s)2 dtds < ∞ (6.5.2)

Clearly, when T is a finite interval this condition is automatically satisfied. Let
us now consider the inner product space space C2[T] of continuous (determin-
istic) signals endowed with the inner product

〈f, g〉 :=

∫
T
f(t) g(t) dt

This space is not complete (i.e. Hilbert) in general. It is immediate to check that,
in force of condition (6.5.2), the linear operator ΣR defined by

[ΣR f ](t) :=

∫
T
R(t, s) f(s) ds (6.5.3)

maps C2[T] into itself. Iin fact, in force of condition (6.5.2), ΣR turns out to be
a compact operator. The eigenvalues and the corresponding eigenfunctions of
an integral operator of this kind are pairs λ, ϕ with 0 < ‖ϕ‖L2[T] < ∞, which
satisfy

[ΣR ϕ](t) =

∫
T
R(t, s)ϕ(s) ds = λϕ(t) t ∈ T (6.5.4)

Although for a general linear operator, eigenvalues may not exist at all, it is
well-known that under the compactness condition (6.5.2), the operator ΣR does
admit eigenvalues. In fact it behaves virtually like a finite dimensional operator
described by a symmetric positive definite matrix. The following is the central
result of the theory; see e.g. [4, 26] for the complete story.

Theorem 6.3 (Mercèr). Under the stated assumptions, the following holds:

1. The eigenvalue problem (6.5.4) admits solutions and all eigenvalues are real and
non-negative.

2. The eigenvalues of the problem (6.5.4) form a monotone nonincreasing sequence
of positive numbers (not necessarily distinct), whose only accumulation point can



6.5. Contimuous parameter: the Karhunen-Loève expansion 229

be 0. The corresponding eigenfunctions are all continuous and belong to C2[T];
they can be made orthonormal, that is, such that∫

T
ϕk(t)ϕj(t) dt = δk,j .

3. The covariance function (6.5.1) admits the following expansion

R(t, s) =

∞∑
k=0

λk ϕk(t)ϕk(s), t, s ∈ T× T (6.5.5)

the series being pointwise uniformly convergent on T× T.

The eigenvalues can be defined by an iterated Rayleigh quotient algorithm
which is summarized below.

1. There is a maximal eigenvalue λ0 which is given by the formula

λ0 = max
‖ϕ‖L2[T]=1

〈ΣRϕ, ϕ〉 = max
‖ϕ‖L2[T]=1

∫
T

∫
T
R(t, s)ϕ(t)ϕ(s) dtds (6.5.6)

The corresponding eigenfunction, ϕ0(t), is a continuous function and be-
longs to C2[T].

2. The function R1(t, s) := R(t, s) − λ0ϕ0(t)ϕ0(s) is still a covariance func-
tion (of positive type) satisfying the compactness condition (6.5.2). Hence
the eigenvalue problem

[ΣR1
ϕ](t) :=

∫
T
R1(t, s)ϕ(s) ds = λϕ(t) (6.5.7)

still has a maximal eigenvalue, λ1, given by

λ1 = max
‖ϕ‖L2[T]=1

〈ΣR1ϕ, ϕ〉 = max
‖ϕ‖L2[T]=1

∫
T

∫
T
R1(t, s)ϕ(t)ϕ(s) dtds

(6.5.8)
and λ1 ≤ λ0.

3. The procedure can be iterated ad infinitum.

By truncating the expansion (6.5.5) to the first n+ 1 terms, one can obtain an
approximation of rank n+ 1 of the covariance function R(t, s),

R(t, s) ' Rn(t, s) :=

n∑
k=0

λk ϕk(t)ϕk(s), (6.5.9)

It is possible to show that this approximation is the best possible in a variety of
ways. For example, the linear operator ΣRn defined by

[ΣRn f ](t) :=

∫
T
Rn(t, s) f(s) ds
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is the best approximant of rank n + 1 of ΣR, in the sense that it solves the con-
strained optimum problem

min
rank ( Σ ) =n+1

‖ΣR − Σ‖ (6.5.10)

the minimum being exactly λn+1, the first neglected eigenvalue. Here the norm
is the operator norm (see (D.0.6) in the appendix or e.g. [3]).

The following is the continuous time analog of Proposition 6.1

Proposition 6.6. If the covariance function of the random process y is a continuous
function satisfying (6.5.2), then y admits the biorthogonal expansion 17

y(t) =

+∞∑
k=0

√
λk ϕk(t) xk (6.5.11)

where λk; k = 0, 1, . . . are the eigenvalues of the operator ΣR, ordered in decreasing
magnitude, ϕk; k = 0, 1, . . . the corresponding normalized eigenfunctions and the
random variables xk; k = 0, 1, . . . are defined by

xk =
1√
λk

∫
T
ϕk(t) y(t) dt (6.5.12)

These random variables form an orthonormal basis for the Hilbert space H(y), linearly
generated by the process y (so in particular Ex2

k = 1 for all k). The expansion con-
verges in quadratic mean, uniformly in t ∈ T.

The above is the celebrated Karhunen-Loève expansion of the process y. In
analogy to the discrete time case, the expansion (6.5.11) is normally truncated
to a finite number of terms, leading to the approximate description

yn(t) =

n∑
k=0

√
λk ϕk(t) xk (6.5.13)

in terms of the first n + 1 modes. The quality of the approximation can be
measured in terms of statistical energy content. Since

E
∫
T

y(t)2 dt =

∫
T
E y(t)2 dt =

+∞∑
k=0

λk

the energy of yn is just given by the sum above truncated to the first n+1 terms.
One sees that the energy of the approximation error y − yn decreases with n at
the same rate as the residual sum of eigenvalues of the operator ΣR. In relative
terms the energy of the error can be expresed as the ratio∑+∞

k=n+1 λk∑+∞
k=0 λk

= 1−
∑n
k=0 λk∑+∞
k=0 λk

.

17The factor
√
λk could be absorbed in the random variable xk making its norm equal to λk , as

was done in the discrete-parameter setting.
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In fact, one can show, in perfect analogy to Theorem 6.1, that the truncated
expansion (6.5.13) provides the best approximant of rank n+ 1 of y in the sense
that it minimizes the norm

‖y − ŷ‖2 :=

∫
T
E |y(t)− ŷ(t)|2 dt

where ŷ is a m.s. continuous process with H(ŷ) ⊂ H(y) a subspace of dimen-
sion n+ 1.

Note that in general the expansion in sinusoidal modes provided by a path-
wise Fourier analysis of the signal has worse approximation properties than the
expansion (6.5.13) except in a special case.

Example 6.1 (The K-L expansion of stationary processes).
When y is a stationary process one has R(t, s) = R(t − s) and it is easy to

check that the condition (6.5.2) can hold only when T is a bounded interval. If the
interval T is unbounded, say T = [0, +∞), the process has no K-L expansion.

On a finite interval, say T = [−a, a], the covariance function can be ex-
panded in Fourier series

Σ(τ) =

+∞∑
k=0

σk cos
kπτ

a

and substituting this expression in the integral equation (6.5.4) and taking into
account the orthogonality of the cosine functions, one readily sees that the
eigenvalues of the operator ΣR are simply the Fourier coefficients of R; i.e.
λk = σk, while the normalized eigenfunctions are

ϕk(t) =
1√
a

cos
kπτ

a

Hence the random variables xk are just the (random) Fourier coefficients of the
signal y. In this case the K-L expansion coincides with the Fourier representa-
tion.

6.6 Reproducing Kernel Hilbert Spaces
The Mercer expansion of positive kernel functions (6.5.5) has given rise to a
whole branch of Functional Analysis, in particular to the discovery of a very
important class of Hilbert spaces called Reproducing Kernel Hilbert Spaces
(RKHS). The consequences have been striking both in Statistics and in Signal
Processing Engineering. Important applications of the RKHS theory in these
fields were first pointed out by Emmanuel Parzen [66] and successively stud-
ied by various authors, in particular, among the forerunners we quote Grace
Wahba’s influential book [101].

Consider a N × N symmetric positive definite matrix K. Any such ma-
trix can be considered the covariance of an N -dimensional random signal. For
convenience we shall write the entries of K as K(i, j) ; i, j = 1, . . . , N . Let us
introduce in RN the inner product

〈f, g〉K−1 := f>K−1g (6.6.1)
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and note that choosing g as the j-th column vector of K, i.e.

g(·) := K(·, j)
in this inner product space one has

〈f, K(·, j)〉K−1 = f>K−1K(·, j) = f>ej = f(j) (6.6.2)

which is called the reproducing property. In particular we have

〈K(·, i), K(·, j)〉K−1 = K(i, j) (6.6.3)

This inner product space is then called a reproducing kernel space. This con-
struction can be generalized starting from an arbitrary symmetric covariance
function K(t, s) of a continuous-time process which satisfies the compactness
condition (6.5.2) on some set T×T. Recall that an arbitrary real covariance func-
tion K(t, s) should be symmetric and positive semidefinite. Hereafter we shall
assume that it satisfies the strict positivity condition∑

i,j

aiK(ti, tj)aj > 0 (6.6.4)

for all times ti, tj and non-zero finite sequences {ai}.
Let K(·, ·) be a symmetric positive definite continuous function on some

square interval T × T of R2 satisfying the integrabiliy condition (6.5.2). Define
the linear vector space of all finite linear combinations

H̃ := {
∑
k

akK(·, sk), sk ∈ T , ak ∈ R}

with inner product of functions

f(·) =
∑
k

akK(·, tk) , g(·) =
∑
j

bjK(·, tj)

defined as
〈f, g〉K :=

∑
k,j

akK(tk, tj)bj (6.6.5)

which extends the property (6.6.3) to continuous parameter functions. Let H be
the closure of the inner product space H̃ with respect to this inner product.

Theorem 6.4 (Aronszajn). The closure H is a Hilbert space of continuous functions
and the functions {K(·, s), s ∈ T} are generators of H. The extension of the inner
product (6.6.5) to H is

〈f, g〉H = 〈f,K−1g〉L2 =

∫
T
f(t) (

∫
T
K−1(t, s)g(s)ds) dt (6.6.6)

which can be expressed in terms of the orthonormal expansion (6.5.5) as

〈f, g〉H =

∞∑
i=1

〈f, ϕi〉L2 〈g, ϕi〉L2

λi
. (6.6.7)

The Kernel K has the reproducing property; i.e. for all f ∈ H

f(s) = 〈K(·, s), f(·)〉H . (6.6.8)

A Hilbert space of functions with a reproducing kernel is called a Repro-
ducing Kernel Hilbert space (RKHS).
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Reproducing Kernel Regression

We shall now study regularized least squares regression problems in the context
of RKHS’s. Consider a scalar ridge regression problem

min
f

N∑
k=1

qk[ yk − f(xk) ]2 + λ ‖f‖2H (6.6.9)

where the xk and yk are scalar observed input-output pairs, f is the unknown
regression function which we shall assume belongs to some Hilbert space H
of continuous functions of the variable x. Introducing the standard N -vector
notations; y ∈ RN , f : R 7→ RN , this problem can be restated as

min
f∈H
{ ‖ y − f(x) ‖2Q + λ ‖f‖2H} (6.6.10)

where Q is some positive definite N ×N symmetric matrix. This formula-
tion could in principle also accomodate the case of vector valued data, say
xk ∈ Rn and yk ∈ Rm, f being a m-vector function of n real variables but for
the sake of simplicity we shall refer this generalization to the literature. Actu-
ally, Schölkopf, Herbrich and Smola [80] relax the squared norm cost allowing
the regularizer to be any strictly monotonically increasing function g(·) of the
Hilbert space norm.

The space H encodes the a priori constraints (or the a priori information)
available on the nonlinear regression function f . We shall assume that it is
endowed with a RKHS structure with reproducing kernel K(x, z) where (x, z)
both run on some feature space X which here we shall assume to be a real inter-
val containing all data {xk}.

Theorem 6.5 (Representer Theorem). The optimal solution f∗ of the problem (6.6.10)
admits a representation of the form:

f∗(·) =

N∑
i=1

θiK(·, xi) (6.6.11)

Letting KN be the N × N positive definite matrix with entries K(xi, xj); i, j =
1, . . . , N , the N -dimensional real parameters {θi} can be found by solving the nor-
mal equations of a regularized least squares problem with quadratic norms induced by
the matrices Q and KN .

Proof. Denote by RX the vector space of real valued functions X → R and, for
x ∈ X, introduce the function Φ(x) = K(·, x) which is considered as a mapping

Φ(x) : X→ RX

that is, Φ(x) is just as a "section" of the function K at the value x of its second
argument. Since K is a reproducing kernel, (6.6.8) with f(·) = Φ(x) yields

Φ(x)(x′) = K(x′, x) = 〈Φ(x′),Φ(x)〉,

where 〈·, ·〉 is the inner product in H.
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Given x1, ..., xN , use orthogonal projection to decompose any f ∈ H into a
sum of two functions, one lying in the linear subspace span{Φ(x1), ...,Φ(xN )},
and the other lying in the orthogonal complement, to get:

f =

N∑
i=1

θiΦ(xi) + v,

where 〈v,Φ(xi)〉 = 0 for all i.
Using the reproducing property f(x) = 〈f,Φ(x)〉 on the above orthogonal

decomposition shows that applying f to any training point xj , one gets

f(xj) =

〈
N∑
i=1

θiΦ(xi) + v,Φ(xj)

〉

which is independent of v. Consequently, the value of the quadratic cost in
(6.6.10) is likewise independent of v. For the second term (assuming a general-
ized regularization term g(‖f‖)), since v is orthogonal to

∑N
i=1 θiΦ(xi) and g is

strictly monotonic, we have

g (‖f‖) = g

(
‖
N∑
i=1

θiΦ(xi) + v‖

)
= g


√√√√‖ N∑

i=1

θiΦ(xi)‖2 + ‖v‖2


≥ g

(
‖
N∑
i=1

θiΦ(xi)‖

)
.

Therefore setting v = 0 does not affect the first term of (6.6.10), while it is strictly
decreasing the second term. Consequently, any minimizer f∗ in (6.6.10) must
have v = 0, i.e., it must be of the form

f∗(·) =

N∑
i=1

θiΦ(xi) =

N∑
i=1

θiK(·, xi),

which is the desired result.

This theorem states that an apparently infinite-dimensional variational prob-
lem like (6.6.10) has a finite-dimensional parametric solution and can therefore be
solved by a finite dimensional algorithm. Note in particular that, as noticed by
[101], the Smoothing Splines problem (3.5.7) can be recast in the present frame
since the L2 norm of the second derivative can be interpreted as a RKHS norm
in a suitable function space18.

Exactly as it happens for Smoothing Splines, the problem (6.6.10) can be
restated in parametric form as a generalized ridge regression and solved by
parametric techniques like those described in Corollary 3.1 of Chap.3. Note
that, for any function of the form (6.6.11) one has

‖f‖2H =

N∑
i,j=1

θiK(xi, xj)θj = θ>KNθ (6.6.12)

18In fact a Sobolev space [1].
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where KN is the N ×N positive definite matrix with entries K(xi, xj).

Problem 6.6. Use (6.6.11) and the definition of the inner product (6.6.6) to prove
equation (6.6.12) and state in detail the parametric ridge regression problem for the
calculation of the optimal f∗ solution of the problem (6.6.9).
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Chapter 7

SOME NON LINEAR
INFERENCE PROBLEMS

7.1 Introduction
While linearity is a well-defined concept, non-linearity is vague. Somebody has
compared the attribute non-linear to non-elephant in animal classification. It is
quite obvious that one cannot expect a general theory of non linear inference.
Yet, there are particular areas and problems where the linear theory is clearly
inadequate and sensible results can only be obtained by ad hoc techniques and
a special problem formulation.

In most nonlinear problems it is usually hard to devise and set up a sim-
ple probabilistic setting which allows to do statistical inference in a consistent
probabilistic framework, so one is usually content with treating the inference
problem just as a deterministic model fitting from observed data. This philosophy
lies for example at the grounds of the much praised and popular Neural Net-
work methodology. In general, by accepting this kind of naive paradigm one
must consciously realize that is going to give up any statistical error or perfor-
mance analysis. There are however some notable exceptions like the one we are
going to describe in the next section.

7.2 Direction estimation on the unit sphere
In this section we shall discuss a class of Bayesian estimation problems which
cannot be treated effectively by the linear m.v. theory. We shall discuss prob-
lems where the variable to be estimated is a direction. These problems have some
important applications in practice, occurring when using bearing-only sensors,
for example in antenna array systems or single-camera optical sensors, in par-
ticular in problems of scene and motion reconstruction in computer vision. In
computer vision systems one has in practice only access to the projections of 3-
D points on the image plane of a camera. Digital images are formed on an array
of CCD sensors, ideally superimposed to the focal plane of the system. The de-
tected feature points on the image plane do not correspond exactly to straight
perspective projections of the real target points in R3. This occurs because of
distortion of the optical systems and noise of various kinds entering the signal
detection and signal processing phase on the electronic image acquired on the

237
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CCD array.
In the applications we have in mind the observations are angular measure-

ments which are corrupted by noise. From them one wants to reconstruct the
scene or track some moving target object in 3-dimensional space. To simplify
the problem setting we shall just assume the target can be described by a single
point P , which in general may move randomly in R3 (although in this section
we shall address only the reconstruction of a fixed target). The sensor at our
disposal cannot measure the distance of P from the observation center O (con-
ventionally coinciding with the origin of the coordinate system) but can only
measure the direction of the vector OP joining the target to the optical center.

Mathematically, the direction of a vector OP can be identified with the nor-
malized unit vector OP/‖OP‖. In our setting, the only reconstructible feature of
a target point P will be its direction, a unit vector denoted by the symbol x. The
observations yk ; |, k = ‘1, 2, . . . are noisy directional data which are also mod-
eled as unit vectors belonging to the unit sphere with center inO. Hence, in this
setting we want to estimate the direction x of a target point P in R3 from noisy
measurement yk, k = 1, . . . ,m, which are unit vectors randomly distributed
about x. One could then say that the problem can be formulated as an estima-
tion problem on the unit sphere. In general, the unit sphere in Rn is defined as the
set of vectors of Rn having unit Euclidean norm. It is a surface of dimension
n− 1 and is denoted by the symbol Sn−1. Hence our problem can be posed just
as estimation on the 2-sphere S2.

The precise nature of the observation noise affecting the measurements yk, k =
1, . . . ,m will be discussed later; it should however be clear that the way the
noise affects the ideal direction x can no longer be additive as in the standard
linear model and a realistic formulation of the problem should depart sharply
from the standard linear-Gaussian setup.

More general examples of estimation problems on manifolds which occur in
computer vision are discussed in the work of Soatto et al. [89].

Some other perspective estimation problems, for example recovering lines
moving in R3 by observing their projections on the image plane, give rise to
estimation on high dimensional manifolds such as the Grassmannian manifold.

7.3 The Langevin Distribution
Here we shall discuss probability distributions on the unit sphere.

A family of probability distributions on the sphere which has many desir-
able properties is defined by the Langevin density

p(x) =
κ

4π sinhκ
expκµ>x, x ∈ R3 ; ‖x‖ = 1 (7.3.1)

with respect to the spherical surface measure dσ = sin θdθdφ on the unit sphere.
Here θ , φ are the polar angle and azimuth coordinates. The vector parameter
µ ∈ S2, conventionally normalized to unit length, is the mode of the distribution,
while the nonnegative number κ > 0 is called the concentration of the distribu-
tion. For κ→ 0 the density becomes the uniform distribution while for κ→∞,
p(x) tends to a Dirac distribution concentrated at x = µ. The density func-
tion (7.3.1), denoted L(µ, κ), was introduced by Paul Langevin in his statistical-
mechanical model of magnetism [53]. Since then it has been rediscovered and
used in statistics by a number of people, including von Mises whose name is
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sometimes attached to the distribution, see [102]. Observe that the Langevin
distributions form a one-parameter exponential family and that this family is
invariant with respect to rotations, in the sense that, if x is Langevin distributed,
then it is easy to check that for any R ∈ SO(3) 19 the random vector y := Rx
has still a Langevin distribution with the same concentration parameter as x
and mode parameter Rµ. An important property of the Langevin distribution
is the preservation of the functional form under multiplication

L(µ1, κ1)L(µ2, κ2) = L(µ, κ) (7.3.2)

where L(µ, κ) is Langevin with parameters

µ =
κ1 µ1 + κ2 µ2,

‖κ1 µ1 + κ2 µ2‖
κ = ‖κ1 µ1 + κ2 µ2‖. (7.3.3)

Introducing a coordinate system in R3 with unit vectors e1, e2, e3 = µ and
spherical polar coordinates (θ, φ), relative to this frame, we have

x = sin θ cosφe1 + sin θ sinφe2 + cos θe3

and the inner product µ>x is just equal to cos θ whereby (7.3.1) takes the simple
form

p(θ, φ) =
κ

4π sinhκ
exp(κ cos θ) 0 ≤ θ ≤ π.

which makes it clear that L(µ, κ) is rotationally symmetric around its mode µ.
The expression given in (7.3.1) is for a distribution on the unit sphere in

R3. For higher dimension, only the normalization constant has a slightly more
complicated expression. The Langevin distribution on Sn−1, n ≥ 3, is

p(x) =
κ(n/2−1)

(2π)n/2In/2−1(κ)
expκµ>x, ‖x‖ = 1 (7.3.4)

where In/2−1(x) is a modified Bessel function of the first kind. More gener-
ally, an arbitrary probability density functions on Sn−1 can be expressed as the
exponential of a finite expansion in spherical harmonics. These are discussed,
for example, in [102, p. 80-88]. In this sense the Langevin density is a sort of
first order approximation as only the first spherical harmonic, cos θ, is retained
in the expansion and the others are assumed to be negligible. A more general
approach than the one followed here could be to consider densities which are
exponential of a finite sum of spherical harmonics. These are also of exponential
type, have a set of finite dimensional sufficient statistics and could be treated by
generalizing what is done in this section.

Rotation-invariant distributions like the Langevin distribution are natural
for describing random rotations.

Let x be a fixed direction, represented as a point in S2, which is for exam-
ple observed by a camera. The observation mechanism perturbs x in a random
way, say because of lens distortion, pixel granularity etc. Since the output of the
sensor, y, is also a direction represented by a vector of unit length, the perturba-
tion may always be seen as a random rotation described by a random rotation

19SO(3) is the special orthogonal group of matrices R such that RR> = I with detR = +1.
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matrix 20 R = R(p) ∈ SO(3), where p is the polar vector of the rotation, i.e.
R(p) := exp{p∧} so that

y := R(p) x (7.3.5)

In other words we can always model the noise affecting x as multiplication
by a rotation matrix. The action of the “rotational observation noise" on direc-
tions x ∈ S2 can in turn be described probabilistically by the conditional density
function p(y |x = x) of finding the observation directed about a point y on the
sphere, given that the “true" observed direction was x = x. A very reasonable
unimodal conditional distribution, rotationally symmetric about the starting di-
rection x (no angular bias introduced by the observing device) is the Langevin-
type density,

p(y |x) =
κ

4π sinhκ
expκx>y (7.3.6)

In this framework we may therefore think of the ordinary distribution L(µ, κ)
as a conditional density evaluated at the known conditioning direction x = µ.

Note that, since µ>y is just the cosine of the angle between the unit vectors
µ and y on the sphere, the values of the conditional probability distribution
p(y |x) are invariant with respect to the action of the rotation group SO(3) on
S2, i.e. with respect to coordinate change on the sphere.

The Angular Gaussian Distribution

As we have seen, the functional form of the Langevin distribution is preserved
under rotations which is a property resembling that of the Gaussian, which is
preserved under linear maps in Euclidean spaces. In a sense the Langevin dis-
tribution is the natural analog on the unit sphere of the Gaussian distributions
on a Euclidean space. There are various attempts in the literature to derive the
Langevin distribution as the distribution function of some natural transforma-
tion of a Gaussian vector. Perhaps the easiest result in this vein is the observa-
tion, first made by R. A. Fisher [34], that the distribution of a normal random
vector x having an isotropic Gaussian distributionN (µ , σ2I), conditional on the
event {‖x‖ = 1 } is Langevin with mode µ/‖µ‖ and concentration parameter
‖µ‖/σ2.

A more useful result, discussed in [102, Appendix C] is the remarkable sim-
ilarity of the so-called Angular Gaussian distribution to the Langevin. The an-
gular Gaussian, denoted by the symbol Ag, is the probability density of the
unit vector x := ξ/‖ξ‖ when the random vector ξ has an isotropic Gaussian
distribution, i.e. ξ ∼ N (µ , σ2I). The distribution is obtained by computing
the marginal of N (m, σ2I) on the unit sphere ‖x‖ = 1. It is shown in [102,
Appendix C] that the angular Gaussian is a convex combination of Langevin
densities with a varying concentration parameter κ,

Ag(x) = N

∫ +∞

0

κn−1e−
1
2
κ2

θ2 eκµ
>x dκ,

where

µ =
m

‖m‖
α =

‖m‖
σ

(7.3.7)

20The wedge ∧ denotes cross product.
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Figure 7.3.1. Angular Gaussian vs Langevin

and it is seen from this formula that Ag depends on µ , σ2 only through the two
parameters µ and α. We shall denote it by Ag(λ, α2). The notation is conve-
nient, since for either moderate or large values21 of the parameter α, Ag(µ, α2)
is, to all practical purposes, the same thing as L(µ, α2), where the parameters are
related by (7.3.7). See Figure 7.3.1.

In fact the angular Gaussian approximates a Langevin distribution also for
α small, when both of them are close to uniform (which is however a rather un-
interesting case), but the relation between α and κ is different. In the following
we shall just assume that Ag(µ, α2) = L(µ, α2).
Note that all distributions N (ρµ , ρ2σ2I), ρ > 0, give origin to the same an-
gular Gaussian as N (µ , σ2I). This is in fact precisely the family of isotropic
Gaussians generating the same angular distribution.

The role of the angular Gaussian in modeling directional observations can
be illustrated by the following example. Let ξ, ζ be independent Gaussian
isotropic random vectors with ξ ∼ N (µ , σ2I), ζ ∼ N (0 , σ2

zI) and assume we
observe the direction of the vector

η = Cξ + ζ ∼ N (µ , σ2CC> + σ2
zI). (7.3.8)

If C is an orthogonal matrix, CC> = I and the distribution of η is isotropic
Gaussian, the direction y := η/‖η‖, has an angular Gaussian distribution,
namely y ≈ L(µ/‖µ‖, ‖µ‖

2

σ2+σ2
z
).

Actually, no matter how ξ, ζ are correlated, it is easy to see that the con-
ditional density p(y | ξ = ξ) is angular Gaussian. In fact, this follows since
the conditional distribution of η given ξ = ξ is Gaussian with mean Cξ and
variance σ2

z . Hence

p(y | ξ = ξ) = Ag(Cξ/‖ξ‖, ‖Cξ‖2/σ2
z) = Ag(Cx, ‖ξ‖2/σ2

z) (7.3.9)

21“Moderate or large" here means that κ := α2 should be greater than, say, 100 in order to have
a fit within a few precent of the values of the two functions.
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where x is the direction vector of ξ.
In practice we are interested in the conditional density p(y | x). We shall

state the condition for this density to be angular Gaussian as follows.

Proposition 7.1. If the additive perturbation ζ is isotropic Gaussian with variance σ2
z

proportional to ‖ξ‖2, i.e. σ2
z = σ2

0‖ξ‖2, then the conditional density p(y | x) of the
unit vector y of the observation (7.3.8) is angular Gaussian.

Proof. Denote r := ‖ξ‖ and note that p(y | ξ = ξ) = p(y | x, r). Since p(y, r |
x) = p(y | x, r)p(r | x), by a well-known formula in probability theory we have

p(y | x) =

∫ ∞
0

r2p(y | x, r)p(r | x)dr .

Then the claim follows from

p(y | x) =

∫ ∞
0

r2p(y | x, r)p(r | x)dr

since p(y, r | x) = p(y | x, r)p(r | x) = p(y | ξ)p(r | x) and by the stated
assumption, p(y | x, r) does not depend on r and can be brought out of the
integral sign.

The fact that the variance of the additive noise in the model (7.3.8) must
depend on ξ, which implies that this variance is in fact the conditional variance
of η given ξ = ξ, can be described as condition of angular noise. Note that this
condition precludes the independence of ξ and ζ. This fact, which may look
surprising at a a first glance, is in fact quite in line with the intuitive idea of
angular noise. Every infinitesimal perturbation dξ of a random vector ξ having
a fixed length and direction x ∈ S2, which should maintain the vector ξ + dξ
of the same length (up to higher order infinitesimals), can be represented as the
effect of a rotation about a certain infinitesimal polar vector dp, that is

dξ = dp ∧ ξ = (dp ∧ x) ‖ξ‖ (7.3.10)

where the symbol ∧ indicates vector (or external) product 22. In in this way
the differential dξ lays on the tangent plane to to the sphere of ray r = ‖ξ‖, at
the point ξ and has amplitude which is proportional to the norm ‖ξ‖ so that its
variance is proportional to the square ‖ξ‖2. Hence the perturbation dξ must be
related to both the direction and the norm of the vector ξ by the geometry of
the space so it cannot be independent of the variable ξ.

One may say that Proposition 7.1 asserts that the angular Gaussian distri-
bution (and hence the Langevin distribution) describes statistically the effect of
small angular perturbations on a fixed direction. Said in other words, for small
angular perturbations, the conditional density p(y |x = x) of observing the di-
rection y on the unit sphere, when the ideal observed direction is x = x, is the

22If p := [p1p2p3]> then p∧ is the linear operator in R3 defined by the skew-symmetric matrix

p∧ =

 0 −p3 p2
p3 0 −p1
−p2 p1 0


.
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Langevin distribution

p(y |x) =
κ

4π sinhκ
expκx>y (7.3.11)

Therefore one can always interpret the distribution L(µ, κ) as being a conditional
distribution based on the condition x = µ. That this distribution is unimodal
and symmetric about the conditioning direction x = µ may be interpreted as a
description of a measurement process without bias.

When the angular perturbation is not infinitesimal and there may be large
angular errors in the observations one should integrate the relation (7.3.10). One
would find that a finite angular perturbation of a given direction x ∈ S2 can be
expressed by the formula

y := R(p) x (7.3.12)

where R(p) := exp{p∧} is a rotation in SO(3) (an orthogonal matrix of deter-
minant +1) about the polar vector p. It follows that the output of an unbiased
noisy directional sensor can in general be represented mathematically as multi-
plication by a rotation matrix about a random polar vector: R = R(p) ∈ SO(3).
In this general case the conditional distribution can of course be a quite arbi-
trary density function on the unit sphere.

A max Entropy characterization

The parameters (µ, κ) of a Langevin distribution can both be expressed as a
function of the mean value of the distribution. On S2 it is not hard to check that
one has

µ =
m

‖m‖
,

coshκ

sinhκ
− 1

κ
= ‖m‖ (7.3.13)

and these formulas define a one-to-one correspondence betweenm and the pair
(µ, κ). Hence in analogy to what happens with the Gaussian there is a vector
parametermwhich determines the distributionL(µ, κ) completely. The follow-
ing proposition provides a characterization of the Langevin diostribution which
is the analog on Sn−1 of a well-know characterization of the Gaussian density
as the one which, among all probability densities on Rn with fixed mean and
variance, has maximum entropy.

Proposition 7.2. Among all probability distributions on the unit sphere having a fixed
mean vector, m, the Langevin distribution has maximum entropy.

Proof. The entropy of a density f (or of an absolutely continuous distribution
dF (x) := f(x) dσx) on the sphere is

Hf := −
∫
Sn−1

log f(x) f(x) dσx

Let’s denote for brevity the Langevin distribution with mean m by the symbol
l(x). Using the expression (??), one gets

Hl = −
∫
Sn−1 log l(x) l(x) dσx

= − log κ(n/2−1)

(2π)n/2In/2−1(κ)
− κµ>m

= −
∫
Sn−1 log l(x) f(x) dσx
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for an arbitrary distribution f of mean m. It follows that the difference

Hl −Hf =
= −

∫
Sn−1 log l(x) f(x) dσx +

∫
Sn−1 log f(x) f(x) dσx

=
∫
Sn−1 log f(x)

l(x) f(x) dσx

is just the famous Kullback-Leibler pseudo-distance of f from l, see [52, 51]. This
is also called divergence or relative entropy in Communication Theory, see [21] or
the article by Van Schuppen and Stoorvogel in [10, p. 314]. In the first reference
it is proved that this pseudo distance is positive unless f = l, in which case it is
equal to zero. Hence Hl ≥ Hf for every f having mean m.

Best Approximation by a Langevin distribution

The Kullback-Leibler (pseudo-) distance introduced in the previous section is
a natural measure of distance among probability distributions. We shall use
this distance to provide another interesting characterization of the Langevin
distribution.

Let P be an arbitrary probability measure on the unit sphere, absolutely
continuous with respect to the surface measure dσ = sin θ dθ dϕ; we want to
approximate the density f(x) = dP/dσ by means of a density of the Langevin
type, i.e. by a density in the parametric class

L = {`(x) =
κ

4πsinh(κ)
exp{κµ>x} , κ ≥ 0, ‖µ‖ = 1}; (7.3.14)

, using as a criterion of fit the Kullback-Leibler’s pseudo-distance,

K(f, `(µ,κ)) = E f ln
f(x)

`(µ,κ)(x)
=

∫
S2
f(x)ln

f(x)

`(µ,κ)(x)
dσx (7.3.15)

The problem is to find the minimum:

min
(µ,κ) : κ≥0,‖µ‖=1

K(f, `(µ, κ)) (7.3.16)

This optimization problem can be solved by introducing Lagrange multipliers

Λf (θ) = K(f, `θ) +
λ

2
Φ(θ) (7.3.17)

where

Φ(θ) =

3∑
i=1

µ2
i .

Taking derivatives with respect to µ and κ it can be shown that the minimum is
attained for: 

coshκ

sinhκ
− 1

κ
− µ>mx = 0

κmx − λµ = 0
(7.3.18)

where mx is the mean vector of P

mx =

∫
S2

xf(x) dσx. (7.3.19)
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Explicitly, the optimal µ and κ are given by:
coshκ

sinhκ
− 1

κ
= ‖mx‖

µ =
mx

‖mx‖
(7.3.20)

Note that for a Langevin density, the parameters (µ, κ) are completely deter-
mined by the mean vector m so that

coshκ

sinhκ
− 1

κ
= ‖m‖

µ =
m

‖m‖
(7.3.21)

Therefore:

Proposition 7.3. The Langevin distribution which best approximates an arbitrary
distribution P on the unit sphere according to the Kullback-Leibler distance, is the one
having the same mean m of P .

Hence our approximation problem is solved simply by equating the mean
vectors of the two distributions. In other words the only thing we need to know
to find the best Langevin approximant of P is its mean vector.

This result leads to a kind of wide-sense estimation theory on the unit sphere
with the mean parameter playing the same role of the second order statistics in
the Gaussian case. Recall that here both the mode (i.e. the “most probable di-
rection”) and the concentration parameter (telling us how data are scattered
about the mode) are uniquely deductible from the mean. Obviously one ex-
pects reasonable results from this wide-sense theory only when the density to
be approximated is unimodal and approximately symmetric about the mode.

7.4 MAP Estimation of directions
Assume we are measuring a direction x by a noisy sensor which is affected
by angular noise and we know the conditional density, p(y |x), which belongs
to the Langevin class. Assume also that the a priori model for the unknown
direction vector x is of the Langevin type say,

x ∼ L(x0, κ0)

For physical reasons it is reasonable to assume that x and the random rotation
dyp∧ which corrupts the observation of x, are independent random variables.
We can then compute the a posteriori density p(x | y) using Bayes rule. The
joint density is given by the expression

p(x , y) = p(y |x)p(x) = A(κ, κ0) exp κ̂ µ̂>x

where

A(κ, κ0) =
κ

4π sinhκ

κ0

4π sinhκ0

κ̂ µ̂>x := κy>x+ κ0x
>
0 x.
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In this formula, κ̂ = κ̂(y, x0) > 0 and µ̂ = µ̂(y, x0) are functions of y and of the
prior mode x0 which are computed by the formulas

µ̂ :=
κy + κ0x0

κ̂
κ̂ := ‖κy + κ0x0‖. (7.4.1)

Note that ‖µ̂‖ = 1.
Dividing by the marginal one obtains the a posteriori density:

p(x |y) =
κ̂

4π sinh κ̂
exp κ̂(y) µ̂>(y)x

which is still of Langevin class. Te conditional mode µ̂(y), that is the Maximum
a Posteriori Bayesian estimate of x, given the observation y and the conditional
concentration κ̂(y) are given in (7.4.1). They are quite easy to figure out in this
simple case. These formulas can, in certain cases, be generalized to a dynamic
situation and lead to a nonlinear versions of the Kalman filter. We shall consider
the simplest situation below.

Sequential Observations of a Fixed Target

Assume we have a sequence of observations

y(t) := R(p(t)) x = exp{p(t)∧}x t = 1, 2, . . . (7.4.2)

where the p’s are identically distributed independent random rotations which
are also independent of the random vector x. The y(t)’s are conditionally inde-
pendent given x, and p(y(t) |x) = L(x, κ), where κ is the concentration param-
eter of the angular noise. Hence, denoting

yt := [y(1), . . . ,y(t)]>

we may write

p(yt |x) =
κt

(4π sinhκ)t
expκ〈x,

t∑
s=1

y(s)〉 (7.4.3)

where 〈. , .〉 denotes inner product in R3. Assuming an a priori density of the
same class, x ∼ L(x0, κ0), one readily obtains the a posteriori measure

p(x |yt) =
κ̂(t)

(4π sinh κ̂(t))
exp κ̂(t)〈µ̂(t) , x〉 (7.4.4)

which is still of the Langevin class with parameters

µ̂(t) =
1

κ̂(t)
(κ

t∑
s=1

y(s) + κ0x0) (7.4.5)

κ̂(t) = ‖κ
t∑

s=1

y(s) + κ0x0‖ (7.4.6)

Note that in case of a uniform prior distribution (κ0 = 0), the first formula
reduces to

µ̂(t) =

∑t
s=1 y(s)

‖
∑t
s=1 y(s)‖

(7.4.7)
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which should be compared with the Gaussian m.v. estimator which is just the
arithmetic mean of the observations and of course does not preserve the unit
norm of the summands.

These formulas can be easily rewritten as recursive relations which update
the current estimate µ̂(t), κ̂(t) for adjunction of the t + 1-st measurement. At
time t+ 1 one obtains,

µ̂(t+1) =
1

κ̂(t+1)
(κ

t∑
s=1

y(s) + κ0x0 + κy(t+1))

κ̂(t+1) = ‖κ
t∑

s=1

y(s) + κ0x0 + κy(t+1)‖

= ‖κ̂(t)µ̂(t) + κy(t+1)‖

which can rewritten in a recursive form as in the proposition below.

Proposition 7.4. The MAP estimate (conditional mode) µ̂(t), of the fixed random
direction x, given observations corrupted by independent angular noise {p(t)} of con-
centration κ, propagates in time according to the recursions

µ̂(t+1) =
1

κ̂(t+1)
(κ̂(t)µ̂(t) + κy(t+1)) (7.4.8)

κ̂(t+1) = ‖κ̂(t)µ̂(t) + κy(t+1)‖ (7.4.9)

with initial conditions µ̂(0) = x0 and κ̂(0) = κ0.

These recursions look like a nonlinear version of the well-known Kalman-
Filter updates for the sample mean which one would obtain in the Gaussian
case. They can be generalized to the case of tracking directions which vary
randomly. For a more general view of directional estimation see [69, 15, 6].
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7.5 Introduction to Neural Networks
In these last few decades there has been a great amount of publications and an
enormous promotion devoted to a class of nonlinear parametric models known
as Neural Networks. We shall limit ourselves to a few citations, [78, 24, 71, 86,
91] but most of the books on Machine Learning nowdays devote thick chapters
to the subject. The appeal and popularity of these models is probably due to
the reference often made to neuro-biological models and to related new fash-
ionable fields such a Neuroscience, Brain science etc. We would like to warn the
reader that, contrary to what many writings of quite dubious scientific creden-
tials tend to promote, this relation is mostly based on wording and is somewhat
misleading.

Among the often claimed neuro-biological motivations, there is a primitive
model of a neuron introduced in 1943 by McCulloch and Pitts [64] which has
triggered the idea of activaton and activation function, a basic component of the
Neural Networks philosophy. It should be said however that this model seems
now really inadequate from a physiological point of view to explain the be-
haviour of a real neuron. Nevertheless this has led to the introduction in this
field of a mystic/biological terminology which seems to have little to do with
the actual scientific content of the subject and seems mainly serving to create
audience.

7.6 Static Neural Networks
Let σ : R→ R be a function, and let m;n; p be positive integers. A single hidden
layer Neural Network with a p-dimensional input u, m-dimensional output y,
n hidden units, and activation function σ, is a function specified by a pair of
matrices B, C and a pair of vectors b0, c0, where B and C are real matrices of
respective sizes n× p and m× n, and b0 and c0 called the shift and the offset, are
real vectors of size n and m.

Let ~σ : Rn → Rn denote the application of σ to each coordinate of an n-
vector x:

~σ(x1, . . . , xn) =
[
σ1(x) . . . σn(x)

]>
:=
[
σ(x1) . . . σ(xn)

]>
,

so that the i-th component of the vector ~σ(x) depends only on the i-th coordi-
nate of x. Then the 5-tuple

Σ ≡ {B, C, b0, c0, σ }

is meant to realize the (one layer) Neural Network map

fΣ : Rp → Rm : u 7→ C ~σ(Bu+ b0) + c0 . (7.6.1)

Sometimes this function is called the behavior of the net, leaving the name Neu-
ral Network to designate the graph representing the interconnections of the
various units which compose the function.

In compact notation, a one-layer Neural Network is a composite map of the
type

h ◦ ~σ ◦ g, (7.6.2)
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Figure 7.6.1. One-layer Neural Network with a scalar output

where h(x) = Cx + c0 and g(u) = Bu + b0 are affine maps. When c0 = 0 the
network is said to have no offset.

Remarks 7.1. One can always rewrite a behaviour function (7.6.1) as one with-
out shift parameter b0 by introducing an extra input u0 = 1 and augmenting the
matrix B by a zeroth-index column b0. This notation has already been imple-
mented in Figure 7.6.1 where the matrix B is specified row by row as

B =

β>1. . .
β>n

 , βk ∈ Rp+1.

Also we shall introduce an extra zeroth-index component σ0 of the function ~σ
identically equal to 1 so that the vector c0 can also be absorbed in an enlarged
matrix C of dimension m× (n+ 1).

Multiple Hidden-layer Networks are constructed by cascading in series
many one-layer Neural Networks making each output to act as the input to
the next Network. One can then obtain structures of arbitrary complication. A
network with N hidden layers has as behavior function the successive compo-
sition of N one-layer networks:

fΣ(u) = BN~σ(BN−1~σ(. . . ~σ(B1u)))

where the Bk =
[
b0,k Bk

]
∈ Rnk×(nk−1+1) are matrices defining the k-th layer

with nk activation units. The last BN =
[
c0 C

]
contains the output map pa-

rameters. Of course one should mantain the convention that the zero-th com-
ponent of each ~σ is a constant equal to 1 so that n0 = p = dimu and nN = dim y.

Since the first attempts people discovered experimentally, that with a struc-
ture of this kind one could approximate arbitrarily well an arbitrary continuous
nonlinear function. The reason of this fact has however always been quite mys-
terious.
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Universal approximating functions

The hidden layer always involves replicas of the same nonlinear activation func-
tion σ and one may wonder what special characteristics this function should
have in order to obtain reasonable approximation properties. It turns out that
the function could be chosen quite arbitrarily. In the literature there are dif-
ferent choices of σ which seem to work roughly the same. Popular classes of
functions are the hyperbolic tangent, the so-called sigmoid

σ(x) =
1

1 + e−ax
= tanh(

a

2
x) + 1 , a > 0

which by choosing a large approximates the step function,

- x

6

σ(x) = tanh x

Figure 7.6.2. Hyperbolic Tangent

and the radial functions

σ(x) = φ(−a x2) , a > 0

where φ is an exponential, but one could use essentially any kind of function.
This insensitivity to the shape of the activation function has led to extreme sim-
plifications. In "deep networks" for classification it is now customary to use a
rectifier characteristic like:

- x

6

�
�
�

Figure 7.6.3. Rectifier

Every function seems to work except for the notable exception of polynomials.
Why is this so?
It seems to be unappreciated by many that the success of Neural Networks
as function approximation devices stems from the approximation capability of
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linear combinations of shifted versions of the same activation function; say
linear combinations the type, ∑

k

ckσ(x+ τk) .

These can approximate arbitrary continuous nonlinear functions. In this respect
an old and little known result of Norbert Wiener [104] states this fact in rigorous
terms as follows.

Theorem 7.1 (Wiener 1932). In order for the linear span of shifted versions x 7→
f(x + τ) ; τ ∈ R of a function f ∈ L2(R), to be dense in L2(R), it is necessary and
sufficient that the Fourier transform f̂(iω) be nonzero almost everywhere.

In other words, an arbitrary g ∈ L2(R) can be approximated arbitrarily
closely (in L2(R)) by a linear combination of shifts

∑
k ckf(x + τk), of the

function f , if and only if f̂(iω) is nonzero almost everywhere. This result has
been generalized in several ways to continuous functions; see e.g. [24, Theorem
1].

Although polynomial functions such as
∑
k ak x

k are obviously notL2 func-
tions, nevertheless, their generalized Fourier transform in the sense of distribu-
tions, is a sum of derivatives of Dirac δ functions whose support is concentrated
at the zero frequency. It may then be guessed that these functions should have
poor approximation properties in the sense defined above. In fact it is trivial
to check that the span of shifted polynomials of degree n in x is still a polyno-
mial of (at most) the same degree. Hence the popular approximation by “Taylor
series”-like linearly parametrized models, turns out to be a very bad activation
function.

Identifiability

As we have already hinted at, for any parameter estimation problem to be well-
posed one needs at least local identifiability. Unfortunately the multi-layer Neu-
ral Networks which are often used in applications involve hundreds of param-
eters which are related to the model input-output map in a complicated way,
making identifiability very hard to check. It seems in fact that in practice the
condition is very seldom satisfied. Nevertheless due to the availability of easy
and ready to implement computer routines, Neural Networks are an extremely
popular model building device. Recently, Deep Learning has become a new
paradigm of Machine Learning, advocating the use of extremely complicated
networks with a very large number of hidden layers and an enormous number
of parameters. We do not understand the rationale of this new paradigm; to us
it seems to be just based on the gigantic “machine cranking” power afforded by
nowadays colossal supercomputers than on true insight.

IdentifiabilIty of one-layer Neural Networks has been investigated in [29, 5].
One says that two (single layer) networks Σ and Σ̂ having the same activation
function, are input/output equivalent if

fΣ = fΣ̂

that is when they realize the same function. The identifiability question for one-
layer Neural Neworks is: when does fΣ = fΣ̂ imply equality of the parameters
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{B, C, b0, c0}?
The answer is that for sigmoid functions and offset c0 = 0 this is true modulo

signs [29]. So one at least has local identifiability.
In general however identifiability does not hold. In fact, there are ad hoc pro-

cedures, which we shall not describe here, to eliminate parameters which seem
to be not influencing the input-output behaviour of the network. Of course
based on semi-empirical judgements. This is called pruning, which should be
done by “optimal brain damage” [55] algorithms.

7.7 Gradient descent and back-propagation
Assuming a fixed activation function σ, the behaviour function (7.6.1) of a single-
layer network depends on (n+1)m+(n+1)p parameters, which are the compo-
nents ck,j of the output matrix C plus the offset vector c0 and the components
bj,h of the augmented input matrix B including the the n-dimensional shift pa-
rameter b0. These scalar parameters, denoted θ, are generically called weights of
the net and the output of (7.6.1) corresponding to an input sequence u is written
y = fΣ(θ, u) or simply as y = fθ(u).

The "training" of a Neural Network is normally done by Least Squares.
Given a training set

{u(t), y(t) ; t = 1, 2, . . . , N }

one wants to “learn” the network by minimizing the least squares distance

JN (θ) :=
1

2

N∑
t=1

‖ y(t)− fθ(u(t)) ‖2 (7.7.1)

with respect to the parameter θ. Here we assume that the number of “neu-
rons” n in the hidden layer is given to us but this is very seldom the case and
one should really optimize also with respect to n in a certain range decided
by taking into account the appropriate warnings for overfitting. Since J(θ) is
a nonlinear function of the unknown parameter the minimization can only be
done numerically. Note that the function is not convex and there may be sev-
eral minima. The simplest optimization algorithm one could use is the gradient
descent which we shall describe in the following.

For simplicity, we will assume from now on that m = 1; (single output
network) and use the augmented variables notation explained in Remark 7.1 so
that C ≡ c> will now be the row vector

[
c0 c>

]
of dimension n+ 1 and in the

expression (7.6.2) we shall understand that there are p+ 1 inputs so that g(u) =
b0 +Bu, is a n-vector valued function and ~σ(x) is a n+ 1-vector function whose
0-th component is identically equal to 1. We shall first compute the derivatives
of a simplified cost function J(θ) := 1

2 ( y − ŷθ )2 where

ŷθ = c>~σ(x) ; x = g(u) =


β>1
β>2
. . .

β>n

u
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(where x has n+ 1 components) to obtain

∂J(θ)

∂ck
= − ( y − ŷθ )σ(xk) , k = 1, . . . , n

∂J(θ)

∂βi
= − ( y − ŷθ )

∂

∂βi

n∑
k=0

ck σ(βku) =

= − ( y − ŷθ ) ci σ
′(xi) u , i = 1, 2, . . . , n

where σ(x0) ≡ 1 and σ′(x) =
d

dx
σ(x). We can then apply these expressions to

compute the gradient of the actual quadratic cost JN (θ), getting

∂JN (θ)

∂ck
= −

N∑
t=1

[ y(t)− fθ(u(t)) ]σ(xk(t)) , k = 0, 1, . . . , n

∂JN (θ)

∂βi
= −

N∑
t=1

[ y(t)− fθ(u(t)) ] ci σ
′(xi(t)) u(t) .

The optimization is usually implemented by a gradient descent algorithm of
which there are various versions. The simplest is probably the batch version
which uses all the data at each step and has the form:

c̃(k + 1) = c̃(k)− γc(k)
∂JN [θ(k)]

∂c̃
(7.7.2)

βi(k + 1) = βi(k)− γb(k)
∂JN [θ(k)]

∂βi
, i = 0, 1, 2, . . . , p (7.7.3)

where for convergence, each sequence {γ(k) ; k = 1, 2, . . .} of positive steplengths
must go to zero slowly enough so as to make

∑
k γ(k) = +∞ but

∑
k γ

2(k) <∞.

For example taking γ(k) proportional to
1

k
would do. There are several vari-

ants of gradient-like algorithms which are for example described in detail in
the Matlab Neural Networks toolbox guide [?, Sect. 5.2]. Newton or Quasi-Newton
methods are essentially inapplicable due to the large dimension of the Hessians.

When the neuron activation functions are sigmoids, or exponential radial
functions, some of the calculations needed to compute the gradient with respect
to the output parameters in (7.7.2), can be used in the gradient with respect to
the input parameters in in (7.7.3). This is called Back-propagation.

More specifically, let zk(t) = σ(xk(t)) be the output of the k-th neuron and
εθ(t) := [ y(t) − fθ(u(t)) ] zk(t). This may be interpreted as an approximation
error of y(t) based on the hidden layer output xk(t), with parameter value θ.
Now since σ′(xk) = aσ(xk)[σ(xk)− 1] we can substitute the computed εθ(t), ck
and xk(t) into the gradient with respect to the input parameters

[ y(t)− fθ(u(t)) ] ci σ
′(xk(t)) u(t)

which is the back substitution. The generalization to multiple-layer and multiple-
output cases is quite straightforward even if the notations tend to be compli-
cated. In particular Back-Propagation applies exactly the same to the output-
input parameters c and b of a cascaded multi-layer network. Of course consid-
ered in the reverse order, going backwards from outputs to inputs.
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7.8 Bayesian Neural Networks
In this section we shall take a statistical approach and describe the training set
as involving a sequence of random output measurement

{u(t), y(t) ; t = 1, 2, . . . , N }

where the y(t)’s have a structured parametric mean function fθ(u(t)) depend-
ing on a parameter θ and on the deterministic input u(t). Each y(t) is corrupted
by an additive random perturbation w(t) which we shall assume Gaussian and
i.i.d.

The Gaussian log-likelihood function for N i.i.d. observations will then be
the least squares distance

JN (θ) :=
1

2σ2

N∑
t=1

‖ y(t)− fθ(u(t)) ‖2, (7.8.1)

involving the noise variance σ2 and the parameter θ. Clearly imposing to fθ(u(t))
the Neural Network structure of the previous section, the problem of ML esti-
mation of θ ends up with solving the same non linear least squares problem.

We shall now introduce the simplest prior distribution on the parameters,
describing them as zero mean independent Gaussian random variables all having
the same variance γ2

p(θ) ≡ exp{− 1

2γ2
‖θ‖2 } .

Then, exactly as in the linear case, the MAP estimator of θ is found by solving
the regularized minimization problem

min
θ

{
N∑
t=1

‖ y(t)− fθ(u(t)) ‖2 + λ2‖θ‖2
}

(7.8.2)

which is a nonlinear ridge regression problem. Here λ2 =
σ2

γ2
has still the mean-

ing of the inverse of a signal-to-noise power ratio. Hence very noisy measure-
ments (that is σ2 � γ2) will lead to higher trust in the prior.

The regularization term induces the so-called weight decay (in the literature
the parameters of a Neural Network are often called weigths). This can actually
be seen from the gradient descent equation as follows.
Every time we update a weight parameter θ with the negative gradient∇J with
respect to θ, we must subtract from it a term λ2θ to get a descent algorithm of
the form

θ(k + 1) = θ(k)− γ(k)∇J [θ(k)]− λ2θ(k) ,

This gives the weights (parameter estimates) a tendency to decay towards zero,
hence the name of weight decay.

Intuitively, as in linear ridge regression the main reason this is done is to
prevent overfitting which is an ever present problem in Neural Network model-
ing. When looking at regularization from this angle, one might even suggest a
Lasso-type regularization but unfortunately the algorithmics seems to become
extremely complicated.

Actually, as explained earlier, in the regularization cost one should not in-
clude the offset parameters in c0 which correspond to the estimate of the mean
value.
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Bayesian prediction with Neural Networks

Our main interest in using neural networks is to predict the values of the output
variable for new values of the input variables. From the independence of the
sequence {y(t)} and the previous discussion we see that

p[y(t+ 1) | ut+1,yt] = p[ y(t+ 1) | ut+1]

where the sequence ut+1 := {u(1), u(2), . . . , u(t + 1)} is of deterministic vari-
ables and the last conditioning sign has just the meaning of dependence. The
probability on the right side actually depends on the unknown parameter θ.
Therefore the predictions should be made by integrating over the a posteriori
parameter density, so that

p[y(t+ 1) | ut+1, yt] =

∫
p[y(t+ 1) | ut+1, θ] p(θ | ut+1, yt ) dθ

Here p[y(t+ 1) | ut+1, θ] is just the Gaussian likelihood function with exponent
1

2σ2 ‖ y(t+ 1)− fθ(u(t+ 1)) ‖2.
Since the posterior density is hard to compute, one should use some approx-

imation. The usual trick is to assume that the posterior is peak-shaped at the
MAP value so that it approximately behaves like a delta function centered at
the value θ̂MAP in the integral, yielding

p[y(t+ 1) | ut+1, yt] ' p[y(t+ 1) | ut+1, θ̂MAP (ut, yt)]

which is a ('conditional) Gaussian density with mean fθ̂MAP (u(t+ 1)).
Note that θ̂MAP (ut+1, yt) is computed by minimizing the Bayes cost (7.8.2)

with only t output sample values, that is with N = t so that it does not depend
on u(t+ 1) and hence θ̂MAP (ut+1, yt) = θ̂MAP (ut, yt). In conclusion we have:

Proposition 7.5. Assume that t is large enough and the posterior density p(θ | ut, yt)
is unimodal and sharply pick shaped at its maximum θ̂MAP , then the conditional mean
of y(t+ 1) given the past and present observations ut+1, yt, is

E [y(t+ 1) | ut+1, yt ] = fθ̂MAP (u(t+ 1))

We shall leave the discussion of the Linear case to the problem below.

Problem 7.1. Assume that in the linear model

y(t) = θ0 + θ1u(t) + w(t) , t = 1, 2, . . .

the noise w is Gaussian i.i.d. of zero mean and variance σ2 and that you have a prior
on the parameters which is also Gaussian, zero-mean with covariance γ2I2. The inputs
u(t) form a deterministic sequence.

Find the formula for the conditional expectation E [y(t+ 1) | ut+1, yt ].

Dynamic Neural Networks

In time series modeling, a Nonlinear Autoregressive eXogenous model (NARX)
is a nonlinear model which explains the current output y(t) at time t by de-
scribing it as a nonlinear function of a finite sequence past outputs and inputs.
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Something like

y(t) = F [y(t− 1), . . . ,y(t− n); u(t− 1), . . . , u(t− p) ] + w(t) ; t = 1, 2, . . .
(7.8.3)

which obviously generalizes the linear ARX models to be introduced in Sect. ??.
Given a (long) training set of data

{y(t), u(t) ; t = 1, 2, . . . , N }

which for simplicity we assume made of scalar signals, one can fit a Neural
Network to these data by least squares, using for example the same gradient
algorithm seen in the previous section. The idea is based on pretending that the
current input is now a n+ p-dimensional vector sequence

v(t) :=
[
y(t− 1) . . . y(t− n) u(t− 1) . . . u(t− p)

]>
; (7.8.4)

where t = t0, t0 +1, , t0 +2, . . ., with t0 being a suitable initial time which allows
the data in v(t0) to be defined.

If the autoregressive part is non trivial (n > 0) these models may however
suffer of serious stability problems.
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7.9 Non Linear Support Vector Machines
We shall now go back to the (deterministic) classification problem studied in
Sect. 4.5. The mathematical tools which we have introduced in Section 6.6 will
allow us to address the non linearly separable case.

A natural attempt to deal with training sets which are not linearly separable
is to use nonlinear discriminant functions. A situation like the one depicted
in Fig 7.9 below may easily be solved by transforming the feature coordinates

23

Problems with linear SVM

=-1
=+1

What if the decision function is not linear? What transform would separate these?

Ans: polar coordinates!
Non-linear SVM

The Kernel trick

=-1
=+1

Imagine a function φ that maps the data into another space:
                   φ=Radial→Η

=-1
=+1

Remember the function we want to optimize: Ld = ∑ai – ½∑ai ajyiyj (xi•xj) where (xi•xj) is the
dot product of the two feature vectors. If we now transform to φ, instead of computing this 
dot product (xi•xj) we will have to compute (φ (xi)• φ (xj)).  But how can we do this?  This is
expensive and time consuming (suppose φ is a quartic polynomial… or worse, we don’t know the
function explicitly.  Well, here is the neat thing:  
If there is a ”kernel function” K such that K(xi,xj) = φ (xi)• φ (xj), then we do not need to know
or compute φ at all!!  That is, the kernel function defines inner products in the transformed space.
Or, it defines similarity in the transformed space.

Radial Η

φ

Figure 7.9.1. Separability by polar coordinates

into polar ones {ρ, θ} by which the red features are linearly separated from the
green ones by a line {ρ = ρ0}.

However, when there is no a priori geometric insight on the structure of
the feature set one could just try to generalize the linear structure (4.4.5) to a
generic nonlinear one, say a quadratic or, more generally, polynomial discrimi-
nant function, e.g.:

ϕ(y) = b+
∑
k

βk yk +
∑
k,j

βk,j ykyj

which can produce quadratic (or polynomial) discriminant surfaces in Rp. The
quadratics are the same kind of separating surfaces which arise in the general
multivariate Gaussian MLR (4.3.3). In this case the coefficients βk, βk,j are com-
ponents of the sample mean and sample variance matrices which are a priori
estimated from the training set. When no probabilistic information is available,
the unknown coefficients should be estimated from the training data. Since
βk, βk,j appear linearly, their estimation should be reducible to a linear prob-
lem. One may then be tempted to add cubic and higher order polynomial terms
to get more flexible functions but should keep in mind that the number of co-
efficients grows exponentially with the degree, to a point where the required
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computations become completely unrealistic. This curse of dimensionality can for
example be seen already in the case one may want to obtain a decision surface
corresponding to a polynomial of degree two. To stay in the framework of the
linear discriminant theory one must create a larger feature space by renaming
the feature coordinates as

z1 ∼ y1, . . . , zp ∼ yp, p coordinates,

zp+1 ∼ y2
1 , . . . , zp ∼ y2

p, p coordinates,

z2p+1 ∼ y1y2, ..., zN ∼ ypyp−1,
p(p− 1)

2
coordinates, (7.9.1)

which has dimension N = p(p+3)
2 and may be already too large for large p.

In 1992, Bernhard E. Boser, Isabelle M. Guyon and Vladimir N. Vapnik sug-
gested a way to create nonlinear classifiers by applying the so-called kernel
trick (originally proposed by Aizerman et al.[2]) to maximum-margin hyper-
planes. The resulting algorithm is formally similar to the linear one, except
that every inner product of feature vectors is replaced by a nonlinear kernel
function. This allows the algorithm to fit the maximum-margin hyperplane
in a transformed feature space which has the structure of a Reproducing Kernel
Hilbert Space. Although the classifier is still a hyperplane in the transformed fea-
ture space, it is generally nonlinear in the original input space and may allow
to separate non linearly separable features. The mathematical background is
discussed in Sect. 6.6. First we need to introduce transformations of the feature
space.

Feature maps

A feature map is a continuous map ϕ : X → F, where F is a separable Hilbert
space which we will call the extended feature space. In practical applications F is,
or is approximable by, a large dimensional Euclidean space. Given an orthonor-
mal basis {ek ; k = 1, 2, . . . ,N} in F, the image z = ϕ(x) can be represented as a
vector with N coordinates

zk = ϕk(x) := 〈ek, ϕ(x)〉F ; k = 1, 2, . . . ,N .

The dimension N can be finite or infinite but generally is much larger than the
dimension p of the original features. Since the map ϕ is far from being one-
to-one, it provides in general, a redundant new coordinatization of the feature
space X. A simple standard example is the quadratic map (7.9.1) where N =
p(p + 3)/2 and F is simply the Euclidean space of dimension N. In this section
we provide a representation of RKHSs in terms of feature maps.

The key point is that every feature map defines a kernel via

K(x, y) := 〈ϕ(x), ϕ(y)〉F x, y ∈ X. (7.9.2)

It follows from the properties of the inner product in F that K is symmetric and
positive (semi-)definite. In fact, for any a ∈ RN with a finite number of non zero
components (compact support), one has

N∑
i,j=1

aiK(xi, xj)aj = 〈
N∑
i=1

aiϕ(xi),

N∑
j=1

ajϕ(xj)〉F = ‖
N∑
i=1

aiϕ(xi)‖2F ≥ 0 .
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For example letting F to be a space of second order random variables on some
probability space, say F = L2(Ω,A, P ), the inner product becomes correlation.
Let further X be a time interval (finite or infinite), then {ϕ(x); x ∈ X} is a ran-
dom signal (process) and K(x, y) is just the correlation (or covariance in case of
zero mean) function of a second-order process. Positivity of the kernel follows
by the same argument showing positive definiteness of the covariance function
of a stochastic process or, of the covariance matrix of a random vector whenever
X is a discrete set. This example is discussed in depth in the literature, e.g. [66],
[101].
Conversely, for every positive definite function the corresponding RKHS has
infinitely many associated feature maps such that (7.9.2) holds. For example,
one can take a family of generators {ϕx = K(·, x) ; x ∈ X} mapping X into the
possibly infinite-dimensional RKHS defined by K. If X is a discrete set, they
constitute a (not necessarily orthonormal) basis of the RKHS. Then positivity
in (7.9.2) is satisfied by the reproducing property. Another classical and useful
example is to introduce a feature map by exploiting the representation (6.5.5)
of Mercer’s theorem in the previous section23 by taking F = `2 and a vector
function ϕ(x) = [

√
λiϕi(x) ]i=1,2,... which takes values in `2. In this way we get

a canonical feature map of dimension N = ∞ which can be approximated to
finite dimension by truncation.

Application of RKHS to Non linear SVM

As we have just seen, every continuous feature map can naturally define a
RKHS of a positive definite kernel function. The connection between kernels
and feature maps provides us with a new way to understand linear separabil-
ity in an extended feature space F.

In fact, feature maps allow us to construct linear function spaces that gen-
eralize to the enlarged feature space F, the idea of a linear subspace or affine
hyperplane. One can generalize by thinking of the running variable in F as
being the image of a feature map, function of x ∈ X. Consider the possibly
infinite-dimensional linear space

Hϕ = {f : X→ R | ∃β ∈ F, f(x) = 〈β, ϕ(x)〉F,∀x ∈ X}.

a subspace of linear functionals each defined by a vector parameter β ∈ F. It
can be interpreted as an affine subspace (hyperplane) by assuming that ϕ(x) has
a constant component. We can define a norm on Hϕ by identifying a functional
with its parameters β. Since the β’s are only defined up to a multiplicative con-
stant one takes the norm to be the minimal in all possible linear representations
as

‖f‖ϕ = inf{‖β‖F : β ∈ F, f(x) = 〈β, ϕ(x)〉F,∀x ∈ X}.

It can be shown that Hϕ is itself a RKHS with kernel defined by

K(x, y) = 〈ϕ(x), ϕ(y)〉F

This representation implies that the elements of the RKHS Hϕ are inner prod-
ucts of elements in the extended feature space and can accordingly be seen as

23There is a generalization of the thorem actually holding for argument t running on a real space
of arbitrary finite dimension.
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subspaces or hyperplanes. This view of the RKHS is related to the so-called
kernel trick in machine learning [45], [74] which can be explained as follows.

Assume that the two classes, once reparameterized in the extended feature
space, are linearly separable, as sketched in Fig. 7.9.2

 
 
	

Figure 7.9.2. Separability by extension

Note that the value of the classification variable y associated to a feature x
in the training set remains the same also after passing to a new coordinatiza-
tion by a feature map since it is intrinsically related to the location of a phisical
feature no matter how it is described by a coordinate system. Hence if say, xk
is classified with the label yk = 1, that is as belonging to a pattern P1 instead
of the alternative pattern P2, then ϕ(xk) will have to be associated to the same
classification label yk = 1.

We want now to consider the maximum margin problem in the extended
feature space F where we assume we have obtained separability. By mimicking
the linear geometry of a separable feature space in Rp which we have exploited
in Section 4.5, the problem still reduces to minimizing the square norm of β ∈ F
subject to the empty slab constraint in the extended feature space F, that is:

min
β,b

{
1

2
‖β‖2 ; subject to: yk(β>ϕ(xk) + b) ≥ 1, k = 1, . . . , N

}
(7.9.3)

which is again a convex quadratic programming problem with linear inequal-
ity constraints in the extended setting. The maximization can be performed
resorting to the dual Lagrangian quadratic cost

LD =

N∑
k=1

λk −
1

2

N∑
i=1

N∑
k=1

λiλk yiyk〈zi, zk〉F (7.9.4)

where zi, zk ∈ F are transformations of original feature points, so that

〈zi, zk〉F = 〈ϕ(xi), ϕ(xk)〉F = K(xi, xk) .

If N < ∞, the kernel can also be written as K(xi, xk) = ϕ(xi)
>ϕ(xk). The dual

cost (7.9.4) is to be maximized with respect to the N multipliers λk. The “kernel
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trick" consists just of the observation that the cost only depends on the kernel
K, e.g.

LD =

N∑
k=1

λk −
1

2

N∑
i=1

N∑
k=1

λiλk yiykK(xi, xk) (7.9.5)

so that in practice one can choose the kernel from the outset and forget about the
feature map ϕ which is implicitly determined by the kernel itself, say via Mer-
cer’s eigenfunction expansion. The remarkable fact is that one does not need
to compute the N eigenfunctions and the N-dimensional inner products in the
extended space. So in practice you don’t even need to see the feature map!

The Non-linear decision boundary

In the extended feature space a discriminant function is described by an equa-
tion of the form

g(x) = 〈β, ϕ(x)〉F + b =

N∑
k=1

βkϕk(x) + b

where ϕ is a feature map. The maximum margin problem in the extended space
is now formulated as the optimization problem (7.9.5) in terms of a kernel func-
tionK. Hence, the support vectors in the original feature space are now just the
vectors xk for which λk > 0 in the (unique) solution of Problem (7.9.5). Denot-
ing again by SV the index set of support vectors, the optimal parameter vector
of the hyperplane can be written

β∗ =
∑
k∈SV

λ∗k yk ϕ(xk)

which is clearly also an element of F. Therefore we have

Theorem 7.2. The optimal (maximum margin) hyperplane in F is described by the
non-linear function of x ∈ X:

g∗(x) =
∑
k∈SV

λ∗kykK(xk, x) + b∗ (7.9.6)

where the optimal Lagrange multipliers are the unique solution of the optimization
problem (7.9.5).

Hence the decision rule for the classification of a new feature x in the original
space is

y = sign [g∗(x)] .

and the discriminant boundary between the two classes is the nonlinear curve
defined by the equation g∗(x) = 0.

In principle the just exposed SVM procedure seems quite simple and well
suited to the application to practical automatic classification problems. There
are however some basic questions which need to be addressed:

1. How to choose the kernel ?
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2. How to check linear separability in the extended feature space ?

3. How to deal with noise (overfitting) ?

4. Optimality: Could other methods (say Neural Networks) perform better?

There is a variety of kernels proposed in the literature such as

K(x, y) = (〈x, y〉+ 1)d (7.9.7a)

K(x, y) = exp{ 1

σ2
‖x− y‖2} (7.9.7b)

K(x, y) = tanh{κ〈x, y〉 − δ} (7.9.7c)

which have different names and seem to be used in the literature based on ad
hoc and quite arbitrary principles. In particular (7.9.7b), called Gaussian Kernel,
seems to be a quite popular choice while the algebraic Kernel (7.9.7a) leads to
polynomial feature maps of degree d. The third is the famous sigmoid of Neural
Networks (which is however positive only for some values of κ, δ).

422 12. Flexible Discriminants
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Training Error: 0.270
Test Error:       0.288
Bayes Error:    0.210

C = 10000
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Training Error: 0.26
Test Error:       0.30
Bayes Error:    0.21

C = 0.01

FIGURE 12.2. The linear support vector boundary for the mixture data exam-
ple with two overlapping classes, for two different values of C. The broken lines
indicate the margins, where f(x) = ±1. The support points (αi > 0) are all the
points on the wrong side of their margin. The black solid dots are those support
points falling exactly on the margin (ξi = 0, αi > 0). In the upper panel 62% of
the observations are support points, while in the lower panel 85% are. The broken
purple curve in the background is the Bayes decision boundary.

Figure 7.9.3. Degree 4 polynomial kernel vs linear separation. From [44]

Linear separability seems to hold for general kernels involving infinitely
many eigenfunctions (feature maps), that is for N tending to∞. This is an ab-
stract topological question which seems to be still open. In practice it may hold
only approximately. Note in any case that the Kernel expansion (7.9.6) always
involves a finite number of (support vector) terms.

SVM regression

The maximum margin optimization problem can be transformed into a regu-
larized least squares. Just recall that we are minimizing the distance from a
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separating hyperplane described by the equation β>x+ b = 1. The Lagrangian
of the maximum margin problem:

min
β,b

{
1

2
‖β‖2 ; subject to: yk(β>xk + b) ≥ 1, k = 1, . . . , N

}
can be rearranged into a regularized optimization problem:

min
β,b

{
N∑
k=1

V (1− yk(β>xk + b)) +
γ

2
‖β‖2

}

where V (·) can be an arbitrary convex symmetric cost function, ex. V (·) = [·]2.
Both problems have a solution of the same form

g∗(x) =

N∑
k=1

αk〈xk, x〉+ b∗ .

where some of the αk’s may be zero. We can transfer this idea to the nonlinear
extended feature setting.
Let ϕ(x) be a feature map. The maximum margin problem on extended feature
space:

min
β,b

{
1

2
‖β‖2 ; subject to: yk[β>ϕ(xk) + b] ≥ 1, k = 1, . . . , N

}
can be reformulated as the optimization problem:

min
β,b

{
N∑
k=1

V (1− yk(β>ϕ(xk) + b)) +
γ

2
‖β‖2

}

where again V (·) can be taken as [·]2. This problems also has a solution of the
form

g∗(x) =

N∑
k=1

αkK(xk, x) + b∗, K(x, z) = 〈ϕ(x), ϕ(z)〉F

Hence the solution to the SVM problem can also be obtained by a regularized
Kernel regression. See [44] p. 426 for more details.

For more information on Support Vector Machines see [20], [44, p. 167-174
and 423-440], [45] and the excellent Vikipedia survey
https://en.wikipedia.org/wiki/Reproducing_kernel_Hilbert_space.
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Chapter 8

ARX MODELING OF
TIME SERIES

8.1 Introduction: Discrete-time signals
In this chapter we shall start addressing the study of dynamic phenomena in par-
ticular prepare for the study of statistical problems involving time, where the
data of our inference problems will be sequences of observations (possibly in-
finite) indexed by time. These objects we shall later model as trajectories of a
stochastic process. For now however it will be convenient to prepare the ground
by studying operations on time trajectories in a completely deterministic frame-
work.

We shall need the following definition: A discrete-time signal y is just a se-
quence of real or complex numbers indexed by a variable t which we shall call
(discrete) time, running on the set of integers, Z. Notation y ≡ {y(t) ; t ∈ Z}.
Occasionally we shall need to deal with signals whose values y(t) may be mul-
tiple numbers which for convenience are consider simultaneously say either
y(t) ∈ Rm or y(t) ∈ Cm, usually written as column vectors. Most of what we
shall say will be for scalar signals but also applies to vector-valued ones.

Except perhaps for Economic or Econometric data, in Engineering and ap-
plied sciences discrete-time signals usually appear as periodically sampled ver-
sions of continuous time signals. The value of the signal is acquired by an ac-
quisition device with a time interval T between successive time samples which
is dictated by physical or technological constraints. We shall ignore this mech-
anism and denote the sampled version at time tT , say ỹ(tT ), of a continuous
time signal ỹ, simply by the symbol y(t) without mentioning T at all.

Discrete-time signals convey information about the temporal evolution of
some physical phenomena, say a phone conversation coded and transmitted
by broadcasting, the evolution of the flow rate of a river monitored in real time
to predict possible overflow, the composition of the final product flowing out of
a distillation column or of a chemical reactor etc. These signals may be related
to diverse kinds of physical settings and the process of extracting this informa-
tion by suitable algorithms is the scope of Digital Signal Processing. These al-
gorithms are implemented through a series of mathematical operations which
we shall briefly examine in this chapter. The reader should however be warned
that most signals of interest in econometrics and technology are actually ran-
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dom; since a deterministic signal, which is therefore a priori known, does not
convey any information. In the next chapter we shall extend these operations
to random signals.

Real or complex signals form a real (or complex ) vector space on which the
usual operations of sum and multiplication by a scalar take place in the obvious
way. The energy of a signal is conventionally defined as the quantity

+∞∑
t=−∞

|y(t)|2

assuming that the sum converges. Finite energy signals form a Hilbert space
which is denoted `2 or `2m for m-dimensional signals. The (square) norm on
these spaces is precisely the energy. These Hilbert spaces constitutes a suitable
general framework to study discrete time signals. We refer the reader to the Ap-
pendix D for all concepts and notations regarding Hilbert spaces which shall be
used in the following. In particular we should just mention here that there are
other interesting spaces of discrete-time signals such as `1 and `∞ which are not
Hilbert spaces but will nevertheless play a role in our study. We shall be mainly
interested in linear operations on signals which will have the mathematical de-
scription of linear operators on `2-spaces.

A first important example of linear map on discrete time signals is the trans-
lation operator σ also called the shift, which moves backwards by one time step
the graph of the signal:

[σy ](t) := y(t+ 1) , t ∈ Z (8.1.1)

By repeatedly applying the translation operator one can define powersσk which
move backwards the graph by k steps. These powers have an inverse and form
clearly a group; in fact within this group structure one can define the (backward
or) right translation operator σ−1 which is the inverse of σ and moves the graph
forward by one time step.
An important class of linear operators are those whose image does not depend
on the particular date of application to the signal. They can formally be defined
as follows;

Definition 8.1. A time invariant operator A on `2 is a map which commutes with
translation, that is

A[σky ] = σkAy , y ∈ `2 (8.1.2)
for all k ∈ Z.

Linear time invariant operations on discrete time signals will be the main
object of study in this chapter. An important example is convolution.

Convolution is a bi-linear operation involving two functions, occurring in
an enormous range of physical problems. In discrete time the convolution of
two signals (or functions) h and u mapping Z to R is

(h ∗ u)(t) :=

+∞∑
−∞

h(t− s)u(s) =

+∞∑
−∞

h(s)u(t− s) (8.1.3)

It will be shown below that this operation occurs when describing the response
of a linear dynamical system to an input function u which is applied at an in-
finitely remote initial time (t = −∞). In this case y := h ∗ u is called the output
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of the system and h the impulse response. This name comes from the fact that
when u(t) = δ(t) (the Kronecker delta signal, equal to 1 for t = 0 and zero oth-
erwise) then the output of the system is just y(t) = h(t).
Conditions for the existence of the convolution may be tricky, since a blow-up
in u at infinity can be easily offset by sufficiently rapid decay in h. The question
of existence thus may involve different conditions on h and u. Conditions on
h are referred to as stability conditions on the system. A typical condition of
interest in most contexts is the so called Bounded-Input-Bounded-Output (BIBO)
stability, which corresponds to conditions on the mapping u→ y to be a map of
`∞ into himself.

Proposition 8.1. The convolution relation (8.1.3) defines a bounded linear operator
from `∞ into himself if and only if h ∈ `1.

If h ∈ `1 then (8.1.3) also maps `2 into itself and

‖y‖`2 ≤ ‖h‖`1 ‖u‖`2 (8.1.4)

This property is called `2-stability.

Bounded convolution operators exhaust, in a certain sense, the class of all
bounded time-invariant operators on `2.

8.2 Stationary Time Series
Let t denote the discrete time variable taking values on the integer line. A
(scalar) time series is just an ordered sequence of real numbers y(t) ; t = 0, 2, . . . , N
representing successive measurements of some variable. In science, econo-
metrics and engineering, in order to construct reasonable predictors of this se-
quence one must confront the issue of modeling serial correlation as in virtually
all situations of interest in science, econometrics and engineering the data can-
not be modeled as independent (or uncorrelated) measurements. In particular,
since the ordering of samples is of utmost importance, it is not appropriate to
describe the data as an i.i.d. sequence as in classical Statistics. One needs in-
stead to imagine it as a sample chunk of trajectory drawn from a stochastic
process {y(t)}. There is no space here to deal with stochastic processes in any
depth; we shall just refer the reader to the notion of stochastic process reported
in Sect. A.3 of the appendix. Mostly we shall refer to stationary processes be-
cause stationarity, most often to be understood as wide sense stationarity, implies
that one can describe the data by constant coefficient models which makes them
adapt to statistical estimation. In this section we want to discuss a very simple
class of linear dynamical models with constant coefficients which are very often
used in applied fields.

When there is serial correlation, the current variable of a stochastic process
y(t), is in particular correlated with its past y(t − 1), y(t − 2), y(t − 3), . . . and
a (dynamical) model should describe the influence of this past history on the
current observed variable. In engineering or econometric applications there of-
ten are external forcing exogenous variable, that is inputs, denoted by the symbol
u, which influence the temporal behaviour of y(t) and one wants to describe
how y(t) changes in time both as a consequence of the correlation with its own
past but also as a consequences of time-varying exogenous variables. We won’t
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care much about modeling u itself since external forces are often assumed to be
observed exactly.

The simplest generalization of linear regression models to describe a serially
correlated time series is a linear relation of the following form,

y(t) =

n∑
k=1

aky(t− k) +

m∑
k=1

bku(t− k) + w(t) , (8.2.1)

where w := {w(t), t ∈ Z} is a process of random errors which will here be
assumed i.i.d or, more generally, just uncorrelated. This is called an Auto-
Regressive model with eXogenous input and is denoted by the acronym ARX.
If there is no u then the model is called (purely) Auto-Regressive and is referred
to by the acronym AR. There are also more general models, called ARMA, AR-
MAX, which involve a moving average input noise component made of a linear
combination of delayed noise samples such as

y(t) =

n∑
k=1

aky(t− k) +

m∑
k=1

bku(t− k) +

r∑
k=0

ckw(t− k) , (8.2.2)

whose study however requires more sophisticated tools than what we subsume
in this course and we shall have to refer to the literature, see e.g. [?].

An ARX model depends on p := n+m unknown parameters which will be
written as a column vector:

θ :=
[
a1 . . . an b1 . . . bm

]>
and on the unknown noise variance σ2. It can be formally written in psedo-linear
regression form as

y(t) = ϕ(t)>θ + w(t) , t ∈ Z (8.2.3)

where

ϕ(t)> =
[
y(t− 1) . . . y(t− n) u(t− 1) . . . u(t−m)

]
(so that ϕ(t) is a column vector depending on past data). Note that there is
a very important difference with the classical linear model (2.2.7) namely now
the coefficient vectors ϕ(t) of the model depend on the (past) input-output
variables. For this reason we have chosen a different symbol than s(t).

Assume we have a sequence of training data {y(t) , u(t) } denoted

yN := {y(t) ; t = t0, t0 + 1, . . . , N} , uN := {u(t) ; t = t0, t0 + 1, . . . , . . . , N} ,

which we want to describe by an ARX model. The data will always be assumed
to have been suitably pre-processed e.g. by subtracting the sample mean so as
to be compatible with zero-mean and stationarity. Imposing the ARX structure
to these observed data we obtain a system of linear relations which, rewritten
in vector form look like

y = ΦN θ + w (8.2.4)

where the random vectors y and w to have components y(t) and w(t) indexed
by t = 1, 2, . . . , N and ΦN is an N × p matrix of past data of the form:

ΦN :=

 ϕ(1)>

...
ϕ(N)>

 ,
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Assuming the initial time t0 is far enough, we can fill in ΦN with the available
data so as to describe the output from time t = 1 to t = N . Often we do
not know the probability distribution of the error process. We may assume
it is Gaussian but, because of the dependence on the data of ΦN we cannot
implement a simple Maximum Likelihood procedure to estimate the parameter
θ. The Gaussian assumption is therefore not so useful. We shall try to do by just
assuming that w is an i.i.d. process.

The function of the past data

ŷθ(t | t− 1) = ϕ(t)> θ (8.2.5)

is called the (one step ahead) predictor function associated to the model. Note
that the predictor function is a linear function of θ but now is also a function of
the previous n+m past samples of the joint data process.

PEM Identification of Time Series

To estimate the parameter θ of the model (8.2.4) from the observed data (yN , uN )
we shall use the empirical Prediction Error Minimization (PEM) approach.
This is a general estimation method, essentially the same as the Empirical Train-
ing Error or average sample error, minimization in Machine Learning, see [44,
p. 221].

The procedure is quite general and applies to any dynamical model. It is
based on the following steps:

1. For a generic value of θ, construct a predictor of the next output, say y(t),
based on the training data up to time t− 1. For each fixed θ the predictor
is a deterministic function of the past data, denoted ŷθ(t | t− 1).
For analysis purpose we may consider ŷθ(t | t− 1) as a function (of θ) and
of the past random observed data and denote it ŷθ(t | t− 1).

2. Form the empirical prediction errors incurred by using θ as a current param-
eter value:

εθ(t) := y(t)− ŷθ(t | t− 1) ; t = 1, 2, . . . , N .

These errors are numbers but may also be interpreted as sample values of
a random variable, written εθ(t).

3. Minimize with respect to θ the sample average (squared) prediction error

VN (θ) :=
1

N

N∑
t=1

εθ(t)
2 (8.2.6)

or, more generally, one may choose any convex function of εθ(t) ; t =
1, 2, . . . , N .

We may introduce a discount factor for past errors that is a positive sequence
q(N, t), and form

VN (θ) :=
1

N

N∑
t=1

q(N, t)εθ(t)
2 q(t,N) > 0
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For small N , the function q(N, t) should give small weight to errors incurred
at the beginning. One designs the weighting function so that for N → ∞,
q(N, t) → 1.

The Minimal Prediction Error (PEM) parameter estimate

θ̂N := Arg min
θ

VN (θ)

becomes a function of the data (yN , uN ). As we shall see, for the ARX model it
can be computed explicitly.
Next define as an estimate of σ2 = var {w(t)}, the residual quadratic error,

σ̂2
N := VN (θ̂N ) (8.2.7)

where VN is defined above.

ARX Identification and Least Squares

In the following it will be convenient to use vector notations. For an ARX model
defined by a generic parameter vector θ, theN -dimensional vector of predictors
is a linear function of the parameter; hence the predictor and prediction error
vectors have the form

ŷθ = ΦN θ , εθ = y − ΦN θ .

Hence, when no weighting is present, VN (θ) is just the squared Euclidean norm
of εθ,

VN (θ) =
1

N
‖y − ΦN θ‖2 .

The PEM estimation principle leads again to the solution of a Least Squares
Problem. In our case either Q = IN (N × N identity matrix) or is a diagonal
matrix with entries q(N, k) ; k = 1, . . . N . In the first case the PEM estimator of
θ is just

θ̂N =
[
Φ>NΦN

]−1
Φ>N y

which can also be written in the form

θ̂N =

[
N∑
t=1

ϕ(t)ϕ(t)>

]−1 N∑
t=1

ϕ(t)y(t) . (8.2.8)

where we assume that the inverse exists for suitably large N .
• Note that θ̂N is a non linear function of the observed data. One may ask
what are the statistical properties of this estimator.
Actually we don’t even know when it may be unbiased. Even if y and u were
Gaussian, the pdf of θ̂N for finite sample size is impossible to compute. One can
only try to see what happens for N →∞. This we shall attempt to do next.

8.3 Strong consistency of the least squares AR estimator
Naturally it is now very difficult, if not impossible, to say anything about the
statistical properties of the estimate (8.2.8) for a finite sample sizeN . Under cer-
tain circumstances however one can carry on an asymptotic analysis forN →∞



8.3. Strong consistency of the least squares AR estimator 271

and prove statements regarding the consistency and asymptotic normality of
the method. Here we shall only give a short preview for the case of no exoge-
nous input (u ≡ 0).

Theorem 8.1. Assume there is a true AR model describing the data having the same
order n as the candidate AR model and true parameter θ0 :=

[
a0,1 . . . a0,n

]>.
Assume also that the true model is causal that is

E θ0y(s) w(t) = 0 ; ∀t > s ∈ Z ; (8.3.1)

and that E θ0ϕ(t)ϕ(t)> > 0; then

lim
N→∞

θ̂N = θ0

with probability one.

Proof. Rewrite θ̂N as

θ̂N =

[
1

N

N∑
t=1

ϕ(t)ϕ(t)>

]−1

1

N

N∑
t=1

ϕ(t)y(t) ; (8.3.2)

and substitute y(t) = ϕ(t)>θ0 + w(t) (true model). Then define the sample
covariance matrix of ϕ(t)

Σ̂N :=
1

N

N∑
t=1

ϕ(t)ϕ(t)> ∈ Rn×n . (8.3.3)

Next we shall need the following fact.

Lemma 8.1. Assume (8.3.1) and u ≡ 0; then if in the true model, the i.i.d. process
{w} is not zero, {y} is ergodic and Σ̂N converges almost surely for N → ∞ to the
positive semidefinite covariance matrix

Σn := E θ0{

y(t− 1)
. . .

y(t− n)

 [y(t− 1) . . . y(t− n)
]
} . (8.3.4)

Under the stated assumptions, this matrix is in fact positive definite.

Proof. The ergodicity follows from the consequence (A.3.3) of Corollary A.2
but to use this result we shall need to prove that y(t) admits such a convolution
representation. This follows from the fact that (8.3.1) implies that w is the sta-
tionary innovation of y. We shall prove all of this later on. The positivity of the
Toeplitz matrix Σn can be seen to follow from the following argument.
By Proposition 8.3, if Σn is singular then so must be Σn+1 and there must be
some nonzero c ∈ Rn+1 such that c>Σn+1c = 0. This is the same as

∑n
k=0 cky(t−

k) = 0 (the zero random variable) which can hold true only in case y(t) satisfies
the deterministic recursion

∑n
k=0 cky(t− k) = 0, where we can without loss of

generality assume c0 6= 0 so the process should satisfy an AR recursion where
the i.i.d. input is absent, or, y should be a purely deterministic process.
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Now just go to the limit in formula (8.3.2), that is compute

lim
N→∞

[
1

N

N∑
t=1

ϕ(t)ϕ(t)>

]−1

1

N

N∑
t=1

ϕ(t)
(
ϕ(t)> θ0 + w(t)

)
to get, by gity and in virtue if the two main assumptions

lim
N→∞

θ̂N = Σ−1
0 Σ0 θ0 = θ0

since Σ0 := E θ0ϕ(t)ϕ(t)> > 0 . This ends a formal proof of consistency.

Of course the reason why the two main assumptions should hold needs to
be investigated. The first (causality) is related to the notion of innovation pro-
cess of y while, as we shall see, the non singularity of E θ0ϕ(t)ϕ(t)> > 0 will
hold automatically for AR models but for the ARX model (8.2.1) will require a
discussion of the allowable input class.

8.4 The Innovation of a stationary random processes
One of the main motivations for time-series model identification is prediction.
Prediction turns out to be an easy task for models with constant coefficients
which are necessarily models describing stationary processes defined on the
whole time axis. See the next section 8.5 for an analysis of stationary processes
defined on a subinterval of Z. There it is seen that in this situation modeling
and prediction of a stationary process requires time-varying parameters.

Let H(yt) be the Hilbert space of random variables obtained as the closure
with respect to the variance norm of the vector space H̃(yt) of linear statistics
of the past history of the process at time t

H̃(yt) := {
∑
k

aky(tk) ; tk ≤ t , ak ∈ R }

where the sums are all finite. We are interested in the linear minimum variance
predictor of a future random variable of the process, say y(t+ k), k > 0, given
the whole past history. This linear predictor is by definition the orthogonal
projection onto the whole past history of the process:

ŷ(t+ k | t) = Ê [y(t+ k) | H(yt) ] (8.4.1)

which is itself a random process, say {ŷk(t)}.

Proposition 8.2. If the process y is stationary, then the predictor process (8.4.1) is also
stationary.

Intuitively, this means that the predictor process can also be described by a
model with constant coefficients. This will be true only if the predictor is based
on the infinite past history. In Section 8.5 we show that the innovation (i.e the
one step prediction error) of a stationary process, based on the past time interval
[ 0, t ] cannot be stationary. Therefore this must also be true for the predictor.

In general the covariance function σ(τ) of a stationary process is supported
on the whole time line so that the correlation of any two variables y(t) and y(s)
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will be non zero no matter of how far apart the time instants t and s. In particu-
lar, it is a fact that if n > 0 the output at time t of an AR model is correlated with
the infinite past history of the process y and also with the infinite past history
of the input process. We shall see this very clearly when we shall be study-
ing difference equations in the next section. Therefore whenever talking about
prediction we shall mean "prediction given the infinite past history".

Assume there is a true AR model of orders n and true parameter θ0 describ-
ing the data. Then the causality condition (8.3.1) implies that w(t) must be the
one step ahead prediction error of y(t) given the finite chunk of joint past his-
tory of the processes y from time t− n to t− 1. This fact follows easily from the
orthogonal projection lemma, given that in the decomposition

y(t) = w(t) +

[
n∑
k=1

aky(t− k)

]
w(t) is orthogonal to the term between square brackets. In this section we shall
argue that if (8.3.1) holds, the orthogonality actually holds also with respect
to the infinite joint past of the process y, so that the term between brackets is
actually the minimum variance predictor of y(t) given the infinite joint past of
y from time −∞ to t − 1. In these circumstances w(t) is called the stationary
innovation process of y.

For easy reference we shall recall that the Gram-Schmidt procedure already
discussed in (5.11.15) can be applied sequentially to an infinite sequence of ran-
dom observations, that is, to a stochastic process {y(t)}. The essential condition
however to make the procedura applicable, is that there should be an initial time
(conventionally assumed to be t = 0) to start the recursion. Theorem 5.7 and the
relative corollary continue to hold also in this situation, provided of course that
the (t+ 1)× (t+ 1) variance matrix Σt := E [yt0(yt0)>] stays positive definite for
all t. Under this condition also the Cholesky factorization algorithm continues
to hold irrespective of the fact that now m → ∞. In this setting however the
resulting innovation process cannot be stationary. This is a rather unpleasant fact
since it does imply that the predictor processes cannot be stationary either and
hence cannot be described by a constant coefficient algorithm (or model).

Recall that, based on the causal relation (5.11.17), one can give a dynamic
interpretation of the Cholesky factorization procedure. Isolate the equation cor-
responding to the t+ 1-st row of the lower triangular matrix L and write it as a
representation of y(t) in function of its normalized innovation process {ε(t)}:

y(t) = `t ε
t
0 =

t∑
0

`(t, s) ε(s) , t = 0, 1, 2, . . . (8.4.2)

where `t = [ `(t, 0), `(t, 1), . . . , `(t, t)] is the t + 1-st row of L. This relation rep-
resents y(t) as a time-dependent linear function of the past innovation samples.
In engineering language one could say that y(t) is the output of a time-varying
convolution filter having impulse response `(t, ·) and as input signal the normalized
white noise {ε(t)}. This is the prototype of the innovation representation of a ran-
dom process which we shall have to generalize later on for stationary processes
defined on the whole time axis. Representations of this kind are of fundamental
importance for solving filtering and dynamic estimation problems. We stress
that y(t) depends only on the past and present history, εt0, of the innovation
process but not on its future values.
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Conversely, we can express the innovation at time t as a causal linear func-
tion of the present and past variables of the observation vector. To clarify this
point, just isolate the t + 1-th row of the inverse L−1. Since this inverse is also
lower triangular we obtain a relation of similar structure

ε(t) = γt y
t
0 =

t∑
0

γ(t, s) y(s) , t = 0, 1, 2, . . . (8.4.3)

where γt =
[
γ(t, 0) γ(t, 1) . . . γ(t, t)

]
is the non-zero subvector of the t+ 1-

st row of L−1. In a sense this is the the inverse of the convolution filter (8.4.2)
which now transforms, by a causal operation, the process {y(t)} into the white
noise {ε(t)}. In this sense one says that the process and its innovation are
causally equivalent. The two signals carry the same information.

8.5 Innovations of stationary processes on Z+

As we have seen, in spite of stationarity, if a process is indexed on the half line
Z+, its innovation representation will be time varying, that is, the coefficients of
the linear representation map will not be constant in time. The unnormalized
innovation itself will have a time varying variance and hence be non-stationary.
Below we shall elaborate on this fact.

Consider a scalar zero-mean (weakly) stationary process {y(t)} defined on
the time set t = 0, 1, 2, . . . with a covariance function σ(τ) = E y(t + τ) y(t)
which is a positive definite symmetric function of τ ∈ Z. We shall assume that
all principal n× n submatrices, denoted Σn, of the infinite Toepltz matrix

Σ =


σ(0) σ(1) . . . σ(n) . . .
σ(1) σ(0) σ(1) . . . . . .

σ(1) σ(0) σ(1)

σ(n) . . . . . .
. . .

 , (8.5.1)

are non singular.
Note that Σn+1 can be obtained by bordering Σn according to the following

scheme

Σn+1 =

[
σ(0) σn
σ>n Σn

]
, n = 1, 2, . . . (8.5.2)

where σn = [σ(1), . . . , σ(n)]. Consider the memory n one-step ahead predictor
of y(t) given the previous n variables of the process y(t−1), . . . ,y(t−n), which
we shall denote

ŷn(t) := Ê [y(t) | y(t− 1), . . . ,y(t− n) ]

and denote by λ2
n the variance of the prediction error en(t) := y(t)− ŷn(t). The

process {en(t)} is called the memory n innovation of {y(t)}.
Since by the orthogonality principle we must have en(t) ⊥ {y(t− 1), . . . ,y(t−
n)}, the variance matrix of the random vector

[
en(t) y(t− 1) . . . y(t− n)

]>
must clearly be block-diagonal namely,[

λ2
n 0
0 Σn

]
(8.5.3)
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However this matrix must be congruent to Σn+1 since, repeating the argument
used in the proof of Theorem 5.8, letting Tn be the matrix transforming the
vector

[
y(t) y(t− 1) . . . y(t− n)

]> into
[
en(t) y(t− 1) . . . y(t− n)

]>,
namely

Tn =

[
1 −σn Σ−1

n

0 I

]
. (8.5.4)

it must hold that [
λ2
n 0
0 Σn

]
= TnΣn+1T

>
n (8.5.5)

Note however that det Tn = 1 and hence the two matrices must have the same
determinant, so the block-diagonalization (8.5.5) directly leads to a remarkable
formula of prediction theory for stationary processes namely

var en(t) = λ2
n =

det Σn+1

det Σn
. (8.5.6)

From this formula one can draw several consequences among which a crite-
rion for non-singularity of the sequence of covariance matrices Σn ; n = 1, 2, . . .
whose proof follows immediately from (8.5.5).

Proposition 8.3. If for some natural n > 0, λ2
n = 0 then also λ2

n+k = 0 for all k ≥ 0.
Assume σ0 > 0, then Σn is non-singular if and only if all λ2

k ; k = 1, 2 . . . , n are non
zero.

Constant coefficient models will appear only for stationary processes de-
fined on the whole discrete time line Z. Quite unfortunately in this case there is
no finite initial time and the Gram-Schmidt idea is of no use. We shall have to
use a different approach.

Example 8.1 (Innovation representation of a stationary MA process).
Consider a process {y(t)} described by the “moving average” (MA) model

y(t) = w(t) + aw(t− 1) , t = 1, 2, . . .

where {w(t)} is zero-mean white noise of variance σ2. We want to check if this
noise process is the innovation of y.

The covariance function of {y(t)} is readily computed as,

σ(τ) = E y(t+ τ) y(t) =

 σ2(1 + a2) τ = 0
σ2 a τ = ±1
0 |τ | > 1

whence the variance matrix Σt := E yt(yt)>, t = 1, 2, . . ., has the tridiagonal
structure

Σt = σ2



1 + a2 a 0 . . . 0

a 1 + a2 . . .

0
. . . . . .

...
. . . a

0 a 1 + a2
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It is not difficult to see that the normalized determinant dt :=
1

σ2t
det Σt satis-

fies the linear difference equation

dt+1 = (1 + a2) dt − a2 dt−1 , t ≥ 1

which can be solved to obtain

dt =

t∑
0

(a2)k .

Clearly, dt is non-zero for all t and we can hence apply to Σt the Cholesky al-
gorithm to get the triangular factors Lt = [`(i, j)] which define the innovation
representation of {y(t)}.

It is not hard to see that Lt should have a bi-diagonal structure like

Lt =


`(1, 1) 0 . . . 0

`(2, 1) `(2, 2)
...

...
. . . . . . 0

0 . . . `(t, t− 1) `(t, t)


where the entries `(t, t − 1) and `(t, t) are given by the formulas (5.11.22) and
(5.11.23) imposing that `t,s := `(t, s) = 0 for s < t−1. This leads to the following
recursions

`(t, t) =
[
σ(0)− `(t, t− 1)2

] 1
2

`(t, t− 1) =
1

`(t− 1, t− 1)
σ(1)

which can be solved by iteration on the index t = 2, 3, . . ., starting from the
initial condition

`(1, 1) = +
√
σ2(1 + a2) .

It is probably easier to recall the final argument in the proof of Theorem ??
where the diagonal terms `2(t, t) are identified with the one-step prediction
error variance of y(t) based on the t − 1 preceding observations, yt−1, of the
process {y(t)}. Using formula (8.5.6) derived in the previous section, one gets

`2(t, t) =
det Σt

det Σt−1
= σ2 dt

dt−1

and

`(t, t− 1) = σa

√
dt−2

dt−1
.

Even if the process is stationary, these expressions turn out to be time dependent,
implying that also the innovation representation

y(t) = `(t, t) ε(t) + `(t, t− 1) ε(t− 1) (8.5.7)
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must be time-varying. We shall show later on however that the coefficients
of the model (8.5.7) tend to become constants as t → ∞. For this particular
example, when |a| < 1, the ratio dt/dt−1 converges to 1; when |a| > 1, one has

dt
dt−1

=
a2t

a2(t−1)

∑t
0 a−2k∑t−1

0 a−2k
−→ a2

while when |a| = 1, dt/dt−1 = (t+ 1)/t = 1 + 1/t which also converges to
1 although at a slower rate. In conclusion, for t → ∞ the parameters of the
model (8.5.7) converge, respectively, to

`(t, t)→ `0 =

{
σ when |a| ≤ 1

|a|σ when |a| > 1

`(t, t− 1)→ `1 =


aσ when |a| ≤ 1

a

|a|
σ when |a| > 1

and the innovation model becomes asymptotically time-invariant,

y(t) = `0 ε(t) + `1 ε(t− 1) .

This kind of asymptotic behavior of the impulse response function `(t, ·) is the
rule for a wide class of stationary processes. ♦

8.6 A glimpse on Linear Difference Equations
Linear difference equations arise as deterministic mathematical models of many
physical or economic systems. In particular, ARX models are just linear differ-
ence equations (with constant coefficients) with two kinds of inputs. In this
section we shall review some basic facts about these models. For convenience a
DE will be written as

y(t) +

n∑
k=1

ak y(t− k) = f(t) , t ∈ Z (8.6.1)

or, equivalently as

y(t+ n) +

n∑
k=1

ak y(t+ n− k) = g(t), t ∈ Z (8.6.2)

where f(t) or g(t) = f(t + n) are exogenous signals. One should keep in mind
that a solution is a sequence of real numbers indexed by t ∈ Z. To find a solution
first look at the homogeneous case where f(t) = 0. One tries with a simple
exponential function y(t) = λt which leads to the algebraic equation

λt+n +

n∑
k=1

ak λ
t+n−k = 0 .
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Assuming λ 6= 0 we can collect λt and end with an algebraic equation of degree
n

λn +

n∑
k=1

ak λ
n−k = 0

which is called the characteristic equation of the system. It has n complex
solutions λk ; k = 1, 2, . . . , n not necessarily distinct. It is easy to check that the
family of solution sequences of a linear homogeneous difference equation of
order n is a linear vector space. By a linear algebra argument one can show that
this vector space must have dimension n and hence the equation has exactly n
linearly independent solution sequences. Therefore, assuming that all roots are
distinct, any solution must be a linear combination of the n exponentials. In this
case the general solution turns out to be

y(t) =

n∑
k=1

ck λ
t
k

where the coefficients ck can be determined by imposing n initial conditions
for example the values y(0) = y0, y(1) = y1, . . . y(n − 1) = yn−1, supposed
given. In case of distinct roots this leads to a linear system

1 . . . 1
λ1 . . . λn
. . . . . . . . .
λn−1

1 . . . λn−1
n


 c1. . .
cn

 =

 y0

. . .
yn−1


where the sytem matrix is the Vandermonde matrix of the roots λk ; k = 1, 2, . . . , n
which is non singular since they are all different.

Note that in general the λk may be complex numbers and in this case they
must occur in complex conjugate pairs which may lead the solution to have
oscillatory behaviour.

In case of multiple roots the general solution has a more complicated form
involving linear combination of sequences of the form tmkλtk wheremk depends
on the multiplicity of the root λk; see e.g. [?].

Non homogeneous equation and Convolution

Note that for zero initial conditions the solution sequence y(·) of a DE depends
linearly on the input f(·). This means that if y(·) is a solution corresponding to
input f(·) and z(·) a solution corresponding to input g(·) then αy(·) + βz(·) will
be the solution corresponding to the input αf(·) + βg(·) and hence the input-
output map defined by a DE is a linear transformation mapping the real vector
space of input sequences f(·) into a real vector space of output sequences y(·).
This is a simplest example of a linear dynamical system. Suppose now that
you want to solve

y(t) +

n∑
k=1

ak y(t− k) = δ(t) ; (8.6.3)

where the initial conditions for negative times are all zero and δ(t) is equal
to 1 for t=0 and zero otherwise. The function δ is called the elementary or unit
impulse function. One can work out an equivalent homogeneous equation to the
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non-homogemeous (8.6.3) by introducing some "fake" initial conditions {y(k) =
yk ; k = 0, 1, . . . , n − 1} for positive times, which solve the system of equations
obtained by writing (8.6.3) at times t = 0, 1, . . . , n− 1, namely

y0 +

n∑
k=1

ak y−k = δ(0) = 1

y1 +

n∑
k=1

ak y1−k = 0

. . . = . . .

yn−1 +

n∑
k=1

ak yn−k−1 = 0

This system can be solved by successive substitutions since the first equation
yields y0 = 1, the second y1 + a1 y0 = 0 etc. These induced n initial conditions
determine uniquely the solution of (8.6.3) for t ≥ 0. Let’s denote this solution
by h(t); it is called the impulse response of the system. As we have just seen
the impulse response of a difference equation of the form (8.6.3) is a particular
solution of the homogeneous eqiuation. It must have a normalized first term;
i.e. h(0) = 1.

Remarks 8.1. Note that imposing that the values y(t) for n negative times
should all be zero is equivalent to imposing that the impulse response sequence
h(t) =

∑n
k=1 αk λ

t
k should be identically zero for all negative times t < 0, while

by construction h(t) turns out to be non-zero for positive times. A sequence
with this property is called causal. Note also that we could have chosen a dual
set of initial conditions by imposing that the values y(k) for the first n positive
times should be all zero in which case we would have obtained an anticausal
impulse response function which would then result to be identically zero for
positive times.

We can now solve the equation for an arbitrary input f(t). Since any in-
put function f can be expressed as a (possibly infinite) linear combination of
impulse functions located at all times t = k, that is

f(t) =

+∞∑
k=−∞

f(k) δ(t− k)

by virtue of linearity, the response of the system can be written as a sum of
infinitely many impulse responses to the impulses δ(t − k)’s each located at
times t = k and weighted by amplitude f(k). By time invariance the solution
of (8.6.3) to a shifted impulse δ(t− k) is h(t− k) and hence linearity leads to the
(formal) convolution representation

y(t) =

+∞∑
k=−∞

f(k)h(t− k) ; or, equivalently y(t) =

+∞∑
k=−∞

h(k) f(t− k) .

(8.6.4)
where of course one needs specific conditions on the system and input for the
infinite sums to converge. The second formula is obtained by a change of vari-
able.
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Let’s now go back to the ARX model. Assume for the moment that u = 0
and we care only about the i.i.d. input process {w(t)}. We can still write the
solution as a convolution sum

y(t) =

+∞∑
k=−∞

h(k) w(t− k)

which is of the same form of the representation (A.3.3). We need to check under
what circumstances the convergence condition

∑+∞
k=−∞ h(k)2 <∞ is satisfied.

Proposition 8.4. If and only if all roots of the characteristic equation have modulus
strictly less than 1; i.e. |λk| < 1 ; k = 1, 2, . . . , n, then the (unique) causal impulse
response of (8.6.3) i.e. such that h(t) = 0 for t < 0 is summable, that is

+∞∑
k=0

h(k)2 <∞ .

Proof. Clearly when |λk| < 1 then limt→+∞ λtk = 0 exponentially fast and the
impulse response is absolutely summable (and hence summable also in the `2

sense). This is clearly true also when there are multiple roots.
If some root has modulus greater than 1; i.e. |λk| > 1, then

limt→+∞ λtk = ∞ and the causal impulse response is not summable. Note that
the anticausal impulse response may however turn out to be summable if all
roots have modulus greater than one.

All complex roots, must always come as pairs of complex conjugate num-
bers say λk, λ̄k = ak ± ibk since the characteristic polynomial is real. Using the
polar form

λk, λ̄k = ρk e
±iϕk , ρk = |λk| ; ϕk = arg(λk)

we can write ckλtk + c̄kλ̄
t
k in real form as

akρ
t
k cos(ϕk t) + bkρ

t
k sin(ϕk t) .

for suitable real coefficients ak, bk. Purely imaginary roots, i.e such that |λk| = 1
like all complex roots, must also come as pairs of complex conjugate numbers.
Therefore for an imaginary pair λ, λ̄ = e±iω we have

y(t) = ck e
+iω t + c̄k e

−iω t = ak cosω t+ bk sinω t ,

and in this case h(t) will have an oscillatory behaviour and the sum will not
converge. It can be seen that in this case the process y is not ergodic.

Example 8.2. Suppose we have the DE

y(t)− ay(t− 1) = δ(t) , t ∈ Z

where |a| < 1 and with zero initial condition at t = −1. Show that

h(t) =

{
0 for t < 0

at for t ≥ 0
.

What would you get for zero initial condition at t = +1?
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Prediction and the innovation for purely AR processes

When |λk| < 1 ; k = 1, 2, . . . , n an AR process y with i.i.d. input w is ergodic
but more is true. Because of causality h(t) = 0 for t < 0 and therefore

gety(t) =

+∞∑
k=0

h(k) w(t− k) =

t∑
k=−∞

h(t− k) w(k) (8.6.5)

so y(t) depends only on the past history of {w(t)}. In general the past history
will be infinite, since h(t) is non zero for all t ≥ 0. In abstract geometric terms
(8.6.5) is equivalent to

H(yt) ⊂ H(wt) ; for all t ∈ Z . (8.6.6)

On the other hand for an AR process we can express the input noise as a func-
tion of the past (and present) n+ 1 output samples as

w(t) =

n∑
k=0

aky(t− k)

which in fact implies that w(t) ∈ H(yt) for all t and therefore

H(wt) ⊂ H(yt) ; for all t ∈ Z .

This relation, together with (8.6.6) implies causal equivalence:

H(yt) = H(wt) ; for all t ∈ Z . (8.6.7)

so that,

Theorem 8.2. For an AR model with all characteristic roots of modulus strictly less
than one, w is the innovation process of y and the one step ahead linear predictor
(conditional expectation in the Gaussian case) of y(t) given yt−1 is

ŷ(t | t− 1) =

n∑
k=1

aky(t− k) (8.6.8)

while w(t) is the innovatiopn; i.e. the one step ahead prediction error. The condition on
the characteristic roots is also necessary.

Problem 8.1. Consider the simple Auto-Regressive (AR) model

y(t+ 1) = 0.8 y(t) + e(t)

where e is an i.i.d. sequence of zero mean and variance equal to σ2
e. Sup-

pose you start computing the solution process at time t = t0 pretending you
know the initial condition y(t0) = y0. Write the expressions of y(t) for t =
t0, t0 + 1, . . . , as a function of the error process {e(t)} leaving the powers of 0.8
indicated. Check that you always have e(t) uncorrelated with the previous ran-
dom variables y(s) ; s < t. Consider the limit of the solution for t0 → −∞. Does
the limit exist?



282 Chapter 8. TIME SERIES

Consider then the covariance function of the zero-mean stationary process
y defined as

σ(k) := Ey(t+ k)y(t) ; k = 0, 1, . . .

so that σ(0) = Ey(t)2 is just the variance (which by stationarity is constant in
time). Find the expression of the covariance of the process described by the AR
model above.

Consider now the more realistic situation in which the true order is un-
known so that the order n of the model is different form the true order n0. We
shall assume that n0 is finite so that y(t) admits a representation

y(t) = w0(t) + ŷ0(t | t− 1)

where w0(t) is the true i.i.d. innovation and

ŷ0(t | t− 1) =

n0∑
k=1

a0,ky(t− k) (8.6.9)

is the true one-step-ahead linear predictor. Since the process is (stationary and)
ergodic the average (squared) prediction error (8.2.6) converges as N →∞ and
clearly we have,

1

N

N∑
t=1

εθ(t)
2 = E θ0ε

2
θ(t) (8.6.10)

where θ is the model parameter and

εθ = y(t)− ŷθ(t | t− 1) = w0(t) + [ŷ0(t | t− 1)− ŷθ(t | t− 1) ]

so that the true variance of εθ in (8.6.10) can be expressed as

E θ0ε
2
θ(t) = σ2

0+E θ0 [ŷ0(t | t− 1)− ŷθ(t | t− 1) ]
2

= σ2
0+‖ ŷ0(t | t−1)−ŷθ(t | t−1) ‖2H

(8.6.11)
Hence,

Theorem 8.3. Under the above stated assumptions the limit as N → ∞ of the PEM
estimator θ̂N is the unique solution of the minimization problem

θ̂ = Arg min
θ

E θ0 [ŷ0(t | t− 1)− ŷθ(t | t− 1) ]
2 (8.6.12)

which is a quadratic function of θ. The minimum exists and is unique.

Since the predictors are linear functions of the parameter the minimization
can be performed explicitly. See Problems 8-4 and 8-5. It is easy to show that
if the true order n0 is strictly greater than n we cannot have consistency, in the
sense that θ̂N will not converge to the corresponding subvector of θ0 having the
same dimension n.
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8.7 Prediction and innovation for ARX processes
If an exogenous input is also present the response of the ARX system has an ad-
ditional term and the process can be represented as a sum of two convolutions
of the form

y(t) =

+∞∑
k=0

h(k) w(t− k) +

+∞∑
k=0

g(k) u(t− k) (8.7.1)

where convergence of the first sum holds under the conditions stated in Propo-
sition 8.4. This condition also guarantees that the second sum will be conver-
gent for bounded deterministic inputs [?]. The calculations for finding the de-
terministic impulse response g(t) originate from the substitution

+∞∑
k=0

h(k) (

m∑
j=1

bj u(t− k − j)) =

m∑
j=1

bj

+∞∑
k=0

h(k) u(t− k − j) =

t∑
k=−∞

(

m∑
j=1

bjh(t− j − k)) u(k)

by which g(t) =
∑m
j=1 bjh(t− j).

Assume the structure (8.2.1) where the “instantaneous coupling” coefficient b0
between input and output is assumed to be zero. Initially we shall assume
(although this is not strictly necessary and we may just do with a deterministic
bounded sequence) that the input u is a zero-mean process jointly stationary
with y having finite variance and uncorrelated with the input noise w.

Also assume that both convolution sums in (8.7.1) are convergent in mean
square. The one-step-ahead linear predictor now must be based on the joint
past information H(yt−1,ut−1).

Since w is an i.i.d. process uncorrelated with its own past and with the
whole history of the input process,

w(t) ⊥ H(wt−1,ut−1) . (8.7.2)

This easily leads to a formula for the predictor.

Theorem 8.4. Under the stated assumptions, the minimum variance linear predictor
of y(t) based on the joint past history H(yt−1,ut−1) is

y(t | t− 1) =

n∑
k=1

aky(t− k) +

m∑
k=1

bk u(t− k) . (8.7.3)

and w(t) is the one step ahead prediction error of y(t) bsed on the joint infinite past
H(yt−1,ut−1).

Proof. We need to show that

H(yt−1,ut−1) = H(wt−1,ut−1) , (8.7.4)

which is the analog of causal equivalence in the present context. This will imply
that (8.7.3) is exactly the orthogonal projection of y(t) onto H(yt−1,ut−1). Now
from the model equation it follow trivially that w(t) must be a (linear) func-
tion of the past and present output yt and of the (strict) past ut−1. Therefore
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H(wt,ut) ⊂ H(yt,ut). On the other hand by assumption we have the repre-
sentation (8.7.1) which implies that y(t) ∈ H(wt,ut) for all t. Therefore we also
have the inclusion H(yt,ut) ⊂ H(wt,ut) which together with the previous one
implies (8.7.4). Hence by (8.7.2) we have w(t) ⊥ H(yt−1,ut−1) and since the
model relation (8.2.1) can be written as the orthogonal sum

y(t) = w(t) +

[
n∑
k=1

aky(t− k) +

m∑
k=1

bk u(t− k)

]
(8.7.5)

by the usual reasoning based on the orthogonality principle we have the con-
clusion.

As for AR processes, the orthogonal decomposition (8.7.5) may lead to think
that we might have guessed the formula (8.7.3) from the beginning, without
worrying about all work spent for characterizing the innovation. One should
however realize that the orthogonality can only lead to the conclusion that
(8.7.3) is the predictor given the finite past spanned only by the n + m past
variables y(t− k), u(t− k), while we have shown that it is actually the predic-
tor based on the whole infinite joint past history of y and u. The dependence on
only the finite n + m past variables y(t − k), u(t − k) is a lucky circumstance
which does not happen with more complex models like e.g. ARMAX struc-
tures. In the language of Statistics one may say that the n + m past variables
y(t − k), u(t − k) constitute a sufficient statistic of the whole past history for
the prediction of y(t).

8.8 Strong consistency of the Least Squares ARX estimator
In order to generalize the consistency theorem 8.1 to ARX models we need to
discuss the nature of the input signal. It is clear that not all input signals can
lead to a convergent estimate. In fact some signals, like for example a determin-
istic signal constant in time, are structurally uncapable of discriminating some
parameter values. An easy way out is to assume that u is a stationary ergodic
process independent of the i.i.d noise w.

Theorem 8.5. Assume there is a true ARX model describing the data having orders
n,m equal to those of the candidate ARX model and true parameters θ0, σ

2
0 and that

u is a jointly stationary ergodic process independent of the i.i.d noise w0. Assume also
that the true model is causal so that

E θ0y(s) w0(t) = 0 ; ∀s < t ∈ Z ; (8.8.1)

and that
Σ0 := E θ0ϕ(t)ϕ(t)> > 0; (8.8.2)

then both θ̂N and the sample innovation variance (8.2.7) converge to the respective true
values

lim
N→∞

θ̂N = θ0 , lim
N→∞

σ̂2
N = σ2

0

with probability one.
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Proof. The sample covariance matrix of ϕ(t), now defined as in (8.2.3),

Σ̂N :=
1

N

N∑
t=1

ϕ(t)ϕ(t)> ∈ R(n+m)×(n+m) .

can be partitioned in four blocks

Σ̂N =

[
Σ̂N (y) Σ̂N (yu)

Σ̂N (uy) Σ̂N (u)

]
∈ R(n+m)×(n+m) . (8.8.3)

which, because of ergodicity converges as N → ∞ to Σ0. Then if (8.8.2) holds
true we can use the same argument as in the proof of Theorem 8.1.

A weaker assumption on the imput process is that it is a deterministic signal
as in the following definition.

Definition 8.2. A deterministic sequence u = {u(t) ; t ∈ Z} is said to be second
order stationary if the limit

lim
N→∞

1

N

N∑
t=1

u(t+ τ)u(t) := r(τ) (8.8.4)

exists for all τ ≥ 0.
A second order stationary signal, u, is persistently exciting of order (at least) n

if the Toeplitz matrix

Rn :=


r(0) r(1) . . . r(n− 1)
r(1) r(0) r(1) . . . r(n− 2)

...
...

r(n− 1) r(n− 2) . . . r(0)

 (8.8.5)

is positive definite

Hence if u is persistently exciting of order (at least) m then the lower diago-
nal block in the matrix (8.8.3) converges to a positive definite covariance. Then,
by Cauchy-Schwartz inequality one can show that the sample cross covariances
also converge.
This is evidently a necessary condition for the Least Squares algorithm to pro-
vide a consistent estimate of the bk parameters in the model (8.2.1).

Note that Rn is always at least positive semidefinite since for an arbitrary
polynomial in the delay operator z−1, say p(z−1) :=

∑n−1
k=0 pkz

−k one has

lim
N→∞

1

N

N∑
t=1

[p(z−1)u(t)]2 =

n∑
k,j=0

pk r(k − j) pj = p>Rn p ≥ 0

where p := [p0 p1 . . . pn−1]> is the vector of the coefficientas of p(z−1).

Continuous time second order stationary signals have been studied by Nor-
bert Wiener in 1930 [103, 105]). Since the function τ → r(τ) ; τ ∈ Z is positive
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definite it can be treated as the correlation function of a stationary process. It can
be shown that there must exist a function, Fu(eiω), monotone non decreasing
on the intervalo [−π, π], such that a Fourier-like representation holds

r(τ) =

∫ π

−π
eiωτ dFu(eiω) .

We shall quote without proof the following theorem.

Theorem 8.6. A second order stationary signal u is persistently exciting of order
exactly n if and only if the unique points of increase of the function Fu(eiω) are n jumps,
that is, there are exactly n spectral lines at different frequencies {ω1, ω2, . . . , ωn} in the
interval (−π, π).

It can be shown that second order stationary signals defined on Z form a
Hilbert space with inner product

〈u, v〉 := lim
N→∞

1

2N

N∑
t=−N

u(t)v(t)

and that quasi periodic signals, defined in Section A.4, of arbitrary order, form
a dense subset of this space.

Example 8.3. Use the Law of Large Numbers to show that any trajectory of an
i.i.d. process is a second-order stationary signal of infinite order and describe
Rn in this case.

Example 8.4 (quasi periodic signals). The linear combination of N sinusoidal
signals of different frequencies

u(t) =

N∑
k=1

Ak sin(ωkt+ φk) ωk 6= ωj (8.8.6)

is second order stationary. Its correlation function is

r(τ) =

N∑
k=1

A2
k

2
cosωkτ (8.8.7)

see Sect. A.4 and the spectral function Fu(eiω) has exactly 2N steps (that is, the
derivative of Fu has exactly 2N δ functions) supported in {±ωk}. The signal is
therefore persistently exciting of order 2N .

In particular a discrete time signal periodic of period N , being the sum of N

sinusoidal components of frequency ω1 =
2π

N
, ω2 = 2

2π

N
, . . . , ωN = 2π is P.E.

of order 2N .

Example 8.5 (Pseudo-Random Binary Sequences). A PRBS (Pseudo Random
Binary Sequence) is a particular computer-generated periodic signal which ap-
proximates a sample trajectory of an i.i.d. sequence. It is necessarily periodic
but the period is a very large natural number. See [90, p. 124-125].
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Persistently exciting input sequences of high enough order play the same
role as ergodic input processes.

Corollary 8.1. Assume there is a true ARX model describing the data having true
parameter θ0, orders n,m equal to those of the candidate ARX model and that u is a
second-order stationary sequence of order greater or equal to m. Assume also that the
true model is causal so that

E θ0y(s) w(t) = 0 ; ∀s < t ∈ Z ; (8.8.8)

then
lim
N→∞

θ̂N = θ0

with probability one.

Under these assumptions the positivity condition that

Σ0 := lim
N→∞

Σ̂N > 0; (8.8.9)

is in fact guaranteed.

Problem 8.2. There is an analog of Theorem 8.3 for ARX models. State it and give a
proof.

The asymptotic Variance

Recall that the variance of a consistent estimator must tend to zero as N →
∞. However since data are always finite, we would like to have approximate
"asymptotic" expressions and an idea of how fast the variance tends to zero.
The concept of asymptotic variance of a consistent estimator is meant to capture
this idea. It must however be defined properly. Here is one possible definition.

Definition 8.3. Let {φN (y) ; N = 1, 2, . . .} be a consistent sequence of estimators
of the parameter θ and d(N) a function of N which is increasing to +∞ with N and
strictly positive. One say that φN (y) has asymptotic variance Σ if√

d(N) [φN (y)− θ0 ]
L→ D(0,Σ)

where the convergence is in Law, to a pdf D(0,Σ) which has variance Σ, possibly de-
pending on θ0, which is finite and strictly positive definite.

Hence for N large the variance of φN (y) can be approximated by 1
d(N)Σ. In

many situations, the central limit theorem applies and the estimator is asymp-
totically normal. It can be shown that in these situations d(N) can be taken
equal to N .

The condition of strict positivity Σ > 0 is essential since it excludes the possi-
bility of linear combinations of the components of φN (y) having variance which
tends to zero. This just means that the order of infinitesimal of the variance of
these combinations will be different from O( 1

d(N) ).
Let us look at the ARX case, assuming that the conditions of the consistency

theorem 8.5 hold. We shall also assume that for N large enough the inverse of
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the sample covariance (8.3.3) exists. Then it can be shown that the asymptotic
distribution of

√
N (θ̂N − θ0) = Σ̂−1

N

1√
(N)

N∑
t=1

ϕ(t) w0(t)

is Gaussian with variance σ2
0Σ−1

0 , where Σ0 is the limit (8.8.9). This expression
can therefore be identified with the asymptotic variance of θ̂N according to Def-
inition 8.3. In practice, the formula

Var
(
θ̂N

)
' σ̂2

N

N
Σ̂−1
N (8.8.10)

can be used as a consistent estimate of the variance of θ̂N .

8.9 Bayesian recursive estimators for ARX models
We consider the ARX model (8.2.1) written as a “pseudo-linear regression”

y(t) = ϕ(t)> θ + w(t) , t ∈ Z+ (8.9.1)

where now we shall assign a Gaussian prior distribution to the parameter which
becomes a random p-dimensional vector

θ ∼ N(θ0, P0)

with θ0 some “nominal” value and P0 a variance matrix which as we shall see,
does not need to be known with great confidence. The noise w(t) is also as-
sumed Gaussian i.i.d. with variance σ2, independent of θ for all t.

For simplicity we shall assume that ϕ(t) is only a function of yt−1 so that
initially (8.9.1) will be a purely Auto Regressive model. At the end we shall
consider some generalizations of this model, in particular allow ϕ(t) to depend
also on the input u. In this case we shall need to require that u(t) and w(s) are
independent for all t, s ∈ Z+.

The model (8.9.1) is a difference equation which can be solved recursively
starting from some initial values ϕ(0)> =

[
y(−1) . . . y(−n)

]>, which we
assume are zero mean random variables independent of future values of the
noise {w(t) ; t ≥ 0}, yielding a solution

y(t) = h(θ, wt) ; t ≥ 0

which is a function of the parameter, the initial conditions, and the past noise
from time zero up to time t. From the independence of w(t+1) and wt we see
immediately that,

Lemma 8.2. For all t ≥ 0 the random variable w(t+1) is independent of the past
observations yt; in fact it is also independent of ( yt, θ ).

We shall say that a random variable x is conditionally Gaussian given a family
of random variables {zα ; α ∈ A} if x admits a conditional distribution given
{zα ; α ∈ A}which is Gaussian. Naturally the mean and variance of this distri-
bution will be the conditional mean and variance of x given {zα ; α ∈ A}.
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In what follows it will be convenient to use vector notations. By stacking
the system equations (8.9.1) ordered for increasing time t = 0, 1, . . . we obtain a
relation among random vectors

yt =


ϕ(0)>

ϕ(1)>

. . .
ϕ(t)>

θ + wt := Φt θ + wt (8.9.2)

where the matrix Φt is a function of the initial conditions and past outputs up
to time t− 1.

Theorem 8.7. Assume t is large enough and that Φt has almost surely a left inverse
Φ−Lt . Then, the random variables ( y(t+ 1), θ ) are jointly conditionally Gaussian
given yt.

Proof. We shall first show that p(θ | yt) is a conditionally Gaussian distribution.
Left-multiply (8.9.2) by Φ−Lt to get

θ = Φ−Lt yt −Φ−Lt wt

which shows that the conditional distribution of θ 24 given yt, is Gaussian with
(conditional) mean vector Φ−Lt yt and conditional variance equal to σ2Φ−Lt [ Φ−Lt ]>.
Then the statement follows from Bayes rule

p(y(t+1), θ | yt) = p(y(t+1) | θ, yt) p(θ | yt)

since the first factor on the right is clearly a conditional Gaussian distribution
with mean ϕ(t+ 1)>θ and variance equal to var {w(t+ 1)}. If we condition
with respect to some fixed observation yt(ω) = yt these are just usual regular
Gaussian densities.

In spite of its appearance the model (8.9.2) is non-linear and it is not imme-
diately clear what could be a reasonable estimation strategy. One option could
be empirical prediction error minimization (PEM) as described in Section 2.5
with a ridge penalty term related to the a priori variance of θ. We shall instead
propose a Bayesian recursive solution which is much in the same spirit of the al-
gorithm developed in Sect. 2.6. Consider then the following

Problem 8.3. Find a recursive updating algorithm to compute the conditional mean
and conditional variance of the random parameter vector θ:

θ̂(t) := E [θ | yt] , Σ(t) := Var [θ | yt] (8.9.3)

We shall rely on Theorem 8.7 and on the full rank assumption of Φt. Con-
sider the conditional expectation of an arbitrary random variable x given two
other random variables, y1,y2 the first of which is kept fixed while the second
may vary. We shall need to consider the regression function E [ x | y1,y2], which

24Since this θ depends on the choice of the left inverse, more correctly one should say: any ran-
dom vector θ satisfying (8.9.2).
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is by definition a measurable function of both variables, when y1 is kept fixed.
This we shall consider as a function of y2 only and denote it by the symbol
E y1

[ x | y2]. Obviously with this convention E y1
[ x ] = E [ x | y1]. Suppose x

is conditionally Gaussian given (y1,y2), then the Gaussian conditional expec-
tation formula (5.3.3) yields

E [ x | y1,y2] = E y1 [ x ] + Cov {x,y2 | y1}Var {y2 | y1}−1

× Cov {y2,x | y1} {y2 − E [ y2 | y1] } (8.9.4)

which can be justified just by thinking that the conditional density with respect
to both variables p(x | y1, y2) is the Gaussian density py1(x) := p(x | y1) condi-
tioned with respect to y2. Consider now the estimate at time t+ 1

θ̂(t+1) := E [θ | y(t+1), yt] = E yt [θ | y(t+1) ]

where the operator E yt is as defined above. Then applying formula (8.9.4) we
obtain

E [θ | y(t+1), yt] = E yt [θ ] + Cov {θ,y(t+1) | yt}Var {y(t+1) | yt}−1

× Cov {y(t+1),θ | yt} {y(t+1)− E [ y(t+1) | yt] } (8.9.5)

where
E yt [θ ] = θ̂(t) , E [ y(t+1) | yt] = ϕ(t+1)>θ̂(t)

the last equality following since w(t+1) and yt are independent (Lemma 8.2).
The last equation describes the (one step ahead) predictor of y(t+1) given yt

which for short we denote ŷ(t+ 1 | t). The estimator (8.9.5) is a linear function
of the (one step ahead) prediction error

e(t) := y(t)− ŷ(t | t− 1) = ϕ(t)>[θ − θ̂(t− 1) ] + w(t) (8.9.6)

which is a process with uncorrelated (and hence independent) variables by the
orthogonality principle. Its conditional variance is just

var [ e(t) | yt−1 ] = var [ y(t) | yt−1] = E { [ϕ(t)>(θ − θ̂(t− 1) ) + w(t) ]2 | yt−1}
= ϕ(t)>Σ(t− 1)ϕ(t) + σ2

The variable e(t+1) is just the part of y(t+1) which is unpredictable based on
the past yt; the sequence {e(t)} is actually the innovation process of {y(t)}. For
the covariance matrices in (8.9.4) we obtain

Cov {θ,y(t+1) | yt} = E {[θ − θ̂(t) ][ y(t+1)− ŷ(t+ 1 | t) ] | yt} =

= E {[θ − θ̂(t) ][θ − θ̂(t) ]>ϕ(t+1) | yt}+ E {[θ − θ̂(t) ]w(t+1) | yt} =

= E {[θ − θ̂(t) ][θ − θ̂(t) ]> | yt}ϕ(t+1) = Σ(t)ϕ(t+1) .

The last equality follows from the independence of θ and w(t) and Lemma 8.2.
The conditional variance var [ y(t+1) | yt] has been computed above for time t
instead of t+ 1. The updating formula (8.9.5) can therefore be written as

θ̂(t+1) = θ̂(t)+ k(t+1)[ y(t+1)−ϕ(t+1)>θ̂(t) ] (8.9.7)
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where the gain vector k(t+1) is given by

k(t+1) = Σ(t)ϕ(t+1)
[
ϕ(t+1)>Σ(t)ϕ(t+1) + σ2

]−1
(8.9.8)

The recursion is driven by the innovation e(t+1).The initial condition can be
taken as θ̂(0) = θ0.
We still need an updating equation for Σ(t). Using again the iterated condition-
ing formula (8.9.4) and (5.3.4) we get

Σ(t+ 1) = Var [θ | yt+1] =

= Var [θ | yt ]− Cov {θ,y(t+1) | yt} var [ y(t+1) | yt]−1 Cov {y(t+1),θ | yt} =

= Σ(t)−Σ(t)ϕ(t+1)
[
ϕ(t+1)>Σ(t)ϕ(t+1) + σ2

]−1
ϕ(t+1)>Σ(t)

with initial condition the a priori covariance Σ(0) = Var [θ ] = P0.

Remarks 8.2. The reader should compare this Bayesian algorithm with the one
derived in Sect. 2.6. Note that now the gain and the variance matrix are func-
tions of the past data yt making the algorithm a truly non-linear recursion. Ev-
idently the prior information does modify the algorithm but the formulas here
would be hard to derive from the one-shot regularized solution.

There are various extensions of the algorithm to more complicated models.
One easy step is to consider ARX models where the input process u(t) enters
as in (8.2.1) and the parameter is now n + m-dimensional. Since in general
for physical reasons there cannot be instantaneous effect of the input u(t) on
the variable y(t) the input parameter b0 in the model is normally set to zero.
Hence the information available at time t is now constituted by the joint input-
output sequences zt := (ut−1,yt). The reader should work out the derivation
considering all conditional expectations with respect to this joint information
flow assuming that the input and the noise processes are independent.

Theorem 8.8. Consider the ARX model (8.2.1) with a Gaussian noise w independent
of the input process u. Then the estimator θ̂(t) which minimizes the conditional error
variance Σ(t) := Var [θ | zt ] evolves in time according to the following recursion

θ̂(t+1) = θ̂(t)+ k(t+1)[ y(t+1)−ϕ(t+1)>θ̂(t) ] (8.9.9)

where the gain vector k(t+1) is given by

k(t+1) = Σ(t)ϕ(t+1)
[
ϕ(t+1)>Σ(t)ϕ(t+1) + σ2

]−1
(8.9.10)

The process e(t+1) := y(t+1) − ϕ(t+1)>θ̂(t) driving the recursion is the one step
ahead prediction error of y(t+ 1) given the past zt (that is the innovation). The initial
condition can be taken as θ̂(0) = θ0.
The conditional error variance Σ(t) can be updated by the following matrix recursion

Σ(t+1) = Σ(t)−Σ(t)ϕ(t+1)
[
ϕ(t+1)>Σ(t)ϕ(t+1) + σ2

]−1
ϕ(t+1)>Σ(t) (8.9.11)

with initial condition the a priori variance Σ(0) = P0.
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8.10 Problems

8-0 Find the impulse response of the system described by the DE

y(t) +
1

4
y(t− 2) = u(t) .

8-1 Let {e(t)} be a zero-mean uncorrelated process; i.e. E e(t)e(s) = 0 for t 6= s, show
that the transformation

w(t) := eiωte(t) , t ∈ Z

produces another (complex) uncorrelated process. Is this also true for z(t) := sin(ωt)e(t)?

8-2 Show that the deterministic signal s(t) = A sin (ωt+ ϕ) satisfies a second order
difference equation of the form

s(t) + a1 s(t− 1) + a2 s(t− 2) = 0

and find the coefficients a1, a2. Show that a2 = 1 and only a1 depends on the angular
frequency ω.

8-3 Consider a process y described by the "true" AR model

y(t) + a0y(t− 1) = w0(t) |a0| < 1

where w0 is i.i.d. with var [w0(t)] = σ2
0 . For identification you are using a class of AR

models of the same type, namely

y(t) + θy(t− 1) = w(t) ,

and estimate the parameter θ by implementing a PEM (least squares) algorithm. Show
that σ̂2

N in (8.2.7) converges to σ2
0 when N →∞.

8-4 Consider the same process y described in the previous problem. Now you are using
a class of more complicated AR models, namely

y(t) + θ1y(t− 1) + θ2y(t− 2) = w(t) ,

and estimate the vector parameter θ by implementing a PEM (least squares) algorithm.
Where will the estimate θ̂N converges when N →∞ ?

8-5 Same question if the true process y is described by the AR model

y(t) + a0,1y(t− 1) + a0,2y(t− 2) = w0(t)

where the roots of the characteristic equation have modulus less than one and the model
has only one free parameter

y(t) + ay(t− 1) = w(t) .



Appendix A

SOME FACTS FROM
PROBABILITY THEORY

A.1 A quick review of Proability Theory
[◦] A Probability Space: {Ω,A,P} is composed by the set of elementary events
ω ∈ Ω chosen by “nature”, the sigma-algebra A which contains all subsets of Ω
(Events) of which you can compute the probability and a countably additive set
function

P : A→ [ 0, 1 ] .

[◦] Random variables are (mesurable) functions x : Ω→ R.
The Probability distribution function of x is

F (x) := P{ω | x(ω) ≤ x} ; x ∈ R

a right-continuous non-decreasing monotonic function.
[◦] The Expectation of a random variable is the integral

Ex :=

∫
Ω

x(ω) P(dω) =

∫
R
x dF (x) .

Notations

◦ Random variables are denote by lower case boldface symbols such as x, y , ...
etc. The notation using Upper case symbols like X, Y .. is bad. Upper case
symbols are standard for MATRICES such as covariances or loading matrices
in linear models. We need to work with multivariate statistics and this notation
would produce confusion.
◦ The sample size is usually denoted by N : lower case n or m etc. is often used
for dimension of vectors (either random or non-random) or degrees of freedom.
So in general n is fixed while N may tend to∞.
◦ Acronyms: PDF means a probability distribution function; x ∼ F means that
the random variable x has probability distribution F . In discrete probability
spaces F (x) is a staircase function. Continuous variables admit a probability

density function (pdf) p(x) :=
dF (x)

d x
.

If P is any probability measure defined on A, the probability Py, induced by
an m-dimensional random vector y, on its sample space {Rm,Bm} is defined

293
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by the position

Py(E) := P{ω | y(ω) ∈ E} ; E ∈ Bm (A.1.1)

which can be written more economically as,

Py(E) := P{y−1(E)} .

where y−1(E) denotes the inverse image of the event E ∈ Bm.
It can be proven that Py is uniquely determined by assigning the probability

of semi-infinite intervals of Rm of the form {y ∈ Rm | y1 ≤ η1, . . . , ym ≤ ηm}
which we shall write symbolically as {y ≤ η}. That this is so follows from
the fact that all sets in the Borel σ-algebra Bm are limits of sequences of sets
obtained by Boolean operations on such intervals [59].
Hence Py is uniquely determined by its probability distribution function (PDF)
F : Rm → [0, 1]

F (x) = F (x1, . . . , xm) = P{ω | y1(ω) ≤ x1, . . . ,ym(ω) ≤ xm} (A.1.2)

In fact, consider the probability space {Rm,Bm, Py} and define on it the random
variable

ỹ : Rm → Rm , ỹi (x1, . . . , xm) := xi , i = 1, . . . ,m , (A.1.3)

(the identity function). It is easy to check that the PDF of ỹ namely

Py{x | ỹ1(x) ≤ x1, . . . , ỹm(x) ≤ xm}

is exactly the same as the original PDF, F (x), of y defined in (A.1.2). It follows
that y and ỹ are indistinguishable as the probability of any event E ∈ Bm is
computed by integrating the PDF’s of y and ỹ over E and hence must coincide.
It follows that ỹ and y can be regarded as the same random variable.

Convergence of sequences of random variables

There are three standard kinds of convergence:

1. Almost sure convergence: is ordinary convergence of functions
xN (ω)→ x(ω) for all ω ∈ Ω, except perhaps a subset of ω’s of probability
zero. Written xN

a.s.→ x

2. Quadratic mean convergence: means that E |xN − x|2 → 0

This is written xN
q.m.→ x

3. Convergence in probability:
P{ω | |xN (ω)− x(ω)| > ε} → 0 for all ε > 0.

This is written xN
P→ x or P− lim xN = x.

Implications:
1. ⇒ 3. 2. ⇒ 3.

The last implication is proven by Chebyshev inequality : Suppose x and y have
finite second moment, then for all ε > 0

P { |x− y |2 ≥ ε} ≤ 1

ε2
E
[
(x− y)2

]
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Proposition A.1. Let xN
q.m.→ x then xN

P→ x

Proof: just let x ≡ xN and y ≡ x.

Theorem A.1 (Weak law of large numbers). If the random variables {xk ; k =
1, 2, . . .} are independent identically distributed (i.i.d.) then

x̄N
P→ µ = Exk

that is, the sample mean is a (weakly) consistent estimator of the mean.

Proof. By Chebyshev inequality

P { |x̄N − µ |2 ≥ ε} ≤
1

ε2
E
[
(x̄N − µ)2

]
.

The quantity E
[
(x̄N − µ)2

]
is the variance of the sample mean:

var

{
1

N

N∑
k=1

xk

}
=

1

N2
var

{
N∑
k=1

xk

}
=

1

N2
N σ2

where σ2 = var (xk). Then E
[
(x̄N − µ)2

]
→ 0 (q.m convergence). Also

P { |x̄N − µ |2 ≥ ε} ≤
1

N
σ2 → 0

for all ε > 0 as N →∞. Hence x̄N
P→ µ = Exk.

Generalizations to sequences of random vectors hold by exactly the same
arguments. Just substitute the absolute values with norms.

Definition A.1. A sequence of PDF’s {FN} (possibly multivariable), converges in
law to a PDF F ; notation: FN

L→ F , if the functions {FN (x)}, converge to a PDF
F (x) at all points x where F is continuous.

One also talks abut convergence in distribution (or also in law) of random
variables: a sequence {xN} (maybe vector valued), converges in distribution:
xN

L→ x if the PDF’s of {xN} converge in law to the PDF of x.
This is a weaker notion than convergence of random variables as defined above.

WARNING: To talk about convergence of random variables {xN} and x must
be defined in the same probability space (the same random experiment). Oth-
erwise FN → F does not necessarily mean that {xN} with xN ∼ FN converges
to a limit random variable in any reasonable sense.

Theorem A.2. Convergence in probability implies convergence in distribution.

Convergence in distribution is weaker than (implied by) convergence in
probability except when the limit is a constant (nonrandom) variable.
A degenerate PDF is

F (x) := 11(x− c) =

{
1 if x ≥ c
0 if x < c
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this is the PDF of a constant (nonrandom) variable x(ω) = c for all ω ∈ Ω.

Theorem A.3. Convergence in law to a degenerate PDF (that is convergence in distri-
bution to a constant) implies and is hence equivalent to convergence in probability
to the same constant :

xN
L→ c ⇒ xN

P→ c

whenever c is a (nonrandom) constant.

Theorem A.4 (Weak Convergence). The sequence of random variables {xN} con-
verges in distribution to x if and only if

E f(xN )→ E f(x) ; that is
∫
f(x) dFN (x)→

∫
f(x) dF (x)

for all bounded continuous real valued functions f . In fact for all real valued functions
f which are bounded and continuous in a set of probability one for the PDF of x.

Characteristic Functions

Definition:
φx(i t) :=

∫
ei tx dF (x) = E ei tx

NOTE: The imaginary argument of the exponential here is essential to guaran-
tee boundedness, as | ei tx| = 1.
Therefore convergence in distribution implies pointwise convergence of the character-
istic functions

φxN (i t) := E ei txN → φx(i t) := E ei tx, for all t ∈ R .

Actually this result can be inverted

Theorem A.5 (Levy-Helly Bray). The convergence of characteristic functions is nec-
essary and sufficient (and hence equivalent to) convergence in distribution.

This is a very useful fact. Used for example in the proof of the CLT.
The moments of a PDF are derivatives of the characteristic function com-

puted at t = 0.

φ(k)(i t) := i k
∫

xk ei tx dF (x) ⇒ φ(k)(0) := i k
∫

xk dF (x) = i kµk

Convergence φn(i t) → φ(i t) does not necessarily imply convergence of the
derivatives at t = 0. In general convergence in law does not imply convergence
of the moments . Means, variances etc.., etc., of a sequence {xN}

L→ x, do not
necessarily converge to means, variances etc.., of the limit.

Theorem A.6 (Billingsley p.32). Let xN
L→ x, and

sup
N

E x2
N < ∞ (A.1.4)

then all existing moments of xN converge to the respective moments of the limit distri-
bution.
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A.2 The χ2 and related distributions
One says that a scalar random variable y has a χ2(n) distribution if its pdf is
supported on the nonnegative real line and has the following strucure

P (x ≤ y < x+ dx) =
1

2n/2 Γ
(
n
2

) x(n2 )−1 e−x/2 dx , x ≥ 0 . (A.2.1)

In this expression n is a natural number called the number of degrees of freedom of
the distribution. One sees that the χ2 is a special case of the Gamma distribu-
tion. Its characteristic function can be easily obtained from ordinary tables of
Fourier transforms by just recalling that the sign in the exponential factor of the
characteristic function integral is the opposite; yielding

φ(it) := E eity = (1− 2it)−n/2 . (A.2.2)

From this expression one can derive formulas for the moments of the distribu-
tion. The first few central moments are

µ1 = n

µ2 = 2n

µ3 = 8n

µ4 = 48n+ 12n2 ecc... (A.2.3)

Lemma A.1. For large n a χ2(n) random variable tends in distribution to a Gussian
variable with pdf N (n, 2n).

Proof. Let y ∼ χ2(n); introduce a standardized random variable

zn :=
y − n√

2n
;

which for all n has mean zero and unit variance. Of course zn is no longer a χ2

(as this could happen only for Gaussian random variables!). We shall show that
the limit in distribution, L − limn→∞ zn, is a standard N (0, 1) density. By the
Levy-Helly-Bray Theorem the statement follows since the characteristic func-
tion, φn(t), of zn can be written as,

φn(t) = E e
it y√

2n e
−it n√

2n = e
−it n√

2n

(
1− 2it√

2n

)−n/2

=
(
e−it
√

2
n

)n/2 (
1− it

√
2

n

)−n/2

=

[
eit
√

2
n − it

√
2

n
eit
√

2
n

]−n/2
=

(
1− t2

n
+
ψ(n)

n

)−n/2
,

where limn→∞ ψ(n) = 0. By a well known formula in Analysis the limit limn→∞ φn(t)
is equal to

φ(t) = lim
n→∞

(1− t2/n)n/2 = e−t
2/2 ,
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which is the characteristic function of a standard Gaussian distribution.

The χ2 distribution plays a role in many questions of statistical inference,
especially entering in the pdf of estimators.

Proposition A.2. The sum of N independent random variables yi ∼ χ2(ni) is dis-
tributed as χ2(n) where

n =

N∑
i=1

ni , (A.2.4)

that is, when summing i.i.d. χ2’s, the degrees of freedom add up.

Proof. Recall that the pdf of the sum
∑N

1 yi of i.i.d. random variables is just
the N -fold convolution of the respective p.d.f’s, so that the characteristic func-
tions φi(t), of the yi’s get multiplied together. It is then clear that multiplying
functions like (A.2.2) the exponents at the denominators must add up.

The following is a partial converse of this statement.

Proposition A.3. Let y = y1 + y2 be the sum of two independent random variables.
Assume that y ∼ χ2(n) and y2 ∼ χ2(n2) where n > n2. Then y1 ∼ χ2(n− n2).

Proof. By independence the characteristic function of y is φ = φ1φ2 so that

φ1 =
φ

φ2

and by substituting the relative expressions (A.2.2) one sees that the statement
must be true.

Proposition A.4. The pdf of the random variable

ns̄2
n

σ2
:=

1

σ2

n∑
1

(yi − µ)2 ,

where yi ∼ N (µ, σ2) i.i.d. is χ2(n).

Proof. Just note that, with y ∼ N (µ, σ), the pdf of z := (y − µ)2/σ2 is χ2(1)
and then use Proposition A.2. Note also that z = x2 with x ∼ N (0, 1). Using
the well-known rules for the pdf of a function of random variable, say z = f(x)
with f(x) = x2, one obtains

pz(z) =
1∣∣ d

dx f(x)
∣∣
x=f−1(z)

∣∣∣
[
px(
√
z) + px(−

√
z)
]

1(z)

=
1

|2
√
z|

1√
2π

[e−z/2 + e−z/2] 1(z) =
1√
2πz

e−z/2 , z ≥ 0 ,

which is indeed χ2(1).
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Proposition A.5. Let yi ∼ N (µ, σ2), i = 1, . . . , n, i.i.d. Then the pdf of the normal-
ized sample variance:

nσ̂2
n

σ2
=

1

σ2

n∑
1

(yi − ȳn)2 ,

is χ2(n− 1).

Proof. This is a consequence of the following remarkable result:

Lemma A.2. Under the above hypotheses, the statistics ȳn and σ̂2
n are independent.

Proof. We just need to show that ȳn and yi − ȳn are uncorrelated for all i’s. By
Gaussianity, this will imply independence.

Define ỹi = yi−µ and ỹ = ȳn−µ, so that yi−ȳn = ỹi−ỹ ed E ȳn(yi−ȳn) =
E ỹ(ỹi − ỹ) = E (ỹỹi)− E (ỹ)2. Independence of the variables yi implies

E ỹỹi =
1

n
E

(
n∑
1

ỹkỹi

)
=

1

n
E (ỹi)

2 =
σ2

n

so that, comparing with E (ỹ)2 = σ2/n, one gets the conclusion.

By the usual identity

n∑
1

(yi − µ)2 =

n∑
1

(yi − ȳn)2 + n(ȳn − µ)2 (A.2.5)

one has
n∑
1

(yi − µ)2

σ2
=

n∑
1

(yi − ȳn)2

σ2
+ n

(ȳn − µ)2

σ2

where the two random variables in the right member are independent. We know
from Proposition A.4 that nS̄2/σ2 ∼ χ2(n) and that (ȳn − µ)2/(σ2/n) ∼ χ2(1)
(which also follows from Proposition A.4 with n = 1). By Proposition A.3 the
pdf of first summand in the second member must be χ2(n− 1).

So far we have been discussing the case of scalar variables. Suppose y is an
m-dimensional random vector. We are interested to find out when the pdf of
quadratic forms like y>Qy with Q = Q>, is χ2. The most obvious situation in
which this happens is the following.

Proposition A.6. Let y ∼ N (µ,Σ) with µ ∈ Rm and Σ ∈ Rm×m positive definie;
then

(y − µ)> Σ−1(y − µ) ∼ χ2(m) . (A.2.6)

Proof. One just needs to standardize y, by setting z := Σ−1/2(y − µ) ; so that
z = [z1, . . . , zm]> is N (0, I), in particular z1, . . . , zm are i.i.d. and N (0, 1). It
follows that

(y − µ)>Σ−1(y − µ) = z>z =

m∑
1

z2
i
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and the last member is χ2(m) by Proposition A.2.

A less obvious characterization which is used frequently is the following.

Proposition A.7. Let z ∼ N (0, Im) and Q ∈ Rm×m. Then the quadratic form z>Qz
is χ2 distributed if and only if Q is idempotent; i.e. Q = Q2. In this case the number of
degrees of freedom is equal to r = rankQ.

Proof. The proof is based on diagonalization of Q. Indeed since Q is symmetric
(and can always be assumed to be such) and idempotent, it is really an orthog-
onal projection in Rm. Its non-zero eigenvalues are all equal to 1 and there are
exactly r = rankQ of them. The spectral decomposition of Q can therefore be
written

Q = U

[
Ir 0
0 0

]
U> , UU> = U>U = Im

that is
Q = U1U

>
1 ,

where U1 is an m× r matrix formed by the first r (orthonormal) columns of U .
Hence

z>Qz = z>1 z1

where the r-dimensional random vector z1 := U>1 z is distributed as N (0, Ir).
Proposition A.2 then yields the conclusion.

The Maxwell-Boltzmann Distribution

One may wonder about the origin of the term "degrees of freedom" of the
χ2 distribution. It seems to be related physics, in particular to the famous
Maxwell–Boltzmann distribution which is a cornerstone of the kinetic theory of
gases, which provides an explanation of many fundamental gaseous proper-
ties, including pressure and diffusion. The distribution was first derived by
Maxwell in 1860 on heuristic grounds. Ludwig Boltzmann later, in the 1870s,
carried out precise investigations into the physical origins of this distribution.
The derivation using the properties of the χ2 distribution is almost immedi-
ate.We shall roughly follow [60].
The Maxwell–Boltzmann distribution applies to the magnitude v of the velocity of
the particles. The actual speed of a particle selected at random in an ensemble
of rarified ideal gas particles is the effect of a very large number of impacts from
neighbouring particles and can be described with excellent approximation as a
random variable having a Gaussian distribution.

One makes the assumption that the three Cartesian components v1, v2, v3 of
the (vector) velocity of a particle are independent random variables each having
the same Gaussian distribution

p(vi) = (2π kT/m)−1/2 exp−mv
2
i

2kT

where
kT

m
≡ σ2 is the squared most probable velocity. Hence vi/σ ∼ N (0, 1)
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and
v2

σ2
:=

3∑
i=1

(vi/σ)2 ∼ χ2(3) .

By the change of variable x = v2

σ2 in the expression of χ2(3) we obtain

p(v) = 4π(m/2πkT )3/2v2 exp−mv
2

2kT

which is the Maxwell-Boltzmann distribution. Note that u := 1
2mv2 = 1

2kT
v2

σ2

is the kynetic energy of a particle and from the mean of the χ2(3) distribution
we immediately get the relation

E
1

2
mv2 =

3

2
kT

which is a well-known relation in the kinetic theory of gases.

The Student distribution

Let y ∼ N (0 , 1) and x ∼ χ2(n) be independent. Then the ratio

t :=
y√
x /n

(A.2.7)

has the pdf

pn(t) =
1√

nB(1/2 , n/2)

(
1 +

t2

n

)−n+1
2

t ∈ R (A.2.8)

called a Student distribution with n degreesof freedom, which we shall denote by
the symbol S(n). In (A.2.8) B is the Euler Beta function:

B(p , q) :=

∫ 1

0

xp−1(1− x)q−1 dx =
Γ(p) Γ(q)

Γ(p+ q)

where the function Γ is the well-known generalization of the factorial. When n
is an integer greater than 1, Γ(n) = (n− 1)!.

The Student pdf has a curious history which is reported in all textbooks of
classical Statistics see e.g. [?]. For n = 1 it reduces to the Cauchy distribution

S(1) ≡ 1

π(1 + t2)
.

It can be shown that S(n) has finite moments only up to order n − 1; given by
the formulas

µr = 0 if r is odd and r < n

µr =
Γ( 1

2n− r)Γ(r + 1
2 )

Γ( 1
2n)Γ( 1

2 )
is r is even and 2r < n .

It is also not hard to show that for n → ∞ the distribution S(n) converges to
N (0 , 1).
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The F distribution

Let x1 ∼ χ2(n1) and x2 ∼ χ2(n2) be independent. Then the ratio

z :=
x1/n1

x2 /n2
(A.2.9)

has the pdf

pn1, n2
(z) =

 Γ(
n1 + n2

2
)

Γ(
n1

2
) + Γ(

n2

2
)

 (
n1

n2
)
n1
2

z
n1
2 −1(

1 +
n1

n2
z

)n1+n2
2

z ∈ R+ (A.2.10)

called F distribution with n1 and n2 degrees of freedom. It is denoted by the
symbol F(n1, n2).
The derivation of the expression (A.2.9) can be found in many statistical text-
books; see e.g. [46]. Together with the Gaussian, the F distribution is perhaps
one of the most important pdf’s in classical Statistics. Tables of the F distribu-
tion can be found in many websites; e.g.

For n1 = 1 the random varible z in (A.2.9) is the square, t2, of a Student
random variable with n2 degrees of freedom. The mean µ and the mode, m, of
F(n1, n2) exist only if n1 and n2 are strictly greater than 1 and are given by the
formulas:

µ =
n2

n2 − 2
, m =

n2(n1 − 2)

n1(n2 + 2)
.

It can be shown that
L− lim

n2→∞
n1z = χ2(n1) , (A.2.11)

(limit in distribution). Moreover if z ∼ F(n1, n2) and a := a(n1, n2) is defined
as

P(z ≥ a) = α

then the abscissa b for which

P(z ≤ b) = α

is the reciprocal of a, computed by exchanging the degrees of freedom inF(n1, n2)i;
i.e.

b(n1 , n2) = a(n2 , n1) .

See for example http://econtools.com/jevons/java/Graphics2D/FDist.html.
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A.3 Stationarity and Ergodicity
Let us pretend that we have an infinite sequence of observations indexed by
(discrete) time, extending from t = −∞ (the infinite past) to the infinite future
t = +∞. This is called a (discrete-time) stochastic process denoted

y = {y(t)} , t ∈ Z

the symbol Z (Zhalen in German) stands for the set of integer numbers.

Definition A.2. A stochastic process {y(t)} is stationary (in the strict sense) if all
PDF’s relative to y(t1), y(t2), . . .y(tn) say Fn(x1, . . . , xn, t1, . . . , tn) are invariant
for temporal translation, that is for every n it must hold that,

Fn(x1, . . . , xn, t1 + ∆, . . . , tn + ∆) = Fn(x1, . . . , xn, t1, . . . , tn) ,

(same function of x1, . . . , xn, t1, . . . , tn), whatever the time shift ∆ ∈ Z.

Consequences:

• The PDF F (x, t) of any variable y(t) cannot depend on t; that is the ran-
dom variables y(t), t ∈ Z, are identically distributed;

• The second order joint Pdf F2(x1, x2, t1, t2) of the variablesy(t1), y(t2), only
depends on the difference τ = t1 − t2 and not on the date.
In particular, µ(t) := E y(t), is a constant equal to µ ∈ Rm and the Covari-
ance function:

Σ(t1, t2) := E [y(t1)− µ(t1)] [y(t2)− µ(t2)]
>

depends only on the difference τ = t1 − t2.

Wide sense stationarity just requires that the covariance function should de-
pend on the difference of the arguments; i.e. on τ = t1− t2. This is clearly a less
demanding condition which is often assumed in applications.

The Ergodic Theorem

Let f(y) denote a statistic, function of any number of random variables of the
process, which does not depend on time. Denote by fk(y) the same function in
which all time indices of these variables are shifted by k units.

Theorem A.7 (Birkhoff Ergodic Theorem). Let {y(t)} be a strictly stationary
process. The limit

z̄ := lim
T→∞

1

T

T∑
k=1

fk(y) (A.3.1)

exists with probability one for all functions f such that E |f(y)| <∞

The limit can either be random or constant. If it is random it must be a “very
special” random variable. These are called invariant random variables. We shall
not investigate them.

If the limit is a constant then the process is called Ergodic.
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Note now that for all T > 0,

E { 1

T

T∑
k=1

fk(y)} =
1

T

T∑
k=1

E fk(y) = E f(y)

since z(k) = fk(y) is itself a strictly stationary process. Hence the expectation
of the time average in the second members of (A.3.1) is constant and hence
converges as T →∞ and one finds

E z̄ = E f(y) .

Corollary A.1. If {y(t)} is ergodic

lim
T→∞

1

T

T∑
k=1

fk(y) = E f(y) (A.3.2)

with probability one whatever may be f(y) having finite expectation.

Proof: In fact z̄ must be a constant and hence coincides with its own expectation
z̄ = E z̄ = E f(y). 2

Let y be an ergodic process and z(t) := ft(y) a sequence of translates having
finite expectation. Then it is not difficult to check that the process {z(t)} is itself
stationary and ergodic.

Proposition A.8. An ergodic process cannot admit limit for t→ ±∞ unless it reduces
to a deterministic sequence (with probability 1).

In fact such a limit should be a constant random variable.

The strong law of large numbers

This is a special case of ergodicity.

Theorem A.8 (Kolmogorov). Every i.i.d. process having finite expectation is ergodic.

The following is an important consequence.

Corollary A.2. Let e be a i.i.d. process, z(0) := f(e) a function of the process, possibly
of infinitely many variables, having finite expectation and z(t) := ft(e) be the same
function of translates by t units of time; i.e. e(k)→ e(t+ k). Then the process {z(t)}
is stationary and ergodic. In other words, the time translates of every time-invariant
function of an i.i.d. process form an ergodic process.

For example if e is i.i.d. of finite variance and
∑+∞
−∞ |ck|2 < ∞, the time-

translated random variables of z(0) :=
∑
cke(k), namely

z(t) :=

+∞∑
−∞

ck e(t+ k) =

+∞∑
−∞

c−k e(t− k) ; t ∈ Z (A.3.3)
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form an ergodic process.
Convergence of the sum follows from Cauchy-Schwartz inequality

E |
+N∑
−N

ck e(t+ k)| ≤
+N∑
−N
|ck|2 E |e(t+ k)|2 =

+N∑
−N
|ck|2 σ2

e .

A.4 Stationary random oscillations
It will initially be convenient to work with complex-valued random variables
and processes. The covariance of two zero-mean complex variables x and z is
Exz̄ where the bar denotes complex conjugate. With this definition the variance
norm will be positive. A quasi periodic complex process is the sum of ν elementary
complex random harmonic oscillations,

z(t) =

ν∑
k=1

zke
jωkt , t ∈ Z

where ωk ∈ [−π, π] are real angular frequencies which can be assumed distinct
and the zk, k = 1, . . . , ν are (complex) random variables having finite variance.
We want {z(t)} to be a stationary process.This can be true if and only if the corre-
lations of the harmonic components

E [zkz̄h] ejωkt−jωhs k, h = 1, 2, . . . , ν

depend on t − s, which can happen only if k = h while, for k 6= h one must
necessarily have E [zkz̄h] = 0 hence, for stationarity the variables {zk}must be
uncorrelated. Then

r(t, s) = E z(t)z̄(s) =

ν∑
k=1

σ2
ke
jωk(t−s), σ2

k = E |zk|2

that is r(t, s) = r(t− s) and {z(t)} is (wide sense) stationary.
Assume now that the process is real ; then the harmonic components must

appear in complex conjugate pairs

z(t) =
z(t) + z̄(t)

2
=

ν∑
k=−ν

1

2
zke

jωkt , ω−k = −ωk z−k = z̄k

where the {zk} must be uncorrelated. The term with k = 0 is a zero frequency
(ω0 = 0) term which is real.
Write zk = xk + iyk, and use negative indexing (−k) to denote the conjugate
z−k = xk− iyk. The orthogonality of random coefficients with different indices
implies

E {(xk + iyk)(xk − iyk)} = E {(x2
k − y2

k) + 2ixkyk} = 0

That is
Ex2

k = Ey2
k , Exkyk = 0 .



306 Appendix A. FACTS FROM PROBABILITY THEORY

Now write each harmonic component in real form

zk(t) :=
1

2
{zkejωkt + z̄ke

−jωkt} = xk cosωkt− yk sinωkt k = 1, . . . , ν.

so that σ2
k := E zk(t)2 = E zk(0)2 = E x2

k = E y2
k. The signal can be represented

by a vector difference equation of the form[
xk(t+ 1)
yk(t+ 1)

]
=

[
cosωk − sinωk
sinωk cosωk

] [
xk(t)
yk(t)

]
zk(t) =

[
1 0

] [xk(t)
yk(t)

]
with uncorrelated initial conditions xk(0) = xk, yk(0) = yk of equal variance~σ2

k.
By stacking the models of the ν+1 elementary real components described above
z(t) can be represented as

s(t+ 1) = A s(t) (A.4.1)
z(t) = c>s(t) (A.4.2)

wher s(t) is a state vector of dimension 2ν + 1 obtained by listing in a sin-
gle column vector the elementary components

[
xk(t+ 1) yk(t+ 1)

]> for k =

0, 1, 2, . . . , ν and c> =
[
1 0 . . . 1 0

]>.
The zero-frequency component z0(t) ≡ z0(0) ≡ z0 is just a constant random

variable which can normally be eliminated. In this case the matrix A is block-
diagonal A = diag {A1, . . . Aν}with all Ak of dimension 2×2, being orthogonal
matrices. Because of uncorrelation of the various 2-dimensional components
the variance matrix of s(t) is diagonal:

Σ = E s(0)s(0)> = diag {σ2
1I2, . . . , σ

2
νI2}

and the covariance function can then be expressed as

σ(τ) = c>AτΣc =

ν∑
k=1

σ2
k cosωkτ . (A.4.3)

Remarks A.1. The 2-dimensional representations for possible components which
have frequency ωk = ±π are clearly redundant. These components can obvi-
ously be represented by 1-dimensional models.

Non-Ergodicity of quasi-periodic signals

Assume we are observing one single trajectory of an elementary harmonic sig-
nal, which can obviously be written also as

zk(t) = Ak sin(ωkt+ ϕk) A2
k = x2

k + y2
k, tanϕk =

yk
xk

.

Because of stationarity the limit of the sample covariance exists (in fact irrespec-
tive of the probability distributions of xk,yk). We have
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Theorem A.9.

lim
N→∞

1

N

N∑
t=1

zk(t+ τ)zk(t) = A2
k cosωkτ (A.4.4)

and, if all frequencies are different and non zero nor ±π,

lim
N→∞

1

N

N∑
t=1

z(t+ τ)z(t) =

ν∑
k=1

A2
k cosωkτ .

Proof. Using the following trigonometric identity 25

2 sin(ωt+ωτ+ϕ) sin(ωt+ϕ) = cosωτ−cos(2ωt+ωτ+2ϕ) := cosωτ−cos(2ωt+ψ) .

where ψ does not depend on t. Now cos(2ωt+ ψ) = <e
[
ei2ωteiψ

]
so that

1

N

N∑
t=1

cos(2ωt+ ψ) =
1

N
<e
[
eiψeiω

1− ei2ωN

1− ei2ω

]
but the absolute value of the term between square brackets can be bounded by
a constant independent of N so that the limit for N →∞ is zero.
The second relation follows from (A.4.4) and can be proven by imposing the
uncorrelation of the components; see [90, p. 108].

This proves that a random quasi periodic process is not ergodic as the limit
of the sample correlation of each component depends on the amplitude of the
sample trajectory since it is A2

k

2 cosωkτ while the true correlation function is
r(τ) = σ2

k cosωkτ .

25From e.g. https://en.wikipedia.org/wiki/List_of_trigonometric_identities
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Appendix B

SOME FACTS FROM
MATRIX ALGEBRA

B.1 Inner products and Adjoints in finite-dimensional
Vector Spaces

In the following we shall mostly work with complex Vector Spaces. The bar will
denote complex conjugation.

Definition B.1. A square matrix A ∈ Cn×n is Hermitian if

Ā> = A

and positive semidefinite if x̄>Ax ≥ 0 for all x ∈ Cn. The matrix is called positive
definite if x̄>Ax can be zero only when x = 0.

There are well-known tests of positive definiteness, such as the Sylvester’s
criterion based on checking the signs of the determinants of the principal mi-
nors. They should all be positive for positive definiteness.

Given an Hermitian positive definite matrix Q we define the weighted inner
product 〈·, ·〉Q in the coordinate space Cn by setting

〈x, y〉Q : = x̄>Qy

This clearly satisfies the axioms of inner product.

Problem B.1. Show that any inner product in Cn must have this structure for a
suitable Q. Is Q uniquely defined ?

Consider a linear map A : X → Y , both finite-dimensional vector spaces
endowed with inner products 〈·, ·〉X and 〈·, ·〉Y respectively.

Definition B.2. The adjoint, of A : X → Y is a linear map A∗ : Y → X , defined
by the relation

〈y,Ax〉Y = 〈A∗y, x〉X , x ∈X , y ∈ Y (B.1.1)

Problem B.2. Prove that A∗ is well-defined by the condition (B.1.1).

309
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Hint: here you may use the fact that X and Y are finite-dimensional.
Example: LetA : Cn → Cm where the spaces are equipped with weighted inner
products, say

〈x1, x2〉|Cn = x̄>1 Q1x2, 〈y1, y2〉|Cm = ȳ>1 Q2y2

where Q1, Q2 are Hermitian positive definite matrices. Then we have

Proposition B.1. The adjoint of the linear map A : X → Y defined by a matrix
A : Cn → Cm with weighted inner products as above, is

A∗ = Q−1
1 Ā>Q2 (B.1.2)

where Ā> is the conjugate transpose of A.

Problem B.3. Prove proposition B.1.

LetA : Cn → Cm and assume thatQ1 andQ2 = I are both identity matrices.
Both inner products in this case are Euclidean inner products. Then

A∗ = Ā>

i.e. the adjoint is the Hermitian conjugate. In particular, for a real matrix the ad-
joint is just the transpose. For any square Hermitian matrix the adjoint coincides
with the original matrix. The linear map defined by the matrix is then called
a self-adjoint operator. In the real case self-adjoint operators are represented by
symmetric matrices. Note that all this is true only if the inner products are Eu-
clidean.

Completing the square in n dimensions

This is one of those things that are re-derive 100 times in the literature, and
so we are posting it here for ease of reference. It applies in particular to the
solution formula of quadratic algebraic equations.

Take a quadratic polynomial for a vector x ,

a+ b>x +
1

2
x>Cx.

You want to convert this into the form

1

2
(x−m)>M(x−m) + v.

What are M,m, and v?
Assume C is symmetric and non singular. Then we have, in decreasing

order of obviousness,

M = C , m = −C−1b , v = a− 1

2
bTC−1b .

B.2 The Singular value decomposition (SVD)
We shall first do the SVD for real matrices. In Section B.2 we shall generalize to
general linear maps in inner product spaces.
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Problem B.4. Let A ∈ Rm×n and r := min{n,m}. Show that AA> and A>A share
the first r eigenvalues. How are the eigenvectors related?

Theorem B.1. Let A ∈ Rm×n of rank r ≤ min(m,n). One can find two orthogonal
matrices U ∈ Rm×m and V ∈ Rn×n and positive numbers {σ1 ≥, . . . ,≥ σr}, the
singular values of A, such that

A = U∆V > ∆ =

[
Σ 0
0 0

]
, Σ = diag {σ1, . . . , σr} (B.2.1)

Let U =
[
Ur Ũr

]
, V =

[
Vr Ṽr

]
where the submatrices Ur, Vr keep only

the first r columns of U, V . We get a Full-rank factorization of A

A = Ur ΣVr = [u1, . . . , ur] Σ [v1, . . . , vr]
>

where
U>r Ur = Ir = V >r Vr, but UrU

>
r 6= Im, VrV

>
r 6= In .

The proof is based on eigenvalue-eigenvector decomposition of the symmetric
matrices AA> and A>A. See the next section for the full proof. Here we just do
a verification. Assume that (B.2.1) holds. Then

AA> = U∆2U> ; A>A = V∆2V >

hence U = [u1, . . . , um] = normalized eigenvectors of AA>;
and V := [v1, . . . , vn] = normalized eigenvectors of A>A
while {σ2

1 ≥, . . . ,≥ σ2
r} are the (non zero) eigenvalues of AA> (or of A>A).

Since

Ax = U

[
Σ 0
0 0

] [
V >r
Ṽ >r

]
x = Ur ΣV >r x

where Σ > 0, we have Ax = 0 ⇔ V >r x = 0 ⇔ x ∈ span {Ṽr}. Hence we obtain
the dyad formulas

Ax =

r∑
k=1

uk σk〈vk , x〉 , A>y =

r∑
k=1

vk σk〈uk , y〉

In particular A acts on the singular vectors like multiplication by a rank one
matrix

Avj =

r∑
k=1

uk σk〈vk , vj〉 = σj uj , A> uj =

r∑
k=1

vk σk〈uk , uj〉 = σj vj (B.2.2)

Hence the SVD can be seen as a far reaching generalization of the spectral de-
composition of symmetric matrices.

Useful Features of the SVD

Range and Nullspace of A:

Im (A) = Im (Ur) = span ([u1, . . . , ur]), [Im (A)]⊥ = Im (Ũr)

ker (A) = [Im (Vr)]
⊥

= span ([vr+1, . . . , vn]) [ker (A)]⊥ = Im (Vr)
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Approximation properties: the best approximant of rank k of A is the matrix

Ak :=

k∑
i=1

σi ui v
>
i , k ≤ n

with approximation errors

min
rank (B)=k

‖A−B‖2 = ‖A−Ak‖2 = σk+1

min
rank (B)=k

‖A−B‖2F = ‖A−Ak‖2F = σ2
k+1 + . . .+ σ2

r

Matrix Norms

Let A ∈ Rn×m. For now Rm and Rn are equipped with the inner product
〈u, v〉 := u>v inducing the Euclidean norm ‖u‖ :=

√
u>u.

The Euclidean norms on Rm and Rn induce a norm on the set of linear maps
from Rm to Rn which is defined as follows:

‖ · ‖2 : Rn×m −→ R+ , ‖A‖2 := sup
v 6=0

‖Av‖
‖v‖

The definition is quite general and applies to linear maps between arbitrary
inner product spaces. If A ∈ Rn×m it descends from Schwarz inequality u>v ≤
‖u‖‖v‖ that there is a constant k such that ‖Av‖ ≤ k‖v‖. The 2-norm of A is in
fact the smallest such k.

Problem B.5. Let A ∈ Rn×m. Show that:
1.The sup in the definition of the induced norm is indeed a max, i.e.

‖A‖2 = max
v 6=0

‖Av‖
‖v‖

and ‖A‖2 = max
‖v‖=1

‖Av‖

2. ‖A‖2 is equal to σ1, the first (i.e. the largest) singular value of A. For this reason
this norm is also called spectral norm.

The second question relates to the very instructive maximization of the so-
called Rayleigh quotients.
The solution of the following problem follows instead quite trivially from Tr (A) =∑
λk(A).

Problem B.6. The square of the Frobenius norm ‖A‖2F = Trace (A>A) =
∑
i,j a

2
i,j

can be also computed by the formula

‖A‖2F = σ2
1 + . . .+ σ2

r .

Denote by Σ(A) the set of singular values of A.

Problem B.7. Let A be square. Show that:
1. If A = A> ≥ 0 then Σ(A) = σ(A).
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2. 0 ∈ σ(A) if and only if 0 ∈ Σ(A).
3. If A = A> then Σ(A) = {|s| : s ∈ σ(A)}.
4. σ(A) and Σ(A) can be quite different (discuss the intersection σ(A) ∩ Σ(A)).
5. What are the singular values of a skew-symmetric matrix?

If a matrixA is far from being symmetric (in fact far from normal), for exam-
ple if A is lower triangular, then the singular values can be very different from
the eigenvalues. Give some examples.

Generalization of the SVD

Let X , Y be finite-dimensional inner product spaces of dimensions n and m.

Lemma B.1. Let Q : Rn → V be a unitary map. Then dim V = n and there is an
orthonormal basis u1, . . . , un in V such that Qx =

∑
ukξk where ξk = coordinates

of x.

Proof: Let {ek} be a canonical basis in Rn and Qek := uk, k = 1, . . . , n. Then the
uk form an orthonormal basis. By linearity Q

∑
ξkek =

∑
ξkQek. 2

Theorem B.2. Let A : X → Y of rank r ≤ min(m,n). There are two unitary maps
U : Rm → Y , V : Rn → X and a sequence of positive real numbers ordered in
decreasing magnitude, {σ1 ≥ . . . ≥ σr}, called the singular values of A, such that

A = U∆V ∗ , ∆ =

[
Σ 0
0 0

]
, Σ = diag {σ1, . . . , σr} (B.2.3)

The matrix U = [u1, . . . , um] , uk ∈ Y is made by the the normalized eigenvectors of
AA∗; dually, the columns of V := [v1, . . . , vn] , vk ∈ˆare the normalized eigenvectors
of A∗A. The squared singular values {σ2

1 ≥ . . . ≥ σ2
r} are the non-zero eigenvalues of

AA∗ ( or A∗A).

Proof. Let [v1, . . . , vn], be normalized eigenvectors of A∗A so that

A∗Avk = σ2
kvk k = 1, . . . n

with A∗Avk = 0 for k > r. Note that these last eigenvectors are essentially
arbitrary in the nullspace of A. Multiplying from the left by A one gets

AA∗(Avk) = σ2
k(Avk) k = 1, . . . n

so the vectors
uk :=

1

σk
Avk k = 1, . . . r ,

are normalized eigenvectors of AA∗. In fact,

〈uk, uj〉 =
〈vk, A∗Avj〉

σkσj
=

σ2
j

σkσj
〈vk, vj〉 =

σ2
j

σkσj
δkj

Completing the family {u1, . . . , ur} with m − r (eigen)vectors in the nullspace
of AA∗ we obtain an orthonormal basis in Y . Then

〈uk, Avj〉 =
〈vk, A∗Avj〉

σk
=
σ2
j

σk
〈vk, vj〉 =

σ2
j

σk
δkj
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for k, j ≤ r and 〈uk, Avj〉 = 0 otherwise. These relations are equivalent to
U∗AV = ∆.

The following full-rank SVD factorization of A is obtained by eliminating all
the zero blocks in (B.2.3)

A = [u1, . . . , ur] Σ̄ [v1, . . . , vr]
∗

:= U1Σ̄V ∗1 (B.2.4)

where Σ̄ = diag {σ1, . . . , σr} and U1, V1 are the submatrices obtained by keep-
ing only the first r columns of U and V . Note that U1 and V1 still have orthonor-
mal columns

U∗1U1 = Ir = V ∗1 V1 .

Corollary B.1. The image space and the nullspace of A are :

Im (A) = Im (U1) = span {u1, . . . , ur}, ker(A) = ker(V ∗) = span {vr+1, . . . , vn}

Moreover, the 2-norm and the Frobenius norms of A are

‖A‖2 = ‖Σ‖2 = σ1, ‖A‖2F = ‖Σ‖2F = σ2
1 + . . .+ σ2

r

The map

Ak :=

k∑
i=1

σiui 〈vi, · 〉 k ≤ r

is the best rank k(≤ r) approximation of A in a variety of norms; in fact,

min
B ; rank (B)=k

‖A−B‖2 = ‖A−Ak‖2 = σk+1 (B.2.5)

and
min

B ; rank (B)=k
‖A−B‖2F = ‖A−Ak‖2F = σ2

k+1 + . . .+ σ2
r (B.2.6)

Note that (A− Ak)x =
∑r
i=k+1 σiui 〈vi, x 〉 and hence ‖A− Ak‖2 = σk+1. A

similar argument holds for the Frobenius norm.
The proof that Ak is the actual minimizer is tricky. See [Golub-Van Loan] p.

19-20.

Problem B.8. Is the SVD of A unique? discuss the case where there are multiple
eigenvalues of AA∗ (or of A∗A). Assume that the σi’s are all distinct. Is the SVD
unique in this case?

Let A = U diag {σ1, . . . , σn}V ∗ where U and V are arbitrary orthonormal ma-
trices and σ1 ≥ . . . ≥ σn ≥ 0. Is this necessarily the SVD of A ? In any case, are
σ1, . . . σn the singular values of A ?

There is an equivalent statement where the singular values are p = min(n,m)
but some of them (σr+1, . . . , σp) are allowed to be zero.

SVD and the Pseudoinverse

The theorem below provides a general rule to compute a special pseudoinverse
called the Moore-Penrose pseudoinverse.
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Theorem B.3. let A admit the SVD

A =
[
U1 U2

] [Σ 0
0 0

] [
V ∗1
V ∗2

]
, Σ > 0

Then the (moore-Penrose) pseudoinverse of A is

A† =
[
V1 V2

] [Σ−1 0
0 0

] [
U∗1
U∗2

]
= V1Σ−1U∗1

Lemma B.2. If ∆ = diag {Σ, 0} then ∆† = ∆+ = diag {Σ−1, 0}.

Proof: Identify the subspaces in Fig ?? and note that ∆ is symmetric and ker(∆)
is a reducing subspace for ∆. On the orthogonal complement ∆ ≡ Σ is invert-
ible. 2
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Appendix C

A QUICK REVIEW OF
CONSTRAINED
OPTIMIZATION

This is just a quick review. The whole story is beautifully exposed in the book
[11]. The notation x � 0 means that all components of the vector x are nonneg-
ative. We shall give for granted the notions of convex set and convex function.
In particular just recall that a differentiable function f : Rn → R is convex if
and only if

f(y)− f(x) ≥ ∇f(x)>(y − x)

for all x, y in its domain. The following is a basic fact from Convex Optimization
Theory.

Theorem C.1.
Assume f is a smooth convex function and the feasible set X is a convex subset of

Rn with piecewise smooth boundary. Consider the optimization problem minx f(x)
subject to the constraint x ∈ X. Then at the optimum the gradient ∇f(x∗) must be
the normal of a supporting (possibly tangent) hyperplane to the feasible set. In other
words x∗ ∈ X is optimal if and only if

−∇f(x∗)>(y − x∗) ≤ 0 for all y ∈ X

that is, the opposite gradient makes an obtuse angle with all vectors y − x∗; y ∈ X, see
Fig. C below.

Figure C.0.1. Convex Optimization
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Let now f0, . . . , fm, h1, . . . , hp be real functions; consider a general optimiza-
tion problem

minimize
x∈Rn

f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m,

hi(x) = 0, i = 1, . . . , p.

(P )

Let p∗ denote the optimal value f0(x∗).

The Lagrangian of problem P is defined as

L(x, λ, ν) := f0(x) +

m∑
i=1

λifi(x) +

p∑
i=1

νihi(x)

and the Lagrange dual function as

g(λ, ν) := inf
x∈Rn

L(x, λ, ν) = inf
x∈Rn

(
f0(x) +

m∑
i=1

λifi(x) +

p∑
i=1

νihi(x)

)
,

which may possibly take the value −∞. The function g is concave even when
problem (P ) is not convex.

Theorem C.2. It holds that g(λ, ν) ≤ p∗ for any λ � 0 and any ν.
Let the Lagrange dual problem

maximize g(λ, ν)

subject to λ � 0.
(D)

have optimal value d∗. Then d∗ ≤ p∗ (weak duality).

Theorem C.3 (Karush-Kuhn-Tucker (KKT)). If x∗ is a local minimizer and the
functions f0, . . . , fm, h1, . . . , hp are continuously differentiable at x∗, then there exists
vector multipliers (λ∗, ν∗) such that

∇f0(x∗) +

m∑
i=1

λ∗i∇fi(x∗) +

p∑
i=1

ν∗i∇hi(x∗) = 0.

fi(x
∗) ≤ 0, i = 1, . . . ,m

hi(x
∗) = 0, i = 1, . . . , p

λ∗i ≥ 0, i = 1, . . . ,m

λ∗i fi(x
∗) = 0, i = 1, . . . ,m

(C.0.1a)

In particular, x∗ minimizes L(x, λ∗, ν∗).
These are first order necessary conditions for optimality. If the problem is convex they
are also sufficient.

Consider now a particular convex problem:

minimize
x∈Rn

f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m,

Ax = b,
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with f0, . . . , fm convex.
Assume Slater’s constraint qualification condition: strict feasibility

∃x such that fi(x) < 0, i = 1, . . . ,m, Ax = b.

Implications:

1. strong duality, d∗ = p∗;

2. existence of optimal Lagrange multiplier (λ∗, ν∗) with g(λ∗, ν∗) = d∗.

Existence and uniqueness of the Lasso solution

minimize
θ

1

2N
‖y − Sθ‖22

subject to ‖θ‖1 ≤ t,
(PL)

This is a convex problem. The existence of the primal optimum is implied by
the Weierstrass extreme value theorem on a closed set. Uniqueness is a conse-
quence of convexity.
Existence of the dual optimum is guaranteed by Slater’s condition, which would
validate the claim. However, ‖θ‖1 is not differentiable.

KKT in the subdifferentiable case

Need to introduce the subgradient...

Inequality constrained convex problem:

minimize
x∈Rn

f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m,

If strong duality holds, x∗, λ∗ are primal, dual optimal iff

1. x∗ is primal feasible

2. λ � 0

3. λ∗i fi(x
∗) = 0 for i = 1, . . . ,m

4. x∗ is a minimizer of L(x, λ∗) = f0(x) +
∑m
i=1 λ

∗
i fi(x) that is:

0 ∈ ∂f0(x∗) +

m∑
i=1

λ∗i ∂fi(x
∗)
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Appendix D

SOME FACTS FROM
HILBERT SPACE
THEORY

A Hilbert space is an inner product space (H, 〈 · , · 〉) which is complete with re-
spect to the metric induced by the inner product. In other words every Cauchy
sequence has a limit in H. To establish notation we shall give examples of
Hilbert spaces which are frequently used in this book:

1. The space of square summable m-dimensional sequences `2m. The elements of
this space are sequences x = {x(t)}t∈Z of real or complex (m-dimensional
vectors x(t), which we shall write as column vectors, indexed by the integer-
valued parameter t, satisfying

‖x‖2 :=

+∞∑
t=−∞

x(t)∗ x(t) <∞,

where ∗ denotes complex conjugate transpose. In signal processing this
norm is sometimes called the “energy" of the signal x. It is induced by the
inner product

〈x, y〉 :=

+∞∑
t=−∞

x(t)∗ y(t).

A simple proof that `2m is complete can be found in standard text books,
e.g., [111].

2. The Lebesgue space L2
m. Let [a, b] be an interval (not necessarily bounded)

of the real line. We shall denote by L2
m([a, b]) the space of functions taking

values in Cn (or Rn) which are square integrable on [a, b] with respect
to the Lebesgue measure. The values, f(t), of the functions will also be
written as column vectors. It is well-known that this space is a Hilbert
space under the inner product

〈f, g〉 :=

∫ b

a

f(t)∗ g(t)dt.

3. The space L2
m×n([a, b]) of matrix-valued functions with values in Cm×n

321
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and with inner product

〈F, G〉 :=

∫ b

a

Tr {F (t)∗G(t)}dt. (D.0.1)

This is the natural inner product which makes L2
m×n([a, b]) into a Hilbert

space. The functions of this space are square integrable on [a, b] with re-
spect to the Lebesgue measure, in the sense that

‖F‖2 :=

∫ b

a

Tr {F (t)∗F (t)}dt < ∞ .

4. The space L2(Ω,A, P ) of second-order random variables. This is a Hilbert
space often used in this book. It has the inner product

〈ξ, η〉 = E {ξ̄η},

where E {ξ} =
∫

Ω
ξdP denotes mathematical expectation. If we restrict to

zero-mean random variables we obtain a subspace which does not contain
deterministic constants (except zero).

Notations: No subscript will be used to denote the scalar `2 and L2 spaces.
For vector-valued functions say f(t) ∈ Rp the Euclidean norm will be denoted
with the same symbol as absolute value; i.e. |f(t)|2 :=

∑p
k=1 fk(t)2; this will

allow to use ‖ · ‖ for the Hilbert space norm. However when needed we shall
use subscripts. The are instances in which using row-vector notation is more
natural. The reason being that the elements of the functional Hilbert spaces
`2m and L2

m naturally appear as multipliers in the combination of vector random
vector variables. Other important examples of Hilbert spaces (e.g. the Hardy
spaces H2

m) will be introduced later on.
In this book the term subspace of a Hilbert space H, will mean closed sub-

space. Given two subspaces X,Y ∈ H, the vector sum X ∨ Y is the smallest
subspace containing both X and Y; i.e., it is the closure of

X + Y := {x+ y | x ∈ X, y ∈ Y}.

In fact, if both X and Y are infinite-dimensional, X + Y may fail to be closed.
A classical example illustrating this can be found in [43, p. 28]. The symbol ⊕
will be used for direct sum, i.e., X ⊕Y = X + Y with the extra condition that
X ∩Y = 0. In particular, when X ⊥ Y, we have an orthogonal direct sum, which
we write X ⊕Y. An orthogonal sum of subspaces is always closed. The linear
vector space generated by a family of elements {xα}α∈A ⊂ H, denoted span {xα |
α ∈ A} is the vector space whose elements are all finite linear combinations of
the generators {xα}. The subspace generated by the family {xα}α∈A is the closure of
this linear vector space, and is denoted by span {xα | α ∈ A}.

Important examples of subspaces of `2m are (in the language of signal pro-
cessing) the subspaces of causal signals, `2+

m , which are zero for negative values
of t (f(t) = 0, t < 0) and the anticausal signals, `2−m , which are instead zero for
positive values of t, (f(t) = 0, t > 0). These two subspaces have a non-empty
intersection which is (isomorphic to) Rm (or Cm). The orthogonal complement,
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`2+⊥
m , of `2+

m in `2m is the subspace of strictly anticausal functions which are zero
also for t = 0. Evidently we have the orthogonal decomposition

`2m = `2+
m ⊕ `2+⊥

m . (D.0.2)

We shall often have the occasion to deal with series of orthogonal random
variables. A simple but basic result on convergence of these series is the follow-
ing.

Lemma D.1. A series of orthogonal elements in a Hilbert space,

∞∑
k=0

xk, xk ⊥ xj , k 6= j,

converges if and only if
∞∑
k=0

‖xk‖2 <∞ (D.0.3)

i.e., the series of the square norms of the elements converges.

Proof. In fact the series converges if and only if∥∥∥∥∥
m∑
k=0

xk −
n−1∑
k=0

xk

∥∥∥∥∥→ 0

as n,m→∞ which is the same as ‖
∑m
k=n xk‖

2 → 0 which in turn is equivalent
to
∑m
k=n ‖xk‖2 → 0 as n,m→∞.

Let {ek} be an an orthonormal sequence in a Hilbert space H. Since, for an
arbitrary x ∈ H, the “approximation error"∥∥∥∥∥x−

N∑
k=0

〈x, ek〉ek

∥∥∥∥∥
2

≤ ‖x‖2 −
N∑
k=0

| 〈x, ek〉 |2

is non-negative, we have

N∑
k=0

| 〈x, ek〉 |2 ≤ ‖x‖2 for all N

and hence the series
∑∞
k=0 〈x, ek〉 ek converges. An immediate consequence of

this fact is that the sequence of the Fourier coefficients f(k) := 〈x, ek〉, k = 1, . . .
belongs to `2.

Corollary D.1. Let {ek ; k ∈ Z} be an orthonormal sequence in a Hilbert space H

and let c := {ck ; k ∈ Z} be a sequence of complex numbers. The series
∑+∞
−∞ ckek is

convergent if and only if
+∞∑
−∞
| ck |2 <∞

that is if and only if c ∈ `2.
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Let us recall that a set of orthonormal elements {eα ; α ∈ A} in a Hilbert
space H is called complete if

〈x, eα〉 = 0, ∀α ∈ A⇒ x = 0

that is, the only element of H which can be orthogonal to all {eα ; α ∈ A} is the
zero element. A countable complete system, {ek ; k ∈ Z}, is called an orthonor-
mal basis of H. A Hilbert space which admits an orthonormal basis is called
separable. The result below is sometimes called the Riesz-Fisher Theorem.

Theorem D.1. In a separable Hilbert space H, every element x admits a representation

x =

+∞∑
−∞

ckek, ck = 〈x, ek〉 (D.0.4)

with respect to an orthonormal basis {ek}. The sequence of coefficients c := {ck} is
unique and belongs to `2 (is a finite energy signal). Conversely, for every finite energy
signal c, and orthonormal basis {ek}, the series (D.0.4) converges to an element of H.

For a fixed orthonormal basis {ek} the correspondence c→ x is a unitary map from
`2 onto H; in particular ‖x‖H = ‖c‖`2 .

Inclusion theorems for Lp spaces

if x̂ is a finite measure space then for 1 ≤ p < q ≤ ∞

L∞(x̂,A , µ) ⊂ Lq(x̂,A , µ) ⊂ Lp(x̂,A , µ) (D.0.5)

proof by Hölder inequality. Example: L2 is properly contained in L1.
For `p spaces: If p < q ≤ ∞

`p ⊂ `q

Proof: f ∈ `p implies that for t→∞

|f(t)|p → 0 and hence |f(t)| → 0

so for t large enough |f(t)| < 1 and when p < q

|f(t)|q ≤ |f(t)|p

so that ∑
|f(t)|q ≤

∑
|f(t)|p .

Hence `1 is properly contained in `2 !! Example the harmonic sequence 1
t for t 6= 0.

Operators and their adjoints

A linear operator T from a Hilbert space H1 to another Hilbert space H2, is a
linear map between the two spaces. In general T may not be defined on all of
H1; think, for example, of the differentiation operator in L2

m. When T is defined
for all elements of H1, one says that T is defined on H1. The simplest linear
operators are the continuous, also called bounded operators, which are defined
on the whole space and satisfy an inequality of the type

‖Tx‖2 ≤ k‖x‖1, x ∈ H1
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for some constant k, the subscripts referring to the different norms in the two
Hilbert spaces. As one can see, a continuous linear operator is actually uni-
formly continuous. The infimum of all k for which the inequality holds is called
the norm of the operator T and is denote by ‖T‖.

Proposition D.1. Let T : H1 → H2 be a bounded operator, then the suprema

‖T‖ = sup

{
‖Tf‖
‖f‖

, f ∈ H1

}
(D.0.6)

or, equivalently

‖T‖ = sup

{
|〈Tf, g〉|
‖f‖‖g‖

, f ∈ H1, g ∈ H2

}
.

are both finite and equal to the norm of the operator T . In fact the supremum is a
maximum

‖T‖ = max
{f∈H1; ‖f‖=1}

‖Tf‖ .

A linear operator mapping H into the real or complex numbers is called a
linear functional. The following is the fundamental representation theorem for
bounded linear functionals.

Theorem D.2 (F. Riesz). Let T ; H→ C be a bounded linear functional on the Hilbert
spoace H. Then there is a unique element h ∈ H such that

T (x) = 〈h, x〉

for all x ∈ H. The norm of T is ‖h‖.

If T is bounded, it is quite easy, using the Riesz representation, to see that
there is a unique bounded linear operator T ∗ : H2 → H1, which satisfies

〈Tx, z〉2 = 〈x, T ∗z〉1 ∀x ∈ H1, z ∈ H2.

The operator T ∗ is called the adjoint of T . It holds that ‖T ∗‖ = ‖T‖; i.e. a
bounded operator and its adjoint have the same norm. Unbounded operators
may also have adjoints under suitable conditions (in general involving an ex-
tension to a larger space of the original operator). A linear operator from H into
itself, for which T ∗ = T is called selfadjoint. On a finite dimensional space the
concept of adjoint corresponds to taking the transpose (or the Hermitian con-
jugate) of the matrix representing the operator with respect to an orthonormal
basis. (Warning: this is no longer true if the basis is not orthonormal!).

Important examples of linear operators on L2 spaces are multiplication oper-
ators. For this we need to recall the definition of L∞ spaces.

Definition D.1. A scalar measurable function f defined on the interval [a, b] is essen-
tially bounded (with respect to Lebesgue measure µ) if there is some constant α <∞
such that |f(t)| ≤ α almost everywhere; i.e., except possibly for points t which form a
subset of measure zero. The smallest such constant, denoted

ess sup
t∈[a,b]

f := inf α
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is called the essential supremum of f on [a, b].The essential supremum is actually
a norm which makes the vector space of essentially bounded functions on [a, b] into a
Banach space, denoted L∞([a, b]).

Similarly, the vector space of Cm×n-valued matrix functions F , such that

‖F‖∞ := ess sup
t∈[a, b]

‖F (t)‖ <∞

is a Banach space under the norm ‖ · ‖∞ defined above. This Banach space is denoted
L∞m×n([a, b]).

Note that in the definition we have chosen the operator norm of the matri-
ces F (t). Since any two norms on a finite dimensional vector space are equiv-
alent, the choice of matrix norm is immaterial for the definition of the space
L∞m×m([a, b]). This choice turns out to be convenient when we regard the action
of F on functions of L2

m([a, b]), as a linear multiplication operator

MF : L2
m([a, b])→ L2

n([a, b]) , MF : f 7→ fF

Proposition D.2. A multiplication operator MF on L2
m([a, b]) by a Cm×n-valued

matrix function F , is a bounded linear operator into L2
n([a, b]) if and only if F ∈

L∞m×n([a, b]). The norm of the operator MF is then,

‖MF ‖ = ‖F‖∞ . (D.0.7)

The bound is a consequence of the multiplicative inequality (??), since

〈f(t)F (t), f(t)F (t)〉 = Tr (f(t)F (t)F (t)∗f(t)∗) = Tr (F (t)F (t)∗f(t)∗f(t))

≤ ‖F (t)F (t)∗‖‖f(t)f(t)∗‖F = ‖F (t)‖2‖f(t)‖2.

The image or range of an operator T : H1 → H2, is the linear manifold
Im T := {Tx | x ∈ H1}. This manifold does not need to be closed, i.e. a sub-
space of H2, but if this is the case T is said to have closed range. The kernel or
nullspace of an operator T , kerT := {x | Tx = 0}, is always closed. Operators for
which Im T = H2 will be called densely onto. The following simple but impor-
tant result, is a generalization of an analogous one valid for finite dimensional
inner product spaces.

Theorem D.3. Let T : H1 → H2 be a bounded operator from the Hilbert space H1 to
the Hilbert space H2. Then

H1 = kerT ⊕ Im T ∗ (D.0.8a)
H2 = kerT ∗ ⊕ Im T (D.0.8b)

A bounded operator T is left-invertible if there exists a bounded operator S
such that ST = I1 and right-invertible if there exists a bounded operator R such
that TR = I2. Clearly, right-invertibility implies that T is surjective (i.e., maps
onto H2) while left-invertibility implies that T is injective (i.e., one-to-one). In
fact it can be shown that a bounded operator T is right-invertible if and only if it is
onto. However the dual statement for left-invertibility is in general false.
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Theorem D.4. A bounded linear operator from one Hilbert space to another is left-
invertible if and only if it is injective and has closed range.

If T is both left- and right- invertible it is called invertible tout-court. Note
that left- or right- inverses are in general non-unique. However a two-sided
inverse is unique.

A linear map U between two Hilbert spaces preserving the inner products,
i.e. a map for which

〈Ux,Uy〉2 = 〈x, y〉1, x, y ∈ H1

is called an isometry. An isometry is always an injective map. The following
basic result is used repeatedly in this book.

Theorem D.5. Every isometry defined on a subset of elements X̃ := {xα | α ∈ A}
of a Hilbert space H can be extended by linearity and continuity to the whole Hilbert
space X := span{xα | α ∈ A} linearly generated by the family {xα}, preserving the
property of isometry. The isometric extension is unique.

Proof. We shall follow [77, p.14-15].
We first show that an isometry is necessarily linear on X̃. Suppose that x1, . . . , xm
are elements of X̃ and that x =

∑
k αkxk also belongs to X̃. Pick an arbitrary

x> ∈ X̃, then by linearity of the scalar product and isometry of U

〈x, x>〉 =
∑
k

αk〈Uxk, Ux>〉 = 〈
∑
k

αkUxk, Ux
>〉

but the left hand side is also equal to 〈Ux, Ux>〉 and hence

〈Ux−
∑
k

αkUxk, Ux
>〉 = 0

for all x> ∈ X̃, in particular for x> = x, x1, . . . , xm. Therefore

〈Ux−
∑
k

αkUxk, Ux−
∑
k

αkUxk〉 = ‖x−
∑
k

αkUxk‖2 = 0

that is Ux =
∑
k αkUxk; i.e. U is a linear operator on X̃. Now every element

h ∈ X is the limit of a sequence of linear combinations {hn} of elements of X̃,
that is limn→∞ ‖h− hn‖ = 0 which is equivalent to

lim
n,m→∞

‖hm − hn‖ = lim
n,m→∞

‖Uhm − Uhn‖ = 0

and hence limn→∞ Uhn exists and belongs to X. We define Uh := limn→∞ Uhn
so that U is defined for all h ∈ X. Isometry of the extension can be proved by a
limit argument. Uniqueness is obvious.

Note that isometric operators satisfy the relation 〈x, U∗Ux〉1 = 〈x, x〉1, from
which U∗U = I1 (the identity operator in H1). If U is surjective (UH1 = H2)
one sees that

U∗ = U−1.
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A surjective isometry is called a unitary operator. Two linear operators A : H1 →
H1 and B : H2 → H2 which are related by

A = U−1BU

where U is unitary, are unitarily equivalent. Unitary equivalence is a relation
which preserves the fundamental characteristics of a linear operator, among
them the spectrum [3, 4]. The Fourier transform defined in L2(R), is an example
of a unitary operator L2(R)→ L2(I).

A subspace X ⊂ H is invariant for the operator T if TX ⊂ X. If a subspace X
is invariant for T we denote by T|X the restriction of T to the subspace X. A sub-
space X is said to be reducing for a linear operator T if it is invariant for T and
there is a complementary subspace Y, satisfying the direct sum decomposition

H = X⊕Y,

which is also invariant. In this case T has a matrix representation

T =

[
T|X 0
0 T|Y

]
with respect to the decomposition H = X⊕Y.

Lemma D.2. Let T be a linear operator on a Hilbert space H. Then

TX ⊂ X⇔ T ∗X⊥ ⊂ X⊥

If T is self-adjoint, both X and X⊥ are reducing for T .

Proof. First note that X is T -invariant if and only if 〈Tx, y〉 = 0 for all x ∈ X
and y ∈ X⊥. Then just apply the definition of adjoint.
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