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Deterministic LQ problems

Consider the following quadratic optimization problem on the semi-infinite
interval t ≥ 0:

minimize J(ξ , u) :=
+∞∑
0

[
x(t)> u(t)>

][ Q S
S> R

] [
x(t)
u(t)

]
(1)

subject to: x(t +1) = Ax(t)+Bu(t) , x(0) = ξ , x(t) ∈ Rn , u(t) ∈ Rp .

(2)

The minimization is to be performed with controls u for which the limit
quadratic functional J exists [ and is finite ?]. These controls will be called
admissible. Here Q = Q>, R = R> but the weights are otherwise arbitrary.
We shall use the notation w(x, u) for the quadratic form inside the summa-
tion and let

V (ξ ) := inf
u

J(ξ , u) , ξ = x(0) .

This will be called the value function. Of course it may well happen that
V (ξ ) =±∞ for some, or all ξ ’s.
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Examples

Let y(t) =Cx(t)+Du(t)

◦ The LQ regulator problem: minimize the `2 norm of the output:

w(x, u) =
[
x> u>

][C>C C>D
D>C D>D

] [
x
u

]

◦ minimal energy transfer: minimize ‖u‖22−‖y‖
2
2,

w(x, u) =
[
x> u>

][−C>C −C>D
−D>C I−D>D

] [
x
u

]

◦ minimal energy transfer to electric networks; let y(t) voltage and u(t)
current flowing into the network; want to minimize

∑+∞

0 y(t)>u(t)

w(x, u) =
[
x> u>

][0 C>

C 1/2(D>+D)

] [
x
u

]
.
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A class of optimization problems

Note that we have actually defined a whole class of variational problems
since we have not specified the terminal conditions. The existence (and
properties) of the solution depends on which terminal condition are at-
tached to the infimization problem. In particular we may ask that limt→+∞ x(t) :=
x(∞) exists and belongs to some prespecified terminal subspace T ⊂ Rn.
For example the problem

V+(ξ ) := inf
u

J(ξ , u), subject to lim
t→+∞

x(t) = 0, ∀ξ

asks for an optimal control which asymptotically stabilizes the linear sys-
tem x(t + 1) = Ax(t) +Bu(t). On the other extreme we may consider the
free terminal conditions problem where the behaviour of limt→+∞ x(t) is
not constrained at all. Then whenever it is well-defined, the free terminal
cost

V f (ξ ) := inf
u

J(ξ , u), no conditions on lim
t→+∞

x(t)

will satisfy the inequality V f (ξ ) ≤ VT(ξ ) for all subspaces T (or, equiv. all
V ’s).
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Reachability Stabilizability and the Backward
system

Recall the definition of (discrete-time) reachability and stabilizability.

Lemma 1 If (A,B) is stabilizable; i.e. all unstable modes of A (including
those corresponding to eigenvalues in the unit circle) are reachable, there
are admissible controls for all ξ and any T.

Clearly, by stabilizability, there is a feedback law which makes the system
asymptotically stable and a feedback control which for each ξ , drives x(t) to
zero exponentially fast so that J(ξ , u)< ∞. Since 0∈ T there are admissible
controls for all ξ and any T.
Assume A is non-singular; then the system (2) is time-reversible and the
Backward system

x(t−1) = A−1x(t)−A−1Bu(t−1)

is backward-reachable if and only if (2) is reachable. It is backward sta-
bilizable if all modes of A−1 corresponding to eigenvalues in {|z| ≥ 1} are
reachable. This is obviously the same as all modes of A corresponding to
eigenvalues in {|z| ≤ 1} to be reachable.
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Optimization over the past trajectories

There is a dual class of variational problems involving the behaviour of the
system for negative times. For these problems to make sense we need to
assume that the system (2) is time reversible, i.e. A is invertible, which we
shall assume from now on. Consider the family of cost functionals

J̄(ξ , u) :=
0∑
−∞

[
x(t)> u(t)>

][ Q S
S> R

] [
x(t)
u(t)

]
subject to: x(t +1) = Ax(t)+Bu(t) , x(−∞) ∈ T, x(0) = ξ .

We then consider the family of problems

V̄ (ξ ) := inf
u

J̄(ξ , u), subject to lim
t→−∞

x(t) ∈ T, x(0) = ξ

The infimization is to be performed with respect to controls u(−∞,−1] steer-
ing the initial state x(0) = ξ to x(−∞) ∈ T, for which the limit quadratic func-
tional J̄ exists and is finite. These controls are also called admissible.
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If (A,B) is anti-stabilizable there are feedback laws which drive any ini-
tial state x(0) = ξ backward in time, to x(−∞) = 0. Hence if (A,B) is anti-
stabilizable there are admissible controls for all ξ and any terminal mani-
fold T.
The problem

V̄+(ξ ) := inf
u

J̄(ξ , u), subject to lim
t→−∞

x(t) = 0, ∀ξ

asks for an optimal control which asymptotically anti-stabilizes the linear
system x(t+1) =Ax(t)+Bu(t). As we shall see, under certain condition this
problem will have a unique solution. On the other extreme we may consider
the free initial conditions problem where the behaviour of limt→−∞ x(t) is
not constrained at all. Then whenever it is well-defined, the free backward
terminal cost

V̄ f (ξ ) := inf
u

J̄(ξ , u), no conditions on lim
t→−∞

x(t)

will obviously satisfy the inequality V̄ f (ξ )≤ V̄ (ξ )≤ V̄+(ξ ) for all V̄ ’s.
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Boundedness of the value function

The first question to settle is when the value functions V, V̄ have a finite
lower bound. For this we have the following basic lemma.
Lemma 2 Assume that (A,B) is reachable. Then, if a value function V (ξ )
is finite for all ξ ∈ Rn, it must satisfy the Inverse dissipation inequality
(IDI)

V (x(a))≤
b−1∑
t=a

w(x(t), u(t)) +V (x(b)) , b−a≥ n . (3)

for all x(b) ∈ Rn and u[a,b) driving the initial state x(a) to x(b). Moreover
V (0) = 0.
Dually, assume that (A−1,B) is reachable. Then, if a V̄ (ξ ) is finite for all
ξ ∈ Rn it satisfies the dissipation inequality (DI)

V̄ (x(b))≤
b−1∑
t=a

w(x(t), u(t)) +V̄ (x(a)) , b−a≥ n . (4)

for all x(b) ∈ Rn and u[a,b) driving the initial state x(a) to x(b). Moreover
V̄ (0) = 0.
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Dissipative linear systems

After a change of sign, setting S(x)≡−V (x) the inverse dissipation inequal-
ity (3) turns into:

S(x(b))≤
b−1∑
t=a

w(x(t), u(t)) +S(x(a)) ,

for all u[a,b) transferring x(a) to x(b) at time b > a. This is called the dissi-
pation inequality since, when S(x)≥ 0 it can be interpreted as a storage
function in the sense of Willems and the system x(t + 1) = Ax(t)+Bu(t)
is dissipative with supply rate w(x,u) see the papers [?]. Dissipativity is
useful in stability of feedback systems since a dissipative system is au-
tomatically stable and the positivity condition makes S(x) into a Lyapunov
function; it is however a rather strong condition.

By Lemma 2, whenever V̄ (ξ ) is finite, then W (ξ ) := −V̄ (ξ ) also satisfies
the IDI. In particular we shall let

V−(ξ ) :=−V̄+ =− inf
u
{J̄(ξ , u), lim

t→−∞
x(t) = 0 } (5)

so that, whenever well defined, all W ’s satisfy V−(ξ )≤W (ξ ).
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Proof of the inverse dissipation inequality

Let a < b and let u[a ,+∞,) be an admissible control steering the initial state
x(a) to the terminal manifold T at time t = +∞. This control exists by
reachability. Then

V (x(a)) = inf
u[a,+∞)

J(x(a), u) ≤
b−1∑
t=a

w(x(t), u(t)) +
+∞∑
b

w(x(t), u(t))

Let b ≥ a+n and fix a control u[a,b) which steers x(a) to an arbitrary state
x(b) at time b. This control also exists by reachability. Then take the infi-
mum of both members with respect to u[b,+∞) to get (3). Note that, by time
invariance, V (x) does not depend on the particular time instant (either a or
b) at which the initial state is considered.
Next consider J(0,u); this is a quadratic homogeneous function of u so that
J(0,ku) = k2J(0,u); hence V (0) cannot be negative otherwise by taking a
scalar multiple of the optimal control we could make it negative and arbi-
trarily large. Therefore V (0)≥ 0 and hence u≡ 0 is an optimal control since
it makes V (0) to achieve its minimal value V (0) = 0. 2
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Proof of the dissipation inequality for V̄

Let a < b and let u[−∞,a) be an admissible control steering the initial state
manifold T at time t =−∞ to x(a). This control exists by reachability. Then

V̄ (x(b))≤ inf
u[−∞,a)

J̄(x(a), u)+
b−1∑
t=a

w(x(t), u(t))

where the control u[a,b) steers x(a) to an arbitrary state x(b) at time b. This
control also exists by reachability if b ≥ a+ n. Take the infimum of both
members with respect to u[−∞,a) to get (4). Note that, by time invariance,
V (x) does not depend on the particular time instant (either a or b) at which
the initial state is considered.
Next consider J̄(0,u); this is a quadratic homogeneous function of u so that
J̄(0,ku) = k2J̄(0,u); hence V̄ (0) cannot be negative otherwise by taking a
scalar multiple of the optimal control we could make it negative and arbi-
trarily large. Therefore V̄ (0)≥ 0 and hence u≡ 0 is an optimal control since
it makes V̄ (0) to achieve its minimal value V̄ (0) = 0. 2
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Dynamic Programming

Not all bona-fide functions V , solutions of the IDI (3) are value functions
attached to some LQ variational problem. The following is a well-known
characterization of those which actually are.

Proposition 1 A finite continuous function V : Rn→ R is a value function
for a deterministic LQ problem if and only if it satisfies the following sta-
tionary Dynamic Programming Equation (DPE)

V (x(a)) = inf
u[a,b)

{
b−1∑
t=a

w(x(t), u(t)) +V (x(b))} b > a (6)

where the infimum is over all controls steering the state x(a) at time a to
x(b) at time b. If V is a function satisfying (6) then it also satisfies the IDI
(3).

Proof : Assuming V is a value function, the DPE (6) follows just by break-
ing the infimization of the functional J(x(a), u) on the sub intervals [a,b)∪
[b,+∞) and taking last the infimum with respect to u[a,b).
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Conversely, assume V is a continuous function satisfying (6) for arbitrary
b> a and let u be an admissible control. Since limb→+∞ V (x(b))=V (limb→+∞ x(b))
is assigned by the boundary condition on x(t) at time +∞, it does not de-
pend on u and the optimization on the infinite interval [a,+∞) is done on the
functional J(x(a), u) with respect to all admissible u’s steering the state to
certain final manifold. In particular, for the zero terminal condition problem
V (x)−V (0) is the value function but we already know that V (0) = 0. 2

CONJECTURE: Is it true that V (x) = 0 for x ∈ T?

The proof of the following proposition is rather technical and will be omitted.

Proposition 2 If V (ξ ) is a finite value function, then it is a quadratic func-
tion of ξ ; i.e. there exist a symmetric n×n matrix Π such that

V (ξ ) = ξ
>

Πξ .



Dynamic Programming and the ARE

Let V (ξ ) = ξ>Πξ be a finite value function and set x ≡ x(t), u≡ u(t). The
DPE written for a = t, b = t +1, yields

x>Πx = inf
u

{[
x> u>

][ Q S
S> R

] [
x
u

]
+(x>A>+u>B>)Π(Ax+Bu)

}
≡

x>Πx = inf
u

{
x>A>ΠAx+ x>(S+A>ΠB)u+u>(S>+B>ΠA)x+u>(R+B>ΠB)u+ x>Qx

}
Assume that R+B>ΠB is positive definite (and hence non singular). Then
the right hand side is minimized by u(t) = K(Π)x(t) = (R+B>ΠB)−1(S>+
B>ΠA)x(t) and Π must satisfy

Π = A>ΠA− (S+A>ΠB)(R+B>ΠB)−1(S>+B>ΠA)+Q .

an Algebraic Riccati Equation (ARE). This equation will be studied in
more detail in due time. It is important since it provides an algebraic
parametrization of all finite value functions.
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About sufficient conditions.

Proposition 3 Let V (ξ ) = ξ>Πξ be a finite value function and assume
that R+B>ΠB is positive definite. Then matrix Π satisfies the ARE.
Conversely, if the ARE admits symmetric solutions Π such that R+B>ΠB
is positive definite, then V (ξ ) = ξ>Πξ is a finite value function; i.e.

V (ξ ) := min
u

J(ξ , u) , ξ = x(0) .

for some terminal condition x(+∞) ∈ T. The optimal control is unique and
is given by the feedback law u(t) = K(Π)x(t) defined above.

The second statement, in a more general framework, is called the “verifica-
tion theorem” of dynamic programming. It is not quite a sufficient condition
since we don’t know if/when the ARE admits solutions (satisfying the posi-
tivity assumption).
To obtain sufficient conditions for the well-posedness of the variational
problems we will have to follow a more general route.
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The positivity Theorem

Theorem 1 Assume that (A,B) is reachable and controllable. Then all so-
lutions of the IDI are finite if and only if, for all controls u driving the initial
state x(0) = 0 to x(T ) = 0 one has

T∑
0

w(x(t), u(t)) ≥ 0, for all T ≥ 0 . (7)

More precisely, if and only if (7) holds, all solutions of the IDI are bounded.
They form a convex set with a minimal and a maximal element; in fact, any
solution V of the IDI satisfies the inequality

V−(ξ )≤V (ξ )≤V+(ξ ) , for all ξ ∈ Rn . (8)

We shall call (7) the positivity condition.
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Proof of Theorem 1

Write (3) with a = 0 and b = T . Assume V (ξ ) is finite so that V (0) = 0
(Lemma 2); then taking a control u which drives the initial state x(0) = 0 to
x(T ) = 0 one sees that (7) must hold.
Conversely assume that (7) holds and consider the following sequence of
control actions transferring the initial state x(−a)= 0 at some fixed bounded
time −a to x(b+a) = 0 at time b+a

[x(−a) = 0]
u1−→ [x(0) = ξ ]

u−→ [x(b) = η ]
u2−→ [x(b+a) = 0] .

By time-invariance the control function steering x(b) = η to x(b+a) = 0 can
be chosen independent of b. Hence the last contribution

∑b+a
b+1 w(x(t), u2(t))=∑a−1

0 w(x(t), u2(t)) := Q2(η ,a)< ∞ does not depend on b. Likewise for the
first contribution. Hence from (7) we get

−Q1(ξ ,a)−Q2(η ,a)≤
b∑
0

w(x(t), u(t)) , x(0) = ξ

where the left hand side is finite for all ξ . Taking the limit for b→ +∞ on
both sides and then taking the infimum w.r.t admissible controls u shows
that V (ξ ) is indeed bounded from below. This proves the first statement.
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Proof of Theorem 1 cont.d

Convexity is obvious. To prove the second statement, let’s consider any
(bounded) function satisfying the IDI (3). Take x(b) = 0 so that

V (x(a))≤
b∑
a

w(x,u)

where x(a) = ξ is arbitrary and the control u steers x(a) = ξ to zero at time
b. Letting b→+∞ one gets V (ξ )≤V+(ξ ). Similarly, let V be any solution of
the IDI. Taking a < 0, b = 0 and a general x(0) = ξ ∈ Rn, the IDI (3) gives,

−
0∑
a

w(x,u)≤V (ξ )

Let a→−∞ and choose admissible controls u(−∞,0) driving x(−∞) = 0 to
x(0) = ξ . Since the second member does not depend on u, we have

sup
u(−∞,0)

{−
0∑
−∞

w(x,u)} ≤V (ξ )

which, since sup{− f (x)}=− inf{ f (x)} yields V−(ξ )≤V (ξ ). 2
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Positivity and the spectral function

Consider the matrix function

Φ(z) :=
[
B>(z−1I−A>)−1 I

] [ Q S
S> R

] [
(zI−A)−1B

I

]
which is sometimes called the Popov function or the spectral function of
the LQ problem defined before. Clearly Φ(z) is para-Hermitian. We have

Theorem 2 The positivity condition (7) holds if and only if the spectral
function is nonnegative definite on the unit circle; i.e.

Φ(e jθ ) ≥ 0 , for all θ ∈ [−π, π ] (9)

Proof : The statement follows from Parseval theorem for the Fourier trans-
form. Just consider inputs u equal to zero for negative times, transferring
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x(0) = 0 to x(T ) = 0 at an arbitrarily large time T and equal to zero there-
after. Since before t = 0 and after time T the state will also stay identically
equal to zero we have

T∑
0

w(x(t), u(t)) =
+∞∑
−∞

w(x(t), u(t)) =
∫ +π

−π

û(e jθ )∗Φ(e jθ )û(e jθ )≥ 0

where û is the Fourier transform of u and the star denotes conjugate trans-
pose. It can be shown that the family of such û’s is rich enough to insure
that (9) holds. 2



Positivity and the control LMI
Lemma 3 Let

N(P) =
[

A>PA−P A>PB
B>PA B>PB

]
for some n×n symmetric matrix P. Then we have, identically in z[

B>(z−1I−A>)−1 I
]

N(P)
[
(zI−A)−1B

I

]
≡ 0

Proof : Use the identity

(z−1I−A>)P(zI−A) = P−A>PA−A>P(zI−A)− (z−1I−A>)PA

and left multiply by B>(z−1I−A>)−1 and right multiply by (zI−A)−1B to get

B>(z−1I−A)−>(P−A>PA)(zI−A)−1B = B>(z−1I−A>)−1A>PB+

+B>PA(zI−A)−1B+B>PB

which is what we needed to show.

19



Positivity and spectral factorization

Theorem 3 If there exists P = P> such that the Control Linear Matrix In-
equality ( CLMI)

L(P) :=
[

A>PA−P+Q S+A>PB
S>+B>PA R+B>PB

]
≥ 0 (10)

is satisfied, the spectral function Φ(z) is positive semidefinite on the unit
circle.
Conversely, assume reachability of (A, B), then if any of the value functions
V is well defined, there exists a symmetric solution of the LMI (10) such
that V (ξ ) = ξ>Pξ .

Hence the solvability of the CLMI is a necessary and sufficient condition
for the well-posedness of the LQ optimal control problems stated at the
beginning.
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Connection with dissipative systems

Note that N(−P) = −N(P) serves the same purpose of N(P) and, by re-
naming X :=−P we could form a Linear Matrix Inequality

M(X) :=
[

X−A>XA+Q S−A>XB
S>−B>XA R−B>XB

]
≥ 0

which looks in a sense dual of the LMI of stochastic realization obtained
via the transformation A↔ A>, B↔ C>, S↔ C̄>. Note however that here
Q should correspond to the zero matrix in the stochastic setting. Under
this change of sign, setting S(x) ≡ −V (x) (Proposition 2) the dissipation
inequality (3) turns into

S(x(b))≤
b−1∑
t=a

w(x(t), u(t)) +S(x(a)) ,

for all u[a,b) transferring x(a) to x(b) at time b > a. When S(x) = x>Xx ≥ 0 it
can be interpreted as a storage function in the sense of Willems. Hence
the system x(t + 1) = Ax(t)+Bu(t) is dissipative with supply rate w(x,u) if
and only if the LMI M(X)≥ 0 has a symmetric positive definite solution.
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Proof of Theorem 3

Proof of sufficiency: let L(P) ≥ 0 and let W (z) = C(zI−A)−1B+D where
C, D (depending on P) are defined by the factorization

L(P) =
[

C>

D>

][
C D

]
,

then W (z) satisfies the spectral factorization equation Φ(z) =W (z−1)>W (z)
and therefore Φ(e jθ )≥ 0.
Conversely, assume that Φ(e jθ )≥ 0, and hence the positivity condition (7)
holds (Theorem 2). This in turn means that all optimal value functions V
are well defined, so that V (ξ ) = ξ>Pξ for some symmetric P (Proposition
2). We shall show that P solves the CLMI. To this end we shall need the
following Lemma.
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Lemma 4 Let Π = Π> be an arbitrary n×n symmetric matrix; then

x(b)>Πx(b)− x(a)>Πx(a)+
b−1∑
t=a

w(x(t),u(t)) =
b−1∑
t=a

[x(t)> u(t)> ]L(Π)

[
x(t)
u(t)

]
(11)

for all controls u[a,b) transferring the state x(a) at time a to the state x(b) at
time b > a.

Proof : Consider the identity

x(t+1)>Πx(t+1)−x(t)>Πx(t)= (u(t)>B>+x(t)>A>)Π(Ax(t)+Bu(t))−x(t)>Πx(t)

= [x(t)> u(t)> ]N(Π)

[
x(t)
u(t)

]
.

The lemma follows by summing from t = a to t = b− 1 and by adding∑b−1
t=a w(x(t),u(t)) on both sides. 2
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Proof of Theorem 3

Now any finite value function must be a quadratic form V (x) = x>Px sat-
isfying the dissipation inequality (3) which means that, when Π = P, the
left hand member of (11) must be non negative for all x(a) and all controls
steering x(a) to x(b). This implies that

b−1∑
t=a

[x(t)> u(t)> ]L(P)
[

x(t)
u(t)

]
≥ 0

for all x(a) and all such admissible controls u. By reachability, the mani-
fold of these controls and corresponding state trajectories are clearly rich
enough to guarantee L(P)≥ 0. 2
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On the solutions of the CLMI

A consequence of Theorems 1, 3 and Proposition 2 is the following:

Corollary 1 Assume reachability of (A, B). There is a 1:1 correspondence
between quadratic functions V (ξ ) = ξ>Pξ solving the IDI and symmetric
solutions P = P> of the CLMI.

It follows that the solution set P of the CLMI is a convex set with a mini-
mal and maximal solutions P− and P+. In fact, from V−(ξ ) = ξ>Π−ξ and
V+(ξ ) = ξ>Π+ξ , renaming Π+ := P+ , Π− := P−, it follows from (8) that
all P ∈ P satisfy the inequality

P− ≤ P ≤ P+ .

NB: The value functions form a distinct subset of all solutions of the IDI and
likewise the corresponding set of symmetric matrices {Π} forms a distinct
subset of P. As we shall see, this subset lies on the boundary of P.

25



The quadratic solutions of the IDI

Proposition 4 Assume that the positivity condition (7) holds. Then to each
solution P = P> of the CLMI there corresponds a spectral factorization

Φ(z) =W (z−1)>W (z) (12)

with the spectral factor W (z) described as W (z) =CP(zI−A)−1B+DP the
matrices CP, DP being determined by the factorization of L(P) = L(P)> ≥ 0,

L(P) =
[

C>P
D>P

] [
CP DP

]
modulo multiplication by an orthogonal matrix. Letting

x(t +1) = Ax(t)+Bu(t) , x(t0) = ξ ,

yP(t) =CPx(t)+DPu(t) . (13)

The cost function corresponding to P can be represented as

J(ξ ,u) =
+∞∑
−∞

y>P (t)yP(t) (14)
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The sum is computed by integrating the stable modes forward in time and
the unstable modes backward in time. The modes of A on the unit circle
must be non-observable since otherwise the sum would diverge. What is
the meaning of ξ>Pξ =?



Non singularity and the Riccati Inequality

In the following we shall assume that P is non empty and that R+B>PB
is non singular for all solutions P = P> of the CLMI. This condition is dis-
cussed in the literature but for the moment we shall not question it; it clearly
implies that R+B>PB > 0 .
Under non-singularity we can block diagonalize L(P) as

L(P) =
[

I K>P
0 I

][
Λ(P) 0

0 R+B>PB

][
I 0

KP I

]
(15)

where KP = (R+B>PB)−1(S>+B>PA) and

Λ(P) := A>PA−P− (S+A>PB)(R+B>PB)−1(S>+B>PA)+Q .

Theorem 4 Assume that R+B>PB is non singular, then P ∈ P if and only
if it satisfies the Control Algebraic Riccati Inequality Λ(P)≥ 0.

Under non-singularity the “boundary” of the solution set to the CLMI is
defined by he Algebraic Riccati Equation Λ(P) = 0 namely

P = A>PA− (S+A>PB)(R+B>PB)−1(S>+B>PA)+Q , (ARE)
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Value functions, the ARE and optimal controls

We know already from Proposition 3 that all value functions V (x) = x>Px
correspond 1:1 to symmetric solutions of the ARE. This can be seen also
from the factorization (15).

Theorem 5 Assume non singularity and that P is non empty, then all value
functions V (x) = x>Px correspond 1:1 to symmetric solutions P of the Alge-
braic Riccati equation. The optimal input u is generated by the feedback
control law

u(t) =−KPx(t) .

where KP is defined in (15).

Proof: Letting a = 0 and x(a) = ξ , the dynamic programming equation (11)
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for the value function V (x) = x>Px, gives

0 = inf
u[0b)

x(b)>Px(b)−ξ
>Pξ + inf

u[0b)

b−1∑
t=0

w(x(t),u(t))

= inf
u[0b)

b−1∑
t=0

[x(t)> u(t)> ]L(P)
[

x(t)
u(t)

]
,

the infimum being over all admissible controls steering x(0) = ξ to x(b) and
for all b > 0. Using the block-diagonalization of L(P), this leads to

0 = inf
u[0b)

b−1∑
t=0

x(t)>Λ(P)x(t)+ v(t)>(R+B>PB)v(t) ∀b > 0

where v(t) = KPx(t)+u(t). Since Λ(P) ≥ 0 it is then clear that the infimum
(which must be zero), is achieved iff Λ(P) = 0 and v(t) ≡ 0, that is when u
is generated by the feedback control law u(t) =−KPx(t).



Letting b→+∞ and x(+∞) = 0 the same argument applies to V+(ξ ). From

0 =−ξ
>P+ξ + inf

u[0+∞)

+∞∑
t=0

w(x(t),u(t))

= inf
u[0+∞)

+∞∑
t=0

[x(t)> u(t)> ]L(P+)
[

x(t)
u(t)

]
,

the infimum being over all admissible controls steering x(0) = ξ to zero, it
follows that u(t) = −KP+x(t) is the optimal control and V+(ξ ) = ξ>P+ξ . A
dual argument applies also to V−. 2



Structure of the optimal systems

Let P be a solution of the CLMI and define Ĝ(z) := KP(zI−A)−1B+ I; it
follows from (15) that the spectral function admits the decomposition

Φ(z) = B>(z−1I−A>)−1
Λ(P)(zI−A)−1B+ Ĝ(z−1)> (R+B>PB) Ĝ(z) (16)

By setting DP := (R+B>PB)1/2 , CP := DPKP one has the spectral fac-
torization

Φ(z) = G>P (z
−1)GP(z) where GP(z) :=CP (zI−A)−1B+DP

so that all P solutions of the Riccati equation Λ(P) = 0, and only these P’s,
correspond to square spectral factors of Φ(z) of dimension m×m.
Note that GP(z) is the transfer function of a system with a ficticious output

x(t +1) = Ax(t)+Bu(t) , x(t0) = ξ ,

z(t) =CPx(t)+DPu(t) . (17)
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This system is subjected to the optimal feedback law corresponding to P
(solution of the Riccati equation),

uP(t) =−KPx(t)

since from (17) one gets z(t) = CPx(t)−DPKPx(t) ≡ 0 it follows that this
feedback law is output nulling, that is, it makes z(t)≡ 0 on the whole time
axis, for any initial condition. Hence:

Theorem 6 The closed loop dynamics of the optimal system correspond-
ing to a solution P of the ARE, is governed by the autonomous evolution
equation

x(t +1) = ΓPx(t) , x(t0) = ξ (18)

where the eigenvalues of the closed-loop transition matrix ΓP := A−BKP
are precisely the transmission zeros of the transfer function GP(z).

30



The spectrum of ΓP

The spectrum of the closed loop matrix ΓP determines the asymptotic state
evolution of the optimal system. Intuitively, since Φ(z) = G>P (z

−1)GP(z) the
eigenvalues of ΓP and their reciprocals together should be the zeros of
Φ(z). This is proven in the following.
Let ∆(P) := R+B>PB. Start from a state space realization of

Φ(z) = (B>(z−1I−A>)−1K>P + I)∆(P)(KP(zI−A)−1B+ I)[
x(t +1)
ξ (t−1)

]
=

[
A 0

K>P ∆(P)KP A>

] [
x(t)
ξ (t)

]
+

[
B

K>P ∆(P)

]
u(t)

η(t) = ∆(P)KPx(t)+B>ξ (t)+∆(P)u(t)

and compute a realization for the inverse, namely
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[
x(t +1)
ξ (t−1)

]
=

[
ΓP −B∆(P)−1B>

0 Γ>P

] [
x(t)
ξ (t)

]
+

[
B∆(P)−1

K>P

]
η(t)

u(t) =−KPx(t)−∆(P)−1B>ξ (t)+∆(P)−1
η(t)

because of reachability, this is a minimal [CHECK] realization of the inverse
so that
Proposition 5 If and only if ∆(P) is non singular, Φ(z) has generically full
rank and has no zeros neither at z = 0 nor at infinity.
In this case the matrix ΓP is non singular for all P solution of the ARE and

σ(ΓP)∪σ(Γ−1
P ) = zeros of Φ(z) , (19)

σ(ΓP)∩σ(Γ−1
P ) = zeros of Φ(z) on the unit circle . (20)

counting multiplicity.

Proof: The first statement follows from (16): the first term is nonnegative
while the second is non-singular a.e. and from [?, Theorem 4.1]. The rest
is obvious. 2

Therefore there are two feedback matrices Γ+ and Γ− whose spectrum is
contained in the region D+ := {z; |z| ≤ 1} and D− := {z; |z| ≥ 1}.
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Theorem 7 Γ+ and Γ− correspond to the extreme solutions P+ and P− of
the ARE, that is

Γ+ = A−BK+ = A−B(R+B>P+B)−1(S>+B>P+A) , (21)

Γ− = A−BK− = A−B(R+B>P−B)−1(S>+B>P−A) (22)

The proof is based on the following lemma (See Lemma 3.1 and 3.2 of [?]).

Lemma 5 Let P be a solution of the ARE and let X := P−P− and Y :=
P+−P; then X and Y satisfy the equations

X = Γ
>
−XΓ−−Γ

>
−XB(R+B>PB)−1B>XΓ−

Y = Γ
>
+Y Γ++Γ

>
+Y B(R+B>PB)−1B>Y Γ+

or, equivalently

X = Γ
−>
− XΓ

−1
− +XB(R+B>PB)−1B>X (23)

Y = Γ
−>
+ Y Γ

−1
+ −Y B(R+B>PB)−1B>Y (24)
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Proof of Theorem 7: For a matrix A denote:

L<(A) , L1(A) , L>(A) ,

the (invariant) eigenspaces corresponding to eigenvalues, respectively in-
side the unit circle, on the unit circle and outside of the closed unit circle. It
is proven in [?, Theorem 3.2] that

L1(Γ−)⊂ KerX L1(Γ+)⊂ KerY

and since L1(Γ−) = L1(Γ
−1
− ) the latter is also included in KerX . Similarly

for Γ+. Now we know that Γ− has no eigenvalues inside the unit circle and
hence there is a unitary change of basis U such that

U>Γ
−1
− U =

[
A1 A12
0 A2

]
where A1 has only eigenvalues of modulus one (the reciprocals of those of
Γ−) while A2 has only eigenvalues in the open unit disk. From the invari-
ance L1(Γ

−1
− ) ⊂ KerX it follows that U>XU = diag{0, X2} so that equation

(23) restricted to the asymptotically stable subspace of Γ
−1
− becomes

X2 = A>2 X2A2+Q2
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where Q2 is the lower diagonal block of U>XB(R+B>PB)−1B>XU which
is symmetric and nonnegative definite. Then by standard Lyapunov the-
ory X2 ≥ 0 and hence all solutions X of the Lyapunov-like equation X =

Γ
−>
− XΓ

−1
− + Q are nonnegative definite; i.e. X ≥ 0. Similary σ(Γ−1

+ ) ⊂
{z; |z| ≥ 1} implies Y ≥ 0 (because of the minus sign in the equation). Hence
the maximal solution P+ of the ARE is a stabilizing solution (not asymptoti-
cally in general) while the minimal solution is anti-stabilizing. 2

Proposition 6 For every P solving the ARE, the subspace KerX is Γ−-
invariant and KerY is Γ+-invariant .

Proof : Let x ∈ KerX , then from (23)

Xx = 0 = Γ
−>
− XΓ

−1
− x

which, since Γ
−>
− is non-singular, implies XΓ

−1
− x = 0; i.e. Γ

−1
− x ∈ KerX so

the subspace KerX is mapped into itself by Γ
−1
− , that is KerX is a Γ

−1
− -

invariant subspace. However Γ
−1
− and Γ− have the same invariant sub-

spaces. The proof of the statement for KerY is analogous. 2



Wimmer [?] proof: define

Γ̃− := Γ−−XB(R+B>PB)−1B>XΓ−

so that the ARE for X can be rewritten X = Γ>−X Γ̃− or, equivalently,

Γ̃
−>
− X = XΓ−

since Γ̃− = (I −XB(R+B>PB)−1B>X)Γ− is also non-singular [??]. This
seems to require R invertible which has no clear meaning.

Hence on KerX we have ΓP = Γ− while on KerY we have ΓP = Γ+. In fact,
the general idea is to show that there are as many P’s (or as many ΓP)
as there are zero flipping to reciprocal positions of the zeros of Ĝ(z)+ or
Ĝ(z)−, keeping in mind that the zeros on the unit circle remain fixed in the
flipping process.
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the optimal cost corresponding to P should then be written as a quadratic
form involving the temporal evolution of the state trajectory restricted to the
unstable and stable subspaces of the form

J(ξ , uP) =

0∑
−∞

y−(t)>y−(t)+
+∞∑
0

y+(t)>y+(t)

Since the (optimal) output is y(t) = CPΓ
t−t0
P x(t0) the optimal cost can be

written

J(ξ , uP) = ξ
>

+∞∑
−∞

(Γ>P )
tC>P CPΓ

t
P ξ := ξ

>W ξ

where W =W> is a solution of the Lyapunov-type equation

W = Γ
>
PW ΓP+C>P CP = Γ

>
PW ΓP+K>P (R+B>PB)KP

which for W = P reduces to the CARE (Q̃ = 0?) and hence has certainly the
solution W = P not necessarily positive semidefinite see [Wimmer].

All other solutions of the Riccati inequality correspond to rectangular spec-
tral factors of dimension (p+m)×m where p is the rank of Λ(P).
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The structure of the solution set of the CARE

See Ran & Trentelman
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For which problems does the CLMI (or CARE)
have a solution?
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The optimal regulator

For the optimal regulator problem the weight matrix in the cost functional
is assumed to be positive semidefinite; i.e.[

Q S
S> R

]
≥ 0

A stronger assumption is R> 0 (positive definite control weight) which rules
out a subclass of interesting problems called cheap control problems. If R
is non singular we can block-diagonalize the weight matrix[

Q S
S> R

]
=

[
I SR−1

0 I

][
Q−SR−1S> 0

0 R

][
I 0

R−1S> I

]
and introduce the linear feedback v(t) := u(t) + R−1S>x(t), changing the
problem into one with block-diagonal weight:

x(t +1) = Fx(t)+Bv(t) ; w̃(x(t), v(t)) =
[
x(t)> v(t)>

][Q̃ 0
0 R

][
x(t)
v(t)

]
with F = A− BR−1S> and Q̃ = Q− SR−1S>. By positivity Q̃ = H>H ≥ 0
(H ≡ Q̃1/2).

39



The non singular optimal regulator

Proposition 7 Assume R+B>XB is invertible; then the CARE of the reg-
ulator problem with block-diagonalized weights

X = F>XF−F>XB(R+B>XB)−1B>XF + Q̃

coincides with (and hence has the same solutions of) the CARE. In partic-
ular the solutions are the same; i.e. X ≡ P.
Moreover the closed-loop dynamics is also invariant; letting K̃(X) = (R+

B>XB)−1B>XF one has:

F−BK̃(X) = A−BKP

where KP = (R+B>PB)−1(S>+B>PA). The statement remains true for the
algebraic Riccati Inequality.
The Algebraic Riccati equation can also be written in symmetrized form as

X = (F−BK̃)>X(F−BK̃)+ K̃>RK̃ + Q̃ , K̃ = (R+B>XB)−1B>XF .

The proof is by algebraic verification.
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Duality with the Kalman Filter

When R is invertible the theory of the optimal regulator with stability is
completely dual of that of the (steady state) Kalman filter.

Look for solutions of the CARE which are ≥ 0 . The cost J(ξ ,u) is nonneg-
ative and hence every V (ξ ) ≥ 0. In particular want the (maximal) solution
V+.

Theorem 8 Existence : If (A, B) is stabilizable; equivalently, (F, B) is sta-
bilizable, there is a nonnegative definite solution of the CARE. The corre-
sponding value function is hence nonnegative. In other words, if (A, B) is
stabilizable, the maximal solution of the CARE exists and is nonnegative
definite.
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Proof : Assume non-singularity. Consider the finite horizon optimal control
problem

min
u[t0, t1)

J(ξ , u) :=
t1∑
t0

[
x(t)> u(t)>

][ Q S
S> R

] [
x(t)
u(t)

]
+ x(t1)

>Mx(t1)

subject to: x(t +1) = Ax(t)+Bu(t) , x(t0) = ξ , M = M> ≥ 0 ∈ Rn×n .

By dynamic programming a necessary condition is that V (t,ξ ) := x(t)>Π(t)x(t)
with Π(t) satisfying the Riccati D.E.

Π(t−1) = F>Π(t)F−F>Π(t)B(R+B>Π(t)B)−1B>Π(t)F + Q̃ Π(t1) = M

whereby V (ξ ) = ξ>Π(t0, t1,M)ξ . Can show that for M = 0 the function
Π(t0, t1,0) ≡ Π(t1− t0,0) is monotonic non decreasing with t1− t0. When
t1− t0 ↑ +∞ either Π(t1− t0,0) ↑ +∞ or it must solve the Algebraic Riccati
equation.
By stabilizability there is a gain matrix L, making F − BL asymptotically
stable. Using the control u(t) = −Lx(t) we obtain J(ξ , u) = ξ>U(t0, t1,M)ξ

where U(t, t1,0) solves the linear equation

U(t−1)= (F−BL)>U(t)(F−BL)+LB(R+B>U(t)B)−1B>L>+Q̃ U(t1)= 0



which by stability of F −BL has a uniformly bounded solution. Since by
optimality Π(t1− t0,0)≤U(t0, t1,0), Π is also uniformly bounded and hence
converges to a positive semidefinite solution of the CARE.



Duality with the Kalman Filter: Stability

A solution P = P> of the CARE is stabilizing if |λ [A−BKP ] | < 1 equiva-
lently, |λ [F−BK̃P ] |< 1.

Theorem 9 If (F, H) is detectable, then the feedback matrix A−BKP asso-
ciated to any nonnegative definite solution of the CARE is asymptotically
stable. In other words, any P = P> ≥ 0 solving the CARE is stabilizing.

Proof : Assume there is an eigenvalue λ0 of F−BK̃P with |λ0| ≥ 1. Let a be
a corresponding eigenvector. Then

a∗Pa = a∗(F−BK̃)>P(F−BK̃)a+a∗K̃>RK̃ a+a∗Q̃a

yields

(1−|λ0|2)a∗Pa = a∗K̃>RK̃ a+a∗Q̃a

where the left memeber is ≤ 0 and the right member is ≥ 0. Hence both
must be equal to zero; in particular, since R is non singular, we must have
K̃ a = 0 so that (F −BK̃)a = F a = λ0 a with |λ0| ≥ 1 while H a = 0 which
contradicts detectabilty of (F, H). 2.
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Duality with the Kalman Filter: Uniqueness

Lemma 6 Let P(t) and P̄ be solutions of the Difference RE and of the ARE
respectively; then

P(t +1)− P̄ = (A−BK̄)>(P(t)− P̄)(A−BK(t))

where K(t) = K(P(t)) and K̄ = K(P̄).

Theorem 10 A positive semidefinite (and hence stabilizing) solution of the
CARE is necessarily unique.

Proof : Assume there are two solutions P1 and P2 of the CARE both sym-
metric and positive semidefinite, and hence both stabilizing. Then by iter-
ating the formula of the lemma

P1−P2 = (A−BK̄1)
>(P1−P2)(A−BK̄2)

one gets

P1−P2 =
[
(A−BK̄1)

>
]k

(P1−P2) [A−BK̄2]
k

so that letting k→ ∞ it follows that P1 = P2. 2
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Duality with the Kalman Filter: Main Theorem

Theorem 11 (Kalman) If and only if (F, B) is stabilizable and (F, H) is de-
tectable, the CARE has a unique nonnegative solution P = P> which is
stabilizing and necessarily the maximal solution.

Proof : Exactly as for the Kalman Filter. 2

44



The role of Detectability

Consider the regulator problem with Q̃ = 0 and limt→∞ x(t) = 0. We want to
asymptotically stabilize the system using the least control energy. Assume
(F, B) is stabilizable, but F not necessarily stable (no detectability). What
can we say?

We shall provisionally assume that F is non singular. The CARE

X = F>XF−F>XB(R+B>XB)−1B>XF = F>
[
X−XB(R+B>XB)−1B>X

]
F

is homogeneous and has the solution P = 0 which yields the trivial control
law u(t)≡ 0 which in general is not stabilizing. Consider non zero solutions
P = P> and the corresponding feedback matrix

ΓP = F−BKP = F−B(R+B>PB)−1B>PF

so that the homogeneous CARE is written as

P = F>PΓP , i.e. PΓP = F−>P
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Assuming P invertible we get the similarity relation ΓP = P−1F−>P
So far we don’t know if there are any invertible solutions of the CARE. By
the matrix inversion lemma, for any such P

P−PB(R+B>PB)−1B>P =
[
P−1+BR−1B>

]−1

which, since F is invertible, turns the CARE into

P−1 = F−1
[
P−1+BR−1B>

]
F−>

that is into the Lyapunov equation

FP−1F> = P−1+BR−1B> ,

Lemma 7 If F is unmixing and (F, B) is reachable, this Lyapunov equa-
tion has a unique nonsingular solution. In case F is totally antistable
(|λ (F)| > 1) P is positive definite. In this case ΓP is asymptotically sta-
ble.



Frequency domain conditions

With the optimal control we have v(t) := u(t)+R−1S>x(t) ≡ 0, and hence
(when R is invertible) the spectral function of the regulator problem with
the optimal control can be written as

Φ
o(z) = B>(z−1I−Γ

>)−1Q̃(zI−Γ)−1B , Γ = F−BK̃(P+)

For z= e jθ this is in fact the Parseval-Fourier Transform of the optimal value
function

V o
+(ξ ) =

+∞∑
0

xo(t)>Q̃xo(t) , xo(t +1) = (F−BK̃)xo(t) , xo(0) = ξ

Since (B>, Γ>) is an observable/detectable pair (assuming (A, B) reach-
able/stabilizable) it is clear that unstable modes in xo(t) may exist when
and only when (Γ>, Q̃1/2) is not stabilizable.
Since F − BK̃ = [ I − B(R + B>P+B)−1B>P+ ]F... same as detectability of
(F, Q̃1/2) ??

46



The linear stochastic regulator

Consider the following linear stochastic system on t ≥ t0

x(t +1) = Ax(t)+Bu(t)+ v(t) , Ex(t0) = m, Varx(t0) = Σ0
y(t) =Cx(t)+w(t) (25)

where w and v are uncorrelated white noise processes of covariances V
and W respectively. We want to solve the quadratic optimization problem
on the finite interval t0 ≤ t ≤ T :

minimize EJ(x(t0), u) := E{
T−1∑

0

[
x(t)> u(t)>

][Q 0
0 R

] [
x(t)
u(t)

]
+ x(T )>QT x(T )}

Where Q = Q> ,R = R> are positive semidefinite. Without loss of generality
S = 0.
The minimization is to be performed with controls u(t) which only use the
available information at time t. These controls will be called admissible. In
case y(t) = x(t) we have the full information situation and u is admissible if
u(t) = ϕ(t,x(t)). In general we only have available yt = {y(t0), . . . ,y(t)}. We
shall call these control functions yt-measurable.
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Minimization and expectation commute

Complete state information:

Lemma 8 Assume that the function J(x,y,u) has a unique minimum w.r.to
u for all x,y. Denote uo(x,y) the minimizer. Then,

min
u(x,y)

E J(x,y,u) = E J(x,y,uo(x,y)) = E min
u

J(x,y,u)

Partial state information:

Lemma 9 Assume that the function F(y,u) := E [J(x,y,u) | y ] has a unique
minimum w.r.to u for all y’s. Denote uo(y) the minimizer. Then,

min
u(y)

E J(x,y,u) = E J(x,y,uo(y)) = E{min
u

E [J(x,y,u) | y ]}

NOTA BENE: In general minu(y) E J(x,y,u)≥minu(x,y) E J(x,y,u)
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Dynamic Programming: Complete state
information

E{
T−1∑

t0

[
x(t)> u(t)>

][Q 0
0 R

] [
x(t)
u(t)

]
+ x(T )>QT x(T )}=

= E{
t−1∑
t0

[
x(s)> u(s)>

][Q 0
0 R

] [
x(s)
u(s)

]
}+

E{
T−1∑

t

[
x(s)> u(s)>

][Q 0
0 R

] [
x(s)
u(s)

]
+ x(T )>QT x(T )}

The first term does not depend on u(t), . . . ,u(T − 1). To minimize w.r.to
these variable just need to minimize the second term. Define the optimal
cost to go function

V (x, t) := min
u(t),...,u(T−1)

E

T−1∑
t

[
x(s)> u(s)>

][Q 0
0 R

] [
x(s)
u(s)

]
+ x(T )>QT x(T ) | x(t) = x


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THE BELLMAN EQUATION

Then V (x, t) satisfies the Bellman equation:

V (x, t) = min
u(t)

E
[[

x(t)> u(t)>
][Q 0

0 R

] [
x(t)
u(t)

]
+V (x(t +1), t +1) | x(t) = x

]
(26)

with terminal condition:

V (x,T ) = min
u(T )

E
[

x(T )>QT x(T ) | x(T ) = x
]
= x>QT x

Next, prove the following

Lemma 10 Let x∼N(m,Σ), and S = S>. Then

Ex>Sx = m>Sm+Tr(SΣ) .

(Actually you don’t need Gaussianness).
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Solution of the Bellman equation

Try with a quadratic function V (x, t) = x>S(t)x+ s(t). Using the previous
lemma

E [V (x(t +1), t +1) | x(t)]= [Ax(t)+Bu(t) ]>S(t+1)[Ax(t)+Bu(t) ]+Tr(V S(t+1))

substitute into (26) and you obtain the Riccati recursion

S(t) = A>S(t +1)A−L(t)>[R+B>S(t +1)B]L(t)+Q (27)
L(t) = [R+B>S(t +1)B]−1B>S(t +1)A S(T ) = QT (28)
s(t) = s(t +1)+Tr(V S(t +1)) (29)

The minimum is obtained for

u(t) =−L(t)x(t)

and is equal to

EV (x(t0), t0) = m>S(t0)m+Tr(S(t0)Σ0)+

T−1∑
t0

Tr(V S(t +1)) .
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Asymptotic behaviour

The Riccati difference equation and the optimal control law are the same as
for the deterministic regulator problem. May consider the infinite horizon
T → ∞. The same conditions for the existence of a positive semidefinite
solution of the ARE apply here as well. The closed loop system is asymp-
totically stable etc.. In this case however the optimal cost tends to infinity.
We minimize the average cost per unit time:

minimize lim
T→∞

1
T
{

T−1∑
0

[
x(t)> u(t)>

][Q 0
0 R

] [
x(t)
u(t)

]
+ x(T )>QT x(T )}

as T − t0 → ∞ of S(t) → S (constant) independent of QT and L(t) → L.
Asymptotically we minimize

min
u[0,∞)

E{
[
x(t)> u(t)>

][Q 0
0 R

] [
x(t)
u(t)

]
}= Tr(V S) .
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D.P.: Incomplete state information

Same splitting as before

E{
T−1∑

t0

[
x(t)> u(t)>

][Q 0
0 R

] [
x(t)
u(t)

]
+ x(T )>QT x(T )}=

= E{
t−1∑
t0

[
x(s)> u(s)>

][Q 0
0 R

] [
x(s)
u(s)

]
}+

E{
T−1∑

t

[
x(s)> u(s)>

][Q 0
0 R

] [
x(s)
u(s)

]
+ x(T )>QT x(T )}

The first term does not depend on u(t), . . . ,u(T − 1). To minimize w.r.to
these variable just need to minimize the second term.
But now u(t)=ϕ(t,yt) ! Now use Lemma 9: the optimal cost to go function
is conditional on yt:

V (yt, t) := min
u(t),...,u(T−1)

E

T−1∑
t

[
x(s)> u(s)>

][Q 0
0 R

] [
x(s)
u(s)

]
+ x(T )>QT x(T ) | yt = yt


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The Bellman equation: Incomplete sate
information

Then V (yt, t) satisfies the Bellman equation:

V (yt, t) = min
u(t)

E
[[

x(t)> u(t)>
][Q 0

0 R

] [
x(t)
u(t)

]
+V (x(t +1), t +1) | yt = yt

]
(30)

Conditional expectations given yt depend only on the conditional ex-
pectation of the state x̂(t | t)! V (yt, t) =W (x̂(t), t). Hence

W (x̂(t), t) = min
u(t)

E
[[

x(t)> u(t)>
][Q 0

0 R

] [
x(t)
u(t)

]
+W (x̂(t +1), t +1) | x̂(t)

]
with terminal condition

W (x̂(T ),T ) = min
u(T )

E
[

x(T )>QT x(T ) | yT
]
= E

[
x(T )>QT x(T ) | yT

]
=

x̂(T )>QT x̂(T )+Tr(QT P(T ))

where P(t) := P(t | t) is the state error covariance matrix.
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Solution of the Bellman equation

Theorem 12 The solution of the Bellman equation is a quadratic function

W (x̂(t), t) = x̂(t)>S(t)x̂(t)+ s(t)

where S(t) satisfies exactly the same Riccati recursion as in the full infor-
mation case. The minimum is attained by the linear control law:

u(t) =−L(t)x̂(t)

where x̂(t) = x̂(t | t) is the Kalman filter estimate of the state. The optimal
cost is

EV (x(t0), t0) = m>S(t0)m+Tr(S(t0)Σ0)+

T−1∑
t0

Tr(V S(t +1))+

+

T−1∑
t0

Tr(P(t)L(t)>[R+B>S(t +1)B]L(t)) .

The last term in the optimal cost is due to the uncertainty of the state
estimate.
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