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Abstract

This paper explores the fundamental question of how many iterations the celebrated HITS
algorithm requires on a general graph to converge in score and, perhaps more importantly, in
rank (i.e. to “get right” the order of the nodes). We prove upper and almost matching lower
bounds. We also extend our results to weighted graphs.

1 Introduction

How many iterations does HITS require on a general graph to converge in score and, perhaps more
importantly, in rank? This introduction briefly motivates the question in the context of existing
literature (Subsection 1.1), and provides a brief description of our results and of the organization
of the rest of the paper (Subsection 1.2).

1.1 Motivation and related work

Kleinberg’s celebrated HITS (Hypertext Induced Topic Search) algorithm [17] is one of the most
famous [27, 14] link analysis algorithms and probably the most widely used outside the context
of Web search - making it a reference algorithm for today’s link analysis, much like quicksort or
heapsort for sorting. HITS was originally proposed to rank Web pages, and is the basis of search
engines such as Ask (previously Teoma). It has been subsequently employed, sometimes with small
variations, to rank graph nodes in a vast (and growing!) number of application domains, often
with little or no connection to Web search: among others topic distillation [5], word stemming [2],
automatic synonym extraction in a dictionary [3], item selection [31] and author ranking in question
answer portals [15] (see also [7, 20, 28, 26, 16]).

HITS is an iterative algorithm computing for each node of a generic graph an authority score
at every iteration. Thus, any analysis of its computational requirements must consider the number
of iterations required to converge within a sufficiently small distance of a limit score vector (which
always exists, [17]). In fact, most applications employ the score vector directly to rank the nodes
of the target graph. In all these cases it is even more important to understand the number of
iterations required by HITS to converge in rank - informally to assign scores to nodes, that could
be potentially quite different from the limit scores, but that still place all or almost all nodes in the
“correct” order. The issue of rank convergence as opposed to score convergence is indeed widely
regarded as one of the major theoretical challenges of link analysis [12, 19, 22, 23, 29].

HITS effectively computes the dominant eigenvector of the matrix ATA (where A is the adja-
cency matrix of the input graph) using the Power Method [11] and thus it is well known how its
speed of convergence in score is tied to the separation of the first and second eigenvalues of that
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matrix. However, no bounds on this separation are known for the matrix derived from a graph -
for arbitrary matrices of any fixed size the separation can be arbitrarily small and the convergence
rate arbitrarily slow. Perhaps even more importantly, no bounds are known on the convergence
of HITS in rank: only a few experimental results are available, and only for the Web Graph [17].
Being heavily application-dependent, these provide little information to guide the researcher who
would port the famous algorithm to new application domains.

1.2 Our results

This is the first paper providing non-trivial bounds on the convergence rate of HITS, both in score
and in rank (some weaker lower bounds can be found in our technical report [30]). In a nutshell, we
show that HITS can converge slowly, but not too slowly, both in score and in rank. On the one hand,
we show that an exponential number of iterations might be necessary to converge to a ranking (and
a score) that is even remotely accurate. On the other hand, we show that an exponential number
of iterations is also sufficient - and since the iterative process can be accelerated through a well-
known “repeated squaring trick” [18] this entails that the complexity of converging to a result
extremely close to the limit ranking (and score) is at most polynomial in the number of nodes n
of the graph (O(n4+µ) lg(n), where Θ(n2+µ) is the complexity of n by n matrix multiplication).
Thus, acceleration by repeated squaring seems both sufficient and, in general, necessary to provide
convergence guarantees for HITS on graphs of moderate size. The rest of the paper is organized as
follows.

Section 2 briefly reviews HITS and some well-known results tying the convergence of the Power
Method to the eigengap of a matrix.

Section 3 formally defines the apparently natural, but extremely slippery notion of convergence
in rank (for a more detailed discussion of the topic, see [29]).

Section 4 exploits the structure of the matrix ATA to provide bounds on the separation of its
eigenvalues, and translates those bounds into upper bounds on the convergence of the score vector
provided by HITS. In particular, we leverage a recent result from polynomial algebra [4] to show that
HITS never requires more than (lg(1

ε )+lg(n))(wg)Θ(m2) iterations to converge, both in score and in
rank, to a vector within distance ε of the limit score vector, on any n-node graph of maximum degree
g whose links have integer weights bounded by w, and whose authority connected components [25]
have at most m ≤ n nodes. We tighten this bound to (lg(1

ε ) + lg(n))(wg)Θ(m) iterations (with
an entirely self-contained proof requiring only some basic grounding in linear algebra) when the
dominant eigenvalues of ATA belong to the same irreducible block - this includes the important
class of authority connected graphs [25]. In this case, the integrality condition can also be relaxed
into one simply requiring the minimum weight to be 1.

These bounds are not as weak as they might appear, for two reasons. First of all, note that one
might compute the pth power of an n by n matrix M with at most 2blg(p)c matrix multiplications
using a “repeated squaring trick” - first computing M,M2,M4, . . . ,M2blg(p)c

and then multiplying
an appropriate subset of those blg(p)c matrices [18]. Thus, our upper bounds show that, on any
n node graph, the complexity of computing the HITS score vector to any precision up to 1

22Θ(n) is

O(n4+µ lg(n)) - where n2+µ with 0 ≤ µ ≤ 1 is the complexity of n by n matrix multiplication - and
O(n3+µ lg(n)) in the case of authority connected graphs. This holds even if the graph’s arcs have
integer weights bounded by poly(n).

Furthermore, Section 5 almost matches the upper bounds of Section 4 by exhibiting, for all
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s ≥ 3, unweighted authority connected graphs of maximum degree k and ≈ k3 + 3ks nodes that,
even after kΘ(s) iterations, fail to “get right” more than k + 1 of the top k2 + k ranks, even if one
accepts as “correct” the ranking provided not just by the limit score vector, but by any score vector
at distance less than ε̄ = Θ( 1

k
√

k
) from it. This also implies lack of convergence to a distance less

than ε̄ of the limit score vector. In other words, HITS fails not only to get the score error below
a relatively large value (since the score vector of HITS is normalized in ‖ · ‖2, the (k2)th largest
component itself can be no larger than 1/k), but fails also to “get right” more than a small fraction
of the top ranks unless allowed to run for exponentially many iterations.

Section 6 summarizes our results, discusses their significance, and briefly reviews some important
problems this paper leaves open - before concluding with the bibliography and an appendix with
the full proof of the results of Section 5.

2 HITS

This section briefly describes the original HITS algorithm designed for the Web graph [17] (subsec-
tion 2.1) summarizing the most important mathematical results in the literature (subsection 2.2,
see [13, 1, 10] for more details). Many preprocessing heuristics, typically dependent on the applica-
tion domain, have been proposed to modify the target graph (e.g. the removal of all intradomain
links as biased conferrals of authority [17]). One should then interpret our analysis as applying to
the resulting graph.

2.1 The algorithm

The original version of HITS works as follows. In response to a query, a search engine first retrieves
a set of nodes of the Web graph on the basis of pure textual analysis; for each such node it also
retrieves all nodes pointed by it, and up to d nodes pointing to it.

HITS operates on the subgraph induced by this base set (which obviously depends on the query)
associating to each node vi an authority score ai that summarizes both its quality and its relevance
to the query, as well as an ancillary hub score hi, according to the iterative formulas:

h
(0)
i = 1 a

(t)
i =

∑
vj→vi

h
(t−1)
j h

(t)
i =

∑
vi→vj

a
(t)
j , t = 1, 2, . . .

where v → u denotes that v points to u.
More precisely, at each step the authority and hub vector of scores are normalized in ‖ · ‖2

(this is well defined assuming, as we shall do throughout the rest of the paper, that the subgraph
induced by the base set has at least one arc). Then the authority vector a(t+1), whose ith element
a

(t+1)
i corresponds to the authority of node i at timestep t+1, can be computed from the adjacency

matrix A of the base set subgraph:

a(t+1) =
(ATA)tAT1
‖(ATA)tAT1‖2

(1)

where 1 is the vector [1 . . . 1]T .
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2.2 Convergence of the authority vector

Equation (1) shows that HITS is essentially computing a dominant eigenvector of ATA using the
iterative Power Method ([11]) starting from the initial vector AT1; since ATA is symmetric and
positive semidefinite the convergence to a limit vector is guaranteed ([11]).

It is well known, and easy to verify, that the error of approximating the limit vector with a(t)

is tied both to the gap between the largest and second largest eigenvalues of ATA, and to the
modulus of the projection of the initial vector AT1 on the dominant eigenspace.

Since ATA is symmetric and positive semidefinite, its eigenvectors form an orthonormal base
and its eigenvalues are all real and non-negative. Denote by λ1, . . . , λm the m distinct eigenvalues
of ATA, with λi > λi+1. Then one can write:

AT1 = α1v1 + · · ·+ αmvm

where vi is a normalized eigenvector relative to λi, and α1 > 0 ([1]). Therefore

(ATA)tAT1
‖(ATA)tAT1‖2

=
v1 + α2λt

2

α1λt
1
v2 + · · ·+ αmλt

m

α1λt
1
vm

‖v1 + α2λt
2

α1λt
1
v2 + · · ·+ αmλt

m

α1λt
1
vm‖2

and the last term obviously converges to v1 since limt→∞
αiλ

t
i

α1λt
1

= 0 for i > 1.

The 2-norm of the error vector v̄t after t steps (assuming A has order n ≥ m and none of its
columns adds up to more than r) is then equal to:

‖v̄t‖2 =

∥∥∥∥∥∥
v1 + α2λt

2

α1λt
1
v2 + · · ·+ αmλt

m

α1λt
1
vm

‖v1 + α2λt
2

α1λt
1
v2 + · · ·+ αmλt

m

α1λt
1
vm‖2

− v1

∥∥∥∥∥∥
2

=

∥∥∥∥∥
v1 +

∑m
i=2

αi
α1

( λi
λ1

)tvi − (1 +
∑m

i=2(
αi
α1

)2( λi
λ1

)2t)
1
2 v1

(1 +
∑m

i=2(
αi
α1

)2( λi
λ1

)2t)
1
2

∥∥∥∥∥
2

≤ (2
m∑

i=2

(
αi

α1
)2(

λi

λ1
)2t)

1
2 ≤ (2n)

1
2

α1
(
λ2

λ1
)tr (2)

where the last inequality follows from the fact that (
∑m

i=1 α2
i )

1
2 = ‖AT1‖2 ≤ r‖1‖2 = rn1/2. It

may then seem that the convergence of HITS is well understood; this is not the case, as we shall
see in the next sections.

3 Convergence in Score vs. Convergence in Rank

All the most popular link analysis algorithms iteratively compute a score for each node of the input
graph. In many applications (e.g. [6, 8, 2, 17, 24]) this score vector is used alone to rank the nodes -
whether because no other scores might be reasonably combined with it (e.g. in web crawling, word
stemming, automatic construction of summaries), or because the algorithm operates on a query
dependent graph already capturing the relevance of each node to the query at hand (as in the case
of HITS as opposed to e.g. PageRank). In these cases the speed of convergence in score of the
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algorithm is less crucial than the speed of convergence in rank - informally how many iterations are
required to rank the nodes in the “correct” order (that induced by the limit score vector).

This informal definition suffers from at least two major flaws. First, it fails to explicitly deal with
ties or “almost ties” in score: if the difference between the limit scores of two nodes is negligible,
an algorithm effectively converges to a “correct” ranking even if it keeps switching the relative
positions of the two nodes. Second, the definition above fails to distinguish between an algorithm
that takes a long time to reach the ultimate ranking, but quickly reaches a ranking “close” to it
(e.g. with all elements correctly ranked, save the last few), and an algorithm that simply fails for
a long time to produce a ranking even remotely close to the ultimate ranking. In this regard, the
top ranks are typically much more important than the last ones: failing to converge on the last 20
ranks is almost always far less of a problem than failing to converge on the top 20.

To address these two issues we introduce a more general and formal definition of convergence
in rank. We begin by formalizing the notion of ranking induced by a score vector:

Definition 1. Given a score vector v = [v1, . . . , vn], a ranking ρ compatible with v is an ordered
n-tuple [i1, . . . , in] containing each integer between 1 and n exactly once, such that ∀j vij ≥ vij+1.

Informally, a ranking is compatible with a score vector if no node that has a higher score is
ranked worse than one with a lower score (ties can be broken arbitrarily).

Definition 2. Consider an iterative algorithm ALG producing at each iteration t a score vector
v(t) and converging to a score vector v(∞). Then ALG ε-converges on h of the top k ranks in (at
most) τ steps if, for all iterations t ≥ τ , at least h of the top k items in a ranking compatible with
v(t) are also among the top k items in a ranking compatible with v(∞), or compatible with some
vector w(t) at distance at most ε from v(∞).

In other words, we assume an algorithm has converged in ranking as soon as it “gets right” (and
keeps getting right) at least h of the top k items of any ranking compatible with the limit score
vector, or with any score vector “sufficiently close” to it (note that the definition above implicitly
assumes some distance function between score vectors - e.g. ‖ · ‖2).

Our definition is related to the notion of intersection metric [9]. The distance in the intersection
metric of two rankings that share h(k) of the top k items is the average over k of 1 − h(k)/k. In
our definition we do not “summarize” the size of the intersection between the top k ranks of the
current and limit rankings, instead leaving k as a parameter. Furthermore, we consider “acceptable”
a whole set of limit rankings induced by “sufficiently close” score vectors.

It is important to note that, with ε = 0 and h = k∀k our definition collapses back to the
stricter, “naive” definition of convergence in rank; and that if an algorithm ε-converges in score in
t iterations (i.e. if the score vector after t iterations always remains within distance ε of the limit
vector) then that algorithm also ε-converges on all its ranks (i.e. on k of its top k ranks ∀k) in t
steps - but the reverse is not necessarily true.

4 Upper Bounds

While HITS can take many iterations to converge, either in score or in rank (see Section 5), in
general it can not take too many. This section provides upper bounds on this number (in sub-
section 4.2), by first proving lower bounds on the separation between the eigenvalues of ATA (in
subsection 4.1). These separation bounds are yielded by two completely different proof techniques

5



(both potentially of independent interest); which technique is applicable depends on subtle hy-
potheses both on the structure of the graphs and on the nature of the link weights. Subsection 4.3
sheds some light on this issue.

4.1 Some novel bounds on eigenvalue separation

Assume without loss of generality that ATA is a block matrix - this can always be achieved
through appropriate row and column transpositions that correspond to a simple renaming of the
nodes. The eigenvalue separation bounds we prove in this subsection depend on whether the two
largest eigenvalues are dominant eigenvalues of two different blocks of ATA, or if one isn’t. In the
latter situation (Lemma 2), the bounds are tighter than in the former (Lemma 1). Note that the
latter situation includes the important class of authority connected graphs [25]: informally, these
are graphs where, for every pair of nodes v and v′ with positive indegree, one can reach v from v′

by first following a link backwards, then following a link forward, then again a link backwards -
and so on.

Lemma 1. Let B1 and B2 be two integer, symmetric, non-negative and positive semidefinite m1

by m1 and m2 by m2 matrices, with no row adding up to more than (respectively) r1 and r2, whose
dominant eigenvalues are (respectively) λ1 and λ2 < λ1. Then λ1

λ2
≥ 1 + 21−m2(m2 + 1)

1
2
−m1(m1 +

1)−
m2
2 r−m1m2

1 r−m1m2−1
2 = 1 + r1r

−Θ(m1m2)
2 .

Proof. The eigenvalues of B1 and B2 are the roots of their characteristic (integer) polynomials
P1(λ) and P2(λ). The coefficients of Pi(λ) are bounded by rmi

i , since the determinant (of order mi)
of Bi is computed as the weighted sum of mi determinants of order mi − 1, with weights adding
up to at most ri (and order 1 determinants also bound by ri). Since λ1 is not a root of P2(λ), then
λ1 − λ2 ≥ 21−m2(m2 + 1)

1
2
−m1(m1 + 1)−

m2
2 r−m1m2

1 r−m1m2
2 ([4]) and λ1

λ2
= 1 + λ1−λ2

λ2
≥ 1 + λ1−λ2

r2
=

1 + 21−m2(m2 + 1)
1
2
−m1(m1 + 1)−

m2
2 r−m1m2

1 r−m1m2−1
2 .

Lemma 2. Let B be a symmetric, irreducible, positive semidefinite m by m matrix, whose non-zero
elements are all at least 1. Denote by λ1 and λ2, respectively, the first and second eigenvalue of B.
If λ2 6= 0, then λ1 ≥ λ2(1 + 2λ−2m

2 )
1

2m .

Proof. In a nutshell, any non-dominant eigenvector v has both negative and positive components,
which partially cancel out when v is multiplied by ATA; this reduces the corresponding (non-
dominant) eigenvalue by an amount that we bound away from 0 to obtain the thesis.

To formalize this intuition, we first need some notation. Given a d dimensional column vector
w = [w1, . . . , wd]T , let w+ = [w+

1 , . . . , w+
d ]T with w+

i = wi if wi > 0 and w+
i = 0 otherwise; let

w− = [w−1 , . . . , w−d ]T with w−i = |wi| if wi < 0 and w−i = 0 otherwise (so that w = w+ − w−);
and let w± = w+ + w−. Given two vectors u = [u1, . . . , ud]T and v = [v1, . . . , vd]T write u ≥ v if
ui ≥ vi ≥ 0 for every i.

Let v and w be two eigenvectors of B corresponding, respectively, to λ1 and λ2; assume without
loss of generality that ‖v‖ = ‖w‖ = 1 and that all elements of v are positive (this is possible by the
theorem of Perron-Frobenius, since B is non-negative and irreducible). By the same theorem w has
at least one positive and at least one negative element. Then w± ·v > 0 and limt→∞(‖Btw±‖) 1

t =
limt→∞(‖Btv‖) 1

t = λ1.
Let us now consider the difference u = [u1, . . . , um]T = Bmw± − (Bmw)±. Denote by bi

the ith row vector of Bm (note that bi = b+
i ). Then bi · w± = bi · w+ + bi · w− whereas
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(bi ·w)± = (bi ·w+ − bi ·w−)±. Thus ui = bi ·w± − (bi ·w)± ≥ 0 and ui is respectively equal
to 2bi · w− if bi · w+ ≥ bi · w− ⇔ bi · w ≥ 0 ⇔ λm

2 wi ≥ 0 and to 2bi · w+ otherwise. Since
at least one element of w is positive and at least one is negative, and every element of bi is at
least 1 (by the irreducibility of B), then every element of Bmu is at least equal to 2

∑m
i=1 |wi| and

B2mw± − (B2mw)± ≥ B2mw± −Bm(Bmw)± = Bmu ≥ 2w±.
Since (B2mw)± = λ2m

2 w±, then B2mw± ≥ (B2mw)± + 2w± = (1 + 2λ−2m
2 )λ2m

2 w±. Thus
λ1 = limt→∞(‖B2mtw±‖) 1

2mt ≥ ((1 + 2λ−2m
2 )λ2m

2 )t· 1
2mt = λ2(1 + 2λ−2m

2 )
1

2m .

4.2 Upper bounds on the ε-convergence of HITS

Lemmas 1 and 2, as well as Equation (2), allow us to derive upper bounds on the number of
iterations required for HITS ε-converge in score (in ‖ · ‖2) - and thus on all ranks. In fact, our
results are also applicable to weighted graphs, allowing us to deal with modifications of HITS that
assign weights to links (e.g. [21, 26]) as long as these weights satisfy some mild conditions.

Theorem 1. Let G be a graph of n nodes and maximum degree g whose edges have weights at least
1 and at most w. Denoting by A the weighted adjacency matrix of G, if ATA is a block matrix such
that all its non-zero blocks have size at most m and if the largest and the second largest eigenvalues
of ATA are relative to the same block (including the case of just one non-zero block, i.e. if G is
authority connected), then HITS ε-converges in score (in ‖ · ‖2), and therefore on all ranks, on the
nodes of G in at most m(wg)4m(lg(1

ε ) + 1
2 lg(2n) + lg(wg)) = (wg)O(m)(lg(1

ε ) + lg(n)) iterations.

Proof. By Equation (2), if no row of AT adds up to more than r, then after t iterations the

error is bounded by (2n)
1
2

α1
(λ2

λ1
)tr; thus, unless λ2 = 0 (in which case HITS converges after the first

iteration) the number of iterations required to converge within distance at most ε of the limit score
vector is no more than lg(2n)/2+lg(1/ε)+lg(1/α1)+lg r

lg(λ1/λ2) . Each block of ATA is symmetric, irreducible
and positive semidefinite, every non-zero element is at least 1, and no eigenvalue surpasses (wg)2

(a value bounding the sum of the elements of any row, since each node has incoming links from at
most g other nodes, each in turn linking at most g other nodes). Also, λ1 and λ2 (unless 0) are
relative to the same irreducible block. By Lemma 2, then lg(λ1

λ2
) ≥ 1

2m lg(1+2(wg)−4m) ≥ 1
m(wg)4m

(since lg(1 + x) ≥ x for x ≤ 1). Moreover, wg is an upper bound for r. All is left to prove is that
α1 ≥ 1 and thus lg(1/α1) ≤ 0. The ith element of AT1 is 0 only if all elements of the ith row of
AT are 0, and is at least 1 otherwise; and in the former case the ith element of v1 = 1

λ1
ATAv1 is

also 0. Then, α1 = v1 ·AT1 ≥ v1 · 1 = ‖v1‖1 ≥ ‖v1‖2 = 1.

Theorem 2. Let G be a graph of n nodes and maximum degree g whose edges have integer weights
at least 1 and at most w. Denote by A the weighted adjacency matrix of G. If ATA is a block
matrix with at least two blocks of size m1 and m2 whose dominant, positive eigenvalues λ1 and
λ2 < λ1 are respectively the largest and second largest eigenvalue of ATA, then HITS ε-converges
in score (in ‖·‖2), and therefore on all ranks, on the nodes of G in at most 2m2−1(m2+1)m1− 1

2 (m1+
1)

m2
2 (wg)2m1m2(wg)(2m1m2+2)(lg(1

ε ) + 1
2 lg(2n) + lg(wg)) = (wg)O(m1m2)(lg(1

ε ) + lg(n)) iterations.

Proof. The proof is almost identical to that of Theorem 1, the only difference being the looser
bound one must use for λ1/λ2 (derived from Lemma 1 rather than from Lemma 2).
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4.3 Graph structure and link weights

It is interesting to compare the conditions that Theorems 1 and 2 place on the link weights. Both
require links to fall between 1 and some maximum weight w, which is equivalent to requiring a
maximum ratio of w between link weights. In addition, Theorem 2 requires the weights to be
integers: this enforces a separation between different weights.

It is easy to prove that the bound on link weights is essential to ensure bounds on convergence,
even if a graph is authority connected. Consider an undirected, unweighted graph G formed of 6
nodes v1, . . . , v6, with v1, v2 and v3 forming a 3-clique, v4 linked (only) to v1, v5 to v2, and v6 to
v3 (see Figure 1). Denote by vi(t) the score of vi at time t (with vi(0) = 1/

√
6). It is easy to verify

by induction on t that, for all t ≥ 1 we have 3v4(t) ≥ v1(t) ≥ 2v4(t), since v4(t + 1) = v1(t) and
v1(t + 1) = v2(t) + v3(t) + v4(t) = 2v1(t) + v4(t).

v1

v5

v2

v1

v4

v3 v v6 v3

2
v5

v

6
v

4

’ ’
’

’

’
’

G G’

Figure 1: With a weight of ab on all edges of G, a weight of a(b+1) on all edges of G′, and a weight 1 on the
edge connecting them, sufficiently large integers a and b can make the convergence of HITS arbitrarily slow.
Similarly, if G and G′ are disconnected, and their edges have weights respectively 1 and 1 + ε, a sufficiently
small ε > 0 can make convergence arbitrarily slow.

Weight all the links of G with a weight ab, (with a and b positive integers) and all the links
of an isomorphic graph G′ (with v′1, . . . , v

′
6 respectively corresponding to v1, . . . , v6) with a weight

a(b+1). Then v′4(t) = ( b+1
b )tv4(t) and obviously the ratio vi(t)

vj(t)
remains identical to the unweighted

case (and to v′i(t)
v′j(t)

). Thus v′4(t) < v1(t) for ( b+1
b )t < 2 and v′4(t) > v1(t) for ( b+1

b )t > 3; and,

while eventually v′4(t) > v1(t), a sufficiently large b can delay this for arbitrarily long time. And a
sufficiently large a ensures that, even if G and G′ are linked by an edge of weight 1, the effects of
this link are negligible for an arbitrarily long time.

Note that if we allow for disconnected graphs, some separation between the weights (e.g. that
guaranteed by the integrality constraint) is also necessary; otherwise one can simply assign weights
1 and 1 + ε to G and G′ (keeping the two graphs disconnected) and, although v′4(t) eventually
surpasses v1(t), a sufficiently small ε guarantees that v′4(t) remains smaller than 2v4(t) ≤ v1(t) for
an arbitrarily long time.

5 HITS Can Converge Slowly in Rank

This section almost matches the upper bounds of the previous one. It is entirely devoted to:

Theorem 3. For all k ≥ 3 and s ≥ 3 there exists an authority connected graph Γ of maximum
degree 2k and 3(k + 1)s + k3 + 2k2 + 2k + 2 ≈ k3 + 3ks vertices on which HITS fails to ε-converge
on more than k + 1 of the top k2 + k ranks in less than kΘ(s) iterations for all ε ≤ ε̄ = Θ( 1

k
√

k
).
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Proof. Here we only sketch the proof of the theorem. The details can be found in the Appendix.
The graph Γ (see Figure 2) is formed by k + 1 “flower” subgraphs G0, . . . , Gk. G0 is formed by a
clique “corolla” of k + 1 vertices v0, . . . , vk, each connected to the other k, as well as to other k
“petal” vertices vi,1 . . . , vi,k except in the case of v0. v0 is not connected to any petal but instead
to the first vertex v−1 of a “stem” of s + 1 vertices v−1, . . . , v−(s+1) (with vj connected to vj+1 and
to vj−1). G1 is almost isomorphic to G0, with a vertex v′i corresponding to each vertex vi and a
vertex v′i,j corresponding to each vertex vi,j , the only difference being that v′−(s+1) is missing (i.e.
the stem only has s, rather than s + 1, vertices). Gi for i > 1 is isomorphic to G1. All flowers are
strung in a “garland” by connecting the vertices corresponding to v0 in Gi and G(i+1)%(k+1) with
a “string” of 2s vertices. Note that Γ is symmetric and unweighted, strongly connected, and since
it certainly holds for k ≥ 3 a cycle of odd length, it is authority connected.
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V
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V’2,2 V’2,3
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0,2 0,2s−1

W0,2s

V’−s

W1,1
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Figure 2: The undirected, unweighted, authority-connected graph Γ for k = 3. Γ is formed by k “flower”
subgraphs G1, . . . Gk (right) almost isomorphic to the subgraph G0 (left, with one more vertex in the stem).
Each flower has a corolla of k + 1 vertices, all but one with k petals, attached to a stem of ≈ s vertices.
Strings of 2s vertices string the flowers into a circular “garland”.

After introducing some notation, the proof proceeds as follows. We first consider the simpler
graph where no strings are present and each flower stands disconnected from the others. We show
that in Θ(s) iterations the score of the vertices of every flower stabilizes into a configuration where
each vertex of the stem has a score Θ(k) times larger than the score of the vertex below it, and
each vertex of the corolla has a score Θ(k) times larger than the score of each petal and of the top
vertex of the stem. Then, we show that, eventually, the contribution of v−(s+1) is sufficient to bring
the score of every vertex of G0 to be arbitrarily larger than that of any vertex of G1 (and thus of
Gi with i > 0); but this contribution is sufficiently small that for kΩ(s) iterations the difference in
the scores of any vertex of G0 and of the corresponding vertex of G1 remains negligible. Thus, for
kΩ(s) iterations the corollas of the flowers remain the top k2 + k vertices - their scores outstripping
that of every other vertex by a factor Ω(k) - but eventually, almost all the score is concentrated in
the corolla and the petals of G0. A simple calculation shows that any score vector with a (corolla)
vertex outside of G0 in the top k2 + k positions (where for kΘ(s) steps all corolla vertices belong)
differs, in ‖ · ‖2, from the limit score vector by at least Θ( 1

k
√

k
). Thus, HITS does not ε-converge

in score for kΘ(s) iterations for any ε less than some ε̄ = Θ( 1
k
√

k
). We complete the proof by
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showing that the strings connecting the different flowers are sufficiently long to bring a negligible
contribution to the relative scores of the corollas and petals of different flowers, at least until the
score of all vertices in flowers other than G0 becomes negligibly small - indeed the only purpose of
the strings is to show that the theorem also holds in the case of authority-connected graphs, for
which the upper bounds provided in Section 4 are tighter.

6 Conclusions and Open Problems

The vast and growing number of applications of HITS (many with little or no connection to Web
search) motivates this paper - the first paper to provide non-trivial upper and lower bounds on the
convergence of the celebrated algorithm, both in score and, perhaps more importantly, in rank.

We prove that HITS never requires more than (lg(1
ε )+ lg(n))(wg)Θ(m2) iterations to ε-converge

both in score and on all ranks on any n node graph of maximum degree g whose authority connected
components sport at most m nodes and whose links are weighted with integral weights bounded by
w. This bound can be tightened somewhat, to (lg(1

ε ) + lg(n))(wg)Θ(m) iterations, if the dominant
eigenvalues of ATA (where A is the adjacency matrix of the graph) belong to the same irreducible
block - this includes the important class of authority connected graphs. In this case, the integrality
condition can also be relaxed into one simply requiring the minimum weight to be 1.

While these bounds might seem weak, “repeated squaring” acceleration translates them into
polynomial upper bounds on the time complexity of reaching up to 1

22Θ(n) precision, even with

poly(n) arc weights: more precisely O(n4+µ lg(n)) - where Θ(n2+µ) is the complexity of n by n
matrix multiplication - and O(n3+µ lg(n)) for a large class of graphs, including the important case
of authority connected graphs.

Also, we almost match the upper bounds above by exhibiting unweighted authority connected
graphs of ≈ k3+3ks nodes and maximum degree 2k that fail to ε-converge on more than k+1 of the
top k2 +k ranks (and thus to ε-converge in score) even after kΘ(s) iterations, for all ε ≤ ε̄ = Θ( 1

k
√

k
)

- in other words, HITS fails not only to get the score error below than a not-so-small constant,
but fails also to “get right” more than a small fraction of the top ranks unless allowed to run for
exponentially many iterations.

Thus, employing repeated squaring acceleration seems absolutely necessary to ensure that one
can always reach a satisfactory result in a reasonable time. Graphs of up to a few thousand nodes
(like those used in web-search - unlike PageRank, HITS typically operates on small sets of pages
preselected through pure textual analysis) seem then certainly tractable. Scaling to beyond a
million nodes with convergence guarantees is a challenge probably hard to match even for today’s
most powerful computational platforms - unless the application domain ensures the graphs involved
meet some “favorable” structural conditions (e.g. in an n node graph with authority connected
components of polylog(n) nodes HITS requires complexity O(n·polylog(n)) even without sacrificing
high accuracy).

Exploring these conditions is certainly a promising direction for future research. It would also
be interesting to understand more in depth what conditions one must enforce on link weights to
guarantee convergence. Finally, it would be interesting to understand whether the gap in the
convergence upper bounds between authority connected and general graphs is indeed fundamental
or simply a weakness of our proof techniques.
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Appendix

This appendix is devoted to the proof of Theorem 3. To lighten the burden of the reader, we first
prove a simpler version of the theorem yielding a slightly stronger bound on disconnected graphs.
We then extend this weaker theorem, slightly weakening the constants involved, to provide bounds
for authority connected graphs. In particular, we begin by proving the following:

Theorem 3′. For all k ≥ 3 and s ≥ 3 there exists an unweighted undirected graph G of k3 + 2k2 +
2k + (k + 1)s + 2 ≈ k3 + ks vertices on which HITS fails to ε-converge on more than k + 1 of the
top k2 + k ranks in less than kΘ(s) iterations for all ε ≤ ε̄ = Θ( 1

k
√

k
).

Proof. Consider the unweighted undirected graph G formed by k+1 “flower” subgraphs G0, . . . , Gk

(see Figure 3). G0 is formed by a clique “corolla” of k +1 vertices v0, . . . , vk, each connected to the
other k, as well as to other k “petal” vertices vi,1 . . . , vi,k except in the case of v0. v0 is not connected
to any petal but instead to the first vertex v−1 of a “stem” of s + 1 vertices v−1, . . . , v−(s+1) (with
vj connected to vj+1 and to vj−1). G1 is almost isomorphic to G0, with a vertex v′i corresponding
to each vertex vi and a vertex v′i,j corresponding to each vertex vi,j , the only difference being that
v′−(s+1) is missing (i.e. the stem has only s, rather than s + 1, vertices). Gi for i > 1 is isomorphic
to G1.
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Figure 3: The disconnected graph G for k = 3 is formed by a number of “flower” subgraphs almost
isomorphic to G0 (left).

The proof proceeds as follows. After introducing some notation, we show that in Θ(s) iterations
the score of the vertices of every flower stabilizes into a configuration where each vertex of the stem
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has a score Θ(k) times larger than the score of the vertex below it, and each vertex of the corolla
has a score Θ(k) times larger than the score of each petal and of the top vertex of the stem. Then,
we show that, eventually, the contribution of v−(s+1) is sufficient to bring the score of every vertex
of G0 to be arbitrarily larger than that of any vertex of G1 (and thus also of Gi with i > 1); but
this contribution is sufficiently small that for kΩ(s) iterations the scores of any vertex of G0 and of
the corresponding vertex of G1 remain within a factor 2 of each other. Thus, for kΩ(s) iterations
the corollas of the flowers remain the top ≈ k2 vertices - their scores outstripping that of every
other vertex by a factor Ω(k) - but eventually, almost all the score is concentrated in the corolla
and the petals of G0.

Throughout the theorem, we shall resort to the following pebble interpretation of HITS. Initially,
every vertex holds one pebble. Then, at every step, a pebble on a vertex v sires a pebble on each
neighbour u of v (itself being removed in the process). It is immediate to verify that the number
of pebbles v(2t− 1) on a vertex after the tth odd step is proportional to its authority score at the
tth iteration (it would be equal if we did not normalize the score vector at every iteration), whereas
the number of pebbles v(2t) on that vertex after the tth even step is proportional to the hub score
at the tth iteration. It is worth noting that the number of descendants after t steps of a pebble
initially on a vertex v is actually equal to the number of pebbles on that vertex after t steps, v(t),
since both quantities obey the recursive equation v(0) = 1 and v(t) =

∑
u∈N(v) u(t − 1) (denoting

by N(v) the set of neighbours of v). We shall use this descendants/pebbles dual interpretation
repeatedly in the proof of the theorem.

Let us now focus on G0. Let a pebble be positive if either that pebble or one of its ancestors was
located in a vertex vi with i > 0. Denote by v+(t) and v−(t) respectively the number of positive
and non-positive descendants after t steps of a pebble π initially on vertex v, and denote by v+(t)
the minimum number of pebbles on any vertex in the corolla (i.e. v+(t) = min(v0(t), v1(t))).

We can then prove that:

Lemma 3. For any i < 0, v+
i (t) ≤ (k − 1)i−1v+(t).

Proof. Let us focus on the case of i < 0. Consider a pebble πi initially in vi and a pebble π+

initially either in v0 or in v1, and tie to each descendant π of πi a disjoint set Π(π) of descendants
of π+ all in the corolla (ignore every descendant of π+ outside the corolla, and all its descendants),
as follows. If π is on vi with i ≤ −2, tie to its child on vi+1 a total of k − 1 children on v1, . . . , vk

of each pebble of Π(π), and to its child on vi−1 the remaining children of Π(π) (at least |Π(π)|).
If π is on v−1, tie to its child in v0 the children of Π(π) also in v0 and to its child on v−2 the
remaining children of Π(π). Then, if π is on v0, all the pebbles in Π(π) are also all on v0, and one
can tie to each descendant of π a total of |Π(π)| descendants of π+ on exactly the same vertex -
the same obviously holds if π is on v1. Thus, each descendant of πi on a vertex vj has at least as
many pebbles in the corolla tied to it as its parent, and at least (k − 1) as many if it is closer to
the corolla and j ≤ −1. Therefore, each of the positive descendants of πi (with i < 0), having had
its ancestors take at least |i| − 1 steps “up” before reaching v−1, has at least (k − 1)|i|−1 unique
descendants of π+ tied to it.

Since v+(t) obviously grows by a factor at least k every step (the corolla being a k + 1 vertex
clique) whereas v−i (t) can obviously grow at most by a factor 2 each step (a vertex in the stem has
at most 2 neighbours, and v0 has only one neighbour in the stem), we have that:

Corollary 1. ∀i < 0 v+(t) ≥ 1
2(vi(t) ·min((k

2 )t, (k − 1)|i|−1).
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Thus, (a lower bound on) the ratio between v+(t) and vi(t) grows by a factor at least k
2 at each

step, until it plateaus at (k − 1)|i|−1 within time 2|i|.
Note that no vertex v has more than 2k neighbours, and thus, since v(t)

v(t−1) =
P

u∈N(v) u(t−1)P
u∈N(v) u(t−2)

(which is a weighted average of ratios u(t−1)
u(t−2)), by induction the pebble population of any vertex can

grow at most by a factor 2k at each step. We can then easily prove the following:

Lemma 4. For t ≥ 1:

1. k − 1 ≤ v1(t)
v1,1(t) ≤ 107

54 k.

2. 54
125 ≤ v0(t)

v1(t) ≤ 22
9 .

3. 3
17k ≤ v+(t)

v−1(t)

Proof. The proof proceeds by simultaneous induction on three points, with the base case t = 1
being trivially verified. Point 1 follows from the fact that v1,1(t + 1) = v1(t) and (k − 1)v1(t) ≤
v1(t + 1) = (k − 1)v1(t) + v0(t) + kv1,1(t) ≤ ((k − 1) + 22

9 + k
k−1)v1(t) ≤ 107

54 kv1(t). Point 2 follows

from the fact that 54
125 ≤ k

(k−1)+22/9+k/(k−1) ≤ kv1(t)+v−1(t)
(k−1)v1(t)+v0(t)+kv1,1(t) = v0(t+1)

v1(t+1) ≤ (k+17/9)v1(t)
(k−1)v1(t) . Point

3 follows from the fact that min(v0(t+1),v1(t+1))
v−1(t+1) ≥ (k−1)v1(t)

v0(t)+v−2(t) and the last term is k−1
2 for t = 0

(which is greater than 3
17k for all k ≥ 3) and (by Corollary 1) at least kv1(t)

(22/9)v1(t)+(4/k)v1(t) ≥ 3
17k for

t ≥ 1.

Then, after s iterations, the majority of the pebble population of G0 is concentrated between
the petals and the corolla, with each petal and v−1 holding Θ(1/k2) of all the pebbles, and each
vertex of the corolla holding Θ(1/k).

Let us now focus on the impact of the pebbles generated by v−s−1 on the pebble population
of G0. To this end, mark each pebble on v−s−1, or with an ancestor on v−s−1, at time t, with a
timestamp t. It is immediate to verify that the set of unmarked pebbles on any vertex of G0 at
any given time coincides with the total pebble population of the corresponding vertex of G1 at that
same time.

Note that, for every integer i ≤ 1, a pebble resting on a node vi at time t has at least one
descendant on v−s−1 at some time t′ ≤ t+s+2; this descendant has, in turn, one descendant on v1

at some time t′′ ≤ t + 2s + 4; and this descendant has, in turn, one descendant on each node of G0

at time t′′′ = t+3s+6. Then, since a pebble has at most (2k)τ descendants after τ timesteps, after
time t + 3s + 6 on any node the pebble’s descendants whose latest timestamp is at least t but less
than t + 3s + 6 are at least a fraction (2k)−(3s+6) of those descendants with no timestamps greater
or equal to t + 3s + 6. Thus, after τ timesteps, the number of unmarked pebbles on any vertex of
G0 is no more than a fraction (1− (2k)−(3s+6))b

τ
3s+6

c of the total number of pebbles on that vertex
and, since for any pair of adjacent vertices v and u we have that v(t) ≤ (2k)v(t − 1) ≤ (2k)u(t),
eventually the ratio between the pebble population of any vertex of G1 and of any vertex of G0

(not necessarily the corresponding one) becomes arbitrarily small.
Yet, it is easy to verify that this cannot happen too quickly. Denote by Mτ (t) the number of

pebbles at time t whose latest timestamp is τ , and by G0(t) the total number of pebbles on G0

at time t. Mτ (τ)
G0(τ) < Mτ (τ)

v0(τ) = v−s−1(τ)
v0(τ) ; for t > τ , remembering that v(t − τ) represents the number

of descendants after t − τ timesteps of a pebble in v, Mτ (t)
G0(t) < v−s−1(τ)v−s−1(t−τ)

v0(τ)v0(t−τ) . By Corollary 1,
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v−s−1(τ)
v0(τ) ≤ 1 for all τ and v−s−1(τ)

v0(τ) ≤ 2( 2
k )s for τ ≥ s; thus, for t ≥ 2s, Mτ (t)

G0(t) < 2( 2
k )s and kΘ(s) steps

are required to mark even a polynomially (in k) small fraction - e.g. Θ( 1
k3 ) - of all pebbles of G0.

Thus, for kΘ(s) steps, the (k + 1)2 vertices of the corollas of the different flowers will each hold
a fraction of all the pebbles of G that is at least Θ( 1

k2 ) and at least Θ(k) larger than the number of
pebbles on any petal or stem; but eventually, any flower other than G0 will hold only a negligible
fraction of all the pebbles, whereas each vertex of the corolla and each petal of G0, as well as v−1,
(a total of (k2 + k +2) vertices) will each hold at least a fraction Ω( 1

k2 ) of all the pebbles of G, and
(an additive) Ω( 1

k2 ) more pebbles than any other vertex, save at most v−2.
This means that for kΘ(s) steps, the normalized (in ‖·‖2) score vector has Θ(k2) components (cor-

responding to the vertices of the corollas) each with a value Θ(k−1), and all remaining components
with a value O(k−2); but the normalized limit score vector has Θ(k) components (corresponding
to the vertices of the corolla of G0) with a value of Θ(k−

1
2 ), another Θ(k2) (corresponding to the

vertices adjacent to the corolla of G0) each with a value of Θ(k−
3
2 ), and all remaining ones save at

most v−2 with a value of O(k−
5
2 ).

Then any score vector with a (corolla) vertex outside of G0 in the top k2 + k positions (where
all corolla vertices belong for kΘ(s) steps) differs, in ‖ · ‖2, from the limit score vector by at least
Θ( 1

k
√

k
), and HITS does not ε-converge in rank for any ε ≤ ε̄ = Θ( 1

k
√

k
) for at least kΘ(s) iterations

on more than k + 1 of the top k2 + k vertices of G.

We can easily adapt the lower bound to deal with graphs that are both strongly connected and
authority connected. Let the gate γi of Gi be the vertex corresponding to v0 in Gi. The basic idea
is to string all the flowers of G in a “garland”, linking ∀i the gate of Gi to the gate of G(i+1)%(k+1)

through a “string” of 2n vertices wi,1, . . . , wi,2n (with wi,j connected to wi,(j+1), wi,1 connected to
the gate of Gi and wi,2n connected to the gate of G(i+1)%(k+1) - see Figure 4). Note that the new
graph is still symmetric and unweighted, it is strongly connected, and since it certainly holds for
k ≥ 3 a cycle of odd length, it is authority connected.
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Figure 4: One can connect the multiple flower subgraphs in a “garland” using strings of length 2s.

Let the pebble population of Gi be the set of all pebbles on vertices of Gi, or on the two
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strings connecting Gi to the two neighboring flowers whose latest ancestor on a gate was actually
on the gate of Gi. Note that there are pebbles that do not belong to the population of any flower
(those on a string whose ancestors were always on that same string), but since each such pebble
can sire at most two other such pebbles, the total number of such pebbles dwindles to a negligible
fraction k−Ω(s) of the population of any vertex of G within time O(s) and can be disregarded. It is
immediate to repeat the proof above to show that, in the absence of v−s−1, the total population of
all flowers would remain identical, with corollas rapidly growing to each hold a(n additive) fraction
Θ(1/k2) of all the pebbles more than any other vertex. It is also immediate to show that the effects
of v−s−1 remain negligible for kΘ(s) iterations. All we have to prove is that, despite the strings,
eventually the corolla and petals of G0 hold the top k2 +k positions, each holding at least a fraction
Ω(1/k2) of all the pebbles more than any other vertex, save at most v−1 and v−2.

Note that each flower now receives a stream of pebbles (directly at its gate) from the two
neighboring flowers. All we have to prove is that the number of pebbles reaching the gate of G0

from v−s−1 remains a substantially larger fraction of the population of that gate (e.g. by a factor 2)
than the fraction of the population of the gate of Gi represented by the stream of pebbles reaching
it from the gates of the neighboring flowers. But since each string is 2s vertices long, whereas v−s−1

is only s + 1 vertices away from v0, this is true as long as the ratio of the population of the two
gates remains bounded by some ρ = kΘ(s). Then, eventually the corolla and petals of G0 hold at
least a fraction Ω(1/k2) of all the pebbles more than any other vertex, save at most v−1 and v−2,
and HITS still fails to ε-converge on more than k + 1 of the top k2 + k ranks in less than kΘ(s)

iterations for all ε ≤ ε̄ = Θ( 1
k
√

k
).
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