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Abstract

In this paper, we propose a sparsity model that allows the use of Compressive Sensing (CS) for the online

recovery of large data sets in real Wireless Sensor Network (WSN) scenarios. We advocate the joint use of CS

for the recovery and of Principal Component Analysis (PCA) to capture the spatial and temporal characteristics

of real signals. The statistical characteristics of the signals are thus exploited to design the sparsification matrix

required by CS recovery. In this paper, we represent this framework through a Bayesian Network (BN) and we

use Bayesian analysis to infer and approximate the statistical distribution of the principal components. We show

that the Laplacian distribution provides an accurate representation of the statistics of the data measured from

real WSN testbeds. Therefore, the joint use of CS and PCA for data recovery in real WSNs is legitimate, and

is equivalent to Maximum A Posteriori (MAP) recovery.
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I. INTRODUCTION

Compressive Sensing (CS) is a convex optimization technique that has received great attention by the

signal and image processing community in the past few years [1]–[3]. CS was originally developed for

the efficient storage and compression of digital images, which show high spatial correlation. In the very

recent literature, the Bayesian approach has been used to develop efficient and auto-tunable algorithms

for CS, see [4]. However, previous work addressing CS from a Bayesian perspective mainly focused

on proving fundamental results and on understanding its usefulness in the image processing field. In

particular, in [5] a hierarchical Bayesian model is considered to utilize CS for the reconstruction of

sparse images when the observations are obtained from linear transformations and corrupted by additive

and white Gaussian noise. In [6], the authors model the components of the CS problem using a Bayesian

framework to recover synthetic 1-D sparse signals and simple images with high spatial correlation.

Since the pioneering work of Nowak [7], [8], there has been a growing interest in this technique also

in the networking community. Specifically, the great interest around the use of CS in Wireless Sensor

Networks (WSNs) comes from the fact that the CS framework lends itself to the accurate reconstruction

of large sensor fields through the collection of a small fraction of the sensor readings. However, the

application of CS to data gathered from actual WSN deployments faces several problems. In particular,

we can not assume that the distributed signal before compression is sparse, or equivalently, we can not

assume a Laplacian prior for each element of the signal. In this case, CS can not be successfully used

without accounting for a technique that effectively sparsifies the data. Additionally, and in contrast to

classical approaches, where the data is first compressed and then transmitted to a given Data Collection

Point (DCP), when CS is applied to WSNs it is desirable to jointly compress and transmit the data. In

this way, we reduce the amount of information that is sent to the DCP, with a subsequent reduction of

the energy consumed by the sensor nodes. A preliminary work with this aim is [9], where the coherence

between the routing matrix and the sparsification matrix is studied to exploit CS as a reconstruction

technique for WSNs. The results of this work are anyway unsatisfactory, due to the fact that only

exploiting the spatial correlation of the data does not suffice to efficiently recover the signal.
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In this work we address the issue of designing a technique based on CS for the online recovery

of large data sets through the collection of a small number of sensor readings. Since only exploiting

the spatial correlation does not suffice, for an efficient recovery we also jointly exploit the temporal

correlation of the signal. In particular, through the use of Principal Component Analysis (PCA), which

extracts the spatial and temporal correlation characteristics from the past recovered signal samples, we

learn at the DCP the relevant statistics for CS. Thus, we exploit the learned statistics to recover the

signal through CS from its sampled version that is received at the DCP. We analyze the joint use of

CS and PCA with a Bayesian framework, depicting the probabilistic relations among all the variables

involved in the compression, transmission and recovery process through a Bayesian Network (BN). A

BN is a probabilistic graphical model [10], a very useful tool to graphically capture the probabilistic

relations among a set of random variables and to study the conditional probabilities within this set. This

tool has been used for networking applications in recent papers on the optimization of single-hop [11]

as well as multi-hop [12] Wireless Local Area Networks (WLAN).

In order to substantiate our framework, we consider different WSN testbeds, whose data is available

on-line. We analyze the statistics of the principal components of the signals gathered by these WSNs,

designing a Bayesian model to approximate the statistical distribution of the principal components.

An overview on the use of Bayesian theory to define a general framework for data modeling can be

found in [13], [14]. Hence, we provide empirical evidence of the effectiveness of CS in actual WSNs,

showing that the principal components of real signals are well approximated by a Laplacian distribution.

Moreover, we identify the conditions under which the recovery through convex optimization (i.e., CS) is

equivalent to Maximum A Posteriori (MAP) recovery, which occurs when each component is distributed

according to a statistically independent Laplacian distribution. We conclude the paper showing example

results for CS recovery when used in conjunction with a simple data gathering technique. The integration

of the proposed mathematical framework into an actual Data Collection and Recovery technique for

WSN signals, with an extensive performance analysis, is presented in the companion paper [15], where

we compare this technique with other data collection methods that exploit the same information learned

by PCA, as well as with standard data recovery schemes.
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The rest of the paper is structured as follows: in Section II we present the mathematical details

for the joint use of CS and PCA, and in Section III we propose the framework to exploit these two

techniques and the signal model to describe the statistics of the principal components. Thus, we analyze

a large number of WSN testbeds and signals in Section IV. In Section V we present the details of the

probabilistic model, that exploits a two-level Bayesian inference to infer the best fitting distribution for

such signals, and in Section VI we identify the optimality conditions for CS recovery, showing some

example results. Section VII concludes the paper.

II. MATHEMATICAL TOOLS FOR CS RECOVERY

In this section we first review basic tools from PCA and CS and we subsequently illustrate a framework

which jointly exploits these two techniques.

A. Principal Component Analysis

The Karhunen-Loève expansion is the theoretical basis for PCA. It is a method to represent through

the best M -term approximation a generic N -dimensional signal, where N > M , given that we have full

knowledge of its correlation structure. In practical cases, i.e., when the correlation structure of the signals

is not known a priori, the Karhunen-Loève expansion can be approximated thanks to PCA [16], which

relies on the online estimation of the signal correlation matrix. We assume to collect measurements

according to a fixed sampling rate at discrete times k = 1, 2, . . . , K. In detail, let x(k) ∈ R
N be the

vector of measurements, at a given time k, from a WSN with N nodes. x(k) can be viewed as a single

sample of a stationary vector process x. The sample mean vector x and the sample covariance matrix

Σ̂ of x(k) are defined as:

x =
1

K

K∑

k=1

x(k) , Σ̂ =
1

K

K∑

k=1

(x(k) − x)(x(k) − x)T .

Given the above equations, let us consider the orthonormal matrix U whose columns are the unitary

eigenvectors of Σ̂, placed according to the decreasing order of the corresponding eigenvalues. It is

now possible to project a given measurement x(k) onto the vector space spanned by the columns of
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U. Therefore, let us define s(k)
def
= UT (x(k) − x). If the instances x(1),x(2), · · · ,x(K) of the process

x are temporally correlated, then only a fraction of the elements of s(k) can be sufficient to collect

the overall energy of x(k) − x. In other words, each sample x(k) can be very well approximated in an

M -dimensional space by just accounting for M < N coefficients. According to the previous arguments

we can write each sample x(k) as:

x(k) = x+Us(k) , (1)

where the N -dimensional vector s(k) can be seen as an M -sparse vector, namely, a vector with at

most M < N non-zero entries. Note that the set {s(1), s(2), · · · , s(K)} can also be viewed as a set of

samples of a random vector process s. In summary, thanks to PCA, each original point x(k) ∈ R
N

can be transformed into a point s(k), that can be considered M -sparse. The actual value of M , and

therefore the sparseness of s, depends on the actual level of correlation among the collected samples

x(1),x(2), · · · ,x(K).

B. Compressive Sensing (CS)

CS is the technique that we exploit to recover a given N -dimensional signal through the reception

of a small number of samples L, which should be ideally much smaller than N .

As above, we consider signals representable through one dimensional vectors x(k) ∈ R
N , contain-

ing the sensor readings of a WSN with N nodes. We further assume that there exists an invertible

transformation matrix Ψ of size N ×N such that

x(k) = Ψs(k) (2)

and that the N -dimensional vector s(k) ∈ R
N is M -sparse. s(k) is said to be M -sparse when it has only

M significant components, while the other N −M are negligible with respect to the average energy per

component, defined1 as E
(k)
s = 1

N

√
〈s(k), s(k)〉. Assuming that Ψ is known, x(k) can be recovered from

1For any two column vectors a and b of the same length, we define 〈a,b〉 = a
T
b.
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s(k) by inverting (2), i.e., s(k) = Ψ−1x(k). Also, s(k) can be obtained through a number L of random

projections of x(k), namely y(k) ∈ R
L, with M ≤ L < N , according to the following equation:

y(k) = Φx(k) . (3)

In our framework, Φ is referred to as routing matrix as it captures the way in which our sensor data is

gathered and transmitted to the DCP. For the remainder of this paper Φ will be considered as an L×N

matrix of all zeros except for a single one in each row and at most a single one in each column (i.e.,

y(k) is a sampled version of x(k)).2 Now, using (2) and (3) we can write

y(k) = Φx(k) = ΦΨs(k)
def
= Φ̃s(k) . (4)

This system is ill-posed since the number of equations L is smaller than the number of variables N .

It may also be ill-conditioned, i.e., a small variation of the output y(k) can produce a large variation

of the input signal [17], [18]. However, if s(k) is sparse, it has been shown that (4) can be inverted

with high probability through the use of specialized optimization techniques [3], [19]. These allow to

retrieve s(k), from which the original signal x(k) is found through (2).

C. Joint CS and PCA

We have seen that PCA is a method to represent through the best M -term approximation a generic

N -dimensional signal, where N > M , and we have introduced CS, a technique to recover an N -

dimensional signal through the reception of a small number of samples L, with L < N . In this section

we propose a technique that jointly exploits PCA and CS to reconstruct a signal x(k) at each time k.

Assume that the signal is correlated both in time and in space, but that in general it is non-stationary.

This means that the statistics that we have to use in our solution (i.e., sample mean and covariance

matrix) must be learned at runtime and might not be valid throughout the entire time frame in which

we want to reconstruct the signal. We should also make the following assumptions, that will be justified

in the next sections:

2This selection of Φ has two advantages: 1) the matrix is orthonormal as required by CS, see [9], and 2) this type of routing matrix

can be obtained through realistic routing schemes.
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1. at each time k we have perfect knowledge of the previous K process samples, namely we perfectly

know the set X (k) =
{
x(k−1),x(k−2), · · · ,x(k−K)

}
, referred to in what follows as training set;3

2. there is a strong temporal correlation between x(k) and the set X (k) that will be explicated in the

next session via a Bayesian network. The size K of the training set is chosen according to the

temporal correlation of the observed phenomena to validate this assumption.

Using PCA, from Eq. (1) at each time k we can map our signal x(k) into a sparse vector s(k). The

matrix U and the average x can be thought of as computed iteratively from the set X (k), at each time

sample k. Accordingly, at time k we indicate matrix U as U(k) and we refer to the temporal mean and

covariance of X (k) as x(k) and Σ̂(k), respectively. Hence, we can write:

x(k) − x(k) = U(k)s(k) . (5)

Now, using equations (3) and (5), we can write:

y(k) −Φ(k)x(k) = Φ(k)(x(k) − x(k)) = Φ(k)U(k)s(k) , (6)

where with the symbol Φ(k) we make explicit that also the routing matrix Φ can change over time. The

form of Eq. (6) is similar to that of (4) with Φ̃ = Φ(k)U(k). The original signal x(k) is approximated

as follows: 1) finding a good estimate4 of s(k), namely ŝ(k), using the techniques in [3] or [19] and 2)

applying the following calculation:

x̂(k) = x(k) +U(k)ŝ(k) . (7)

III. MONITORING FRAMEWORK AND SPARSE SIGNAL MODEL

In this section we describe a model to represent a broad range of environmental signals that can

be gathered from a WSN. The aim is to analyze the stochastic properties of these signals, in order to

select the most appropriate sampling, compression and recovery techniques to minimize the number of

transmitting nodes while keeping a certain level of reconstruction accuracy, as detailed in Section VI.

3In [20] we presented a practical scheme that does not need this assumption in order to work.

4In this paper we refer to a good estimate of s
(k) as ŝ

(k) such that ‖s(k) − ŝ
(k)‖2 ≤ ǫ. Note that by keeping ǫ arbitrarily small,

assumption 1 above is very accurate.



7

We have chosen to represent the variables involved with a Bayesian Network (BN) [10], i.e., a Directed

Acyclic Graph (DAG) where nodes represent random variables and arrows represent conditional depen-

dencies among them. From the DAG it is always possible to determine the conditional independence

between two variables, applying a set of rules known as d-separation rules, e.g., see [21] for a detailed

description about BN properties. In this section, we propose two graphical models which illustrate the

perspective we adopted in Section V and Section VI, respectively:

1) Fig. 1 represents a stochastic model for the signal s;

2) Fig. 2 is a BN which links together all the variables involved in our analysis, highlighting those

required to define the monitoring framework.

In detail, with Fig. 1 we introduce a Bayesian model to describe the statistical properties of the

elements of s(k). Given the realizations of the signal s(k) at time k = 1, . . . , K, we use a Bayesian

estimation method, described in Sec. V, to infer a suitable model M along with the best-fitting values

of its parameters. In particular, for a Gaussian model the parameters to infer are the mean value m of

each component and the standard deviation σ, whereas for a Laplacian model are the location parameter

µ and the scale parameter λ, respectively. This modeling approach is exploited in Sec. V to determine

which stochastic model, chosen among a set of plausible ones, better describes the signal s(k).

Fig. 2, instead, depicts the whole considered framework that involves the following variables for

each time sample k: the training set X (k), the WSN signal x(k), its compressed version y(k), obtained

sampling x(k) according to matrix Φ(k) as in Eq. (3), the invertible matrix U(k), obtained through PCA,

and the sparse representation s(k), introduced in Eq. (1). From the results presented in Section V, it

turns out that s(k) is well approximated by a Laplacian distribution. Analyzing the DAG in Fig. 2, based

on the d-separation rules, we can make the following observations:

• data gathering: the WSN signal x(k) is independent of the stochastic sampling matrix Φ(k), whose

nature is described in [20], but the observation of y(k) reveals a link between these two variables;

• PCA transformation: this is the core of our model, that describes how the system learns the

statistics of the signal of interest x(k). According to the dynamic system framework, U(k) can be
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seen as the state of a system, since it summarizes at each instant k all the past history of the

system, represented by the matrix X (k). The system input is the signal s(k), that can be seen as

a Laplacian or Gaussian innovation process. This type of priors on the signal induces estimators

that use, respectively, the L1 and L2 norm of the signal as regularization terms. Hence, such priors

are often used in the literature in view of the connection with powerful shrinkage methods such as

ridge regression and LASSO, as well as for the many important features characterizing them, see

Section 3.4 in [17] for a thorough discussion. Note also that the observation of the WSN signal

x(k) has a twofold effect: the former is the creation of a deterministic dependence between the PCA

basis U(k) and the sparse signal s(k), that are otherwise independent; the latter is the separation of

U(k) and s(k) from the data gathering variables, i.e., they become independent of y(k) and Φ(k);

• sparse signal model: we observe that the priors assigned to the variableM and to the corresponding

parameters µ (resp. m) and λ (resp. σ) are non informative, except for the non-negativity of the

variance. Here the observation of the sparse signal s(k) separates the sparse signal model from the

monitoring framework, i.e., after observing the signal s(k), the variable M and the corresponding

parameters µ (resp. m) and λ (resp. σ) will no longer be dependent on the variables of the

monitoring framework, so they can be analyzed separately as we do in Section V.

In the next section we will describe the real world signals that will be used to develop a statistical

analysis on the principal component distribution and from which we obtain a set of realizations for

the signal s(k). In Sec. V we will show that the Laplacian is a good model to represent the principal

components of typical WSN data. In turn, this provides a justification for using CS in WSNs, as detailed

in Section VI.

IV. DESCRIPTION OF CONSIDERED SIGNALS AND WSNS

The ultimate aim of WSN deployments is to monitor the evolution of certain physical phenomena

over time. Examples of applications that require such infrastructure include monitoring for security,

health-care or scientific purposes. Many different types of signals can be sensed, processed and stored,

e.g., the motion of objects and beings, the heart beats, or environmental signals like the values of
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temperature and humidity, indoor or outdoor. Very often the density of sensor network deployments is

very high and therefore sensor observations are strongly correlated in space. Furthermore, the physics

itself of the observed signals makes consecutive observations of a sensor node to be also temporally

correlated.

The spatial and temporal correlation represents a huge potential that can be exploited in the design of

collaborative protocols for WSNs. In this perspective, we can think of reducing the energy consumption

of the network by tuning the overall number of transmissions required to monitor the evolution of a

given phenomenon over time. The appeal of the techniques presented in Section II follows from the

fact that CS enables us to significantly reduce the number of samples needed to estimate a signal of

interest with a certain level of quality. Clearly, the effectiveness of CS is subject to the knowledge of

a transformation basis for which the observed signals result sparse.

In this section we illustrate the WSNs and the gathered signals that will be used in Section V to

test, using the Bayesian framework presented in Section III, whether CS and PCA are effective for real

signals, i.e., whether a real signal transformed by the PCA matrix is actually sparse.

Networks. In addition to our own experimental network deployed on the ground floor of the Department

of Information Engineering at the University of Padova, we consider other three WSNs whose sensor

reading databases are available on-line, and a further deployment called Sense&Sensitivity, whose data

has been kindly provided to the authors by Dr. Thomas Watteyne of Dust Networks, Inc. A brief

technical overview of each of these five experimental network scenarios follows.

T1 WSN testbed of the Department of Information Engineering (DEI) at the University of Padova,

collecting data from 68 TmoteSky wireless sensor nodes [22], [23]. The node hardware features

an IEEE 802.15.4 Chipcon wireless transceiver working at 2.4 GHz and allowing a maximum

data rate of 250 Kbps. These sensors have a TI MSP430 micro-controller with 10 Kbytes of

RAM and 48 Kbytes of internal FLASH;

T2 LUCE (Lausanne Urban Canopy Experiment) WSN testbed at the Ecole Polytechnique Fédérale

de Lausanne (EPFL), [24]. This measurement system exploits 100 SensorScope weather sensors
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which have been deployed across the EPFL campus. The node hardware is based on a TinyNode

module equipped with a Xemics XE1205 radio transceiver operating in the 433, 868 and 915

MHz license-free ISM (Industry Scientific and Medical) frequency bands. Also these sensors

have a TI MSP430 micro-controller;

T3 St-Bernard WSN testbed at EPFL, [25]. This experimental WSN deployment is made of 23

SensorScope stations deployed at the Grand St. Bernard pass at 2400 m, between Switzerland

and Italy. See point T2 for a brief description of the related hardware;

T4 CitySense WSN testbed, developed by Harvard University and BBN Technologies, [26]. City-

Sense is an urban scale deployment that will consist of 100 wireless sensor nodes equipped

with an ALIX 2d2 single-board computer. The transmitting interface is reconfigurable by the

user and by default it operates in 802.11b/g ad hoc mode at 2.4 GHz. Nowadays this WSN

deployment counts about twenty nodes;

T5 The Sense&Sensitivity [27] testbed is a WSN of 86 nodes, which embed Texas Instrument

Inc. technology: a MSP430 micro-controller and a CC1100 radio chip operating in the ISM

band (from 315 to 915 MHz).

Signals. From the above WSNs, we gathered seven different types of signals: S1) temperature; S2)

humidity; S3-S4) luminosity in two different ranges (320− 730 and 320− 1100 nm, respectively); S5)

wind direction; S6) voltage and S7) current. Concerning the signals gathered from our testbed T1, we

collected measurements from all nodes every 5 minutes for 3 days. We repeated the data collection

for three different measurement campaigns, choosing different days of the week. Regarding the data

collection from WSNs T2–T5, we studied the raw data available on-line with the aim of identifying

a portion of data that could be used as a suitable benchmark for our research purposes. This task has

turned out to be really challenging due to packet losses, device failures and battery consumption that

are very common and frequent with currently available technology. For the acquisition of the signals

we divided the time axis in frames (or time slots) such that each of the working nodes was able to

produce a new sensed data per frame. Details of the signals extracted from the records of T1–T5, and
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organized in different campaigns, are reported schematically in Table I.

V. SPARSITY ANALYSIS OF REAL SIGNAL PRINCIPAL COMPONENTS

In this section we infer the statistical distribution of the vector random process s from the samples

{s(1), s(2), . . . , s(T )}, which are obtained from the above WSN signals. The parameter T is the duration

(number of time samples) of each monitoring campaign in Table I.

From the theory [16] we know that signals in the PCA domain (in our case s) have in general

uncorrelated components. Also, in our particular case we experimentally verified that this assumption

is good since E[sisj] ≃ E[si]E[sj] for i, j ∈ {1, . . . , N} and i 6= j. In our analysis, we make a stronger

assumption, i.e., we build our model of s considering statistical independence among its components,

i.e., p(s1, . . . , sN) =
∏N

i=1 p(si). A further assumption that we make is to consider the components of

s as stationary over the entire monitoring period.5 The model developed following this approach leads

to good results [20], which allow us to validate these assumptions.

Owing to these assumptions, the problem of statistically characterizing s reduces to that of charac-

terizing the random variables

si =
N∑

j=1

uji(xj − xj) , i = 1, . . . , N , (8)

where the r.v. uji is an element of matrix U in Eq. (5) and the r.v. xj is an element of vector x.

A statistical model for each si can be determined through the Bayesian estimation procedure detailed

below. Similarly to the approach adopted in [28], we rely upon two levels of inference.

First level of inference. Given a set of competitive models {M1, · · · ,MN} for the observed phe-

nomenon, each of them depending on the parameter vector θ, we fit each model to the collected data

denoted by D, i.e., we find the θMAP that maximizes the a posteriori probability density function (pdf)

p(θ|D,Mi) =
p(D|θ,Mi)p(θ|Mi)

p(D|Mi)
, (9)

5Note that this model is also able to follow signals whose frequency content varies over time since the signal basis adapts to the data.
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i.e.,

θMAP = argmax
θ

p(θ|D,Mi) , (10)

where p(D|θ,Mi) and p(θ|Mi) are known as the likelihood and the prior respectively, whilst the so

called evidence p(D|Mi) is just a normalization factor which plays a key role in the second level of

inference.

Second level of inference. According to Bayesian theory, the most probable model is the one maximizing

the posterior p(Mi|D) ∝ p(D|Mi)p(Mi). Hence, when the models Mi are equiprobable, they are

ranked according to their evidence. In general, evaluating the evidence involves the computation of

analytically intractable integrals. For this reason, we rank the different models according to a widely

used approximation, the Bayesian Information Criterion (BIC) [29], that we define as:

BIC(Mi)
def
= ln [p(D|θMAP ,Mi)p(θMAP |Mi)]−

ℓi
2
ln(T ) , (11)

where θMAP is defined in (10), ℓi is the number of free parameters of model Mi and T is the cardinality

of the observed data set D. Roughly speaking, the Bayesian Information Criterion (BIC) provides insight

in the selection of the best fitting model penalizing those models requiring more parameters.

According to the introduced formalism we consider {s(1), s(2), . . . , s(T )} as the set of collected data

D; further, the observation of the experimental data gives empirical evidence for the selection of four

statistical models Mi and corresponding parameter vectors θ:

M1 a Laplacian distribution with θ = [µ, λ], that we call L;

M2 a Gaussian distribution with θ = [m,σ2], that we call G;

M3 a Laplacian distribution with µ = 0 and θ = λ, that we call L0;

M4 a Gaussian distribution with m = 0 and θ = σ2, that we call G0.

The space of models for each si is therefore described by the set {L,G,L0,G0}. In detail, for each

signal S1− S7 in the corresponding WSNs and campaigns of Table I, we collected the T +K signal

samples
{
x(1−K), . . . ,x(−1),x(0),x(1), . . .x(T )

}
from which we computed

{
s(1), s(2), . . . , s(T )

}
according

to what explained in Section II-C. Then, for each component si, i = 1, . . . , N, and for each model

Mi, i = 1, . . . , 4, we estimated the parameters (i.e., the most probable a posteriori, MAP ) that best fit
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the data according to (9)–(10). These estimations are related to the BN in Fig. 1 and since we deal with

Gaussian and Laplacian distributions, they have well known and closed form solutions [14]. In detail,

for each component si:

M1 µ̂ = µ1/2(si) and λ̂ =
∑T

k=1

∣

∣

∣
s
(k)
i −µ̂

∣

∣

∣

T
, where µ1/2(si) is the median of the data set

{
s
(1)
i , . . . , s

(T )
i

}
;

M2 m̂ =
∑T

j=1 s
(k)
i

T
and σ̂2 =

∑T
k=1

(

s
(k)
i −m̂

)2

T−1
;

M3 λ̂ =
∑T

k=1

∣

∣

∣
s
(k)
i

∣

∣

∣

T
;

M4 σ̂2 =
∑T

k=1

(

s
(k)
i

)2

T
.

Figs. 3–4 show two examples of data fitting according to the aforementioned models; in these figures

we plot the empirical distribution and the corresponding inferred statistical model for a generic principal

component (but not the first one, as explained in the following) of the temperature (S1) and the luminosity

(S3), respectively. Both these signals have been observed during the data collection of the campaign A,

in the WSN testbed T1 (DEI). From the graphs in Figs. 3–4 we see that the distribution of the principal

components of our signals is well described by a Laplacian distribution. Formally, the best among

the four considered models can be determined ranking them according to the Bayesian Information

Criterion (BIC) introduced in Eq. (11). Since we assigned non informative priors to the model parameters,

p(θMAP|Mi) is a constant for each Mi and therefore the BIC can be redefined as:

BIC(Mi)
def
= ln p(D|θMAP ,Mi)−

ℓi
2
ln(T ) . (12)

Fig. 5 shows the BIC for the aforementioned humidity signal, for all its principal components and for

all the considered models. From this figure we see that the Laplacian models better fit the data for all

principal components si, i = 1, 2, . . . , N . The average BIC for each model, for the different signals,

campaigns and WSN testbeds, is shown in Table II. The values of this table are computed averaging

over the N principal components. From these results we see that model L0 provides the best statistical

description of the experimental data. In fact, the BIC metric is higher for Laplacian models in all cases;

furthermore, L0 has a higher evidence with respect to L, since it implies the utilization of a single

parameter. As previously mentioned, the over-parameterization of the model is penalized according to

the factor T−
ℓi
2 (see Eq. (12)). Based on the above results, we can conclude that the Laplacian model
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slightly better describes the principal components of all the real signals that we considered than the

Gaussian one. Furthermore, it is worth noting that the first principal components (to be more precise, the

firstK−1 principal components6 of the signal, whereK is the training set length) have different statistics

from the remaining ones, in terms of both signal range dynamics and amplitude of the components.

This is due to the fact that the first K−1 components actually map the observed signal into the training

set vector space, instead the remaining ones are random projections of the signals. The former capture

the “core” of the signal x, the latter allow to recover its details which can lie outside the linear span of

the training data. In our simulations we set K = 2, in accordance to the rationale presented in [20], so

that only the first principal component shows a behavior different from the one illustrated in Figs. 3–4

as reported in Figs. 6–7. In any case, the Laplacian model still fits better the observed data compared

to the Gaussian one.

VI. BAYESIAN MAP CONDITION AND CS RECOVERY FOR REAL SIGNALS

In the previous section we have seen that the Laplacian model is a good representation for the principal

components of typical WSN signals. This legitimates the use of CS in WSNs when it is exploited

according to the framework presented in Section II-C. To support this claim, in this section we review

a Bayesian perspective that highlights the equivalence between the output of the CS reconstruction

algorithm and the solution that maximizes the posterior probability in Eq. (9).

Assume a DCP is placed in the center of a WSN with N sensor nodes and let our goal be to determine

at each time k all the N sensor readings by just collecting at the DCP a small fraction of them. To this

end, we exploit the joint CS and PCA scheme presented in Section II-C. Equations (5)–(7) show that

the considered framework does not depend on the particular topology considered; the only requirement

is that the sensor nodes be ordered (e.g., based on the natural order of their IDs). Our monitoring

application can be seen, at each time k, as an interpolation problem: from a sampled M -dimensional

vector y(k) = Φx(k) ∈ R
M , we are interested in recovering, via interpolation, the signal x(k) ∈ R

N .

6Note that, according to Eq. (7), the matrix U
(k) is obtained from the elements of the training set X (k) minus their mean, i.e., from

the set
{
x
(k−1) − x

(k),x(k−2) − x
(k), · · · ,x(k−K) − x

(k)
}

which spans a vector space of dimension at most K − 1.
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Typically (e.g., see [28]) this problem can be solved through a linear interpolation on a set F of h basis

functions fi ∈ R
N , i.e., F = {f1, · · · , fh}. We can assume that the interpolated function has the form:

x(k) = x(k) +
h∑

i=1

θifi . (13)

In accordance to what explained in Section II-C, at each time k we can do the following associations:

the columns of the PCA matrix U(k) as the set of h = N basis functions in Eq. (13), i.e., F =

{f1, · · · , fN} = {u
(k)
1 , · · · ,u

(k)
N } = U (k); the sparse vector s(k) = (s

(k)
1 , · · · , s

(k)
N )T as the parameter

vector θ = (θ1, · · · , θN )
T in Eq. (13). In this perspective, the interpolated function has the form (see

Eq. (5))

x(k) − x(k) =
N∑

i=1

s
(k)
i u

(k)
i . (14)

A Bayesian approach would estimate the most probable value of s(k) = (s
(k)
1 , · · · , s

(k)
N )T by maxi-

mizing a posterior pdf of the form p(s(k)|y(k),U (k),M), where M is a plausible model for the vector

s(k). To avoid confusion, it is important to note that in this section the interpretation of all the variables

involved is slightly different from the one adopted in Section V. In detail, now the vector s(k) is seen as

the parameter vector θ in Eq. (9), whilst the vector y(k) represents the set D of collected data. Moreover,

the observed phenomenon x(k) is modeled through both a set U (k) of basis functions (i.e., the columns

of the matrix U(k)) and a model M for the parameter vector s(k), according to the BN in Fig. 2. In

Eq. (9) we indicated with the symbol Mi a possible model for the observed phenomenon: here that

symbol is replaced with the couple (U (k),M), where M directly refers to s(k). Using the symbol M

to indicate a model for s(k) (even if s(k) is now interpreted as the parameter vector θ) allows us to

highlight the correspondence between the adoption of a particular model for s(k) and the results of the

study carried out in Sec. V. This correspondence will become clear in the following.

As in [28], we also assume that M can be specified by a further parameter set α (called hyper-prior)

related to s(k), so that the posterior can be written as

p(s(k)|y(k),U (k),M) =

∫
p(s(k)|y(k), α,U (k),M)p(α|y(k),U (k),M) dα .
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If the hyper-prior can be inferred from the data and has non zero values α̂, maximizing the posterior

corresponds to maximizing p(s(k)|y(k), α̂,U (k),M), that as shown in [28] corresponds to maximizing

the following expression

p(s(k)|y(k),U (k),M) ∝ p(s(k)|y(k), α̂,U (k),M)

=
p(y(k)|s(k),U (k))p(s(k)|α̂,M)

p(y(k)|α̂,U (k),M)
, (15)

where p(y(k)|s(k),U (k)) is the likelihood function, p(s(k)|α̂,M) is the prior and p(y(k)|α̂,U (k),M) is

a normalization factor. The parameters α̂ are estimated maximizing the evidence p(y(k)|α,U (k),M),

which is a function of α. Note that here the hyper-prior plays, in regard to s(k), exactly the same role as

the parameter vector θ in the previous section, where s(k) was interpreted as the collected data set D of

the observed phenomenon; for example, if we choose M = L0 for s
(k) then α = λ, i.e., the hyper-prior

is the scale parameter of the Laplacian prior assigned to s(k).

In Eq. (14), without loss of generality we can assume that x(k) = 0, thus the constraints on the

relationship between y(k) and s(k) can be translated into a likelihood of the form (see Eq. (6)):

p(y(k)|s(k),U (k)) = δ(y(k),Φ(k)U(k)s(k)) , (16)

where δ(x, y) is 1 if x = y and zero otherwise. In Section V, we have seen that the statistics of vector

s(k) is well described by a Laplacian density function with location parameter µ equal to 0 (L0). This

pdf is widely used in the literature [4], [19] to statistically model sparse random vectors and, owing to

the assumption of statistical independence of the components of s(k), we can write it in the form:

p(s(k)|α̂,M = L0) =
e−α̂

∑N
i=1 |s

(k)
i |

(2/α̂)N
. (17)

In this equation, all the components of s(k) are assumed to be equally distributed. If (15) holds, we can

obtain the following posterior:

p(s(k)|y(k),U (k),L0) ∝ p(s(k)|y(k), α̂,U (k),L0)

∝ p(y(k)|s(k),U (k))p(s(k)|α̂,L0). (18)



17

Using (16)–(18), maximizing the posterior corresponds to solving the problem

argmax
s
(k)

p(s(k)|y(k),U (k),L0)

= argmax
s
(k)

p(y(k)|s(k),U (k))p(s(k)|α̂,L0)

= argmax
s
(k)

δ(y(k),Φ(k)U(k)s(k))
e−α̂

∑N
i=1 |s

(k)
i |

(2/α̂)N

= argmin
s
(k)

N∑

i=1

|s
(k)
i |, given that y(k) = Φ(k)U(k)s(k)

= argmin
s
(k)

‖s(k)‖1, given that y(k) = Φ(k)U(k)s(k) , (19)

which is the convex optimization problem solved by the CS reconstruction algorithms (see [3] and [30]).

In our approach, unlike in the classical CS problems, the sparsification matrix U(k) is not fixed but varies

over time adapting itself to the current data.

A. Example Results

In light of the above results we are legitimate in using CS for WSN monitoring applications via data

reconstruction. In particular, here we describe for illustrative purposes a naive solution that, despite

its simplicity, provides useful insight into the advantages that can be obtained by exploiting the CS

reconstruction algorithm.

We assume a data gathering technique that alternates between a training phase and a monitoring

phase [20]. During the former phase, all sensors transmit their data to a central unity (e.g., an application

server) which estimates the signal statistics in terms of mean and covariance. This information is

subsequently used to reconstruct the WSN signal in the latter phase, where only a small fraction of nodes

transmit. Specifically, we assume that the training phase lasts K1 time samples or collection rounds.

During this period of time, all sensors transmit their data to the application server which therefore

receive K1 complete vectors with N measurements7. During the monitoring phase, which lasts K2 time

7In case there is an error during the transmissions, so that not all N measurements are received, the server will use as the training set

the last complete training set received.
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samples, each sensor node transmits its data with probability ptx = L/N , where L < N . The value of

L, and therefore of ptx = L/N , can be chosen by a central entity, based on some metric to optimize,

and sent to the WSN nodes according to a feedback-like mechanism. Thus, for K2 time samples each

sensor transmits its data with this probability (i.e., on average only L of the N sensors transmit at each

time sample). The interleaving between training and monitoring phases can be viewed as follows:

. . . ,y(k), . . . ,y(k+K1−1)

︸ ︷︷ ︸
training phase

ptx = 1

,y(k+K1), . . . ,y(k+K1+K2−1)

︸ ︷︷ ︸
monitoring phase

ptx = L/N

, . . .

With this simple implementation, the overall energy consumption of the network can be reduced by

limiting the number of transmitting sensor nodes (small ptx) during the monitoring phase. The entire

signal of interest is then reconstructed at the application server using CS. As a first step, at each time k

we can associate to the vector y(k) the corresponding matrix Φ(k), based on the IDs of the transmitting

nodes, according to (3). Then we can exploit the samples of the last recorded training set to infer the

reconstructed value of x̂(k). The statistics necessary to build the sparsifying matrix U(k) are derived

from the samples of the recorded training set (i.e., mean and covariance matrix), and the CS recovery

problem is solved via a convex optimization problem, e.g., see [30] and [31].

Figs. 8–9 show the quality of the monitored signal reconstruction (at the application server) vs

the transmission probability ptx. The results are obtained implementing the simple above mechanism

combining software simulation of protocol stack operation with the real measurements described in

Section IV. The x-axis of the figures represents the ptx adopted during the monitoring phase, while

the y-axis represents the average relative reconstruction error in the whole simulation (k = 1, . . . , K),

defined as

ξR =
1

K

K∑

k=1

ξ
(k)
R , (20)

where ξ
(k)
R is the relative reconstruction error at time k, i.e.,

ξ
(k)
R =

‖x(k) − x̂(k)‖2
‖x(k)‖2

. (21)
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In our simulations we set the length of the training phase to K1 = 2 and the length of the monitoring

phase to K2 = 4, according to [20]. In Fig. 8 we plot the recovery performance achieved with different

kinds of signals. We note that for highly correlated signals like voltage and humidity, the reconstruction

error is sufficiently small, i.e., below ξR < 0.01, for relatively small values of ptx ≈ 0.6. Instead for

more unpredictable signals like luminosity and wind the error increases sharply with decreasing ptx; in

this case an error below ξR < 0.05 is only achievable with ptx > 0.9. In Fig. 9 we make a comparison,

instead, between signals of the same kind but measured in different environments, i.e., in indoor and

outdoor environments. In detail, the indoor environment here considered is the WSN testbed T1 (DEI),

where the nodes have been placed on the ground floor of the Information Engineering Department

of the University of Padova, whilst we consider T2 (EPFL LUCE) as a representative outdoor WSN

testbed, since sensor nodes have been placed outside, throughout the EPFL campus. Still, the possibility

of reducing the transmission cost, given a desired quality threshold, strongly depends on the signal

statistics. In case of indoor signals (high correlation and low variation) we can have a reconstruction

error below ξR < 0.01 even with ptx ≈ 0.1, which leads to substantial savings in transmission energy.

Conversely, with outdoor signals, whose lower correlation depends also on the wider extension of the

WSN itself, we need ptx > 0.7 to obtain ξR < 0.05. Even if the possible gains depend on the actual

statistics of the observed signal, the proposed approach, despite its simplicity, adapts to the monitored

process and allows us to achieve important savings in all the considered cases. This opens an interesting

perspective for a useful and effective exploitation of CS in WSNs.

VII. CONCLUSIONS

In this paper we investigated the effectiveness of data recovery through joint Compressive Sensing

(CS) and Principal Component Analysis (PCA) in actual WSN deployments. At first, we framed our

recovery scheme into the context of Bayesian theory proving that, under certain assumptions on the

signal statistics, the use of CS is legitimate, and is in fact equivalent to Maximum A Posteriori in terms of

recovery performance. Hence, we have given empirical evidence of the fact that these assumptions hold

for real world signals, which we gathered from different WSN deployments and processed according to
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our monitoring framework. This allows us to conclude that the use of CS not only is legitimate in our

recovery scheme but also makes it possible to obtain very good performance for the considered data

sets.
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FIGURES 21

Fig. 1. Bayesian network used to model the probability distribution of the innovation signal s.
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Fig. 2. Bayesian network used to model the considered real signals. In the scheme we highlight the monitoring framework at each time

sample k.
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Fig. 3. Empirical distribution and model fitting for a principal component of signal S1, temperature.
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Fig. 4. Empirical distribution and model fitting for a principal component of signal S3, luminosity in the range 320− 730 nm.
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Fig. 5. Bayesian Information Criterion (BIC) per Principal Component, for each model M1–M4, WSN T1 (DEI), campaign A and

signal S2, humidity.
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Fig. 6. Empirical distribution and model fitting for the first principal component of signal S1, temperature.
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Fig. 7. Empirical distribution and model fitting for the first principal component of signal S3, luminosity in the range 320− 730 nm.
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Fig. 8. Average reconstruction error for different types of signals.
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WSN Testbed T1 (DEI)

# of nodes frame length # of frames starting time (G.M.T) stopping time (G.M.T) signals

Campaign A 37 5 min 783 13/03/2009, 09:05:22 16/03/2009, 18:20:28 S1 S2 S3 S4 S6

Campaign B 45 5 min 756 19/03/2009, 10:00:34 22/03/2009, 17:02:54 S1 S2 S3 S4 S6

Campaign C 31 5 min 571 24/03/2009, 11:05:10 26/03/2009, 10:15:42 S1 S2 S3 S4 S6

WSN Testbed T2 (EPFL LUCE)

# of nodes frame length # of frames starting time (G.M.T) stopping time (G.M.T) signals

Campaign A 85 5 min 865 12/01/2007, 15:09:26 15/01/2007, 15:13:26 S1 S2 S5

Campaign B 72 5 min 841 06/05/2007, 16:09:26 09/05/2007, 14:13:26 S1 S2 S5

Campaign C 83 30 min 772 02/02/2007, 17:09:26 18/02/2009, 19:09:26 S6 S7

WSN Testbed T3 (EPFL St Bernard)

# of nodes frame length # of frames starting time (G.M.T) stopping time (G.M.T) signals

Campaign A 23 5 min 742 03/10/2007, 12:35:37 06/10/2007, 02:35:37 S1 S2 S5

Campaign B 22 5 min 756 19/10/2007, 12:35:37 22/10/2007, 03:35:37 S1 S2 S5

Campaign C 22 30 min 778 02/10/2007, 07:06:05 19/10/2007, 12:06:50 S6 S7

WSN Testbed T4 (CitySense)

# of nodes frame length # of frames starting time (G.M.T) stopping time (G.M.T) signals

Campaign A 8 60 min 887 14/10/2009, 14:01:57 21/11/2009, 00:01:57 S1

Campaign B 8 60 min 888 14/10/2009, 13:00:01 21/11/2009, 00:00:01 S5

WSN Testbed T5 (Sense&Sensitivity)

# of nodes frame length # of frames starting time (G.M.T) stopping time (G.M.T) signals

Campaign A 77 15 min 65 26/08/2008, 14:46:46 27/08/2008, 07:31:07 S1 S3 S4 S6

TABLE I

DETAILS OF THE CONSIDERED WSN AND GATHERED SIGNALS.
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WSN Testbed T1 (DEI)

S1 (Temperature) S2 (Humidity) S3 (Light) S4 (IR) S5 (Wind) S6 (Voltage) S7 (Current)

L 1382.8 1059.8 2191.7 1760.9 - 4656.9 -

G 1042.1 804.9 1690 1154.5 - 3814.1 -

L0 1385.5 1062.4 2194.9 1764.1 - 4660.1 -

G0 1044.9 807.60 5078.3 1157.4 - 3816.9 -

WSN Testbed T2 (EPFL LUCE)

S1 (Temperature) S2 (Humidity) S3 (Light) S4 (IR) S5 (Wind) S6 (Voltage) S7 (Current)

L -36.1 -992.3 - - -3694.9 1854.1 -972.8

G -195.3 -1163.7 - - -4026.5 1191.4 -1520.3

L0 -33.3 -989.5 - - -3691.5 1856.3 -969.6

G0 -192.5 -1160.9 - - -4023.6 1194.2 -1517.3

WSN Testbed T3 (EPFL St Bernard)

S1 (Temperature) S2 (Humidity) S3 (Light) S4 (IR) S5 (Wind) S6 (Voltage) S7 (Current)

L -82.3 -1473 - - -3700.2 1617.8 -1557.5

G -487.4 -1700.7 - - -3850.3 1087.9 -1877.2

L0 -79.3 -1469.9 - - -3697.3 1619 -1554.2

G0 -484.7 -1697.8 - - -3847.5 1090.7 -1874.2

WSN Testbed T4 (CitySense)

S1 (Temperature) S2 (Humidity) S3 (Light) S4 (IR) S5 (Wind) S6 (Voltage) S7 (Current)

L -858.1 - - - -4309.5 - -

G -1094.6 - - - -4384.2 - -

L0 -856.8 - - - -4306.4 - -

G0 -1091.9 - - - -4381.2 - -

WSN Testbed T5 (Sense&Sensitivity)

S1 (Temperature) S2 (Humidity) S3 (Light) S4 (IR) S5 (Wind) S6 (Voltage) S7 (Current)

L -127.7 - -196.2 -184.4 - 110 -

G -176.1 - -232.1 -227.5 - 70.2 -

L0 -125.7 - -194.2 -182.3 - 111.9 -

G0 -174.7 - -230.6 -225.8 - 71.8 -

TABLE II

BAYESIAN INFORMATION CRITERION (BIC) AVERAGED OVER ALL PRINCIPAL COMPONENTS AND RELATIVE CAMPAIGNS, FOR EACH

MODEL M1–M4 , FOR EACH TESTBED T1–T5 AND EACH CORRESPONDING PROVIDED SIGNAL AMONG S1–S7.


