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Abstract— Wearable devices are becoming a natural and
economic means to gather biometric data from end users.
The massive amount of information that they will provide,
unimaginable until a few years ago, owns an immense po-
tential for applications such as continuous monitoring for
personalized healthcare and use within fitness applications.
Wearables are however heavily constrained in terms of amount
of memory, transmission capability and energy reserve. This
calls for dedicated, lightweight but still effective algorithms for
data management. This paper is centered around lossy data
compression techniques, whose aim is to minimize the amount
of information that is to be stored on their onboard memory
and subsequently transmitted over wireless interfaces. Specifi-
cally, we analyze selected compression techniques for biometric
signals, quantifying their complexity (energy consumption) and
compression performance. Hence, we propose a new class of
codebook-based (CB) compression algorithms, designed to be
energy efficient, online and amenable to any type of signal
exhibiting recurrent patterns. Finally, the performance of the
selected and the new algorithm is assessed, underlining the
advantages offered by CB schemes in terms of memory savings
and classification algorithms.

I. INTRODUCTION

In the last decade, a large number of algorithms for the
compression of electrocardiogram (ECG) signals has been
proposed [1]–[5]. However, much less attention was paid to
other biometric signals, which are becoming very common
nowadays thanks to the advent of modern wearable devices.
These, are spurring the development of new monitoring
applications by, at the same time, providing prompt access
to a number of vitals such as heart rate (from, e.g., photo-
plethysmographs), body temperature, ultraviolet radiation
and movement data (gyroscope, accelerometer, etc.). These
new technological developments are giving rise to the field
of human centric sensing [6].

We emphasize that wearable technology is energy and
memory constrained and, as such, efficient algorithms for the
compression of the vitals are a must. Considering an ECG
sampled at a typical rate of 250 samples per second with
12 bits per sample (e.g., from a Zephyr’s Bioharness device)
leads to 32.4Mbytes of data for a full day. Our compression
algorithm can reduce this number by 80 times (405kbytes),
leading to much higher efficiencies in terms of memory and
transmission energy, as we show shortly below.

In this paper, we focus on on lossy compression for the
sensed biometric signals. In Section II, we first classify pre-
vious algorithms. Thus, using motif extraction techniques [7],
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we design a novel online compressor for biometric data
exhibiting recurrent patterns, see Section III. Finally, in Sec-
tion IV the performance of selected and the new algorithm
is assessed in terms of signal reconstruction fidelity and
energy consumption. We underline that the computational
complexity was often neglected in past studies, but this
metric is of foremost importance for wearables. In Section V
we conclude the paper, outlining avenues for future research.

II. COMMON LOSSY COMPRESSION APPROACHES

Existing compression algorithms for biometric signals can
be grouped into three main families:

Transform based methods: these exploit transforma-
tions such as Fast Fourier Transform (FFT) [3], Discrete
Cosine Transform (DCT) [4] and Discrete Wavelet
Transform (DWT) [5]. The rationale behind them is
to represent the signal in a suitable transform domain
and select a number of transform coefficients to be
sent in place of the original samples. The amount of
compression depends on the number of coefficients
that are selected. Although the schemes belonging to
this class have great compression capabilities, their
computational complexity is often too high for wearable
devices and, as we show shortly, higher than that of
other solutions.
Time domain processing: within this class we have
AZTEC [1], CORTES [2] and Lightweight Temporal
Compression (LTC) [8] [9]. AZTEC and CORTES
achieve compression by discarding some of the signal
samples and applying linear approximation, whereas
LTC approximates the original time series through
piecewise linear segments. These schemes are known
for their lightweight character, but their compression
and reconstruction capabilities are often regarded as
inferior to those of transform based methods.
Parametric methods these schemes use Neural Net-
works [10], Vector Quantization and Pattern Match-
ing [11]. Their rationale is to process the temporal
series to obtain some kind of knowledge and use it
to predict the signal behavior. This is a field with
limited investigation up to now. Also, these algorithms
have promising capabilities for the extraction of signal
features.

The new technique that we present in Section III belongs
to the last category. It identifies recurrent patterns and
builds a codebook (i.e., a dictionary) based on the most
representative among them. Unlike previous solutions, our
algorithm is not tailored to a specific type of signal (e.g.,
ECG) but can be applied to any biometric time series.
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Fig. 1. Diagram of the codebook-based compression algorithm.

III. CODEBOOK-BASED LOSSY COMPRESSION

In this section we describe an original lightweight signal
compression algorithm based on the concept of motif ex-
traction [7]. Its main building blocks are shown in Fig. 1
and explained in what follows. The algorithm works with
input biometric signals exhibiting recurrent patterns such as
ECG, photo-plethysmographic traces (PPG), arterial blood
pressure (ABP), respiratory signals (RS), etc. Our rationale
is that recurrent patterns can be efficiently identified and
used to build, at runtime, a codebook. This codebook has to
be synchronized with the decompressor at the receiver and
compression is achieved by sending, for each input pattern,
the corresponding index in the codebook, in place of the
original data sequence. We achieved this using a number of
processing functions (see Fig. 1), including: 1) a passband
filter, 2) a peak detector, 3) a frame extractor, 4) a codebook
manager.
Passband filtering: as a first step, we apply a passband
filter to remove artifacts. This filter currently operates in the
band 8, 20 Hz, although this can be easily tuned. Here, we
implemented the third-order Butterworth filter of [12]. This
processing is utilized to remove high frequency noise and
the DC component.
Peak detection: here we have adopted the technique of [13]
which has been conceived and tested especially for ECG
signals. This algorithm is self-tuned and optimizes itself
based on the input data sampling rate. We picked this scheme
as it is very fast and lightweight and thus suitable for use in
wearable and energy constrained devices. Also, although the
algorithm has been tested with ECG traces, through minimal
modifications, we also found it effective for PPG, ABP and
RS signals.
Frame extractor: once the peaks are detected, we isolate
the data samples between subsequent peaks. These constitute
the input segments for our compressor algorithm. Note that,
unlike the common practice of centering the frames around
the peaks, we define a segment as the data sequence between
subsequent peaks. This allows using machine learning algo-
rithms for the construction of the codebook, as we detail
shortly.
Codebook manager: this block has a pivotal role in our
signal compression framework. It is loosely based on vector
quantization [14] and has two main functions: 1) maintaining
a consistent and well representative codebook, 2) encoding
input patterns into the corresponding indices from the code-
book. Let xxxt be the segment provided by the pattern matching
block at the generic time t 0 (time is discrete). Also,

with Ct ccc1, . . . , cccN we indicate the codebook at time
t and with ci, i 1, . . . , N , the corresponding codewords.
Segment xxxt is remapped into a new segment yyyt of predefined
length (W samples), where size ccci size yyyt W ,
for i 1, . . . , N . The new segment yyyt is obtained using a
classical resampling procedure and removing offset ot and
gain gt from xxxt (see equations (5)–(7) of [7]).1 Thus, a
suitable distance d yyyt, ccci is evaluated for all words ccci in the
codebook and the one with the minimum distance, with index
i , is selected. Now, if d yyyt, ccci ε, codeword i is deemed
a good representative for the current segment, otherwise yyyt is
added to the codebook as a new codeword, where with i we
mean the associated index. In the last case, the new codeword
has to be communicated to the compressor. ε is a tunable
parameter that we use to control the signal reconstruction
fidelity at the decompressor. Finally, the index i is sent in
place of the full segment, along with ot, gt and its original
segment length, ℓt.

We remark that several distance functions can be used
in the manager, the L -norm has been considered for the
results in this paper as we found it performed satisfactorily
across a large range of signals. To approximate a segment, the
decompressor applies three transforms to segment i from the
codebook: renormalization with respect to offset ot and gain
gt and resampling according to the actual segment length
ℓt. The removal of codewords from the codebook can be
implemented based on last used timestamps, although this
aspect is not evaluated here and is left as a future work.

IV. PERFORMANCE EVALUATION

Next, we show quantitative results for the considered
signal compression algorithms, detailing their energy con-
sumption, compression and reconstruction fidelity perfor-
mance. The energy consumption has been computed for all
compression algorithms by taking into account the number
of operations performed by the micro-controller unit (MCU),
i.e., the number of summations, multiplications, divisions
and comparisons. These have been subsequently translated
into the corresponding number of cycles and, in turn, into
the energy consumption in Joule/bit considering the Cortex
M4 as a reference processor. The compression efficiency has
been computed as the ratio between the total number of
bits required to transmit the original signal divided by those
required for the transmission of the compressed one. For the
reconstruction fidelity, we computed the root mean square
error (RMSE) between the original and the compressed
signals. Next, we show results for ECG and PPG considering
biometric traces from the MIT-BIH and Physionet MIMIC
II databases [15].

As a first set of results, in Fig. 2 we plot the RMSE as
a function of the compression efficiency for the considered
algorithms. Here, the RMSE has been expressed as a percent-
age of the average peak-to-peak amplitude of the input signal.
Two variants of DCT and DWT have been implemented.

1A linear resampling technique is used for the results in this paper,
although other schemes based on quadratic and Spline interpolation can
also be used.
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Fig. 2. ECG signal: RMSE vs Compression efficiency.

In the first implementation (labeled DCT and DWT), the
compressor operates according to a controlled maximum
error tolerance, provided as an input parameter. Thus, at
each iteration, it checks how many and which transform
coefficients are to be retained (and sent) for maximum
compression performance, while meeting the given error
requirement (see [16]). A second and lightweight imple-
mentation (DCT-LW and DWT-LW) considers a threshold
on the amount of signal energy that is captured by the
selected coefficients, irrespective of the reconstruction error
at the decompressor. Note that LTC and our own codebook-
based (CB) scheme of Section III only operate according
to the first approach, i.e., setting the error tolerance. From
Fig. 2, we observe that there is no single best algorithm:
some schemes perform best in terms of RMSE and others in
terms of compression efficiency and they also differ in terms
of maximum achievable compression. At low compression
efficiencies, DCT and DWT provide the best reconstruction
fidelity. Their lightweight variants perform worse because
they have no way to assess which coefficients are the best
to be retained in terms of RMSE. As already observed
in [16], LTC has excellent results in terms of RMSE,
however its linear approximations only preserves the R
peaks (in the ECG case), while losing details elsewhere.
CB performs satisfactorily at low compression ratios and,
most importantly, maintains the RMSE quite small (see its
trend for an increasing compression efficiency) showing the
highest compression ratios, i.e., as high as 80 times for
the considered signal and 30% greater than the maximum
compression efficiency of LTC.

In Fig. 3, we show the RMSE against the energy drained
by the compression algorithms. As expected, DCT and DWT
are the most energy demanding and this is due to their
error checks in the selection of the coefficients, which
imply the execution of inverse transforms at the compressor.
LTC is energy efficient and is in fact a good candidate,
despite its simplicity (linear approximations). CB performs
in the middle between DCT / DWT and LTC. However, we
underline that the energy consumption of CB is dominated by
the bandpass filter and the peak-detection blocks of Fig. 1. To
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Fig. 3. ECG signal: RMSE vs energy consumption for compression.
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Fig. 4. ECG signal: compression efficiency vs total energy consumption.

see this, we have plotted the performance of CB without the
pre-processing blocks (termed “CB-NoPre”). As anticipated,
CB-NoPre is the most energy efficient algorithm. Note that
filtering is always performed to remove measurement arti-
facts and peak detection is also very often utilized to extract
relevant signal features such as the instantaneous heart rate.
Given this, the energy consumption associated with the
required pre-processing functions may not be a problem,
especially if these functions are to be executed anyway. In
Fig. 4, we show the compression efficiency against the total
energy consumption, where the latter is obtained summing
the energy required for compression and the subsequent
transmission of the compressed signal over a Bluetooth LE
wireless interface (a Texas Instruments CC2541 radio was
considered for the results in this paper). From this plot,
we see that the total energy consumption is dominated by
the transmission energy. As a consequence, the compression
efficiency is key to reducing the energy drained, but different
algorithms do not show noticeable differences.

The codebook size is quantified in Fig. 5. From this
graph, we postulate that it may make sense to use CB for
compression efficiencies, e.g., greater than 40. Within this
range, the number of patterns in the dictionary is smaller
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Fig. 5. ECG signal: codebook size N vs compression efficiency.

than 35, while the RMSE remains acceptable (i.e., within
the range 4, 6 % of the signal’s peak-to-peak amplitude, see
Fig. 3), surpassing all the other schemes.

In the last Fig. 6, we show the RMSE vs compression
efficiency performance for a typical PPG trace. These results
confirm those in Fig. 2 and the same conclusions where
also obtained for the other metrics. Note that for PPG the
maximum compression efficiency is 40 and this depends
on the lower signal’s sampling rate. We emphasize that the
described index-based compression strategy has a theoretical
limit on the maximum achievable compression efficiency,
which depends on the number of samples per segment for the
original signal versus the minimum number of features that
are transmitted by the compressor, namely, the index i , ot,
gt and the segment length ℓt. We stress that this theoretical
limit respectively corresponds to 80 and 40 times for ECG
and PPG, which are both reached by CB. Similar trends, not
shown due to space constraints, where also found for ABP
and RS traces.

V. DISCUSSION AND FUTURE WORK

In this paper, we have proposed a novel approach to the
design of codebook-based compression algorithms based on
motif extraction and pattern matching. This approach was
found to be superior to existing schemes in terms of com-
pression efficiencies, whilst retaining good reconstruction
accuracies at the decompressor. We remark that, in addition
to its compression capabilities, codebook-based schemes
enable further processing functions such as classification and
learning. In fact, the codewords (patterns) in the dictionary
and the related number of uses per codeword can be utilized
to assess statistical properties of the corresponding signals,
including their most relevant features. Our future develop-
ments are centered on these facts and on the study of self-
adapting dictionaries based on neural networks. These, in
addition to learning codewords at runtime, as we do here,
will also be capable of adapting them according to changes
in the signal statistics. Finally, we are exploring means to
extend the proposed pattern matching approach to signals
from other sources, such as wearable 9-axis motion tracking
sensor devices.
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Fig. 6. PPG signal: RMSE vs compression efficiency.
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