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Abstract— In this paper we focus on routing strategies for Wire-
less Sensor Networks over Hop Count (HC) virtual coordinates.
We consider the problem of optimally delivering data packets
by means of multi–hop forwarding techniques where we assume
that each node in the network, upon the execution of a proper
distribution algorithm, can obtain a hop count number, i.e., the
minimum number of transmissions needed to get to the sink
(destination) node on the shortest path. We exploit HCs in place
of commonly considered geographical coordinates as a valuable
indication of the direction towards the sink. Within this frame-
work, we present localized greedy routing schemes and compare
them against globally optimal solutions, where the objective is to
minimize a properly defined cost function. Further, we present
novel routing algorithms where the statistical knowledge of the
minimum costs of second order (two hops away) neighboring
nodes is used as an aid to drive the forwarding process. These
statistically enhanced schemes are found to outperform both hop
count greedy approaches and geographical routing of up to one
order of magnitude in terms of goodness of the selected path.

I. INTRODUCTION

IN the last few years, advances in the hardware for wireless
networking, micro–fabrication and embedded microproces-

sors technologies have made it possible to manufacture a
generation of large scale sensor networks of very small nodes
in a cost–effective way. Wireless Sensor Networks (WSNs) are
applicable to a large range of identification and field measure-
ment problems for both civilian and military applications (an
overview of sensor networks related problems and application
fields can be found in [1]). Two basic and very important
functionalities of WSNs are data forwarding and area coverage
capability. Nodes in the sensor field are equipped with sensors
that enable them to gather information from the surrounding
environment. This information is then forwarded through the
sensor field to reach special devices, usually referred to as sink
nodes (SNs), where the information gathered by the sensor
field is collected, processed, and eventually sent to a central
database. Sensor nodes usually have very limited computing,
memory and energy resources and for these reasons they cannot
perform complex operations.

One of the most challenging problems in such a complex
and resource constrained scenario is to provide energy efficient
solutions for data forwarding, so as to prolong network lifetime.
Further, due to the energy/computational constraints character-
izing micro–sensors, it is desirable to obtain this goal by means
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of very simple algorithms. In WSNs, classical pro–active [2]
or reactive [3][4][5] routing algorithms proposed for ad hoc
networks are not a good solution as they need a substantial
exchange of information among nodes to update routing tables.
In WSNs, due to energy constraints, this approach is not usable.
Instead, it is better to route packets by means of localized
schemes [6][7][8], where the next hop is decided, at every node,
based on a local view of the network and on a possibly limited
amount of global information [6]. A typical approach in this
sense is given by geographical routing schemes [7], where the
next hop is selected based on node geographical coordinates.
On the one hand, geographical algorithms route packets in a
best effort manner and only based on node distances. For this
reason they do not give any guarantee on the global quality
(cost) of the selected path. On the other hand, they have the
property of being very scalable and of exchanging a very
limited amount of routing information between nodes. In [8],
the authors focus on optimal advancements for geographical
routing in faded channels, by also studying the impact of link
layer ARQ. In the present paper we propose new routing solu-
tions that, while retaining the good qualities of geographical
routing, are also able to minimize a properly defined cost
function so that the selected path will be in some sense optimal.
The concepts driving the design of these schemes are similar
to the ones in geographical routing. However, two novelties
are introduced. First of all, node coordinates are replaced by
virtual coordinates, by substituting geographical positions with
node hop counts (HCs). Further, we devise optimal localized
routing algorithms over HC virtual coordinates. In particular,
HCs are used as an indication for the direction to follow to get
to SN, while both local information (nodes within range) and
statistical knowledge regarding the cost of out–of–sight nodes
are exploited in making forwarding decisions.

The paper is structured as follows. In Section II we introduce
WSN and cost models. In Section III we briefly introduce
the concept of hop count. In Section IV we propose two
greedy routing schemes based on the HC concept, whereas
in Section V we devise novel next hop selection rules which
take into account statistical information of neighbors located
two hops away. In Section VI we compare both greedy and
statistically enhanced HC schemes against optimal solutions
and geographical routing. Finally, Section VII concludes the
paper.

II. SENSOR NETWORK MODEL

We model the network as a weighted graph G = (M,A),
whereM is the set of nodes and A is the set of “arcs” or links
between nodes. Among the m = |M| nodes inM, we consider
a special device called sink node (SN) with the function of gath-
ering, storing and processing network messages. The function
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of the remaining m − 1 nodes is instead to generate traffic
and to forward packets towards SN using a multi-hop routing
technique. The set A is a set of ordered pairs (i, j), where i, j ∈
M. The pair (i, j) is referred here to as the directed arc (or
link) connecting node i to node j. It is worth noting that we are
keeping the communication/connectivity model as general as
possible, without making any specific assumption on physical
channel model, modulation and coding techniques. Therefore,
any further specification on radio propagation characteristics,
fading, etc. will not affect the validity of the model. Our
analysis is based upon the concept of neighboring sets, i.e.,
upon sets of nodes within coverage of a given node and at a
given time instant. We stress that neighboring sets may dynam-
ically vary between subsequent forwarding actions, depending
on the network configuration, fading phenomena, connectivity
model and, among other factors, node sleeping cycles [7][9].
It would therefore be infeasible to derive these sets once for
all, e.g., at the beginning of network operations, whereas it is
reasonable to obtain neighboring sets on–demand, when the
forwarding decision is actually made. Each arc (i, j) ∈ A is
characterized by a cost cij , which is strictly dependent on the
resources that are needed to transmit a message from node i
to node j. Such a function could be related, for instance, to
the energy required to transmit a single information bit, but
many other factors can also be taken into consideration, e.g.,
the congestion level at node j (which may be represented by the
state of its queue), the node failure probability or the residual
energy of the nodes, if they have to rely on a limited energy
reserve. In our investigation, we do not propose a specific
model to determine such costs, so as to keep our framework as
general as possible, but refer to related papers where the issue
of cost computation is addressed. We refer to the hop count
(HC) of a given node i ∈ M, HC(i), as the the minimum
number of transmissions needed to get to the sink on the
shortest path. Furthermore, we define Ni as the set containing
all the neighboring nodes of node i. We further define Ni(n),
Ni(n − 1) and Ni(n + 1), n ∈ N

+ as the sets of neighbors
of node i with hop count (HC) equal to n, n − 1 and n + 1,
respectively, where Ni = Ni(n−1)∪Ni(n)∪Ni(n+1). A path
from node i to node d is defined as an ordered list of nodes, i.e.,
P = {i, r1, r2, . . . , rn−1, d}, where nodes i and d are referred
to as the source and the destination node, respectively. The
intermediate nodes rj , j ∈ {1, 2, . . . , n−1} in P are referred to
as relay nodes. The cost C(P) of the entire path P connecting
i to d is found as the sum of the costs associated with every
link in the path1

C(P) = cir1 +
n−2∑
j=1

crjrj+1 + crn−1d (1)

In the present work, we assume that the cost cij of the link
between i and j does not depend on node i, that is, cij = cj ,
∀ j ∈M. This assumption is made here to simplify the notation
that will be used in the following analytical treatment. In fact,
with minor modifications the analysis can be re-written for the
general case where costs depend on both endpoints i and j.
Also, we observe that such a simplification of the cost model

1Under the hypothesis of additive cost function, see [10].

is reasonable, for instance, in scenarios where all nodes transmit
with the same constant power and/or when the objective is to
minimize any metric that is independent of the transmission
power. An example is given by the need to avoid congestion,
where queue states could be used at each node to calculate
congestion costs. In addition, we may relate costs to the residual
energy at every device. Let Ej and E be the residual and
initial energy of node j, respectively. The cost of transmitting
to node j could therefore be written as cj = 1−Ej/E, where
0 ≤ Ej ≤ E and cj ∈ [0, 1]. In this way, the smaller the amount
of still available energy from a node’s reserve, the higher the
cost to communicate with it. In the sequel, without loss of
generality we will consider normalized costs in [0, 1]. Observe
that the cost model is itself very important, as different models
influence the solutions found by cost–based routing algorithms.
Details on how link costs can be actually derived can be found
in [8][11][12][13][14]: in general, the link cost cij is written
as cij = f(f1(γij), f2(aj), f3(Ej)), where γij , aj and Ej are
the SINR associated with link (i, j) the node j’s advancement
towards SN and its residual energy, respectively. Moreover,
function f1(·) accounts for modulation, coding and possibly
ARQ, f2(·) accounts for the advancement towards SN provided
by node j and f3(·) for its residual energy. These functions
can be jointly considered through function f(·) that is often
modeled as a weighted sum [13] or a product [12][14]. Both [8]
and [13] focus on optimal forwarding in faded radio channels,
by calculating optimal forwarding distances and related cost
expressions. The algorithms presented in this paper can be used,
with minor modifications, with any of these cost models.

III. SETTING UP A MINIMUM HOP COUNT FIELD

In order to avoid the need to know the exact or the estimated
geographical position of network nodes, the following gradient
algorithm is adopted (similar to the one in [15]). The algorithm
has to be re–executed only when network nodes change their
positions. In the case of sensor networks characterized by fixed
nodes, it has to be executed only once in the deployment start–
up phase:

1) The sink node initially broadcasts a hop count packet
(hc pkt) with Hop Count (HC) value 1; all the sensors
that receive this packet store this value.

2) Each node that receives a hc pkt, say with hop count
i, broadcasts a new hc pkt with hop count i + 1. The
procedure is repeated recursively until all nodes in the
network have received and forwarded a hc pkt.

3) If a node receives more than one hc pkt, the one contain-
ing the lowest hop count value is considered to select the
hop count value (HC) for the current node.

The scenario we have in mind is one where nodes may be
stationary and are densely deployed and they can turn on and
off providing a random topology. We also consider that each
sensor can only transmit using a fixed power, i.e., no power
control is accounted for.

IV. GREEDY ROUTING ALGORITHMS

Next, we report two HC based greedy routing algorithms.
These scheme will be compared, in Section VI, against optimal
routing rules. The first greedy routing scheme (scheme 1) is
reported in Alg. 1, and is based on the same rationale as in [7],
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d← sink node;
i← current node;
repeat
Ni(n− 1) = {j ∈ Ni s.t. HC(j) < HC(i)};
i� = argmin{j∈Ni(n−1)} cj ;
Break ties arbitrarily. i← i�;

until i = d;

Algorithm 1: Scheme 1: greedy shortest path routing algo-
rithm.

with the difference that here the next hop is selected depending
on HCs rather than using geographical coordinates. When a
data packet is to be transmitted at a given node, say node i
with HC(i) = n, set Ni(n−1) is obtained from Ni by picking
all nodes j ∈ Ni for which HC(j) < HC(i) and the forwarding
process is driven towards the lowest cost node in Ni(n − 1).
In this way, we force a selection among those nodes leading
to a positive (maximum) hop count advancement towards the
sink. Therefore, scheme 1 selects shortest paths to SN. The
second scheme (scheme 2) routes packets towards the lowest
cost node in the set Ni(n− 1) ∪Ni(n). This routing scheme
aims at finding the lowest local cost node leading to a HC
advancement towards the sink greater than or equal to zero. It
shall be observed that scheme 2 aims at selecting optimal local
solutions, i.e., to select the minimum cost node contained in the
local view of the local forwarder. Scheme 2 may be obtained
from Alg. 1 by substituting Ni(n− 1) with Ni(n− 1)∪Ni(n)
and < with a ≤.

V. STATISTICALLY ASSISTED ROUTING ALGORITHM

A. Routing as a Sequential Decision Problem

We formulate the routing problem as a sequential decision
process, where at every decision stage a node has to take a
specific action, i.e., to select the best relay node for the current
transmission. In this work, we are interested in on–line routing
algorithms, where such forwarding decisions are made based
on local knowledge and on statistical measures related to the
second-order (two-hops away) neighbors of the current node.
Here, the local knowledge is the cost information for the nodes
within radio range. Throughout the paper, we will assume this
information as available through an ideal MAC and at no cost.
In fact, our main goal is to devise a forwarding criterion to
guarantee low cost paths; how this criterion can be combined
with practical MAC schemes is the objective of our current
and future research and is not within the scope of the present
paper. Next, we define some quantities to proceed with our
analysis. First, we assume that the currently occupied node is
node i ∈ M, that its hop count is HC(i) = n and that the
forwarding process is at stage t ∈ N, where time evolves one
unit every decision stage (i.e., every forwarding action). The
problem to be solved is to decide which is the best relay among
the nodes in sets Ni(n) and Ni(n−1). Nodes in set Ni(n+1)
are not considered as they very unlikely lead to satisfactory
solutions.2 We refer to jt

n−1 ∈ Ni(n − 1), jt
n ∈ Ni(n) and

to ct
n−1, ct

n as the minimum cost nodes3 in sets Ni(n) and

2This was verified through simulation as well as by previous work [7].
3In case there should be multiple nodes with the same minimum cost in one

of these two sets, we break ties arbitrarily as they are, by definition, equivalent.

Ni(n − 1) and their associated costs, respectively. We further
define forwarding cycle as the sequence of steps between the
forwarding stage where a node with hop count n is reached
for the first time and the stage where a neighbor with hop
count n − 1 is eventually selected as relay. That is, a cycle
is the number of stages it takes the decision maker (packet)
to advance one hop towards SN. The objective of our routing
algorithms is to minimize the total cost of the final selected
path, which is computed as in Eq. (1). Observe that the whole
path can be decomposed as a disjoint sequence of n forwarding
cycles4 and its total cost equals the summation of the costs
incurred in each cycle. Moreover, assuming that forwarding
cycles are statistically independent, the minimization of the
expected cost associated with the entire path is obtained by
minimizing the expectation of each term taken separately. In
such a case, devising a scheme to minimize the cost of the
full path is equivalent to devising an algorithm to minimize
the expected cost of forwarding cycles. These schemes are
presented in the following Section V-B.

B. Optimal Routing Rules

Consider t ≥ 0 to be the current forwarding step and consider
node i, with HC(i) = n, to be the currently occupied node.
Moreover, let jt

n−1 ∈ Ni(n−1) and jt
n ∈ Ni(n) and ct

n−1 and
ct
n, be the minimum cost nodes and their costs, respectively.

The decision maker at time t has to choose a forwarding action,
i.e., whether the packet has to be forwarded to node jt

n−1 or
jt
n. We define the action set and the decision maker’s current

state as At = {at
n−1 = jt

n−1, a
t
n = jt

n} and Xt = (ct
n−1, c

t
n),

respectively. Now, we suppose that if action a(t) ∈ At is taken
when in state Xt, at time t ≥ 0, a cost C(Xt, a(t)) ≥ 0 is
incurred. Furthermore, let time t = 0 be the stage associated
with the beginning of a new cycle. For any policy π, the total
expected cost incurred over time when X0 = X is the initial
state is defined as [16]

Vπ(X) = Eπ

[ +∞∑
n=0

C(Xn, a(n))|X0 = X

]
(3)

Observe that Vπ(X) is well defined, though possibly infinite
as C(Xt, at) ≥ 0. Moreover, let V (X) = infπ Vπ(X) be the
minimum expected cost under any policy. We say that a policy
π∗ is optimal if Vπ∗(X) = V (X), ∀ X . In order to seek for
an optimal policy, we start citing the main theoretical result
for negative dynamic programming [16], i.e., that the optimal
policy is determined by the optimality equation as follows

V (Xt) = min
a(t)∈At

[
C(Xt, a(t)) +

∫
DX

V (Xt+1) dF (Xt+1)
]

(4)
where Xt and Xt+1 are the current and the next state,
respectively, C(Xt, a(t)) is the cost incurred at the current
decision stage, where we consider C(Xt, a

t
n−1) = ct

n−1 and
C(Xt, a

t
n) = ct

n, the term
∫
DX

V (Xt+1) dF (Xt+1) accounts
for the average cost incurred in future decisions, DX is the
domain set of Xt+1 and F (Xt+1) is the cdf governing the
state for the next forwarding step. Our forwarding process
can be modeled as an optimal stopping problem, where at

4If the starting node i ∈ M has HC(i) = n.
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B1 =
{

Xt : C(Xt, an−1) ≤ C(Xt, an) +
∫
DX

C(Xt+1, an−1) dF (Xt+1)
}

=
{

Xt : ct
n−1 − ct

n ≤ E
}

(2)

the generic stage t the decision maker can decide to either
continue or stop. In the former case, a cost C(Xt, a

t
n) = ct

n

is paid and the cycle is continued, whereas in the latter the
cycle is ended with a final cost C(Xt, a

t
n−1) = ct

n−1 and the
integral

∫
DX

V (Xt+1) dF (Xt+1) is zero because once the cycle
has ended all the future costs are zero. V (Xt) (Eq. (4)) can
therefore be written as

min
[
C(Xt, an−1), C(Xt, an) +

∫
DX

V (Xt+1) dF (Xt+1)
]

(5)
Now, let us focus on set B1 in Eq. (2) on the top of the page,
where

E = E[ct+1
n−1] =

∫ 1

0

ct+1
n−1 dFmin(ct+1

n−1) (6)

is the expected minimum cost among nodes with hop count
n− 1 at stage t + 1 and Fmin(·) is the minimum cost cdf. B1

contains all states for which stopping is (on average) at least
as good as continuing exactly for one more period and then
stopping. The policy that stops the first time the process enters
set B1 is called one–stage look–ahead policy. In the sequel, we
will focus on this policy first. The one–stage optimal policy tells
us to stop at the stage in which set B1 is entered for the first
time, i.e., at time t we should select node jt

n−1 and end the
cycle only if ct

n−1 − ct
n ≤ E .

Before discussing about the optimality of the above one–
stage policy we need to introduce some quantities related to
the decision process. At every stage t ≥ 0, the decision maker
is asked to make a decision in the set At = {at

n−1, a
t
n}. If

decision at
n−1 is made node jt

n−1 is selected and the cycle
ends with a total cost Ctot(t), where

Ctot(t) = Cpar(t) + ct
n−1 (7)

where Cpar(t) is obtained as

Cpar(t) =




0 t < 1
t−1∑
i=0

ci
n t ≥ 1

(8)

Instead, if decision at
n is made, the cycle is continued towards

node jt
n with an accumulated partial cost Cpar(t+1). Observe

that when Cpar(t + 1) ≥ Ctot(t) there is no point in further
searching for a better path and the cycle should end. The
minimum cost of the paths encountered by the decision maker
up to and including time t is evaluated as

Cmin
tot (t) = min

0≤k≤t

{
Ctot(k)

}
(9)

A graphical representation of the decision tree and related
quantities is reported in Fig. 1. In the following, we prove that
the one–stage policy dictated by set B1 above is not globally
optimal.

D

C

B

A
STEP 0

STEP 1

STEP 2

STEP 3

STEP 4

Cmin
tot (3)

c0
n−1

c1
n−1

c2
n−1

c3
n−1

c4
n−1

Ctot(t + 1 = 4)

c0
n

c1
n

c2
n

c3
n

Fig. 1. Decision tree after 4 steps. The current stage is step t = 3, whereas
c4n−1 is the unknown cost of the minimum cost node with hop count n − 1
at the next step. A, B, C and D are all the possible paths encountered so far.
Cmin

tot (3) = min{Cost(A), Cost(B), Cost(C), Cost(D)}.

Theorem 1 The one–stage look-ahead forwarding policy
defined by set B1 is not globally optimal.

Proof: Let P1 be the one–stage policy dictated by set B1

above and let t1 be the generic time at which set B1 is entered
for the first time. Further, let P2 be a second policy that stops
according to set B1 as long as Ctot(t) = Cmin

tot (t) and that
stops with probability one when Ctot(t) > Cmin

tot (t). Note that,
as P1 stops at time t1 the following inequalities must hold:
c0
n − c0

n−1 > E , c1
n − c1

n−1 > E , . . . , ct1−1
n − ct1−1

n−1 > E , ct1
n −

ct1
n−1 ≤ E . Observe that for t1 ≥ 1 the previous constraints are

not enough to guarantee that Ctot(t2) is equal to the minimum
cost Cmin

tot (t2) for every step t2 < t1. Therefore, on the average
there is a non zero probability that P2 will stop at t2 < t1
given that t1 is the stopping time for policy P1, and since this
is true for every t1 ≥ 1 and the average cost of stopping at
t2 < t1 is strictly lower than the average cost of stopping at
t1, the expected total cost of policy P2 is strictly lower than
the expected total cost of policy P1. The theorem follows as
another policy (P2) exists with a strictly lower expected cost
than policy P1. �

In order to seek for an optimal policy to minimize the total
cost of a cycle, let us consider the following extended version
of the forwarding problem. At the generic step t, the decision
maker must choose an action in the set At = (at

n−1, a
t
n), where
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d← sink node
s← source node
Cmin

tot ← +∞
Cacc ← 0
T ← ∅
repeat

i← current node
node jn−1 s.t. cn−1 = min

z∈Ni(n−1)
{cz}

node jn s.t. cn = min
z∈Ni(n)

{cz}
Cmin

tot ← min{Cmin
tot , Cacc + cn−1}

if (Cmin
tot − (Cacc + cn) ≤ E) or (jn ∈ T ) then

- select next hop j ← jn−1

- Cacc ← 0
- Cmin

tot ← +∞
else

- select next hop j ← jn

- Cacc ← Cacc + cn

end

Update tabu list T :
begin

- T ← T ∪ j
- Delete nodes with age ≥ tabulen from T

end
until i = d;

Algorithm 2: Multi–stage Statistically–Assisted greedy
Routing Algorithm (SARA). A tabu list T is used to prevent
ping-ponging between nodes at the same hop count distance.

at
n−1 is equivalent to stopping thereby choosing node jt

n−1,
whereas action at

n means to continue the path search towards
the current minimum cost node with hop count n (jt

n). At
every decision stage t, the decision maker knows the previously
encountered costs {c0

n−1, c
0
n, c1

n−1, c
1
n, . . . , ct

n−1, c
t
n} and can

therefore evaluate the minimum cost of all paths encountered
so far Cmin

tot (t) (Eq. (9)). We now assign the cost Cmin
tot (t) to

action at
n−1; this is the cost incurred in stopping at stage t. The

decision maker should therefore stop as Cmin
tot (t) = Cmin

tot (t+1)
(stopping rule), where Cmin

tot (t + 1) = min(Cmin
tot (t), Ctot(t +

1)). This is equivalent to stopping when continuing the for-
warding process for one more stage (t → t + 1) does not
lead to any improvement in terms of the cost of the solution
found. It is worth observing that the stopping rule above tries
to drive the forwarding process towards those paths for which
Cmin

tot (·) is strictly decreasing, i.e., to seek for the lowest
cost solution. From what discussed above, it easily follows
that the stopping rule is verified iff Cmin

tot (t) ≤ Ctot(t + 1),
(Ctot(t+1) = Cpar(t+1)+ ct+1

n−1) and that the corresponding
one–stage policy obeys the following stopping set

B2 =
{

Xt : Cmin
tot (t)− Cpar(t + 1) ≤ E

}
(10)

where, in this case Xt = (c0
n−1, c

0
n, c1

n−1, c
1
n, . . . , ct

n−1, c
t
n),

while E , Cpar(t + 1) and Cmin
tot (t) are defined in Eqs. (6), (8)

and (9), respectively. The one–stage policy dictated by the

previous set states that it is convenient to stop at time t
whenever the expected cost of stopping at time t+1 is greater
than or equal to the minimum cost of all paths encountered
through time 0 to t. In the following, we prove that the on–line
forwarding strategy dictated by the stopping set B2 is globally
optimal.

Theorem 2 The one–stage look-ahead forwarding policy
defined by set B2 is globally optimal.

Proof: The result follows by showing that B2 is a closed
set of states (see [16], Theorem 2.2, p. 54, or [17], p. 164).
In particular, B2 is closed if Xt ∈ B2 implies that Xτ ∈ B2,
∀ τ > t. The set rule can be re-written as Cpar(t + 1) + E ≥
Cmin

tot (t). Now, assume that this rule is verified at the generic
time t with Xt, then it is verified for Xτ , ∀ τ > t since Cmin

tot (t)
and Cpar(t + 1) are non increasing and non decreasing in t,
respectively. �

The theorem above tells us the globally optimal behavior
that the decision maker has to follow to minimize the expected
cost of a cycle. We stress that the optimal on–line policy
dictated by set B2 is the one leading to the minimum long term
expected cost (Eq. (3)), among all on–line policies exploiting
first (ct

n, ct
n−1) and second (E , i.e., two-hops away nodes) order

cost information. This is the scheme that in Section VI will
be tested against the optimal cost solution obtained by means
of an off–line shortest path tree algorithm [18]. This Multi–
Stage algorithm is named SARA (Statistically–Assisted greedy
Routing Algorithm); in Alg. 2, we report its full version, where
a tabu list T is used to avoid loops and ping–ponging between
nodes at the same hop count distance. The algorithm is a
straightforward implementation of Eq. (10) (set B2).

VI. RESULTS

As a reference model for the performance evaluation we
consider a random topology network with normalized node
density λn = λπR2, where λ is the average number of nodes
per unit area, whereas R is the constant node transmission
range. We consider a unit disk connectivity model, i.e., two
nodes can communicate iff their distance is lower than or equal
to R. However, we stress that the schemes presented here can
work for any topology setting as λ and connectivity model just
translate into different neighboring sets. In this sense, λn can
be seen as the average number of nodes actually awake within
coverage. In the following results, we consider a normalized
density λn = 15, R = 1, nodes are randomly and uniformly
deployed on a square area of 16R× 16R and we focus on the
performance of a source node (originator of the message) with
hop count equal to 8. Moreover, every node is assumed to have
a good estimate of the expected minimum cost E (Eq. (6))5,
in its second order neighborhood. This is assumed here with
the aim of understanding how far we can get with statistically
assisted policies. The performance reported in this section is
therefore valid from a theoretical point of view and gives us an
indication of the maximum achievable gains, i.e., under ideal
MAC and with a perfect estimate of E . As will be shown
next, the performance gain is good and thereby encouraging

5As a reference model, in this section node costs are considered to be
uniformly distributed in [0,1].
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Fig. 2. Complementary distribution function of the cost difference between
greedy routing and the (off–line) non–dominated optimal cost solution.

to proceed with further research. In addition to the hop count
based schemes discussed above, we consider an idealized
geographical routing algorithm where we subdivide the relaying
area into a number Nr of priority regions, according to the
related advancement towards the destination [7]. Moreover,
we pick the relay node as the lowest cost node within the
highest priority and non–empty region, i.e., the lowest cost node
among those leading to the maximum advancement towards
the destination. This is an idealized version of geographical
forwarding for two reasons: we consider an ideal MAC and
we always select the best (lowest cost) node leading to the
maximum advancement. In the sequel, this scheme is compared
with the previously proposed hop count routing strategies. In
Fig. 2, we report the performance of the geographical routing
scheme (GEO) against the on–line routing schemes presented in
Sections IV and V. In particular, we plot the probability that the
cost obtained with on–line algorithms will exceed the optimal
cost solution by a given percentage ∆C of the total path cost.
Clearly, geographical routing performs worse than both greedy
(scheme 1 and scheme 2) and SARA HC algorithms, since
maximizing geographical advancement is not a good strategy
to select low cost paths. It shall also be observed that the node
selection strategy considered here for the GEO scheme could
be improved if advancements and costs are considered jointly.
However, how to relate these two metrics to obtain good global
solutions is not a simple task and is one of the objectives of
our current research. Furthermore, it is worth observing that the
exploitation of one–step ahead cost predictions makes SARA
perform significantly better than both scheme 1 and scheme 2.
If we consider scheme 1 (the shortest path HC greedy scheme)
we note an advantage of about one order of magnitude when
∆C = 150%. In addition, Fig. 2 also reveals a tremendous
improvement over pure geographical routing as Nr increases.

VII. CONCLUSIONS

In this work, we introduced and discussed hop count based
routing schemes for wireless sensor networks. In these algo-
rithms, the hop count information is taken into account to drive
the forwarding process towards low cost paths. In particular, we

have proposed SARA, a HC routing policy where statistical
estimates of the cost regarding out–of–sight nodes are used as
an aid to drive the forwarding process towards good solutions.
Results show improvements of up to one order of magnitude
with respect to both HC greedy forwarding and geographical
routing. We observe that the achievable gains obtained in this
work can be seen as upper bounds as they were obtained
without accounting for estimation errors and considering an
ideal MAC layer, i.e., the cost information regarding in range
nodes is obtained at no communication cost. The next steps
are therefore to propose a properly designed MAC scheme
to be coupled with the SARA routing strategy and test the
achievable gains with respect to geographical solutions. Further,
we still need to devise good estimators for E and to verify the
dependence on the estimation error.
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