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Abstract The main goal of this paper is to provide routing–

table-free online algorithms for wireless sensor networks

(WSNs) to select cost (e.g., node residual energies) and de-

lay efficient paths. As basic information to drive the rout-

ing process, both node costs and hop count distances are

considered. Particular emphasis is given to greedy routing

schemes, due to their suitability for resource constrained and

highly dynamic networks. For what concerns greedy for-

warding, we present the Statistically Assisted Routing Al-

gorithm (SARA), where forwarding decisions are driven by

statistical information on the costs of the nodes within cov-

erage and in the second order neighborhood. By analysis,

we prove that an optimal online policy exists, we derive its

form and we exploit it as the core of SARA. Besides greedy

techniques, sub–optimal algorithms where node costs can be

partially propagated through the network are also presented.

These techniques are based on real time learning LRTA algo-

rithms which, through an initial exploratory phase, converge

to quasi globally optimal paths. All the proposed schemes

are then compared by simulation against globally optimal

solutions, discussing the involved trade–offs and possible

performance gains. The results show that the exploitation

of second order cost information in SARA substantially in-

creases the goodness of the selected paths with respect to

fully localized greedy routing. Finally, the path quality can

be further increased by LRTA schemes, whose convergence
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can be considerably enhanced by properly setting real time

search parameters. However, these solutions fail in highly

dynamic scenarios as they are unable to adapt the search

process to time varying costs.
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Greedy forwarding policies · Online optimization

techniques · Protocol design · System analysis

1. Introduction

In the past few years, a great deal of work has been pursued

to design efficient routing algorithms for Wireless Sensor

Networks (WSNs) [1–10]. These networks should operate

unattended for long period of times. Their task is to sense

the environment and report their measurements to a single or

a few special nodes referred to as sinks. These nodes are

in charge of further processing the gathered data as well

as forwarding it to some data collection point in the net-

work. A crucial aspect in WSNs is to save energy, so as to

prolong the network lifetime. However, energy saving does

not come alone; equally important goals are to avoid loops

in packet routing, control the packet delivery delays, mini-

mize collisions at the MAC layer and include these features

in scalable routing algorithms. Moreover, WSNs are much

more energy/computationally constrained than, e.g., Mobile

Ad hoc NETworks (MANETs [11]) and this makes these

challenges more difficult to be solved. In addition, due to

the importance of saving energy, routing schemes should be

designed to limit the information exchanged to update rout-

ing tables and, at the same time, they should still be capable

of selecting good paths. A commonly accepted approach to

save energy is to periodically switch off the radio of some

nodes in the network [4, 5, 12], thereby leading to a possibly
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intermittently connected and highly dynamic environment. In

such a scenario, conventional ad hoc routing schemes such

as DSR [13], AODV [14] and others [15–17], could fail.

Specifically, reactive schemes [13,14] could fail to discover

a complete path, while proactive ones [17] could fail to con-

verge, resulting in a network flooded with topology update

messages. A possible solution is to not account for routing

tables at all [2–4,7]. In fact, a generic sensor node only needs

to know which is the best node to be selected as relay for the

current transmission and does not necessarily need to have a

full description of the network.

In line with this, in this paper we present routing solu-

tions that we name Statistically Assisted Routing Algorithms

(SARA). SARA is a family of forwarding techniques where

the path selection is accomplished through a hop-by-hop for-

warding process, accounting for the state of the nodes within

transmission range, and statistically accounting for the state

of the nodes placed outside the coverage area. Each node

is assumed to know its own cost and hop count value. The

cost is used to represent the state of a candidate relay as

well as of the link connecting it to the current node. Possi-

ble cost models are discussed in Section 3. The hop count

(HC), instead, is the number of hops separating the node

from the destination (sink) in the minimum hop path [18].

HCs are used here just as coordinates are exploited in ge-

ographical routing [1,4,6,19,20], i.e., to have an indication

of the distance that separates the current node from the sink

and therefore drive the forwarding process towards a well–

defined direction. In addition, nodes are assumed to have

statistical knowledge about the minimum cost in their sec-

ond order neighborhood, i.e., regarding the nodes that are

placed two hops away and in the direction towards the sink.

In Section 5.4, it is shown that an optimal online station-

ary routing policy under the considered system model exists.

This policy is used as the core of the SARA scheme. In ad-

dition to greedy forwarding, in Section 5.5 we also present

online optimization routing algorithms based on real time

search techniques [21], where cost estimates are propagated

through the network with the aim of approaching optimal

paths. These solutions are effective as the network dynam-

ics is slower than the dynamics of the path searching phase.

We introduce these schemes to understand whether online

search with the subsequent propagation of node costs can be

feasible and, in such a case, what the expected gains are in

terms of path cost.

The paper is structured as follows. In Section 2 we review

the related work. In Section 3, we introduce the network

models along with the assumptions that we have considered

to carry out the analysis. In Section 4, we introduce the con-

cept of path optimality by discussing the exact algorithm

that is used to compute optimal paths. These are used as a

benchmark for the considered online schemes. In Sections 5.1

to 5.4, we present several greedy routing algorithms by in-

vestigating optimal localized routing rules. In Section 5.5,

we focus on sub–optimal algorithms where the cost infor-

mation can be propagated through the network. These al-

gorithms find cost–efficient paths through controlled search

techniques. In Section 6, we compare the routing schemes

with each other and with optimal off–line solutions, dis-

cussing their efficiency in terms of path quality and their

suitability as a function of the network dynamics. Section 7

concludes the paper.

2. Related work

Several algorithms have been proposed so far to obtain scal-

able and efficient routing over WSNs. A widely considered

approach to the routing problem consists of geographical

routing [1,4,6,22–24], where nodes know both their own co-

ordinates and the coordinates of the sink. Within geograph-

ical routing, data forwarding is usually achieved by deliv-

ering the packet to the node with the largest geographical

advancement towards the sink. This technique is named as

Most Forward within Radius (MFR) [25]. If the forwarding

set is temporarily empty, and this could happen if all nodes

in the set are asleep for energy saving purposes, the relay

election fails and has to be re-scheduled to a later time. This

may also happen due to the presence of low connectivity ar-

eas (connectivity holes). In the latter case, additional mech-

anisms [1], [26] are required to get around low connectivity

regions. A common solution to achieve energy saving is to

allow nodes to periodically turn off their radio [4,5,10,12].

In [4], the authors consider MFR geographical routing by

presenting a cross-layer approach for the efficient selection

of relay nodes. They divide the forwarding areas in prior-

ity regions according to the related advancements. Nodes

in higher priority regions are the first to contend to be the

relay. In [5,12] the authors propose topology management

and MAC protocols for WSNs which aggressively exploit

sleeping modes to save energy. In [10] the authors report

both analytical and test bed results by showing the bene-

fits of putting nodes to sleep and awake them when needed,

i.e., in case of loss of connectivity. In [9], the authors focus

on geographical localized routing, by introducing the new

concept of optimal topology knowledge range. The main

idea is to locally and dynamically adjust the transmission

power to get the optimal amount of topology information

and make efficient routing decisions. Papers [22–24] couple

geographical routing with residual energy and link quality as-

pects; these are included into link cost metrics. The relay is

elected through probabilistic channel access schemes where

nodes with low cost are prioritized. We observe, however,

that all geographical routing approaches have several prob-

lems which may be due to low connectivity areas or to the

impossibility, in some environments (e.g. underwater sensor

networks [27]), to get accurate position estimates. Moreover,
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dealing with node coordinates and related trigonometric for-

mulas may be computationally expensive and/or energy con-

suming for resource constrained WSNs. The geographical

knowledge can be avoided by algorithms such as [3,28,29]

which use probabilistic, gossip-based or controller flooding

algorithms. These solutions are valuable in highly intermit-

tently connected networks, where the position information

is not available or too expensive to achieve due to the high

network dynamics. The main drawback of these solutions is

the usually large overhead induced by the transmission of

multiple copies of a single packet. Other solutions consider

hop count (HC) routing [2, 7, 30–33], where the geographical

information is substituted by an integer number representing

the number of transmissions needed to reach the sink on the

shortest path. In [2] the authors present directed diffusion,

where the sink queries sensor nodes by disseminating an in-

terest, i.e., a list of attribute–value pairs for the desired data.

Subsequently, reverse paths are built from all potential sens-

ing sources to the sink following the gradients created during

the interest dissemination. In addition, reinforcement mech-

anisms are exploited to select high quality paths among the

multiple paths available. In GRAB [7], HC based cost fields

are built (during the interest dissemination) and maintained

to provide each sensor with a criterion to forward data. Costs

are accumulated from the sink up to the interested sensing

units. However, the cost field needs to be periodically updated

as link costs vary for the scheme to be effective. In [31,32],

packets are forwarded along strictly decreasing HC gradi-

ents. Also, they present several techniques to deal with HC

reconfiguration and energy–aware next hop selection. In the

present paper, we propose online algorithms based on HC

gradient. However, we do not propagate cost information

from the sink to the sensor nodes but we rather pick the next

hop on-the-fly and based on local cost information. For this

reason, when the link cost dynamics is high, our scheme is

more robust with respect to [7]. Also, our work generalizes

previous approaches [2,31,32] as we model the path quality

through generic cost functions by devising optimal routing

policies that, in order to increase the path quality, also ex-

ploit non–decreasing HC directions and statistical measures

of two–hops away link costs.

3. Network model

We model the network as a weighted graph G = (N , A), con-

sisting of a set N of nodes that is composed of |N | − 1 nodes

and one special node (the sink) whose function is to gather

and process network messages. A is a set of ordered pairs

(i, j), i, j ∈ N . (i, j) is referred to as the arc (or link) con-

necting node i with node j . Each link (i, j) has a cost cij

that depends on both endpoints i and j . For the connectivity,

we consider bi-directional links, but we assume asymmetri-

cal costs, i.e., in general, cij �= c ji . To keep the analysis as

general as possible, we do not specify here a specific propa-

gation model. In fact, our framework is based on neighboring

sets, i.e., on sets of nodes within coverage that satisfy cer-

tain properties (see Section 5.1). In fact, as the network may

be highly dynamic, these sets may vary between subsequent

forwarding actions and therefore depend on many factors

such as connectivity model and node sleeping cycles. For

this reason, it makes sense to obtain these sets on–demand

when the forwarding decision has to be made. This may be

implemented as in [4,22], where the next hop is elected by

means of a probabilistic channel contention every time a

packet has to be transmitted. In such a case, we might asso-

ciate higher access probabilities to the more desirable nodes

within range, i.e., to the lowest cost nodes. As an example,

the cost may be expressed as a function of several quantities:

cij = f (Ps
ij , Eres

j , a j ), where Ps
ij is the link quality (packet

success probability), Eres
j is the normalized residual energy

of node j , and a j is the normalized advancement towards the

destination associated with node j .1 Several forms for the

cost function can be found in [22,24,34]. In [24], for instance,

the cost is calculated as cij = 1 − a j Ps
ij , where a j Ps

ij is the

expected advancement towards the sink. In [34] the authors

calculate link costs based on both energy (Eres
j ) and infor-

mation progress (a j Ps
ij ) as cij = 1 − a j Ps

ij Eres
j . In [22] the

cost is modeled through a weighted sum cij = ξ (1 − Eres
j ) +

(1 − ξ )(1 − a j ), ξ ∈ [0, 1] and Ps
ij is accounted by proba-

bilistically ruling out nodes with a low Ps
ij in the channel

access. In more detail, on receiving a forwarding request, the

potential relay nodes calculate Ps
ij and decide not to partici-

pate in the subsequent channel contention if Ps
ij is too small.

The nodes deciding to take part in the channel contention

probabilistically contend to be the relay and contention prob-

abilities are calculated as a function of link costs. We observe

that the cost can also be associated with other factors such

as transmission power and path delay [24]. In the present

paper we do not account for a specific cost model, by how-

ever observing that our framework can work with any of the

approaches above. Furthermore, throughout the paper we as-

sume link costs cij to be independent of the starting node

i , cij = c j , ∀ i, j ∈ N . This assumption is made to keep the

notation simple. In fact, the analysis that we present next still

holds in the general case where costs depend on both i and

j . Also, throughout the paper and without loss of generality

we consider normalized costs in [0, 1]. For every node i ∈ N
we define its hop count (HC(i)) as the minimum number of

transmissions needed to get to the sink [2, 7, 30–33]. The

interested reader is referred to the above references for more

details on how HC fields can be created and maintained. We

1 The residual energy and the advancement are usually normalized with
respect to the initial energy reserve and the maximum transmission
range, respectively.
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do not address these issues here, as the focus of the present

paper is on routing schemes exploiting the HC information.

We therefore assume node HCs as given and without estima-

tion errors. We define Ni as the set containing all the neigh-

boring nodes of node i . We also define Ni (n), Ni (n − 1)

and Ni (n + 1), n ∈ N+ as the sets of neighboring nodes of

node i with HC equal to n, n − 1 and n + 1, respectively.

We define a path P from node s to node d as an ordered list

P = {s, r1, r2, . . . , rk, d}, where nodes s and d are referred

to as the source and the destination, respectively, whereas

r j , j ∈ {1, 2, . . . , k} are referred to as relay nodes. The cost

C(P) associated with path P is calculated as2

C(P) = csr1
+

k−1∑
j=1

cr j r j+1
+ crk d (1)

In addition, for each pathP we consider its length, expressed

as D(P), i.e., the number of links in path P . In the sequel,

we refer to D(P) as path delay. The choice of selecting an

additive cost function as the path cost criterion is reasonable

since additive metrics arise in many settings. For instance,

end-to-end delay, delay jitter, maximum total residual energy

and reliability all correspond to the sum of link weights.

In the reliability case, in fact, the sum of the logarithms of

the link failure probabilities can be used to minimize their

product [18].

4. Optimal routing as a bicriteria
optimization problem

Our main concern in this paper is to devise efficient online

algorithms to provide both cost and delay efficient paths.

Of course, it is valuable to compare the goodness of these

paths against optimal paths to understand how close we can

get to optimal performance. Hence, we introduce here the

technique that we have considered to find optimal solutions.

Optimal paths are found by solving a bicriteria optimiza-

tion problem, where the two optimization criteria are the

total path cost C and the path delay D. In particular, for a

given network topology and node cost distribution we are

interested in finding the collection of all the optimal paths

connecting every pair of nodes in the network. The word

optimal deserves some explanation. Here, we are to solve a

multi–objective optimization problem, where in general the

two objective functions represent non–comparable criteria.

The problem is that the meaning of optimum is not well de-

fined in this context [35]. To overcome this fact and to give an

interpretation to the notion of optimum, we utilize the con-

cept of Pareto optimality [36]. The Pareto optimum almost

2 Under the hypothesis of additive cost function, see [18].
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Fig. 1 A graphical example for the Pareto optimal set (black filled
circles)

always does not give a single solution but a set of solutions

called non-dominated set [35]. This set, for a given source-

destination pair (s, d), consists of the collection of all the

non–dominated, loop free paths connecting node s to node

d. Here, we obtain non–dominated set by means of standard

bicriteria Shortest Path Tree (SPT) algorithms [37]. For il-

lustration, consider Fig. 1, where we report seven points in

the cost (C) delay (D) plane corresponding to all paths con-

necting a given (s, d) pair. The non–dominated Pareto set is

{P1, P4, P5}. For instance, P4 dominates both P2 and P7 as it

provides better performance for both metrics C and D. How-

ever, P1 and P4 do not dominate each other as solution P4 has

a smaller cost and a longer delay. In practice, non–dominated

solutions perform better for one criterion and worse for the

second one. Hence, it does not make sense to pick dominated

solutions as they are inefficient, i.e., they can be outperformed

for both metrics by a non–dominated solution. In Section 6,

we compare online routing algorithms against the minimum

cost non–dominated solution OPT-CO (P5 in Fig. 1) and the

non-dominated solution with the shortest delay OPT-DO (P1

in Fig. 1).

5. Sub–optimal forwarding strategies

In this section, we investigate two possible sub–optimal rout-

ing strategies. First, in Sections 5.1 to 5.4 we focus on local-

ized greedy forwarding strategies. Later on, in Section 5.5 we

consider online search algorithms, where a controlled back–

propagation of the costs in the network is allowed with the

aim of selecting quasi globally optimal paths.

5.1. Greedy forwarding techniques

Assume that the current node is node i with HC(i) = n, and

that a next hop in set Ni has to be chosen for forwarding
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purposes. The next hop can be either in set Ni (n − 1) or

Ni (n), set Ni (n + 1) is not considered since, as shown in

Section 6, the nodes therein rarely lead to an increase of

the path quality. Let nodes jn−1 ∈ Ni (n − 1) with cost cn−1

and jn ∈ Ni (n) with cost cn be the minimum cost nodes

in sets Ni (n − 1) and Ni (n), respectively. If in Ni (n − 1)

(Ni (n)) there is more than one node with the same mini-

mum cost, the minimum cost node jn−1 ( jn) is selected by

breaking ties arbitrarily. Nodes with both the same minimum

cost and HC distance in our framework are, in fact, equiv-

alent. The relay node is selected by means of the generic

function Pn−1(cn−1, cn). In particular, node jn−1 is selected

with probability Pn−1(cn−1, cn), whereas node jn is selected

with probability Pn(cn−1, cn) = 1 − Pn−1(cn−1, cn). In this

paper, we investigate the following three specializations of

the probabilistic scheme presented above

(1) In the first scheme, node jn−1 ∈ Ni (n − 1) is al-

ways selected as the relay node (Pn−1(cn−1, cn) = 1,

∀ (cn−1, cn)). This strategy may be far from being opti-

mal from the cost point of view, but always corresponds

to the shortest path in terms of number of hops.

(2) In the second scheme, node j ∈ {Ni (n − 1) ∪ Ni (n)}
with the lowest cost is selected as the relay node. The

function P(·) is specified as follows: Pn−1(cn−1, cn) = 1

if cn−1 ≤ cn and Pn−1(cn−1, cn) = 0 otherwise. In the

case where cn−1 = cn , node jn−1 ∈ Ni (n − 1) is pre-

ferred to achieve a positive advancement towards the

destination.

(3) In the last scheme, which can be seen as a

generalization of the previous one, if cn−1 ≤ cn

node jn−1 ∈ Ni (n − 1) is always selected as be-

fore (which corresponds to Pn−1(cn−1, cn) = 1 for

cn−1 ≤ cn). If on the other hand cn−1 > cn , a prob-

abilistic selection is made between nodes jn−1 and

jn . In particular, node jn−1 is selected with proba-

bility Pn−1(cn−1, cn) = pn−1(cn−1, cn), whereas node

jn is selected with probability 1 − pn−1(cn−1, cn).

(Note that the previous scheme corresponds to

pn−1(cn−1, cn) = 0 for cn−1 > cn .) Suitable forms

for the function pn−1(cn−1, cn) are presented in

Section 5.3.

5.2. Analysis of greedy forwarding strategies

In this section, we characterize both energy expenditure and

delay of the previously proposed greedy forwarding schemes.

We assume that node i is the node currently occupied by

the forwarding process, where HC(i) = n. For analytical

tractability we assume to have, at every node i , Kn−1 ≥ 1 and

Kn ≥ 1 nodes inNi (n − 1) andNi (n), respectively. Kn−1 and

Kn are assumed to be constant. Observe that this assumption

is not restrictive and can be easily removed through a more

τn

pn     n

n     n–1p
τn–1

n–1n

Fig. 2 Transition diagram for the greedy forwarding technique

cumbersome analysis, but leaving the approach unchanged.3

We indicate the cost of node i as ci ∈ [0, 1], where Ci is the

related r.v. Moreover, we express the cumulative distribution

function (cdf) of the cost at node i as Fi (c) = Prob{Ci ≤ c}.
Costs of different nodes are assumed to be independent. Now,

consider N nodes, randomly picked from Ni . We define a

further r.v. X N as the minimum cost among these N nodes,

X N = min{C1, C2, . . . , CN }. The cdf of X N is given by

Fmin(c|N ) = 1 −
N∏

j=1

[1 − Fj (c)] (2)

We observe that, when all nodes are characterized by the

same cost distribution, i.e., Fi (c) = F(c) ∀ i , fmin(c|N ), the

probability density function (pdf) of X N , is fmin(c|N ) =
N (1 − F(c))N−1 f (c), where f (·) is the node cost pdf. Now,

referring to the greedy forwarding algorithms in Section 5.1,

at the generic node i with HC(i) = n, the probabilities of

selecting a node with HC equal to n − 1 or n are derived as

follows

pn→n =
∫ 1

0

∫ 1

0

g(cn−1, cn)Pn(cn−1, cn) dcndcn−1

pn→n−1 =
∫ 1

0

∫ 1

0

g(cn−1, cn)Pn−1(cn−1, cn) dcndcn−1 (3)

where pn→n is the probability of selecting a relay node j
with HC( j) = n, given that the current node i has HC(i) = n,

whereas pn→n−1 is the probability of selecting a node j with

HC( j) = n − 1. g(cn−1, cn) = fmin(cn−1|Kn−1) fmin(cn|Kn)

is the joint pdf of the minimum costs for the Kn−1 and Kn

nodes in sets Ni (n) and Ni (n − 1), respectively. Pn(cn−1, cn)

and Pn−1(cn−1, cn) = 1 − Pn(cn−1, cn) are defined in Sec-

tion 5.1. Now, refer to the transition diagram in Fig. 2. The

forwarding process is a discrete time process that, at every

stage, evolves by selecting a next hop that is either in set

Ni (n − 1) or in set Ni (n). Let stage 0 be the discrete in-

stant at which this process enters node i with HC(i) = n for

3 The full approach also requires the joint distribution of Kn−1 and Kn .
However, the delay and cost metrics obtained in this section can be
easily plugged in the full analysis through a further expectation.
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the first time. We define a cycle as the forwarding history

between time 0 and the stage in which a node with HC n − 1

is selected for the first time, i.e., the first stage where a posi-

tive hop count advancement towards the destination occurs.

The number of stages it takes to complete a cycle is referred

to as the cycle duration, D, and is the number of subsequent

forwarding events needed to complete the cycle. The aim of

the following analysis is to characterize the cycle in terms of

cost and delay. The mean E[D] and the variance σ 2
D of the

delay D, are derived as

E[D] = pn→n−1

+∞∑
n=1

n pn−1
n→n = 1

pn→n−1

σ 2
D = E[D2] − E[D]2 = 1 − pn→n−1

p2
n→n−1

(4)

where fD(n) = pn−1
n→n pn→n−1, n ≥ 1 is the cycle duration

probability mass function (pmf). The computation of the cost

metrics is slightly more complicated. We refer to transitions

n → n − 1, n → n and to their associated costs as τn−1, τn

and cn−1, cn , respectively (see Fig. 2). The k-th order mo-

ments of the cost associated with each transition, E[Ck |τn−1]

and E[Ck |τn], are given by

E[Ck |τn−1] =
∫ 1

0

∫ 1

0

gn−1(cn−1, cn) ck
n−1 dcndcn−1

E[Ck |τn] =
∫ 1

0

∫ 1

0

gn(cn−1, cn) ck
n dcndcn−1 (5)

where gx (cn−1, cn) = g(cn−1, cn)Px (cn−1, cn)/pn→x and x ∈
{n − 1, n}. The total expected cost for a single transition

is given by E[C] = pn→n−1 E[C |τn−1] + pn→n E[C |τn]. To

find the cost associated with a cycle we assume that, at ev-

ery decision stage, the set of possible forwarding nodes is

independent of the previous one. Owing to this assumption,

both mean and variance of the cost associated with a cy-

cle can be computed through the sum of means and vari-

ances associated with each transition, respectively. If Ccycle

is the r.v. of the total cost of a cycle of length k, then

Ccycle = C1
τn

+ C2
τn

+ · · · + Ck−1
τn

+ Ck
τn−1

, where C j
τi is the

r.v. associated with transition τi at in the j-th stage of the

cycle. Mean and variance of a cycle are derived as

E[Ccycle] =
+∞∑
n=1

fD(n) [(n − 1)E[C |τn] + E[C |τn−1]]

= E[C |τn−1] − E[C |τn] + E[C |τn]

pn→n−1

σ 2
Ccycle

= σ 2
C (τn−1) − σ 2

C (τn) + σ 2
C (τn)

pn→n−1

(6)

where E[Ccycle] and σ 2
Ccycle

are the mean and the variance

of the cost associated with a cycle, respectively. σ 2
C (τi ) =

E[(C − E[C |τi ])
2|τi ] is the variance of the cost associated

with transition τi . In Eq. (6) we introduced the further as-

sumption that the r.v. governing the cost of a transition re-

mains the same for all stages, i.e., it is invariant with respect

to time and space.4 In what follows, we specialize the anal-

ysis presented above to the first two schemes proposed in

Section 5.1. To this end, we introduce a further assumption

on the r.v. C governing node costs, by assuming C to be uni-

formly distributed in [0, 1], i.e., fmin(c|N ) = N (1 − c)N−1.

This is also reasonable if we relate the cost to the residual

energy as proposed in Section 3. The third scheme proposed

in Section 5.1 is treated in detail in Section 5.3.

[Scheme 1] The duration of each cycle is deterministically

equal to one stage and pn→n−1 = 1. According to Eq. (4),

E[D] = 1, σ 2
D = 0, and the expected value of the cost in a

cycle E[Ccycle] and its variance σ 2
Ccycle

are

E[Ccycle] = 1

1 + Kn−1

σ 2
Ccycle

= E[Ccycle]2 Kn−1

2 + Kn−1

(7)

[Scheme 2] The transition probability pn→n−1 is5

pn→n−1 = Kn−1

Kn−1 + Kn
(8)

therefore

E[D] = Kn−1 + Kn

Kn−1

σ 2
D = Kn E[D]

Kn−1

E[C |τn−1] = 1

1 + Kn−1 + Kn

E[C2|τn−1] = 2E[C |τn−1]

2 + Kn−1 + Kn
(9)

where E[Ck |τn] = E[Ck |τn−1], k ≥ 1. This result is reason-

able since the selection scheme makes no difference between

4 This assumption is reasonable since, in all practical situations, the
length of a cycle is usually bounded to a few transitions.
5 In this case pn→n−1 equals the probability that the node with the
lowest cost is in set Ni (n − 1). As expected, the probability of this
event is increasing in Kn−1. Correctly, as Kn−1 = Kn this probability
equals 0.5.
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nodes in Ni (n − 1) and Ni (n), but it simply selects the node

with the lowest cost. Finally,

E[Ccycle] = Kn−1 + Kn

Kn−1(1 + Kn−1 + Kn)

σ 2
Ccycle

= E[Ccycle]2 Kn−1

2 + Kn−1 + Kn
(10)

Observe that σ 2
D is quadratic in Kn/Kn−1 and that E[Ccycle]

and σ 2
Ccycle

are linear and quadratic in (Kn−1 + Kn)/Kn−1, re-

spectively. Therefore, this scheme is expected to lead to long

paths with high variance when Kn � Kn−1.6 Also, mean and

variance of this scheme are the same as in Eq. (7) for Kn = 0.

5.3. One–stage statistically–assisted optimal

greedy policy

In the third scheme presented in Section 5.1, we consider a

probabilistic selection of the relay node. Let us focus first on a

shortened version of the general decision process introduced

above and labeled as a cycle. The results achieved for the

shortened cycle, referred to here as one–stage statistically–
assisted greedy policy, is generalized to the full cycle in

Section 5.4. Assume that the forwarding process at stage 0 is

in node i with HC(i) = n. Let c0
n−1 and c0

n be the costs asso-

ciated with jn−1 ∈ Ni (n − 1) and jn ∈ Ni (n), respectively.

If node i chooses jn−1 as the next hop, the HC distance at

stage 1 is n − 1 and the cost associated with this transition

is c0
n−1. Hence, the cycle is completed with a total cost of

c0
n−1. Otherwise, if node jn is selected, we force the next

node (stage 1) to be picked from N jn (n − 1) and the cy-

cle is completed with a total cost of c0
n + c1

n−1. Therefore,

at the generic node i , the decision maker has two possible

actions a ∈ A = {an−1, an} to be taken: action an−1 corre-

sponds to picking jn−1, whereas action an corresponds to

picking jn in the first stage and a node in the set N jn (n − 1)

in the second stage, i.e., to transition n → n → n − 1. A
is the action set. Observe that the two quantities c0

n−1 and

c0
n are known by node i . c1

n−1 is instead an unknown quan-

tity described by the r.v. C . The best that can be done is

therefore to make the forwarding decision based on the two

known quantities and to statistically account for the unknown

value c1
n−1. For each action, we shall define the rewards as

Ran−1
= c0

n + c1
n−1 − c0

n−1 and Ran = −Ran−1
, where Ran−1

is

intended to weigh the convenience of selecting action an−1

over an . In practice, Ran−1
gives us the cost spared in selecting

an−1 instead of an . Similarly, Ran weighs the convenience of

selecting an over an−1. Now, we say that node jn is prefer-

able over jn−1 if the expected reward Ea[R|Kn−1] is positive,

6 This, as shown in Section 6, is also the typical case for densely pop-
ulated wireless sensor networks.

where Ra = Ea[R|Kn−1] is the expectation taken over the

action set A given that the number of nodes in N jn (n − 1) is

Kn−1

R̄a = Pn−1

(
c0

n−1, c0
n

)
Ran−1

+ Pn
(
c0

n−1, c0
n

)
Ran

= (1 − 2Pn)
(
c1

n−1 − �
)

(11)

where Pn = Pn(c0
n−1, c0

n) and � = c0
n−1 − c0

n . Now, we pro-

ceed by finding the value of Pn , Popt
n , maximizing the ex-

pected reward. For the sake of generality, we relax the as-

sumption regarding the number of nodes in set N jn (n − 1),

by allowing this number to be derived from a r.v. L whose

pmf is φ(l). This pmf gives the probability that l nodes with

HC n − 1 are within radio range given that the current node

has hop count n. To determine a Pn that is in some sense

optimal, we need to define an optimality criterion. In this

analysis, we use the total expected reward R̄ = E[R] as our

criterion, where the reward function is averaged over the

number of nodes l in set N jn (n − 1), c1
n−1 and the action set

A = {an−1, an}

R̄ =
+∞∑
l=1

[
φ(l)

∫ 1

0

R̄a dFmin
(
c1

n−1

∣∣l)]

=
+∞∑
l=1

[
φ(l)

∫ 1

0

(1 − 2Pn)
(
c1

n−1 − �
)

dFmin
(
c1

n−1

∣∣l)]

= (1 − 2Pn)

[ +∞∑
l=1

φ(l)E[C |l] − �

]
= (1 − 2Pn)(E[C] − �) (12)

where E[C] = E[c1
n−1] is the total expected minimum cost of

the nodes in N jn (n − 1). Eq. (12) gives us the optimal policy,

i.e., the value of Pn that has to be selected to maximize R̄,

i.e., Popt
n = argmaxPn

R̄. Noting that R̄ is a linear function of

Pn and that its behavior depends on the sign of (E[C] − �),

the optimal policy Popt
n is found as

Popt
n (�) =

{
0 � ≤ E[C]

1 � > E[C]
(13)

The optimal policy is therefore a stationary policy [38] whose

behavior depends on the difference � − E[C]. Hence, at the

generic node i with HC(i) = n, the optimal one–stage for-

warding action is to proceed towards node jn with proba-

bility Pn = 1 when � > E[C], and to node jn−1 otherwise.
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Fig. 3 E[Dcycle] vs E[Ccycle] for the three greedy schemes by varying
Kn from Kn−1 to 10Kn−1

Observe that E[C] depends both on node cost statistics and

on the pmf φ(·).7
Now, we derive cost and delay metrics for the policy

where, at each stage, the action is chosen independently of

the previous forwarding history and according to Eq. (13),

i.e., we relax the constraint that action an must be always

followed by action an−1. In order to be in line with what is

derived in the previous section, we consider again Kn−1 and

Kn to be the constant number of nodes with HC n − 1 and n
at every stage, respectively. Moreover, we assume the costs

to be independent and uniformly distributed in [0, 1]. The

k-th order moment of the cost conditioned on transition τn−1

is found as

E[Ck |τn−1] =
∫ 1

0

∫ E[C |Kn−1]

0

gn−1(cn−1, cn) ck
n−1 dcn−1dcn (14)

where gn−1(cn−1, cn) = g(cn−1, cn)/pn→n−1 and pn→n−1 is

given by

pn→n−1 =
∫ 1

0

∫ E[C |Kn−1]

0

g(cn−1, cn) dcn−1dcn

= 1 − Kn
(1 − E[C |Kn−1])

1 + Kn−1

1+Kn−1

F1 (15)

where F1 = 2 F1[1, 1 − Kn; 2 + Kn−1; 1 − E[C |Kn−1]] and

2 F1[·] is the Gauss’s hypergeometric function [39]. The other

quantities are derived as in Section 5.2.

In Figs. 3 and 4, we report the cycle performance in terms

of cost/delay mean and variance for the three greedy schemes

discussed above. The curves are obtained by keeping Kn−1

constant and varying Kn . Node costs are considered to be

7 Observe that, when the cost statistics are uniform and the number
of nodes in set N jn (n − 1) is equal to the constant Kn−1, E[C] =
E[C |Kn−1] reduces to 1/(1 + Kn−1).
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Fig. 4 σ 2
Ccycle

vs σ 2
Dcycle

for the three greedy schemes by varying Kn from
Kn−1 to 10Kn−1

uniformly distributed in [0, 1]. As expected, by increasing Kn

and/or Kn−1 both cost mean and variance decrease. Scheme 1

gives optimal delay performance. Scheme 2, as Kn increases,

outperforms scheme 1 in terms of cost variance, whereas it

performs worse than scheme 1 for every other metric. In par-

ticular, it is inefficient from the delay point of view since

E[Ccycle] and σ 2
Ccycle

are linear and quadratic in Kn , respec-

tively. Scheme 3 is always better than the other two forward-

ing techniques in terms of cost. Moreover, it also presents

a satisfying behavior for what concerns the delay metric. In

this sense, both mean delay and delay variance remain close

to the optimal delay technique (scheme 1). The following

observations are in order here. In geographical routing, relay

nodes are usually picked among the neighbors leading to a

positive advancement towards the destination [1,4,6,9]. Ob-

serve that nodes in setNi (n − 1) give a positive advancement

towards the destination, exactly as the nodes considered in

geographical schemes. However, nodes in Ni (n) may or may

not provide such a positive advancement. Therefore, the for-

warding set considered by HC based algorithms is broader.

Therefore, more solutions can be reached. This means that

HC routing has the potential of considering paths that in geo-

graphical schemes are discarded a priori and that, if correctly

configured, has the potential of getting closer to optimal

solutions.

5.4. Multi–stage optimal greedy routing policy

In this section, we generalize the one–stage optimal policy

presented above to the full cycle structure by obtaining the

optimal policy in the multi–stage case. Let t ≥ 0 and node i ,
with HC(i) = n, be the current forwarding stage and the cur-

rently occupied node, respectively. Let j t
n−1 ∈ Ni (n − 1) and

j t
n ∈ Ni (n) and ct

n−1 and ct
n , be the minimum cost nodes and

their costs at stage t , respectively. The action set and the
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decision maker’s state are defined as At = {at
n−1 =

j t
n−1, at

n = j t
n} and Xt = (ct

n−1, ct
n), respectively. The cost of

taking action a(t) ∈ At when in state Xt is C(Xt , a(t)) ≥ 0.

Furthermore, let stage 0 be the beginning of a new cycle. For

any policy π , the long term expected cost when X0 = X is

the initial state is [38]

Vπ (X ) = Eπ

[ +∞∑
n=0

C(Xn, a(n))

∣∣∣∣X0 = X

]
(16)

We refer to V (X ) = infπ Vπ (X ) as the minimum ex-

pected cost under any policy. A policy π∗ is optimal if

Vπ∗ (X ) = V (X ), ∀ X . According to the dynamic program-

ming framework [38] the optimal policy is characterized by

the optimality equation as follows

V (Xt ) = min
a(t)∈At

[
C(Xt , a(t)) +

∫
DX

V (Xt+1) dF(Xt+1)

]
(17)

where Xt+1 is the state at stage t + 1 (next forwarding stage),

the term
∫
DX

V (Xt+1) dF(Xt+1) accounts for the average cost

incurred in future decisions, DX and F(Xt+1) are the do-

main set and the cdf of Xt+1, respectively. In what follows,

we consider C(Xt , at
n−1) = ct

n−1 and C(Xt , at
n) = ct

n . The

forwarding process is modeled here as an optimal stopping

problem, where at stage t the decision maker can decide to

either continue (select j t
n) or stop (select j t

n−1). In the former

case, a cost C(Xt , at
n) = ct

n is paid and the cycle is con-

tinued towards j t
n , whereas in the latter the cycle is ended

with a final cost C(Xt , at
n−1) = ct

n−1 and the future cost term∫
DX

V (Xt+1) dF(Xt+1) is zero. Given that, V (Xt ) (Eq. (17))

is rewritten as

min

[
C

(
Xt , at

n−1

)
, C

(
Xt , at

n

) +
∫
DX

V (Xt+1) dF(Xt+1)

]
(18)

We now define the following set

B1 =
{

Xt : C
(
Xt , at

n−1

) ≤ C
(
Xt , at

n

)
+

∫
DX

C
(
Xt+1, at+1

n−1

)
dF(Xt+1)

}
(19)

Set B1 contains all states for which stopping is at least as

good (on average) as continuing for one more stage and then

stopping. The policy that stops as the process enters B1 is

called one–stage look–ahead policy. Next, we investigate

this policy first. B1 simplifies to

B1 =
{

Xt : ct
n−1 − ct

n ≤ E
}

(20)

E = E
[
ct+1

n−1

] =
∫ 1

0

ct+1
n−1 dFmin

(
ct+1

n−1

)
(21)

E and Fmin(·) are the expected minimum cost among nodes

with HC n − 1 and its cdf at stage t + 1, respectively. Hence,

the one–stage optimal policy tells us to stop at stage t by

selecting node j t
n−1 and ending the cycle, if ct

n−1 − ct
n ≤ E .

We must continue towards j t
n otherwise. Not surprisingly,

this is the same result obtained in Eq. (13). Before proceeding

with the discussion on the optimality of the above one–stage

policy we need to introduce some quantities. At every stage

t ≥ 0, the decision maker has to make a decision in the set

At = {at
n−1, at

n}. In case decision at
n−1 is made, node j t

n−1 is

selected and the cycle ends with a total cost Ctot (t), where

Ctot (t) = C par (t) + ct
n−1 (22)

C par (t) =

⎧⎪⎨⎪⎩
0 t < 1

t−1∑
k=0

ck
n t ≥ 1

(23)

On the other hand, if decision at
n is made, the cycle is contin-

ued towards j t
n with a partial cost C par (t + 1). Note that when

C par (t + 1) ≥ Ctot (t) there is no point in further searching

for a better path and the cycle should end. The minimum

cost of the paths encountered by the decision maker since

the beginning of the cycle is

Cmin
tot (t) = min

0≤k≤t
{Ctot (k)} (24)

In Fig. 5, we plot a diagram for a decision tree when

the decision maker is at stage t = 2. Cmin
tot (2) is the mini-

mum cost between all paths that the decision maker could

have selected to end the cycle up to and including stage 2.

Ctot (3) = C par (t + 1) + E is the cost associated with contin-

uing for one more period and then stopping. Next, we prove

that the one–stage policy dictated by set B1 is not globally

optimal.

Theorem 1 The forwarding policy dictated by set B1 is
not globally optimal.

Proof: Let P1 be the one–stage policy defined by set B1

and let t1 be the generic stage at which setB1 is entered for the

first time. Moreover, let P2 be a second policy that stops ac-

cording to set B1 as long as Ctot (t) = Cmin
tot (t) and that stops

with probability one as Ctot (t) > Cmin
tot (t). As P1 stops at

time t1, the following inequalities must hold: c0
n−1 − c0

n > E ,

c1
n−1 − c1

n > E, . . . , ct1−1
n−1 − ct1−1

n > E , ct1
n−1 − ct1

n ≤ E . Note
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Fig. 5 Decision tree at stage t = 2. c3
n−1 is the unknown cost of the

minimum cost node j3
n−1 with HC n − 1. A, B, C are all the possible

paths encountered so far: Cmin
tot (2) = min{Cost(A), Cost(B), Cost(C)}

that for t1 ≥ 1 the previous constraints do not suffice to guar-

antee that Ctot (t2) is equal to the minimum cost Cmin
tot (t2) for

every stage t2 < t1. Hence, on average there is a non zero

probability that P2 stops at t2 < t1 given that t1 is the stop-

ping stage for policy P1. Moreover, since this is true for every

t1 ≥ 1 and the average cost of stopping at t2 < t1 is strictly

lower than the average cost of stopping at t1, the expected

total cost of policy P2 is strictly lower than the expected total

cost of policy P1. The theorem follows as a policy (P2) exists

with a strictly lower expected cost than policy P1. �
To find the optimal policy, let us consider the follow-

ing extended version of the forwarding problem. At the

generic stage t , the decision maker must choose an ac-

tion in set At = (at
n−1, at

n), as above. At every decision

stage t , the decision maker knows the previously encoun-

tered costs {c0
n−1, c0

n, c1
n−1, c1

n, . . . , ct
n−1, ct

n} and can eval-

uate the minimum cost of all paths encountered so far

Cmin
tot (t) (Eq. (24)). If we assign a cost Cmin

tot (t) to ac-

tion at
n−1, the decision maker should stop as soon as

Cmin
tot (t) = Cmin

tot (t + 1) (stopping rule), where Cmin
tot (t +

1) = min(Cmin
tot (t), Ctot (t + 1)). This is equivalent to stop-

ping when prolonging the cycle of one more stage (t →
t + 1) does not lead to any advantage in terms of to-

tal cost. It is worth noting that this stopping rule aims

at driving the forwarding process towards those paths

for which Cmin
tot (·) is strictly decreasing, i.e., to seek

the lowest cost solution. From the discussion above, it

follows that the stopping rule is verified iff Cmin
tot (t) ≤

Ctot (t + 1), (Ctot (t + 1) = C par (t + 1) + ct+1
n−1). The corre-

sponding one–stage policy is dictated by the following

stopping set

B2 = {
Xt : Cmin

tot (t) − C par (t + 1) ≤ E
}

(25)

Algorithm 1: Statistically–Assisted greedy Routing Algorithm
(SARA). A tabu list T is used to prevent loops or ping-ponging be-
tween nodes at the same HC distance.

where, in this case Xt = (c0
n−1, c0

n, c1
n−1, c1

n, . . . , ct
n−1, ct

n),

whileE , C par (t + 1) and Cmin
tot (t) are defined in Eqs. (21), (23)

and (24), respectively. The one–stage look–ahead policy dic-

tated by set B2 states that it is convenient to stop at stage

t whenever the expected cost of stopping at stage t + 1

is greater than or equal to the minimum cost of all paths

encountered through stages 0 to t . Next, we prove that

the forwarding strategy dictated by set B2 is globally op-

timal.

Theorem 2 The forwarding policy dictated by set B2 is
globally optimal.

Proof: The result follows by showing that B2 is a closed

set of states (see [38], Theorem 2.2, p. 54, or [40], p. 164).

In particular, B2 is closed if Xt ∈ B2 implies that Xτ ∈ B2,

∀ τ > t . The set rule can be re-written as C par (t + 1) + E ≥
Cmin

tot (t). Now, assume that this rule is verified at the generic

time t with Xt , then it is verified for Xτ , ∀ τ > t since Cmin
tot (t)

and C par (t + 1) are non increasing and non decreasing in t ,
respectively. �

The policy above is optimal in the sense that it leads

to the minimum expected long term cost among all on-

line policies exploiting first (cn and cn−1) and second or-

der (E) cost information. The Multi–Stage algorithm de-

rived from set B2 is named SARA (Statistically–Assisted

greedy Routing Algorithm); in Algorithm 1, we report its

full version, where a tabu list T is used to avoid cycling and

ping-ponging between nodes at the same HC distance. This

algorithm is a straightforward implementation of Eq. (25)

(set B2).
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Algorithm 2: LRTA–based routing algorithm.

5.5. LRTA–Based routing algorithm

In this section, we allow node costs to be partially propagated

through the network. We assume that the forwarding process

is at node i . Let A be the set of possible actions, where action

a j = j corresponds to electing node j ∈ Ni as the relay node.

Let V ( j) be the cost associated with the minimum cost path

among all paths connecting node j to the sink. Assuming

V ( j) to be known for every node j ∈ Ni , the optimal action

aopt at node i is [38]

aopt = argmin j∈Ni
{cij + V ( j)} (26)

Hence, once the V ( j)s are specified for every node, the op-

timal cost path is derived applying Eq. (26). The problem

to be solved is to obtain the V ( j)s with low communica-

tion overhead. To this end, we consider the LRTA∗ [21,41]

algorithm. Similar techniques were also used in GEAR [20].

Here, we extend the previous work by introducing new

approaches to control and limit the cost propagation. LRTA∗

is a real–time search technique capable of learning and adapt-

ing its runtime path selections over unknown environments.

This task is carried out only based on information gath-

ered in the neighborhood of the problem solver’s current

stage, i.e., the look ahead search is limited to depth one as

for greedy schemes. However, differently from greedy tech-

niques, LRTA∗ allows for the propagation of cost estimates

through the network. The goodness of such cost estimates is

refined as the algorithm is repeated and is exploited at each

iteration to drive the searching process. Next, we present an

adapted version of LRTA∗ to our routing problem. At the

beginning of the algorithm, each node i ∈ N independently

sets an initial heuristic estimate Ṽ0(i) of V (i). As will be

shown next, the convergence speed is highly dependent on

the goodness of such an initial estimate. Let us refer to t ≥ 0

as the t-th iteration of the algorithm, where 0 is the step just

before the first iteration starts. At the beginning, a packet

is generated by a source node s, that is the starting point

of the algorithm (step (1) in Algorithm 2). Then, a subset

((2) in Algorithm 2) of nodes is derived from Ns . This set

is referred to as Ns(R), and is composed by all nodes ver-

ifying condition R. Two conditions are introduced here: 1)

DO (Delay Optimized): given the current node i and a node

j ∈ Ni , the condition RDO is verified if HC( j) < HC(i).
The optimal solution, in this case, is the Pareto optimal path

corresponding to the minimum cost path in the shortest path

set. 2) CO (Cost Optimized): the condition RC O is verified

if HC( j) ≤ HC(i). The optimal solution, in this case, is the

Pareto optimal path corresponding to the minimum length

path in the minimum–cost path set. As above, only the nodes

in Ni (n − 1) and Ni (n) are considered for routing purposes.

Neglecting the nodes in Ni (n + 1) is very effective, since

the state space considered in the searching phase is consid-

erably reduced with a subsequent reduction of the algorithm

convergence time. In addition to rule R, a tabu list T , which

contains the last tabulen visited nodes is stored in the packet

to be forwarded. This list is used in the CO algorithm to pre-

vent loops or ping-ponging between nodes at the same HC

distance. After building the set Ni (R), the algorithm selects

the next hop j� ∈ Ni (R) as in line (3), i.e., by summing

the estimated cost at node j ∈ Ni (R) (Ṽ ( j)) to the cost as-

sociated with transition i → j (cij) and then choosing the

node that minimizes this sum. The presence of the further

factor β will soon be clarified. The statement in line (4),

instead, corresponds to an iterative propagation of the mini-

mum costs Ṽ (i). Observe that, at the first step (time t = 1) of

the algorithm Ṽ (i) is only a rough estimate of the true cost.

LRTA∗ enjoys the convergence property [21,41]. In more de-

tail, the initial cost estimate Ṽ0(i) is said to be admissible if

Ṽ0(i) ≤ V (i), where V (i) is the true cost estimate at node

i . When the initial heuristic is admissible for all nodes in

the network, the algorithm converges to the optimal solution

for a sufficiently large but bounded step t [41]. For example,

the trivial setting V0(i) = 0, ∀ i ∈ N , is admissible and the

convergence is also guaranteed. However, in such a case the

number of iterations to get to the optimal solution could be

quite high. In [41] it has been proven that when the admis-

sibility hypothesis does not hold, then it is sufficient to have

Ṽ0(i) ≤ V (i)(1 + ε), ε ≥ 0, ∀ i ∈ N , to provide a nontrivial

bound on the solution cost. In this case the initial heuristic

estimates are said to be ε–admissible and the final path cost is

guaranteed to be bounded by (1 + ε)V (i). In our algorithm,

we derive the initial heuristic estimates as Ṽ0(i) = γ HC(i).
That is, every node independently computes its cost esti-

mate by multiplying its hop distance by a predefined con-

stant γ ∈ [0, 1]. As an example, in Fig. 6, the cost difference

between CO and the optimal cost solution is plotted as a func-

tion of the algorithm step t for two different γ values. These

results are for a network where node costs are uniformly

distributed in [0, 1] and nodes are uniformly distributed

Springer



66 Wireless Netw (2008) 14: 55–70

 0.01

 0.1

 1

 10

 100

 0  20  40  60  80  100

C
(L

R
T

A
)-

C
(O

P
T

)

algorithm step

γ=0
γ=0.6

Fig. 6 Cost difference between the optimal solution (OPT) and the path
found by LRTA∗–CO. The plot was obtained for a source destination
pair (s, d), where HC(s) = 15

with an average number of nodes within range equal

to λn = λπ R2 = 15, where λ is the node density (nodes/m2).

For what concerns signal attenuation and connectivity, we

consider the unit disk [42] model, i.e., nodes i and j can

communicate with each other iff d(i, j) ≤ R, where d(·) is

the Euclidean distance between the two nodes and R is the

constant transmission range.8 Clearly, a γ -weighted initial

heuristic can considerably speed up the convergence time.

In our example, as γ = 0 the convergence to the optimum is

achieved around step 98, whereas a bounded but non-optimal

solution is soon achieved for γ = 0.6. However, the good re-

sult obtained for γ = 0.6 is not always guaranteed as the

final solution depends on the correctness of the initial guess

in the selection of γ . Too high a value of γ could, in fact,

prevent the search from properly exploring the state space

therefore leading to suboptimal solutions. To cope with this

problem, we consider a new strategy to propagate the costs.

In lines (3) and (4) of Algorithm 2, we introduce a further

factor β ∈ [0, 1]. This is a constant that is used here with the

aim of limiting the searching phase. In particular, the contri-

bution of the generic cost estimate Ṽ in lines (3), (4), after

n ≥ 1 iterations of the algorithm, is given by βn Ṽ , i.e., the

costs propagated from n hops away are scaled by the fac-

tor βn . This is somehow equivalent to the discount factor in

dynamic programming [38]. In general, the rationale behind

discounting is that, at the generic node i , it could be reason-

able to choose the next hop by having a limited knowledge of

the network status rather than having its complete view. This

is the reason for introducing β, i.e., to fully consider the cost

(cij) of the nodes placed one hop away and to progressively

neglect the costs of those nodes that are placed far away. The

8 More sophisticated propagation models are also possible. However,
since they do not represent the main issue of this paper, we leave their
study for future research.
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Fig. 7 Mean path delay: comparison between greedy routing schemes

solution is, in general, sub–optimal. More details are given

in the next section.

6. Results

We consider a unit disk connectivity model, where the node

transmission range is R = 1 m. Nodes are uniformly placed

within a square area of 18 × 18 m2 with the sink positioned

in its center. The node density is λ and λn = λπ R2 is the

average number of nodes within coverage. In the sequel,

we assume λn = 15. Moreover, we consider node costs to

be uniformly distributed in [0, 1]. Also, every node has a

perfect estimate of E (Eq. (21)). The performance reported

next is therefore valid from a theoretical point of view and

gives us the maximum achievable gains (ideal MAC and per-

fect cost estimates). Observe that, to implement the SARA

scheme, we need to propagate cost information along with re-

quest and reply packets used within the channel contention.

Estimates for E can therefore be obtained by overhearing

signaling traffic and by appropriate low–pass filtering. This

issue is however left for future research. In addition to the

HC based schemes discussed above, we consider an ideal-

ized geographical routing algorithm where we subdivide the

relaying area into a number Nr of priority regions, accord-

ing to the related advancement towards the destination [4].

Moreover, the relay is always the lowest cost node within the

non-empty region with the highest priority, i.e., the lowest

cost node leading to the maximum advancement towards the

destination. Results are obtained with a C written simulator

through a Monte Carlo approach. First, the topology is cre-

ated by assigning node positions and costs. Subsequently, a

source node with a given HC distance is randomly picked and

a path from the source to the sink is created for each routing

scheme. The process is iterated until 95% confidence inter-

vals are within +/− 1% of the reported mean values. As an

example, in Figs. 11 and 12, 95% confidence intervals are
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shown for the case β = 1, γ = 0. They are not plotted for

every graph/curve for the sake of readability of the plots.

In Fig. 7, we report the mean path delay as a function of

the hop distance between source node and sink. The delay is

measured here by the number of traversed nodes to reach the

sink, i.e., the number of packet exchanges (which is lower

bounded by the hop count value of the source node). As ex-

pected, scheme 1 is the one leading to the shortest delay, while

in scheme 2, the delay substantially increases with increas-

ing HC distance. SARA achieves good results, staying quite

close to the optimal performance of scheme 1. Note also that

SARA and the non-dominated cost optimal scheme (OPT-

CO, see Section 4) present a very similar behavior in terms

of delay performance. Geographical forwarding (GEO) ex-

hibits almost optimal delay performance for both Nr = 3 and

Nr = 10 [4]. Mean path costs are plotted in Fig. 8, where the

advantage offered by statistically–assisted techniques can be

clearly observed. SARA is the on-line routing scheme per-

forming best, by roughly halving the cost of scheme 1. In

Fig. 9, we focus on cost variances. Scheme 2 is the one with
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cost difference between the proposed algorithms and the optimal cost
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the worst performance, whereas GEO, SARA and scheme 1

stay all reasonably close to the optimal solution (OPT-CO).

In Fig. 10, we plot the complementary cumulative distribu-

tion of the exceeding cost with respect to the non-dominated

minimum cost path (OPT-CO). This distribution is plotted

for an initial HC distance between source and sink of 8 hops.

The idealized geographical forwarding is the scheme with

the poorest performance: in 10% of the cases its cost ex-

ceeds the optimal one (OPT-CO) by 180−250%, whereas

SARA and the one–stage optimal policy exceed the opti-

mal cost solution by 82%. It is also worth observing that

SARA leads to substantial improvements with respect to both

scheme 1 and 2. In particular, the exploitation of two–hop

neighbor statistical measures (E) leads to improvements up

to one order of magnitude (see performance gap between

scheme 1 and SARA). These results are due to the fact that

in pure geographical routing the relay selection is driven by

the maximum geographical advancement towards the desti-
nation only. That is, for a given set of awake nodes within

range, the relay selection is carried out mainly considering

geographical advancements towards the sink. Moreover, as

discussed in Section 5.3, the set of nodes considered for for-

warding in geographical routing is, in general, a subset of

the nodes considered in HC forwarding. GEO performance

could be improved considering a different technique to jointly

weigh costs and distances. As a general observation for all

schemes, we stress that actual routing performance strongly

depends on the considered MAC. To this respect, MAC ap-

proaches such as [4], [22] can be used to get information on

local costs on-the-fly. Also, SARA could be implemented in

such a way that nodes j ∈ Ni (n) account for a cost c j + E ,

whereas node j ∈ Ni (n − 1) consider c j only. These costs

may subsequently be used to select the access probabilities in

the contention to be the relay [4,22]. This topic is the object
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of our current research. We also stress that, differently from

the cost model considered in the paper, where node costs are

independently drawn, real networks may show spatial corre-

lation. In such a case, the cost statistics at future stages may

depend on the current forwarding choice. However, as the

aim of SARA is to go around high cost nodes, we expect

it to still work satisfactorily, especially in the presence of

highly correlated regions. Assume, for instance, that nodes

in Ni (n − 1) have high costs, then due to the correlation

structure we may expect their descendants to have high costs

as well and, in this case, the selection of a node in Ni (n) with

smaller cost increases the probability of circumnavigating

the high cost region. We leave these issues open for future

research. In Figs. 11 and 12, we compare greedy routing

with LRTA–based schemes. Both figures report the average

path cost as a function of the algorithm complexity, i.e., of

the number of iterations of the algorithm. Since cost esti-

mates can be propagated back through piggy–backing, i.e.,

by inserting them into ACKs, the complexity corresponds to

the number of packet transmissions that are needed for the

scheme to converge. For comparison, in Fig. 11 we also plot

the non-dominated optimal cost performance (OPT-CO) and

the mean path cost found by SARA. As expected, an ap-

propriate setting of γ and β can substantially decrease the

algorithm convergence time. The setting γ = 0, β = 1 is of

course unusable since in this case the algorithm starts with no

knowledge about the network state. Hence, the exploratory

phase is more risky and characterized by high initial costs.

However, after a large number of iterations (≈ 90), β = 1

leads very close to optimal solutions. This was verified in all

of our experiments and is an important finding as it tells us

that the RC O strategy is good enough to select good paths.

This motivates our claim in Section 5.1 that the selection of

nodes in the set N (n + 1) can be avoided. Of course, there
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could be cases where the selection of nodes in N (n + 1) is

instead necessary, but these are rather unlikely. In Fig. 12 we

focus on shortest paths only, where the label OPT-DO means

non-dominated shortest path solution (see Section 4). In this

case, the best that a greedy scheme can do is what scheme 1

does. In such a setting, LRTA-based routing seems to be more

effective as its cost is well below the cost of greedy forward-

ing. Moreover, thanks to an appropriate selection of β and

γ (β = 0.8, γ = 0.2)9 LRTA routing is convenient over the

greedy scheme only after 3 packet transmissions. The opti-

mization process also converges to a low cost. This behavior

is due to the further reduction of the searching state space

enabled by condition RDO . We observe that the good results

of LRTA algorithms were obtained for static environments,

where node costs remain unchanged during the algorithm

execution. As node costs vary during the search phase the

solution of LRTA schemes highly degrades leading to worse

performance than with online schemes.

7. Conclusions

In this paper we discussed online routing strategies over hop

count coordinates for wireless sensor networks. In the first

part of the paper we focused on greedy schemes which make

routing decisions based on exact cost information for in range

devices and on cost estimates for out–of–sight nodes. In this

respect, we proposed SARA, a family of routing algorithms

which route packets exploiting an online optimal policy. Fur-

ther, we investigated LRTA based routing schemes, where

node costs are partially propagated through the network to

9 This are the values that gave us a good trade–off between cost and
delay in all our measurements.
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find quasi optimal paths. These routing techniques are then

compared with each other and with (off-line) globally op-

timal solutions. The results of SARA are very good, as we

show that the exploitation of the expected information re-

lated to nodes two hops away can effectively reduce path

costs with respect to pure greedy forwarding (information

on nodes within range only) and lead very close to optimal

solutions. LRTA-based schemes also provide good solutions

in terms of cost. They are however affected by possibly long

convergence times and their applicability is therefore limited

to static networks.
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