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Abstract—In this paper we address the task of accurately re- signals through the online estimation of their statistithe
constructing a distributed signal through the collection of a small effectiveness of our approach for data gathering and regove
number of samples at a data gathering point using Compressive has been proved in [5] for both synthetic and real signals.

Sensing (CS) in conjunction with Principal Component Analysis . - . . B
(PCA).gO(ur s)chemejcompresses ina d[i)stributeg way real V\)//orld In this paper we investigate the statistical distributidn o

non-stationary signals, recovering them at the data collection the principal components of signals gathered from an actual
point through the online estimation of their spatialitemporal Wireless Sensor Network (WSN) deployment. This analysis
correlation structures. The proposed technique is hereby char- provides an explanation of the good results that we have
acterized under the framework of Bayesian estimation, showing sptained in [5] and proves that CS is a legitimate tool

under which assumptions it is equivalent to optimal maximum - . .
a posteriori (MAP) recovery. As the main contribution of this for the recovery of real-world signals in WSNs. The main

paper, we proceed with the analysis of data collected by our contributions of this paper are:
indoor wireless sensor network (WSN) testbed, proving that thes « the inference of the statistical distribution of the privati
assumptions hold with good accuracy in the considered real world components of real world signals;

scenarios. This provides empirical evidence of the effectiveness o .
of our approach and proves that CS is a legitimate tool for the - a Bayes!an_justlflcatlon of the good results achieved by
our monitoring framework.

recovery of real-world signals in WSNSs.
The above points are tackled by means of Bayesian theory,
I. INTRODUCTION . . ;
which provides a general framework for data modeling [7],
In this paper, we look at data gathering approaches f@] The Bayesian framework, in fact, has been addressed in
Wireless Sensor Networks (WSNs) which are able to measyf very recent literature to develop efficient and autable
large amounts of data with high accuracy by only requiringigorithms for CS, see [9]. However, previous work addregsi
the collection of a small fraction of the sensor readinggshth Cs from a Bayesian perspective has mainly been focused on
past few years, the research community has been providig theoretical derivation of CS and its usefulness in thegjien
interesting contributions on this topic. processing field. With the present paper, instead, we peovid
In particular, Compressive Sensing (CS) [1]-{3] is & receBmpirical evidence of the effectiveness of CS in an actual
compression technique that takes advantage of the inhergf§N monitoring scenario.
correlation of the input data by means of quasi-random ma-The paper is structured as follows. In section Il we provide
trices. CS was originally developed for the efficient steragy mathematical description of our data recovery framework.
and compression of digital images, which show high spatig| section 11l we substantiate the optimality of our comiuine
correlation. Since the pioneering work of Nowak [4], thergs and PCA framework using tools from Bayesian theory. In
has been a growing interest in this technique also by thgction IV we analyze the principal component distribution
networking community. In contrast to classical approachegnd confirm that the assumptions under which our framework
where the data is first compressed and then transmittedidQffective hold for real world signals. Section V conclade
a given data gathering point (hereafter called the sinkih withe paper.
CS the compression phase can be jointly executed with data
transmission. [l. MATHEMATICAL FRAMEWORK: TOOLS
In our previous paper [5] we address the issue of designingln this section we first review basic tools from PCA and
a simple protocol based on CS for the online recovery of lar@S and we subsequently illustrate our monitoring framework
data sets through the collection of a small number of readingvhich jointly exploits these two techniques.
In detail: 1) we exploit the combination of CS with PrincipaPrincipal Component Analysis [6]: the Karhunen-Léve
Component Analysis (PCA) [6]; 2) we design a scheme whigxpansion is the theoretical basis for PCA. It is a method to
iteratively learns optimal transformations for CS througke represent through the besf-terms approximation a generic
online estimation of the monitored signal correlation stru N-dimensional signal, wher® > M, given that we have full
ture. Hence, PCA is exploited to iteratively provide a gookinowledge of its correlation structure. In practical cases,
transformation basis that allows us to continuously recans when the correlation structure of the signals is not known a
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priori, the Karhunen-Léve expansion can be achieved thanks our framework,® is referred to agouting matrix as it

to PCA [6], which relies on the online estimation of theaptures the way in which our sensor data is gathered and
signal correlation matrix. We assume to collect measurgansmitted to the sink. For the remainder of this papewill
ments according to a fixed sampling rate at discrete timbe considered as ah x N matrix with a single one in each
k= 1,2,...,K. In detail, letx*) ¢ RN be the vector row and at most a single one in each column ()% is

of measurements, at a given tinke from a WSN with N a sampled version a&(*)).2 Now, using (2) and (3) we can
nodes.x(*) can be viewed as a single sample of a stationawrite

vector process:. The sample mean vectst and the sample y*) = &x*) = s
covariance matrixz of x(*) are defined as:

(k) % G (4)

In general, this system is both ill-posed and ill-condiédn
Zx(k $_ Z ) _ g)(x®) _ )T | as _the number of equatio_ris_ is smaller f[han th_e number of
K variablesN and small variations of the input signal can pro-
duce large variations of the output”), respectively. However,
Given the above equations, Iet us consider the orthonormgk(*) ig sparse, it has been shown that (4) can be inverted
matrix U whose columns are the unitary eigenvectorsShf \ith high probability through the use of special optimipati
placed according to the decreasing order of the correspgndiechniques [3], [12]. These allow to retriew&), whereas the
eigenvalues. It is now possible to project a given measuneMegyriginal signalx(*) is found through (2).
x(*) onto the vector space spanned by the columndJof joint CS and PCA [5]: in [5], our main contribution was the
If we defines® “ UT(x(® — %), by construction of the design of a data recovery scheme combining CS and PCA. In
projection matrixU” we have that the entries af*) are this scheme CS is exploited to solve the system in (4) after
ordered as follows:s(®) > s > ... > s%”. If the L data packets have been collected from our WSN testbed
instancex(!), x(?) ... x(K) of the process are temporally and PCA is the technique providing the transformation matri
correlated, then there exists afi < N such that for: > M . The proposed mathematical framework is detailed in the
we have thats(k) is negligible with respect to the previousfollowing.
entries ofs®)  j.e., 5(’“) < s for j < M andi > M. Thus, Let us assume to place the sink in the center of a wireless
each sampled’f) can be Vjery well approximated in ak/- network with N sensor nodes. We are interested in the

According to the previous arguments we can write each sampie and PCA scheme. Note that real signals are characterized
x(k) as: y spatial and temporal correlations that are in general non

x*) =x + Us® | (1) stationary. This means that the statistics that we haveearus
our solution (i.e., sample mean and covariance matrix) must
where theN-dimensional vectos'*) can be seen as all- pe |earned at runtime and might not be valid throughout the
sparse vector, namely, a vector with at mdst< N non-zero entjre data collection phase. To show the effectivenestef t
entries. Note that the ses),s(®,... s5)} can also be algorithm in [5] from a theoretical standpoint, we also make
viewed as a set of samples of a random vector prosefs ihe following assumptions:

ey . N
summary, thanks to PCA, e%:h original poiit) € RY can 1 4t each time: we have perfect knowledge of the previous
be transformed into a poit*), that can be considereti/- K process samples, namely we perfectly know the set
sparse. The actual value @/, and therefore the sparseness  y(x) _ {x(+=1) x(*=2) ... x(=F)} referred to in

of s, depends on the actual level of correlation among the
collected samples(?), x(?) ... x(K),

Compressive Sensing (CS) [10[CS is the technique that we
exploit to recover a giverV-dimensional signal through the
reception of a small number of samplés which should be
ideally much smaller thamv.

what follows as training sef;

2. there is a strong temporal correlation betwe€f and
the setX*). The size K of the training set is chosen
according to the temporal correlation of the observed
phenomena to validate this assumption.

Using PCA, from Eg. (1) at each time we can map our
As above, we consider signals representable through one dgnal x® into a sparse vectas®. The matrixU and the

mensional vectors(®) ¢ RN, containing the sensor readings’
veragex can be thought as computed iteratively from the
of a WSN with N nodes. We further assume that there exis © *),
et X% at each time sample Accordingly, at timek we

an invertible transformation matri# of size N x N such that |nd|cate matrle asU® and we refer to the temporal mean

x(*) = Psk) (2) and variance oft®) asx® and =(*), respectively. Hence,

. . . _we can write:
and that theV-dimensional vectos(*) is M-sparse. Assuming

that ® is known,x(*) can be recovered frosf*) by inverting x*) —xh) = gWsk) (5)
(2),i.e.,s® = ¥~1x*) Also,s®) can be obtained througha _ , .
This selection of® has two advantages: 1) the matrix is orthonormal as

iaeti k k L
ngmberL of random prolect|0ns ok! )’ nemelyy< ).G R™, required by CS [11] and 2) this type of routing matrix can beaotsd through
with M < L < N, according to the following equation: realistic routing schemes.

K i 2|n [5] we presented a practical scheme that does not needsisrgption
yF) = &x*) (3) in order to work.



Now, using equations (3) and (5), we can write: requirement is that the sensor nodes be ordered (e.g., based
_ _ the natural order of their IDs). Our monitoring applicaticem
k) _ oxk) — (k) _ (k)Y — (k) g(k)

y X = B(x X)) =2UnsT, (6) therefore be seen, at each tifeas an interpolation problem:
whose form is similar to that of (4) witlb = ®U®). The from a sampled\/-dimensional vectoy*) = ®x*¥) € RM,
original signalx(*) is approximated as follows: 1) finding awe are interested in recovering, via interpolation, thenaig
good estimateof s*), namelys(®), using the techniques in [3] x*) € RY. Typically, this problem can be solved through a

or [12] and 2) applying the following calculation: linear interpolation on a sef of h basis functiong; € RY,
ie., F = {fi,---,f,}. We can assume that the interpolated
<k) — % (k)g(k) . ’ j
XV =X+ UM . (") function has the form:

I1l. WSN MONITORING VIA CS:A BAYESIAN h
JUSTIFICATION x® =x® £ 3" sif; (10)
In this section we justify the effectiveness of our combined i=1

CS and PCA technique from a Bayesian perspective. To tiisBayesian approach would estimate the most probable value
end, we refer to the general data modeling framework of [@f s by maximizing the posterior pdi(s|y*), F, M), where

[8]. A good review of Bayesian estimation and fitting can alsg1 is a plausible model for the vectar = (s1,---,sp).

be found in [13]. According to this framework two levels ofAs in [13], we assume thatM can be specified by a
inference are involved in the data modeling task: further parameter setv (called hyper-prior) related te,

First level of inference. Given a set of plausible modelsso that the posterior can be written p&s|y®), F, M) =
{My,---, My} for the observed phenomenon, each of therfip(s|ly®, a, F, M)p(aly®, F, M) da. If the hyper-prior
depending on some set of parametérsve fit each modet can be inferred from the data and has non zero values
to the collected dat®, i.e., we find the parameter sét; s &, maximizing the posterior corresponds to maximizing
that maximizes the posterior probability density functipdf) p(s|y*), &, F, M), that as shown in [13] corresponds to

DIO, M;)p(0|M; maximizing the following expression
p(0|D, M;) = p(D] 7/\;/)31( M) ) ®) (k) (k) A
p(PIM;) p(sly™, F, M) o p(sly™, &, F, M)
wherep(D|0, M;) and p(f|M;) are known as théikelihood _ py®ls, F)p(s|a, M)
and the prior respectively, whilst the so calledvidence o piy®|a, F, M)
p(D|M;) is just a normalization factor which plays a key (11)

role in the second level of inference.

Second level of inference.The Bayesian framework al-Where p(y(*)]s) is the likelihood function,p(s|@, M) is
lows the comparison of different models and the assigHe prior andp(y*)|a, F, M) is a normalization factor.
ment of preferences among them in the light of data. THd1€ parametersy are estimated maximizing the evidence
most probable model is the one maximizing the posterigfy*|e, F, M), which is a function ofa.

p(M;|D) x p(D|M;)p(M;). Assuming that there are no At each timek, our data recovery scheme can be analyzed
reasons to assign different priogg.M;), the models are through the above Bayesian framework thanks to the follgwin
ranked according to their evidence. Moreover, the eviden@gsociations: the columns of the PCA matiX*) as the

is proportional to the likelihood computed i 4p, i.e., set(k())fh = (J]X basis functions, i.e.F = {f;,--- ,fy} =
p(DIM;) x p(D|0rrap, M;) (called best fit likelihood, {uj”,---,uy’} = U*); the sparse vectos®) as the pa-
see [13]), whered, 4p is the most probable value of therameter vectos = (s1,--- ,sy) = (s, s#) = s(®),

parameter set according to the observed data, i.e., thenargu In this perspective the interpolated function has the fosee(
that maximizes (8). It can be shown, see, e.g., [14], that vi&g). (5))
can rank different models using the quantity N
p ’, x(0) —x®) = 37 sFu ™ 12)
BIC(M;) " np(D|0rrap, My) — 5D, ) i=1

o Without loss of generality we assume tht?) = 0, thus the
constraints on the relationship betweeff) ands*) can be
translated into a likelihood of the form:

where/; is the number of free parameters of modd|, and
is the cardinality of the observed data #etRoughly speaking,
the Bayesian Information Criterion (BIC) provides insigjlith
t_he §elect|0n of the best fitting model, considering the be§t p(y(k)|s7}-) _ p(y(k)|s(k)7u(k))
likelihood and the number of parameters. The BIC penalizes 5(y® SUBSE) (13)
those models requiring more parameters. ™, s ’
Equations (5)—(7) show that the considered framework dogferes(x, y) is 1 if = =y and zero otherwise. In Section II,
not depend on the particular topology considered; the onjye have seen that the vectst®) is required to be sparse.
iog(
3In this paper we refer to a good estimate ©§f) as’s(®) such that In order to guarantee a sparse representationdf let us

sF) —5(k) |5 < e. Note that by keeping: arbitrarily small, assumption consider the Laplaciansg) density function, having zero
1 above holds. meany = 0, which is widely used in the literature [9], [12]
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Fig. 1. Layout of the WSN testbed.
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to statistically model sparse random vectors. This pdf has t
form: 4 ZN 15| Fig. 2. Signal sample: luminosity in the rang820 — 730 nm.
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In this equation, all the components sf*) are assumed to andU*) are computed from the sat*), we obtain the vector
be independent and equally distributed. If (11) holds, we c&f principal components® inverting (5):
therefore obtain the following posterior: ) — (U (x®) _x®)y — ()T (x®) _x®)y | (17)

PPy ™, F M) = psWly™ U™, Lo) since U®) is orthonormal by construction and therefore
~ p(s®|y™, a,u®, Lo) U® (UM = Iy,
x  py®s® u*ps®a, Lo). In what follows we describe the considered signals and the
(15) WSN deployment. After that, we present the analysis on the
distribution of the elements a&f.
Using (13)-(15), maximizing the posterior corresponds fdetwork: we consider the WSN testbed of Fig. 1. This

p(s®|a, M = Lo) =

solving the problem experimental network is deployed on the ground floor of
K1 (k) 7 /(k) the Department of Information Engineering at the Univer-
argr&%f{p(s [y U™, Lo) sity of Padova. The WSN consists &f = 68 TmoteSky
= argmaxp(y®|s®, u®@)ps® |4, U, £o) Wireless_ nodes equipped with IEEE 802.15.4 compliant radio
s(k) transceivers.
—a YT s Signals: From the above WSN, we gathered five different

types of signalsc: S1) humidity, S2-S3) luminosity in two dif-
ferent ranges320 — 730 and320 — 1100 nm, respectively, S4)
temperature and S5) battery voltage. We collect measutsmen
from all nodes every minutes for at least days. We repeated
the data collection for three different measurement cagmzai
during the month of March 2009, choosing different days of
(16) the week: C1) from tha3' to the 16'* of March, C2) from
the 19" to the 23*"* and C3) from the4!” to the27". Fig. 2
which is actually the problem solved by the CS reconstractiahows an example signal of type S2, i.e., luminosity in the
algorithms, see, e.g., [3]. range320 — 730 nm.
In the next section we will develop a statistical anaIySiS qﬂrincipa| Component Ana|ysis of Real World Signajs:our
the principal component distribution of real world signtilat  aim is to infer the statistical distribution of the vectondam
validates the use of (14), i.e., that the Laplacian is a go%cess(k) from the samplegs(!),s® ... s(T)} which are
model to represent the principal components of typical WShhtained from the above WSN signals. The param@tes
data. This provides a justification for using CS in WSNs.  the duration (number of time samples) of each monitoring
campaign C1-C3.

From the theory [6] we know that signhals in the PCA
domain (in our case*)) have in general uncorrelated compo-
In our experimental campaign, we collected different reahents. Also, in our particular case we experimentally \eifi

izations of five real world signals, we computed the printipghat this assumption is good sindg[s;s;] ~ El[s;|E]s;]
components of each and we analyzed the distribution of edon i, € {1,...,N} andi # j. In our analysis, we
principal component independently. According to the notat make a stronger assumption, i.e., we build our modes of
of Section 11, if x*) is the sampled signal at timeandx*) considering statistical independence among its compsnent

— (k) (kg€ ==t *
= argrg(%)xé(y , UV /Ay
N "
— ; (k i (k) — (k) g (k)
arg min ;71 |s;"’|, given thaty PUYs

= argrr%gl [s%|1, given thaty®) = dUF k)
S

IV. PRINCIPAL COMPONENTDISTRIBUTION OF REAL
SIGNALS GATHERED FROM AWSN
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Empirical distribution and model fitting for a princlpeomponent

of signal S2, luminosity in the rang&0 — 730 nm.

i.e., p(ss,85) = p(si)p(s;) with ¢ # j, which allows us to |n detail:

Bayesian Information Criterion, (BIC)

Fig. 5.

1590

=

N

©

o
T

990
690t f=
390 [+

90jf#

|
N
[y
o

1
a1
sy
(=)

=
w

Principal Components, s,
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each modelM;—-M,, campaign C1 and signal S1, humidity.

ence, the observation of the experimental data gives ecapiri
evidence for the selection of four statistical models:

My

Mo,
Ms

My

a Laplacian distribution with parametefs, A}, that
we call Z;

a Gaussian distribution witfim, o2}, that we callg;
a Laplacian distribution with: = 0 and A, that we
call Lo;

a Gaussian distribution witlh = 0 and o2, that we
call Gy.

The space of models for eashis therefore described by the
set{L,G, Ly, Go}. For each signab1 — S5, for each compo-
nents;,7 = 1,..., N, and for each modeM;,i = 1,...,4,

we have estimated the parameters (i.e., the most probable
a posteriori, M AP) that best fit the data according to (8).
Since we deal with Gaussian and Laplacian distributioreseh
estimations have well known and closed form solutions [8].

consider the prior (14). A further assumption that we make

is to

consider the components ef as stationary over the

entire monitoring periot The model developed following this
approach leads to good results [5], which allow us to vadidat M,
these assumptions.

Owing to these assumptions, the problem of statisticaIIyM3
characterizings reduces to that of characterizing the random M,
variables

N
SZ:ZUJZ('TJ_E]>)Z:17~~,N) (18)
j=1

where the r.vu;; is an element of matrifxU and the r.v.z;
is an element of vectox.

A statistical model for each; can be determined throughsignals is well described by a Laplacian distribution. Hue t
a Bayesian approach (see [13]). For the first level of infesecond level of inference we ranked each model according to

4Note that this assumption does not imply that also the obsema@mkbssc
is assumed to be stationary. The bdgié) does not represent a fixed linear
transformation betweer(¥) ands(*), but it changes at each time sample
according to the statistics of.

1

S lsi—il

fi = p1/2(s) and\ = T

is the median of the data

, where i1 /5(s)

T r N2
Sj Sj—m
A Zj:l J ~2 Zj:l( J ) .
m = ='F— and5® = =F——;
T
5\ _ ijl ‘Sj‘.
= 7? 2,
~2 Z_j:l i
g = — T -

Figs. 3—4 show two examples of data fitting according to the
aforementioned models; in these figures we plot the empirica
distribution and the corresponding inferred statisticatel for
a generic principal component of the humidity (S2) and the
luminosity (S4), respectively. From these graphs it isadse

clear that the distribution of the principal components of o

the Bayesian Information Criterion (BIC) (see Eg. (9))..Fsg
shows the BIC for the humidity signal of campaign C1 for all
principal components and for all the considered modelsnFro
this figure we see that the Laplacian models better fit the data



[ Campaign C1 ]

V. CONCLUSIONS

In this paper we investigated the effectiveness of data re-
covery through joint Compressive Sensing (CS) and Prithcipa
Component Analysis (PCA) in Wireless Sensor Networks
(WSNs). At first, we framed our recovery scheme into the
context of Bayesian theory proving that, under certain @gsu
tions on the signal statistics, the use of CS is legitimatel, a
is in fact optimal in terms of recovery performance. Henee, a
the main contribution of the paper we have shown that these
assumptions hold for real world data, which we gathered from
an actual WSN deployment and processed according to our
monitoring framework. This allows us to conclude that the
use of CS not only is legitimate in our recovery scheme but
also makes it possible to obtain very good performance for

S1 S2 S3 S4 S5
L 1320.2 | 2481.9 | 2186.3 | 1708.5 | 5374.0
g 1191.7 | 2226.8 | 1813.0 | 1540.1 | 4139.2
Lo | 1322.6 | 2485.0 | 2189.3 | 1711.4 | 5377.3
Go 1194.1 | 2229.8 | 1815.9 | 1542.7 | 41415
[ Campaign C2
S1 S2 S3 S4 S5
L 921.2 | 2740.8 | 2065.4 | 1483.4 | 6094.0
g 463.2 | 1727.7 | 815.6 749.0 | 5152.4
Lo 924.3 | 2744.0 | 2068.8 | 1486.1 | 6097.5
Go 466.2 | 1730.7 | 818.4 751.9 | 5155.3
[ Campaign C3
S1 S2 S3 S4 S5
L 430.3 | 1207.4| 851.3 773.9 | 3239.7
g 272.9 737.0 301.1 585.8 | 2676.7
Lo 432.7 | 1210.4| 854.4 776.5 | 3242.9
Go 2755 739.8 303.8 588.6 | 2679.3
TABLE |

BAYESIAN INFORMATION CRITERION (BIC) AVERAGED OVER ALL

PRINCIPAL COMPONENTS FOR EACH MODEL M 1—-My4, EXPERIMENTAL

CAMPAIGNS C1-C3AND SIGNALS S1-S5.

for all principal components;,i = 1,2,..., N. The average
BIC for each model, for the different signals and the three

campaigns C1-C3, is shown in Table I. The values of this tablﬁ]

are

computed averaging over thé principal components.

From these results we see that modgl provides the best

statistical description of the experimental data. In fdwt,BIC

metric is higher for Laplacian models in all cases; furtheren
Ly has a higher evidence with respect4o since it implies

the utilization of a single parameter. As previously memid,

the over-parameterization of the model is penalized adegrd

1

2.1

2.2

In our monitoring framework which jointly exploits CS

and PCA (Section IlI), the principal components of real!
world signals are Laplacian distributed with good approxqg;

imation, therefore it is legitimate to use the prior (14);

it is possible to determine, for each principal compone tol

an optimal parametefk that differs from zero, and there-
fore we can exploit (15) withv «— \;

in case all principal components are equally distrithute
with parameter), we have that, as demonstrated in
Section Ill, CS obtains the best recovery performance,
i.e., at each timek, it finds thes®) that maximizes the [12
posterior (15);

in case the principal components are Laplacian dig&tbu [13]
%

Section Il we can say that the best recovery performanfié]

with different parameters and these can all be estimat
from the data, following a rationale similar to that o

can be obtained using CS reweighted [15]. We observe
that this is often the case in practice, as confirmed by our
empirical measurements. We shall note, however, that the
correct online estimation of the different parameters is no
straightforward. Nevertheless, standard CS still pravide
very good reconstruction performance as shown in [5].

(1]
(2]

(5]

(6]

to the factorl' = (see Eq. (9)). Based on the above results we
can make the following observations: [

(11]

the considered data sets.
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