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INTRODUCTION

Recent advances in technology make it feasible
to mass produce small sensor nodes with sensing,
computation, and communication capabilities.
This has spurred a substantial amount of research
on wireless sensor networks over the past few
years. For ease of deployment, sensor devices
should be inexpensive, small, and have a long
lifetime, which makes it important to develop
very efficient software and hardware solutions.
For this reason, protocols for sensor networks
should be carefully designed so as to make the
most efficient use of the limited resources in
terms of energy, computation, and storage. These
restrictions are likely to remain, since in many
cases it is desirable to exploit technological
improvements to develop smaller and more ener-
gy efficient devices rather than making them
more powerful. Typical applications envisioned
for sensor networks (e.g., environmental moni-
toring, surveillance, tracking), along with the
already mentioned resource-constrained charac-
ter of sensor nodes, usually result in very differ-
ent network requirements and communications
patterns from other types of ad hoc network sce-
narios. The area of communications and protocol
design for sensor networks has been widely
researched in the past few years, and many solu-
tions have been proposed and compared.

In this survey article we focus instead on
another important aspect of sensor networks: in-
network aggregation and data management.

These techniques allow trading off communica-
tion for computational complexity. Given the
application area, network resource constraints,
and the fact that local computation often con-
sumes significantly less energy than communica-
tion, in-network data aggregation and
management are at the very heart of sensor net-
work research. In particular, resource efficiency,
timely delivery of data to the sink node, and
accuracy or granularity of the results are con-
flicting goals, and the optimal trade-off among
them largely depends on the specific application.

Initially, in-network aggregation techniques
involved different ways to route packets in order
to combine data coming from different sources
but directed toward the same destination(s). In
other words, these protocols were simply routing
algorithms that differed from more traditional ad
hoc routing protocols in the metric they used to
select the routing paths. More recently, many
additional studies have been published, addressing
not only the routing problem but also mechanisms
to represent and combine data more efficiently.
In-network data aggregation is a complex problem
that involves many layers of the protocol stack and
different aspects of protocol design, and a charac-
terization and classification of concepts and algo-
rithms is still lacking in the literature.

The aim of the present article is to provide a
taxonomy of in-network aggregation by defining
the main concepts, and covering the most impor-
tant and recent work in the field. Our major con-
tributions are, on one hand, to define criteria to
classify existing solutions and, on the other hand,
to identify and propose directions for future
research in this area. Compared to well researched
topics in sensor networks, such as medium access
control (MAC) and routing protocol design, data
aggregation does not seem to have received as
much attention, and we think it provides many
interesting opportunities for relevant contribu-
tions. The goal of this article is to help people get
an updated view of this area, and provide a moti-
vation and a starting point for researchers and stu-
dents who are interested in these issues.

The article is organized as follows. We define
the in-network aggregation paradigm, by identify-
ing the main problems involved and giving some
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review of the existing literature on techniques
and protocols for in-network aggregation in
wireless sensor networks. We first define suitable
criteria to classify existing solutions, and then
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ferent layers of the protocol stack while high-
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which is likely to be needed for optimal perfor-
mance. Throughout the article we identify and
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future research in the area.
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criteria to classify existing algorithms. We discuss
theoretical performance limits of in-network
aggregation techniques. We introduce some pro-
tocol issues in the presence of in-network pro-
cessing, classify the most recent solutions, and
discuss their advantages and disadvantages. We
focus on possible techniques to combine data by
means of aggregation functions, highlight how
these interact with routing protocols, and discuss
the benefits arising from a cross-layer design
(routing and aggregation). Finally, we summarize
the in-network aggregation approaches discussed
throughout the article, and give directions and
motivations for future research.

BASICS OF IN-NETWORK AGGREGATION

In typical sensor network scenarios, data is col-
lected by sensor nodes throughout some area,
and needs to be made available at some central
sink node(s), where it is processed, analyzed, and
used by the application. In many cases, data gen-
erated by different sensors can be jointly pro-
cessed while being forwarded toward the sink
(e.g., by fusing together sensor readings related
to the same event or physical quantity, or locally
processing raw data before it is transmitted). In-
network aggregation deals with this distributed
processing of data within the network. Data
aggregation techniques are tightly coupled with
how data is gathered at the sensor nodes as well
as how packets are routed through the network,
and have a significant impact on energy con-
sumption and overall network efficiency (e.g., by
reducing the number of transmissions or the
length of the packets to be transmitted). In-net-
work data aggregation can be considered a rela-
tively complex functionality, since the aggregation
algorithms should be distributed in the network
and therefore require coordination among nodes
to achieve better performance. Also, we empha-
size that data size reduction through in-network
processing shall not hide statistical information
about the monitored event. For instance, when
multiple sensors collaborate in observing the
same event, the number of nodes reporting it and
the timing of the reports may reveal the event’s
size and/or dynamics, respectively.

We define the in-network aggregation process
as follows:

In-network aggregation is the global process of
gathering and routing information through a
multihop network, processing data at intermedi-
ate nodes with the objective of reducing resource
consumption (in particular energy), thereby
increasing network lifetime.

We can distinguish between two approaches:
• In-network aggregation with size reduction refers

to the process of combining and compressing
data coming from different sources in order to
reduce the information to be sent over the net-
work. As an example, assume that a node
receives two packets from two different sources
containing the locally measured temperatures.
Instead of forwarding the two packets, the sen-
sor may compute the average of the two read-
ings and send it in a single packet.

• In-network aggregation without size reduction
refers to the process of merging packets com-
ing from different sources into the same pack-

et without data processing: assume receiving
two packets carrying different physical quanti-
ties (e.g., temperature and humidity). These
two values cannot be processed together, but
they can still be transmitted in a single packet,
thereby reducing overhead.

The first approach is better able to reduce the
amount of data to be sent over the network, but
it may also reduce the accuracy with which the
gathered information can be recovered at the
sink. After the aggregation operation, it is usual-
ly not possible to perfectly reconstruct all of the
original data. This actually depends on the type
of aggregation function in use (i.e., lossy or loss-
less.) The second approach instead preserves the
original information (i.e., at the sink, the original
data can be perfectly reconstructed). Which
solution to use depends on many factors includ-
ing the type of application, data rate, network
characteristics, and so on. Both of the above
strategies may involve the treatment of data at
different network layers.

In-network aggregation techniques require
three basic ingredients: suitable networking pro-
tocols, effective aggregation functions, and effi-
cient ways of representing the data (Fig. 1). In the
remainder of this section we briefly introduce
each of these aspects.

Routing Protocols — The most important ingredi-
ent for in-network aggregation is a well designed
routing protocol [1–9]. Data aggregation requires
a different forwarding paradigm than classic
routing. Classic routing protocols typically for-
ward data along the shortest path to the destina-
tion (with respect to some specified metric). If,
however, we are interested in aggregating data
to minimize energy expenditure, nodes should
route packets based on packet content and
choose the next hop in order to promote in-net-
work aggregation. This type of data forwarding
is often referred to as data-centric routing.
According to the data-centric paradigm, as a
node searches for relay nodes, it needs to use
metrics that take into account the positions of
the most suitable aggregation points, the data
type, the priority of the information, and so on.

n Figure 1. Diagram for in-network aggregation
techniques and their relation with different proto-
col layers. We stress that in general data process-
ing also interacts with the application, MAC, and
PHY layers.
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Altogether, the application scenario, routing
scheme, and data aggregation mechanism are
closely interrelated.

Moreover, in-network aggregation techniques
may require some form of synchronization
among nodes. In particular, the best strategy at a
given node is not always to send data as soon as
it is available. Waiting for information from
neighboring nodes may lead to better data aggre-
gation opportunities and, in turn, improved per-
formance. Timing strategies are required
especially in the case of monitoring applications
where sensor nodes need to periodically report
their readings to the sink. These strategies usual-
ly involve data gathering trees rooted at the sink.
The main timing strategies proposed so far in
the literature are summarized below [10]:
• Periodic simple aggregation requires each node

to wait for a predefined period of time, aggre-
gate all data items received, and then send out
a packet with the result of the aggregation.

• Periodic per-hop aggregation is quite similar to
the previous approach, the only difference
being that the aggregated data is transmitted
as soon as the node hears from all of its chil-
dren. This requires that each node knows the
number of its children. In addition, a timeout
is used in case some children’s packets are lost.

• Periodic per-hop adjusted aggregation adjusts
the timeout of a node, after which it sends the
aggregated data, depending on the node’s
position in the gathering tree. Note that the
choice of the timing strategy strongly affects
the design of the routing protocol [10–12].

Aggregation Functions — One of the most impor-
tant functionalities that in-network aggregation
techniques should provide is the ability to com-
bine data coming from different nodes. There
are several types of aggregation functions [8,
13–20], and most of them are closely related to
the specific sensor application. Nevertheless, we
can identify some common paradigms for their
classification:
• Lossy and lossless: Aggregation functions can

compress and merge data according to either
a lossy or a lossless approach. In the first case
the original values cannot be recovered after
having merged them by means of the aggrega-
tion function. In addition, we may lose preci-
sion with respect to transmitting all readings
uncompressed. In contrast, the second
approach (lossless) allows us to compress the
data by preserving the original information.
This means that all readings can be perfectly
reconstructed from their aggregate at the
receiver side.

• Duplicate sensitive and duplicate insensitive: An
intermediate node may receive multiple copies
of the same information. In this case, it may
happen that the same data is considered multi-
ple times when the information is aggregated.
If the aggregation function in use is duplicate
sensitive, the final result depends on the num-
ber of times the same value has been consid-
ered. Otherwise, the aggregation function is
said to be duplicate insensitive. For instance, a
function that takes the average is duplicate
sensitive, whereas a function that takes the
minimum value is duplicate insensitive.

Good aggregation functions for wireless sensor
networks need to meet additional requirements.
In particular, they should take into account the
very limited processing and energy capabilities of
sensor devices, and should therefore be imple-
mentable by means of elementary operations.
Also, different devices may be suitable for differ-
ent types of operations, depending on their ener-
gy resources and computation capabilities. These
facts need to be considered in the design of aggre-
gation functions and routing protocols.

Data Representation — Due to its limited storage
capabilities, a node may not be able to store all
the received/generated information in its inter-
nal buffer. It therefore needs to decide whether
to store, discard, compress, or transmit the data.
All these operations require a suitable way to
represent the information [21–24]. The corre-
sponding data structure may vary according to
the application requirements. Finally, even
though the data structure is usually common to
all nodes, it should be adaptable to node-specific
or location specific characteristics. A recent and
promising method to deal with data representa-
tion and compression is distributed source cod-
ing techniques that compress data on the basis
of some knowledge about its correlation. More
details on the approach are given later.

Although we described routing, aggregation,
and data representation in isolation, they are
intimately related and should be designed and
implemented jointly for optimal performance.
Most of the related work in the literature covers
only partial aspects of the joint optimization of
these functionalities, and often neglects or over-
simplifies some of the others. Further work on
cross-layer optimization for in-network aggrega-
tion should therefore be appreciated as innova-
tive and is very much needed. In the rest of the
article we thoroughly review each of the afore-
mentioned functionalities. We start with a review
of recent work on the theoretical limits of aggre-
gation techniques in the next section.

THEORETICAL LIMITS OF
IN-NETWORK AGGREGATION TECHNIQUES

Several theoretical studies provide limits and
bounds on the performance of in-network data
aggregation techniques and thus assist in the
design of suitable algorithms. The efficiency of
these algorithms depends on the correlation
among the data generated by different informa-
tion sources (sensor units). Such a correlation can
be spatial, when the values generated by close-by
sensors are related; temporal, when the sensor
readings change slowly over time; or semantic,
when the contents of different data packets can
be classified under the same semantic group (e.g.,
the data is generated by sensors placed in the
same room). The gains of in-network data aggre-
gation can best be demonstrated in the extreme
case when data generated by different sources can
be combined into a single packet (e.g., when the
sources generate identical data). If there are K
sources all close to each other and far away from
the sink, the combination of their data into a sin-
gle packet leads, on average, to a K-fold reduc-
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tion in transmissions with respect to the case
where all data are sent separately. Generally, the
optimal joint routing and compression structure is
a Steiner tree, which is known to be NP-hard [25].
However, there exist polynomial solutions for spe-
cial cases where the information sources are close
to each other [26]. The authors in [27] propose a
model to describe the spatial correlation in terms
of joint entropy. They analyze a symmetric line
network with different degrees of correlation
among neighboring nodes. For the uncorrelated
case, the authors show that the best routing strat-
egy is to forward packets along shortest paths. In
contrast, in case of completely correlated infor-
mation, the best strategy is to aggregate data as
soon as possible. After that, a single packet
(formed by the aggregated data) is sent to the
sink along the shortest path. In all the intermedi-
ate cases, clustering-based solutions may be the
optimal choice, although no formal proof is given
in the article.

In [28] the authors study the impact of data
correlation on the energy expenditure of data
distribution protocols. They focus on various
energy aware data aggregation trees under dif-
ferent network conditions, such as node density,
source density, source distribution, and data
aggregation degree. The findings of the study
are in agreement with the results in [27] but, in
addition, provide more quantitative results. In
particular, the authors focus on tree structures
and compare the minimum Steiner tree (MST)
with the shortest path tree (SPT). The MST is
found to be the optimal aggregation tree struc-
ture. Although the SPT guarantees low delays
and can be built in an online fashion, its perfor-
mance in terms of aggregation effectiveness is
largely inferior to that of the MST.

In addition, in [28] opportunistic aggregation
is compared to systematic aggregation in terms
of cost ratio, which is the cost of the correlation-
unaware (SPT) tree over that of the correlation-
aware (MST) tree considering the same set of
sources and sinks. The authors prove, using an
analytical model, that the expected cost improve-
ment of MST over SPT in sensor networks
increases as

where N is the number of nodes in the network.
This result makes SPT a viable solution for many
practical cases (small networks). Based on this
study, the authors propose a hybrid tree struc-
ture called semantic/spatial correlation tree (SCT)
[29]. SCT is based on the identification of an
aggregation backbone which is used to generate
efficient aggregation trees, regardless of sources
distribution and density. The aim is to efficiently
build and maintain a network structure for data
aggregation. To this end, the authors of [29] pro-
pose a ring-sector subdivision of the network. A
subset of nodes is elected as aggregation nodes,
and they are organized in a spanning tree to
form the data aggregation backbone. Each node
belonging to the backbone aggregates messages
coming from a certain subarea.

A further tree-based aggregation algorithm
that exploits data correlation is presented in
[30]. It is based on shallow light trees (SLTs)

that unify the properties of MSTs and SPTs. In
an SLT, the total cost of the tree is only a con-
stant factor larger than that of the MST, while
the distances (delays) between any node and the
sink are only a constant factor larger than the
shortest paths. In [31] the authors analyze aggre-
gation properties of a tree structure that is based
on an SPT of nodes close to the sink node, while
nodes that are further away are connected to the
leaves of the SPT via paths found by an approxi-
mation algorithm for the traveling salesman
problem. Simulations show that these trees out-
perform SLTs in many scenarios.

NETWORKING PROTOCOLS AND
HIERARCHIES FOR

IN-NETWORK AGGREGATION
Most of the work done so far on in-network
aggregation deals with the problem of forwarding
packets in order to facilitate the in-network
aggregation of the information therein. Initially,
the main ideas were to enhance existing routing
algorithms in such a way as to make data aggrega-
tion possible. To this end, many studies proposed
solutions exploiting tree-based (or hierarchical)
structures. These consist of routing algorithms
based on a tree rooted at the sink. Trees are usu-
ally SPTs, but some approaches consider more
complex tree constructions. The tree-based
approaches are referred to in this article as classi-
cal approaches. Sometimes the tree structure can
be optimized to the type of data to be gathered.
Also, the nodes can be locally grouped into clus-
ters for improved efficiency. Recently, a few
notable exceptions looked at the problem from a
different angle. These papers address the weak-
nesses of the tree-based approach by focusing on
multipath routing. Finally, some very recent
schemes implement a mixture of tree-based and
multipath solutions. These are referred to here as
hybrid approaches to emphasize the adaptive
nature of their routing algorithms.

In the following, we focus on each class of
routing protocols separately (tree-based, cluster-
based, multipath, and hybrid) by reviewing the
main concepts and briefly commenting on the pros
and cons of each scheme. As seen from the num-
ber of schemes discussed in each subsection, many
solutions are proposed in the tree-based and clus-
ter-based categories. On the other hand, very few
studies use the multipath and hybrid approaches.
This leaves room for further work in this area.

TREE-BASED APPROACHES
Classic routing strategies [32, 33] are usually
based on a hierarchical organization of the
nodes in the network. In fact, the simplest way
to aggregate data flowing from the sources to
the sink is to elect some special nodes that work
as aggregation points and define a preferred
direction to be followed when forwarding data.

In addition, a node may be marked as special
depending on many factors such as its position
within the data gathering tree [34], its resources
[35], the type of data stored in its queue [36, 37],
or the processing cost due to aggregation proce-
dures [38]. According to the tree-based approach
[1, 3, 6] a spanning tree rooted at the sink is

O Nlog ,( )
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constructed first. Subsequently, such a structure
is exploited in answering queries generated by
the sink. This is done by performing in-network
aggregation along the aggregation tree by pro-
ceeding level by level from its leaves to its root.
Thus, as two or more messages get to a given
node, their aggregate can be computed exactly.
However, this way of operating has some draw-
backs as actual wireless sensor networks are not
free from failures. More precisely, when a pack-
et is lost at a given level of the tree (e.g., due to
channel impairments), the data coming from the
related subtree are lost as well. In fact, a single
message at a given level of the tree may aggre-
gate the data coming from the whole related
subtree. In spite of the potentially high cost of
maintaining a hierarchical structure in dynamic
networks and the scarce robustness of the system
in case of link/device failures, these approaches
are particularly suitable for designing optimal
aggregation functions and performing efficient
energy management. In fact, there are some
studies where the sink organizes routing paths to
evenly and optimally distribute the energy con-
sumption while favoring the aggregation of data
at the intermediate nodes [36, 39, 40]. In [39]
the authors compute aggregation topologies by
taking into account the residual energy of each
node through linear programming. Further algo-
rithms can be found in [34, 35, 41, 42]. In [41]
the authors investigate which nodes in the net-
work can be exploited as aggregation points for
optimal performance. In [34, 42] the focus is on
the nodes that should be entrusted with the
transmission of the sensed values, whereas in
[35] the emphasis is put on the proper schedul-
ing of sleeping/active periods. Often, optimal
paths are calculated in a centralized manner at
the sink by exploiting different assumptions on
the data correlation and selecting the best aggre-
gation points by means of cost functions [43].
Recently, tree-based schemes for real-time or
time-constrained applications have also been
proposed [44–46].

Finally, a last approach based on aggregation
trees relies on the construction of connected
dominating sets [47]. These sets consist of a small
subset of nodes that form a connected backbone
and whose positions are such that they can col-
lect data from any point in the network. Nodes
that do not belong to these sets are allowed to
sleep when they do not have data to send. Some
rotation of the nodes in the dominating set is
recommended for energy balancing.

In the following paragraphs we review the
main routing approaches based on aggregation
trees.

TAG — The Tiny AGgregation (TAG) approach
[5] is a data-centric protocol. It is based on
aggregation trees and specifically designed for
monitoring applications. This means that all
nodes should produce relevant information peri-
odically. Therefore, it is possible to classify TAG
as a periodic per hop adjusted aggregation
approach. The implementation of the core TAG
algorithm consists of two main phases:
• The distribution phase, where queries are dis-

seminated to the sensors
• The collection phase, where the aggregated

sensor readings are routed up the aggregation
tree
For the distribution phase, TAG uses a tree-

based routing scheme rooted at the sink node.
The sink broadcasts a message asking nodes to
organize into a routing tree and then sends its
queries. In each message there is a field specify-
ing the level, or distance from the root, of the
sending node (the level of the root is equal to
zero). Whenever a node receives a message and
it does not yet belong to any level, it sets its own
level to be the level of the message plus one. It
also elects the node from which it receives the
message as its parent. The parent is the node
that is used to route messages toward the sink.
Each sensor then rebroadcasts the received mes-
sage adding its own identifier (ID) and level.
This process continues until all nodes have been
assigned an ID and a parent. The routing mes-
sages are periodically broadcast by the sink in
order to keep the tree structure updated. After
the construction of the tree, the queries are sent
along the structure to all nodes in the network.
TAG adopts the selection and aggregation facili-
ties of the database query languages (SQL).
Accordingly, TAG queries have the following
form:

SELECT{agg(expr), attrs} from SENSOR
WHERE{selPreds}
GROUP BY{attrs}
HAVING{havingPreds}
EPOCH DURATION i

In practice, the sink sends a query, where it
specifies the quantities that it wants to collect
(attrs field), how these must be aggregated
(agg(expr)), and the sensors that should be
involved in the data retrieval. This last request is
specified through the WHERE, GROUP, and HAV-
ING clauses [5]. Finally, an EPOCH DURATION
field specifies the time (in seconds) each device
should wait before sending new sensor readings.
This means the readings used to compute an
aggregate record all belong to the same time
interval, or epoch.

During the data collection phase, due to the
tree structure, each parent has to wait for data
from all of its children before it can send its
aggregate up the tree. Epochs are divided into
shorter intervals called communication slots. The
number of these slots equals the maximum depth
of the routing tree. The slot mechanism gives a
nice benefit. As the time is slotted, sensor nodes
can be put to sleep until the next scheduled
transmission interval. In practice, a node goes
back to sleep soon after it has finished sending
its readings to its parent. Data aggregation is
performed by all intermediate nodes. However,
in order not to limit TAG to the few and very
simple aggregation functions defined by the SQL
language (e.g., COUNT, MIN, MAX, SUM, and
AVERAGE) a more general classification is
accounted for by partitioning aggregates accord-
ing to the Duplicate Sensitivity, Exemplary and
Summary, and Monotonic properties [5].

As for most tree-based schemes, TAG may
be inefficient for dynamic topologies or link/
device failures: as discussed above, trees are par-
ticularly sensitive to failures at intermediate
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nodes as the related subtree may become discon-
nected. In addition, as the topology changes,
TAG has to reorganize the tree structure,  which
means high costs in terms of energy consump-
tion and overhead.

Directed Diffusion — Directed Diffusion [1] is a
reactive data-centric protocol. The routing
scheme is specifically tailored for those applica-
tions where one or few sinks ask some specific
information by flooding the network with their
queries. Directed Diffusion is organized in three
phases (see Fig. 2, originally shown in [1]):
• Interest dissemination
• Gradient setup
• Data forwarding along the reinforced paths

(path reinforcement and forwarding)
When a certain sink is interested in collecting
data from the nodes in the network, it propa-
gates an interest message (interest dissemination),
describing the type of data in which the node is
interested, and setting a suitable operational
mode for its collection. Each node, on receiving
the interest, rebroadcasts it to its neighbors. In
addition, the node sets up interest gradients, that
is, vectors containing the next hop that has to be
used to propagate the result of the query back to
the sink node (gradient setup). As an illustrative
example (Fig. 2), if the sink sends an interest
that reaches nodes a and b, and both forward
the interest to node c, node c sets up two vectors
indicating that the data matching that interest
should be sent back to a and/or b. The strength
of such a gradient can be adapted, which may
result in a different amount of information being
redirected to each neighbor. To this end, various
metrics such as the node’s energy level, commu-
nication capability, and position within the net-
work can be used. Each gradient is related to the
attribute for which it has been set up. As the
gradient setup phase for a certain interest is
complete, only a single path for each source is
reinforced and used to route packets toward the
sink (path reinforcement and forwarding).

Data aggregation is performed when data is
forwarded to the sink by means of proper meth-
ods, which can be selected according to applica-
tion requirements. The data gathering tree (i.e.,
reinforced paths) must be periodically refreshed
by the sink, and this can be expensive in dynamic
topologies. A trade-off, depending on the net-
work dynamics, is involved between the frequency
of the gradient setup (i.e., energy expenditure)
and the achieved performance. A valuable feature
of Directed Diffusion consists of the local interac-
tion among nodes in setting up gradients and
reinforcing paths. This allows for increased effi-
ciency as there is no need to spread the complete
network topology to all nodes in the network.

We observe that attention is to be paid to
MAC layer design. Consider as an example the
IEEE 802.11 wireless technology. As mentioned
above, queries are propagated by means of broad-
casts (basic access in IEEE 802.11). However,
data is sent back to the sink via unicast transmis-
sions. This means that when either the node den-
sity increases or the duplicate suppression rule is
not used, due to MAC collisions and subsequent
backoffs, the delay may become excessively large.
Hence, the local traffic should be kept at an

acceptably low level in order to avoid collisions.
Several approaches [36, 48, 49] have been pro-
posed to reduce the control traffic generated by
the local interactions among nodes with Directed
Diffusion. In these solutions the authors use
properly defined aggregation trees with the main
purpose of reducing both traffic and delay. In [48]
a modified version of Directed Diffusion,
Enhanced Directed Diffusion (EDD), is proposed.
This protocol jointly exploits Directed Diffusion
to collect data and a cluster-based architecture to
increase the efficiency of the local interactions
(decreasing local traffic and related collisions). A
similar approach is investigated in [50].

PEGASIS — The key idea in Power-Efficient GAth-
ering in Sensor Information Systems (PEGASIS)
[3] is to organize the sensor nodes in a chain.
Moreover, nodes take turns acting as the chain
leader, where at every instant the chain leader is
the only node allowed to transmit data directly
to the sink. In this way it is possible to evenly
distribute the energy expenditure among the
nodes in the network. The chain can be built
either in a centralized (by the sink) or distribut-
ed manner (by using a greedy algorithm at each
node). In both cases, however, the construction
of the chain requires global knowledge of the
network at all nodes. The chain building process
starts with the node furthest from the sink. Then
the closest neighbor to this node is chosen as the
next one in the chain, and so on. Nodes take
turns acting as leader according to the following
rule: node i is elected as the leader in round i. If
there are N nodes in the network, rounds cycli-
cally take values in {1, 2, …, N} according to a
time-division multiple access (TDMA) schedule.
As a consequence, the leader is not always the
same, but during each transmission round it is at
a different position in the chain. Note that in
this scheme a direct communication channel
from each sensor to the sink is required.

In PEGASIS, each node receives data from a
neighbor and aggregates it with its own reading
by generating a single packet of the same length.

n Figure 2. A simplified scheme for Directed Diffusion [1]: a) interest dissemi-
nation; b) gradients setup; c) data delivery along the reinforced path.
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Subsequently, such an aggregate is transmitted
to the next node in the chain until the packet
reaches the current chain leader. At this point
the leader includes its own data into the packet
and sends it to the sink. A possible drawback of
the scheme comes from the distance among
neighbors. In fact, when the neighbors along the
chain are too distant, the energy expenditure can
be very high. In addition, transmission energies
are not evenly distributed but depend on the
actual distances between the nodes and their
neighbors (i.e., nodes with distant neighbors dis-
sipate more energy). PEGASIS can therefore be
enhanced by not allowing such nodes to become
leaders, for example, using a threshold-based
leader election policy. The main disadvantages
of PEGASIS are the necessity of having a com-
plete view of the network topology at each node
for proper chain construction and that all nodes
must be able to transmit directly to the sink.
This makes the scheme unsuitable for those net-
works with a time varying topology. In addition,
link failures and packet losses may also affect
the performance of this protocol. In fact, the
failure of any intermediate node compromises
the delivery of all data aggregated and sent by
the previous nodes in the chain. Hence, some
improvements to the scheme may be needed in
order to increase its robustness.

DB-MAC — A different approach, routing packets
by performing data aggregation, is presented in
[7], where the routing and MAC protocols are
jointly designed. The primary objective of the
Delay Bounded Medium Access Control (DB-
MAC) [7] scheme is to minimize the latency for
delay bounded applications while taking advan-
tage of data aggregation mechanisms for
increased energy efficiency. DB-MAC adopts a
carrier sense multiple access with collision avoid-
ance (CSMA/CA) contention scheme based on a
request to send/clear to send/data/acknowledg-
ment (RTS/CTS/DATA/ACK) handshake. The
protocol is most suitable for those cases where
different sources sense an event almost at the
same time and, due to delay constraints, have to
send their measurements right away to the sink.
In such cases the generated data flows can be
dynamically aggregated while routing them toward
the sink. This gives rise to an aggregation tree,
which is built on the fly and with no knowledge of
the network topology. The MAC protocol is very

similar to the IEEE 802.11 RTS/CTS Access [51]
with some minor modifications: RTS/CTS mes-
sages are exploited to perform data aggregation,
and backoff intervals are computed by taking into
account the priorities assigned to different trans-
missions. In particular, each node takes advantage
of the transmissions from other nodes by over-
hearing CTSs in order to facilitate data aggrega-
tion. This leads to choosing the relay node among
those nodes that already have some packets to
transmit in their queue. This is implemented to
promote data aggregation with the information
stored along the path.

As an example, refer to the scenario in Fig. 3.
We have two nodes, S1 and S2, which want to
transmit their packets to the sink using one of
their neighbors (R1 and R2 in the figure) as the
relay. At the beginning of the contention, a node
transmits a newly generated packet by setting its
priority to the maximum value. The packet pri-
ority is subsequently decreased at each traversed
node. Because Pr(S1) > Pr(S2), S1 wins the con-
tention for the medium and sends its packet to
R1, which decreases its priority by one unit.
After this, Pr(S2) becomes equal to the priority
of the packet just transmitted, which is now
stored at node R1. If S2 is placed in the coverage
area of both S1 and R1, it can overhear all mes-
sages exchanged between these two nodes
(remember that the packet at S2 still has to be
forwarded). If this is the case, S2 may now want
to send its packet to R1 instead of R2 as it knows
that R1 already has one packet in its queue (the
packet previously transmitted by S1). This facili-
tates in-network aggregation. DB-MAC gives an
example of how routing and data aggregation
may influence each other, and shows that, in
most cases, energy-efficient solutions are
achieved only through a cross-layer design. The
advantage of this strategy is the flexible and dis-
tributed procedure for the construction of aggre-
gation trees, which appears to be suitable for
wireless networks with dynamic topology.

Further Algorithms — Regarding the tree-based
approaches, many additional solutions have been
proposed to solve the problem of efficiently con-
structing aggregation trees. The authors in [36]
define efficient, distributed, and energy-aware
heuristics (EADAT) to build the aggregation
tree. A nice feature of such an approach is that
the tree construction process only relies on local
knowledge of the network topology. Hence, the
costs incurred in updating the tree in response
to node mobility, device failures, and duty cycles
may be limited. In addition, to further increase
the energy savings, the scheme in [36] uses an
aggregation tree rooted at the sink where all
non-leaf sensors perform data aggregation while
leaf nodes can turn off their radios in order to
save energy. In [52] the problem of constructing
the optimal aggregation tree is treated from a
game theoretic perspective. The authors develop
a framework including payoff functions that take
into account path reliability, path length, and the
energy constraints of the nodes. They finally pro-
pose and evaluate a couple of heuristics to imple-
ment opportunistic in-network aggregation
strategies. Reference [53] presents a solution for
the mobile sink case. The authors define a pro-

n Figure 3. A message exchange example in DB-MAC.
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tocol to maintain the aggregation tree in the
presence of mobile sinks. In their solution they
rely on trusted nodes that work as gateways
between the network and the sinks. A further
contribution can be found in [54], where the
authors combine a tree-based scheme with data
compression based on polynomial regression.

An additional problem related to the aggre-
gation tree is addressed in [37], where the
authors present a set of algorithms to minimize
the overall energy consumption of the sensor
nodes in the presence of latency constraints
under the assumption of perfect knowledge of
the aggregation tree. The problem is solved by
devising appropriate scheduling strategies for
each node. This contribution is particularly
important for applications requiring prompt
delivery of the information to the sink. A major
drawback, however, is that the problem of con-
structing the aggregation tree is not addressed.
Finally, in [55] the Secure Data Aggregation Pro-
tocol (SDAP) scheme is presented. This algo-
rithm addresses the problem of delivering data
over aggregation trees in a secure manner. Fur-
ther data aggregation schemes for secure com-
munications are reviewed in [56].

CLUSTER-BASED APPROACHES
Similar to tree-based algorithms, cluster-based
schemes [2, 4, 48, 57] also consist of hierarchical
organization of the network. However, here
nodes are subdivided into clusters. Moreover,
special nodes, referred to as cluster heads, are
elected in order to aggregate data locally and
transmit the result of such aggregation to the
sink. The advantages and disadvantages of clus-
ter-based schemes are very similar to those of
tree-based approaches.

LEACH — Low-Energy Adaptive Clustering Hierar-
chy (LEACH) [2] is a self-organizing and adap-
tive clustering protocol using randomization to
evenly distribute the energy expenditure among
the sensors. Clustered structures are exploited to
perform data aggregation where cluster heads
act as aggregation points. The protocol works in
rounds and defines two main phases:
• A setup phase to organize the clusters
• A steady-state phase that deals with the actual

data transfers to the sink node
In the first phase the nodes organize them-

selves into clusters. Within each cluster a node is
elected as the cluster head. At the beginning of
the setup phase, each sensor elects itself to be
the local cluster head for the current round. This
decision is made according to a distributed prob-
abilistic approach. The aim is to have, on aver-
age, a percentage P of the nodes acting as cluster
heads, where P has to be optimally chosen
according to the node density. In practice, sen-
sors calculate the following threshold:

(1)

where P is the desired percentage of cluster
heads, R is the round number, and G is the set
of nodes that have not been cluster heads during
the last 1/P rounds. A given node n picks a ran-

dom number [0, 1] and decides to be a cluster
head if this number is lower than T(n). A cluster
head sends advertisements to its neighbors using
a CSMA MAC. Surrounding nodes decide which
cluster to join based on the signal strength of
these messages. Finally, based on the number of
nodes that are willing to be part of the cluster,
each cluster head creates a TDMA schedule to
optimally manage the local transmissions.

The actual data transmission starts in the sec-
ond phase of the protocol. All source nodes (S
in Fig. 4) send their data to their cluster heads
according to the established schedule. The use
of a TDMA protocol in the data collection phase
ensures that there are no collisions within the
clusters, saving both energy and time. After clus-
ter heads (CH in Fig. 4) have received all the
data from the active sources, they send them
back to the sink using a single direct transmis-
sion (dotted lines in Fig. 4). If the sink is placed
far away from a cluster head, high power may be
necessary to successfully deliver the message.
Also, a doze mode is implemented to further
save energy. When doze mode is used, the nodes’
radios may be switched off until their scheduled
TDMA transmission slot. Note that cluster heads
cannot switch their radio off as they have to
receive packets from potentially all nodes in the
cluster. LEACH is completely distributed in the
sense that neither control messages from the
sink nor the distribution of global information to
the sensor nodes are required for correct opera-
tion. Moreover, LEACH outperforms classical
clustering algorithms by accounting for adaptive
clusters and rotating cluster heads.

The LEACH framework also offers the
opportunity to implement any aggregation func-
tion at the cluster heads. However, several prob-
lems may arise in highly dynamic environments.
In this case continuous updates are needed in
order to keep the clusters consistent with the
underlying topology. This requires sending many
control messages, which, in turn, may substan-
tially impact performance. In addition, with
mobility additional problems may arise. A node
close to a cluster head at a given instant in time
may move away from the cluster head. As a con-
sequence, the node needs to increase its power,
thereby spending much more energy to transmit
to the cluster head than expected.

Cougar — Cougar [4, 58] is most suitable for mon-
itoring applications, where nodes produce rele-
vant information periodically. The protocol can
be classified as a periodic per hop aggregation
approach. Cougar is basically a clustering
scheme. As soon as the cluster heads receive all
data from the nodes in their clusters, they send
their partial aggregates to a gateway node. Of
course, being similar to LEACH, Cougar is also
affected by the same problems in highly dynamic
environments.

Noticeably, Cougar differs from the previous
clustering-based algorithms in the way cluster
heads are elected. Unlike in LEACH, where
each node picks its cluster head based on signal
strength measurements, in Cougar cluster head
selection may be driven by additional metrics. In
fact, a node could be more than one hop away
from its cluster head. For this reason, the rout-
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ing algorithm adopted to exchange packets with-
in clusters is based on the Ad Hoc On Demand
Distance Vector (AODV) technique. As AODV
does not generate duplicate data packets, Cougar
is particularly suitable to perform in-network
aggregation with duplicate sensitive aggregators.
The core Cougar algorithm consists of the node
synchronization engine, which ensures that data
is aggregated correctly. Each cluster head has a
waiting list containing all nodes from which it
expects a message. The list is updated every time
the node receives a record from a node in its
cluster. The cluster head does not report its
reading to the gateway until, at time tsend, it
hears from all nodes in its waiting list. A predic-
tion mechanism is also implemented at each
cluster head in order to infer the instant tsend. In
addition, a child node can determine whether its
cluster head is waiting for a packet from it and
can use a notification packet to refine the predic-
tion at the cluster head. Timeouts and backoffs
are implemented to deal with wrong predictions.

In [4] the authors define three different data
aggregation features: direct delivery, where data
aggregation is performed at the cluster-heads
only, packet merging, which consists of aggrega-
tion of packets without size reduction, and Par-
tial aggregation , where data aggregation is
implemented at the intermediate nodes.

Further Algorithms — Many additional studies
exploiting a hierarchical organization of the
nodes have been proposed in the literature.
Some of them are improvements of existing pro-
tocols. In [59], for instance, the authors propose
enhancements to the LEACH and PEGASIS
schemes. For performance evaluation, the
authors propose the new data aggregation quality
(DAQ) metric, which is defined as the ratio
between the size of the aggregated data and its
joint entropy. DAQ is an interesting performance
measure as it takes into account both the effec-
tiveness in reducing the size of the data to be
transmitted and the quality of the information. A
further improvement to LEACH is presented in

[60], where a code is added to the data transmis-
sion to enhance intracluster communication secu-
rity. A similar approach is proposed in [57] where
the cluster-based scheme is enhanced by a secure
transmission protocol called SecureDAV.

Reference [27] presents a location-based clus-
tering scheme where the sensors self-organize to
form static clusters. The data generated within
each cluster is sent to the related cluster head
along shortest paths, and in-network aggregation
is performed at the intermediate nodes. The
cluster heads send the aggregated data to the
sink through a multihop path without any fur-
ther aggregation. The cluster size can be varied
to tune the degree of aggregation. The authors
in [61] study the impact of partially correlated
data on the performance of clustering algo-
rithms. They analyze the behavior of multihop
routing and, by combining random geometry
techniques and rate distortion theory, predict the
total energy consumption and network lifetime
of their cluster-based scheme. Further cluster-
based algorithms for data aggregation can be
found in [62, 63]. Interesting work on clustering
and data aggregation is presented in [64]. Here,
a cross-layer approach is adopted, and some
issues concerning MAC design are addressed.

Other work based on a hierarchical organiza-
tion of the network is proposed in [11]. Assum-
ing that some algorithms are used to form an
aggregation tree or a cluster-based aggregation
structure, the authors propose a scheme to
dynamically adapt the data aggregation period
(see [10]) according to the aggregation quality
required by the sink.

A different approach is presented in [65] where
a semi-structured approach named ToD is defined
in order to alleviate the problem of maintaining a
hierarchical organization of nodes in dynamic
large-scale networks. This study is enriched by
simulations with 2000 nodes and experimental
results obtained from a large testbed.

MULTIPATH APPROACHES
In order to overcome the robustness problems of
aggregation trees, a new approach was recently
proposed [8, 9, 66]. Instead of having an aggre-
gation tree where each node has to send the par-
tial result of its aggregation to a single parent,
these solutions send data over multiple paths.
The main idea is that each node can send the
data to its (possibly) multiple neighbors by
exploiting the broadcast characteristics of the
wireless medium. Hence, data may flow from the
sources to the sinks along multiple paths, and
aggregation may be performed by each node.
Observe that in contrast to the tree-based
schemes discussed above, multipath approaches
allow duplicates of the same information to be
propagated. Clearly, such schemes trade higher
robustness (as multiple copies of the same data
can be sent along multiple paths) for some extra
overhead (due to sending duplicates). An aggre-
gation structure that fits well with this methodol-
ogy is called ring topology, where sensor nodes
are divided into several levels according to the
number of hops separating them from the data
sink. Data aggregation is performed over multi-
ple paths as packets move level by level toward
the sink (Fig. 5). Next, we review the synopsis

n Figure 4. LEACH clustering approach.
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diffusion framework which belongs to this class
of protocols.

Synopsis Diffusion — The authors of [8] present
the Synopsis Diffusion protocol, where data
aggregation is performed through a multipath
approach. The underlying topology for data dis-
semination is organized in concentric rings
around the sink. Synopsis Diffusion consists of
two phases:
• The distribution of the queries
• The data retrieval phase
The ring topology is formed when a node sends
a query over the network. In particular, two dif-
ferent structures can be taken into account. The
first type of topology consists of a simple ring
structure. During the query distribution phase,
the network nodes form a set of rings around
the querying node q, which is the only sensor
belonging to ring R0. A node is in ring Ri if it is i
hops away from the querying node.

The second type of topology has some
improvements that make it more robust than the
first and able to cope with changes in the net-
work. This topology is called adaptive rings. The
distribution phase does not change, but this time
a node u in ring i keeps track of the number of
times, nov, the transmissions from any node ni–1
in ring i – 1 included its own data during the last
few epochs. That is, node u checks whether its
data is aggregated with the information sent by
any node in ring i – 1. If nov is small, u tries to
find a better ring in order to have more of its
own data included in the subsequent transmis-
sions. In fact, rings i, i + 1, i – 2, and i + 2 can
also be considered for aggregating data (rings i –
2 and i + 2 could be overheard in case of mobil-
ity). To allow for these checks, the list of all
node IDs participating in the construction of the
synopsis (data aggregation result) is included in
the header of each packet. This feature is also
exploited at each node as a sort of implicit ACK.
Finally, the decision of which ring to join is
made according to heuristics depending on ni–1,
ni, ni+1, ni+2, and ni–2 [8]. The query aggregation
period is divided into epochs, and one aggregate
is provided at the end of each. Specific time slots
are allocated within each epoch and used to
schedule the node transmissions in a TDMA
fashion. Sensors can be put to sleep and woken
up at their scheduled transmission slots. The
aggregation starts from the outermost ring (e.g.,
Ri), proceeds toward the subsequent ring (e.g.,
Ri–1), and propagates level by level toward the
sink. In the example in Fig. 5, the data generat-
ed at node A can reach the sink through seven
paths: {A, B, F, I, S}, {A, B, F, H, S}, {A, B, F,
G, H, S}, {A, C, D, E, I, S}, {A, C, F, H, S},
{A, C, F, I, S}, and {A, C, G, H, S}. Note that,
as the main feature of Synopsis Diffusion is that
data can flow over multiple paths, a node may
receive duplicates of the same information. This
may affect the aggregation result, especially
when aggregation functions are duplicate sensi-
tive. This problem is addressed by the authors in
[8] by proposing proper aggregation functions
and data structures. On the upside, multipath
schemes are suitable for networks with frequent
packet losses due to mobility or channel impair-
ments, as the extra overhead (duplicates) pays

off in terms of robustness: if a link fails, the data
may still reach the sink through a different path. 

Further Algorithms — Another way to implement
multipath schemes is based on multiple spanning
trees. For instance, the authors in [67] define a
method to provide fault tolerance to packet loss-
es by forming a Directed Acyclic Graph (DAG).
DAG allows multiple parent nodes at each sen-
sor. In addition, the method ensures correct data
transmission timing, according to the actual hop
count of the DAG edges.

HYBRID DATA AGGREGATION APPROACHES
In order to benefit from the advantages of both
tree-based and multipath schemes, it is possible
to define hybrid approaches that adaptively tune
their data aggregation structure for optimal per-
formance. To the best of our knowledge, a single
work [9] has been proposed with this aim. The
related protocol is presented next.

Tributaries and Deltas — The Tributaries and Deltas
protocol [9] tries to overcome the problems of
both tree and multipath structures by combining
the best features of both schemes. The result is a
hybrid algorithm where both data aggregation
structures may simultaneously run in different
regions of the network. The idea is that under
low packet loss rates, a data aggregation tree is
the most suitable structure due to the possibility
of implementing efficient sleeping modes (see
previous sections) and the good efficiency in rep-
resenting and compressing the data. On the other
hand, in case of high loss rates or when transmit-
ting partial results that are accumulated from
many sensor readings, a multipath approach may

n Figure 5. Examples of aggregation paths over a ring structure.
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be the best option due to its increased robust-
ness. Hence, nodes are divided into two cate-
gories: nodes using a tree-based approach to
forward packets (also called T nodes) and nodes
using a multipath scheme (M nodes). This means
that the network is organized in regions imple-
menting one of the two schemes. The main diffi-
culty is to link regions running different data
aggregation structures. In doing so, the following
rules have to be satisfied [9]:
• Edge correctness: An edge originating from an

M node can never be incident on a T node. It
means that the aggregation result in a multi-
path region can only be received by an M
node (Fig. 6).

• Path correctness: M nodes form a subgraph
including the sink node, which is fed by trees
composed of T nodes (Fig. 6).

According to the above rules, the sink is sur-
rounded by M nodes only. These form the so-
called delta region, which can be expanded or
shrunk by switching nodes from the tree mode
(T) to the multipath mode (M) and vice versa,
respectively. In practice, only the nodes lying
along the boundary between the two regions are
allowed to change their operating mode [9] (Fig.
6). Expanding the delta region corresponds to
increasing the number of paths toward the sink,
which is good when the packet loss probability is
high. On the other hand, shrinking the region is
beneficial when the network is static and the
packet loss probability is small. The user can set a
threshold to specify the minimum percentage of
nodes that should contribute to the aggregation
operation. Note that this percentage increases in
case of a wider delta region. In fact, this implies
that more multipath nodes are available, thus
leading to higher robustness against failures and,
in turn, to more nodes that actively contribute to
the aggregation result. The opposite holds when
the delta region is shrunk. To see this, consider
node T5 in Fig. 6. This node is switched to an M
vertex (diagram on the right); as a consequence, it
can now also transmit the aggregated data flow to
nodes M4 and M5. In particular, M5 can now con-
tribute to the data aggregation by passing the
data coming from node M to lower levels.

In [9] the authors compare the Tributaries and
Deltas algorithm to TAG [5] (pure tree-based)
and Synopsis Diffusion [8] (pure multipath). The
simulation results in [9] only focus on the quality
of the gathered information (root mean square
error), while disregarding the energy consumption
aspect. In particular, they demonstrate that Tribu-
taries and Deltas guarantees smaller errors with
respect to TAG and that the approach nicely
solves the drawbacks of pure multipath schemes
(Synopsis Diffusion). The major weakness of this
approach is the possibly high overhead incurred
in updating the data gathering structure. The
maintenance of the quite complex network struc-
ture may also be a problem with node mobility
(this is also an open issue not addressed in [9]).

Finally, particular attention is to be paid to
the increase in traffic and therefore to the MAC
scheme in use. We stress that most of the work
on data aggregation done so far does not consider
this problem. We emphasize the need for true
crosslayer approaches that jointly consider rout-
ing, aggregation functions, and MAC aspects
with particular focus on both data representation
efficiency and energy consumption.

DATA REPRESENTATIONS AND IN-NETWORK
AGGREGATION FUNCTIONS

As discussed earlier, the problems of finding
proper data representation and an optimal
aggregation function are strongly related and
complex. The solutions proposed so far mostly
adopt very simple aggregation functions such as
average, median, quantile, min, and max [3, 5].
These strongly reduce the amount of data to be
transmitted over the network but also heavily
affect the precision of the transmitted informa-
tion (lossy aggregation functions). However, in
many cases we may be interested in a more
detailed representation of the data, which calls
for more complex functions and data structures
(taking into account the spatial, temporal, and
semantic correlation of the readings): cross-layer
and self-adaptable data fusion rules have been
proposed in [15, 68, 69].

n Figure 6. Example of data gathering regions in Tributary and Delta.
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A first improvement to a simple data aggre-
gation function to take into account the spatial
correlation is presented in [13]. In this strategy
the dependence on the distance among nodes is
quantified by a decay function which may, for
example, decay exponentially with an increasing
hop distance [13]. During the data aggregation,
each reading is weighed by a decaying factor that
decreases with the distance to its source. The
framework can be extended by additionally
accounting for temporal and semantic correla-
tion. However, this remains an open and mostly
unaddressed issue.

In the following sections we describe a selec-
tion of in-network aggregation functions accord-
ing to our classification earlier. We review the
simplest methods first, and subsequently consid-
er more complex approaches. At the end of the
section, we discuss distributed source coding
techniques that perform joint coding of correlat-
ed data from multiple sources in a distributed
manner.

TINA
Temporal coherency-aware in-Network Aggrega-
tion (TiNA) [14] works on top of a routing tree
(i.e., TAG or Cougar) with the data gathering
point (sink) as its root. It exploits the temporal
correlation in a sequence of sensor readings to
reduce energy consumption by suppressing those
values that do not affect the expected quality of
the aggregated data. This is implemented
through a TOLERANCE clause added to the
SQL query. The tct parameter of this clause is
used to specify the temporal coherency tolerance
for the query. As an example, at a leaf node,
each new available value, Vnew, is compared
against the last reported data point, Vold. Vnew is
transmitted (and aggregated) up the tree if and
only if it satisfies the following requirement
(data suppression rule):

(2)

TiNA uses the clause GROUP BY of the
SQL query to decide how different messages
shall be processed (i.e., two data points can only
be aggregated if they belong to the same
GROUP). The data gathering procedure execut-
ed at the internal nodes is as follows. They first
gather and combine packets sent by their chil-
dren. If a given node does not receive valid data
from any of its children, it replaces the missing
information using the last reported data from
the same child (previously stored in its buffer).
The node then considers its own reading. If it
can be aggregated with some other data in its
buffer (they belong to the same GROUP), the
reading is aggregated with that data regardless
of the tct value. Doing so, internal nodes can
report their values more often than leaf nodes,
thus increasing the accuracy of the aggregation.
On the other hand, if the internal node needs to
create a new group, it does so and adds the new
reading only if this data satisfies Eq. 2. The idea
is that new groups are created only when the
new measurements significantly differ from old
data points (Eq. 2).

Moreover, in TiNA a very simple mechanism
to counteract link failures is used. Children,
when suppressing data, must send heartbeat mes-
sages to their parent at regular intervals. The
cost of this message is low as it is just a notifica-
tion packet. Thanks to these packets each parent
knows whether its children are still alive. Thus, it
can infer whether the old readings are to be kept
valid. In case of a missing notification, the appro-
priate child is discarded until the parent hears
from that child again. These messages can also
be used in case of mobile sensors as nodes change
their location in the network. Finally, the period-
ic heartbeats allow children to reconnect to the
data gathering tree in case of parent failure.

DADMA
Data Aggregation and Dilution by Modulus
Addressing (DADMA) [16] is a distributed data
aggregation and dilution technique for sensor
networks where nodes aggregate or dilute sensed
values according to the rules given in an SQL
statement. DADMA treats a wireless sensor net-
work as a distributed relational database. This
database has a single view that is created by join-
ing records which are locally stored in the sensor
nodes. This technique can be used over well-
known routing schemes such as Directed Diffu-
sion [1] and LEACH [2]. The sensor network
database view (SNDV) is temporarily created
and maintained at the sink node. The basic idea
in DADMA is to aggregate data coming from a
group of sensors or exclude some sensors from
the data gathering tree. These operations are
carried out according to two simple rules. First,
a user can retrieve a subset of data fields avail-
able in an SNDV and aggregate data by using
the following aggregate m function:

fa(x) = x div m. (3)

Moreover, sensor nodes can be excluded from a
query by a dilute m function as follows:

fd(x) = (x/r) mod (m/r). (4)

In the previous equations x is the grid location
of a node with respect to one of the axes, r is the
resolution in meters, and m is the aggregation
(or dilution) factor. As the sink sends a new
query, it also specifies a based on field and a
command that could be either aggregate or dilute.
Each sensor node compares the result of its
aggregation or dilution function with the based
on value and decides its behavior.

For instance, on receiving a dilute m com-
mand, a node first uses Eq. 4 to calculate its
location indices for both the horizontal and ver-
tical axes (fd(x) and fd(y)). Subsequently, it com-
pares these values with the x and y indices
included in the based on field of the query. If
they match, the sensor replies to the query. In a
similar way, when an aggregate m command is
received, the values measured by a sensor node
are aggregated with those measured by the other
nodes having the same indices. We observe that
such a strategy is a practical way to take into
account the spatial location of the nodes by, for
instance, aggregating only those values coming
from closely placed devices. The author in [16]
studies the performance of DADMA by putting
particular emphasis on the energy savings com-
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ing from the reduction of the number of trans-
missions and the probability of event detection.
Moreover, he devises a mechanism to achieve a
good trade-off among cost, accuracy, and relia-
bility in retrieving the wanted information. The
same concepts are addressed in [70] where, in
addition to the aggregation/dilution schemes,
two location-based hash functions are introduced
to determine how the sensed data can be
grouped or which sensors should be excluded
from a query.

DATA AGGREGATION BY MEANS OF
FEEDBACK CONTROL

The authors of [71] define a strategy to tune the
degree of data aggregation while maintaining
specified latency bounds on data delivery and
minimizing the energy consumption. They con-
sider time-constrained reference scenarios deal-
ing with real-time applications that impose
specific time constraints on the delivery of sen-
sor measurements. Data is grouped into differ-
ent classes associated with different bounds on
the delivery time. The aim is to guarantee the
delivery of all data at the minimum energy cost
while satisfying all time constraints. The data
aggregation degree is adapted accordingly to
meet these requirements. If the total communi-
cation load exceeds system capacity, the amount
of data has to be reduced (the data aggregation
degree has to be increased), whereas the data
aggregation degree may be relaxed for low traf-
fic. In the former case, a so-called lossy feedback
loop mechanism assigns a data aggregation
degree (d) on the basis of load and capacity esti-
mates. This algorithm runs independently at
each node. Specifically, d is defined as the ratio
between the number of outgoing and incoming
packets. For instance, if d = 0.66, three received
packets have to be aggregated into two packets
(e.g., by averaging two of them). Note that all
packets have the same size in this case. In the
limiting case where d = 1, no data aggregation is
performed. Moreover, d is continuously adapted
according to new load and capacity estimates. In
addition, when the system operates in a non-
overloaded regime, a further strategy called loss-
less feedback loop can be used to reduce the
energy consumption. According to this scheme
incoming messages are collected and transmitted
in a single packet without data size reduction.

This solution is interesting for two reasons.
First, the control of the data aggregation is
based on physical measurements of the network
conditions, thus making the mechanism self-
adaptable to the actual network dynamics. Sec-
ond, it aims at satisfying time constraints that, in
general, are rarely considered by wireless sensor
network algorithms. This solution is extended in
[15], where the authors define a complete data
aggregation framework (AIDA), by considering
general aggregation rules.

SYNOPSIS DIFFUSION FRAMEWORK
A recent solution to the data aggregation prob-
lem has been proposed in [8]. The main contri-
bution of the article is to define aggregation
functions and data structures which are robust to
considering the same sensor readings in the data

aggregation process multiple times (double-
counting problem). This is crucial when data
aggregation is used in conjunction with multi-
path routing schemes.

The approach defines order and duplicate
insensitive (ODI) properties whose role is to
make sure that the final result of the aggregation
is independent of the routing topology. That is,
the computed aggregate must be the same irre-
spective of the order in which the sensor read-
ings are merged and the number of times they
are considered in the aggregation process. A syn-
opsis is defined as a summary of the partial
result of the overall aggregation process received
at a given node. Three functions on the synopses
are possible to perform data aggregation:
• Synopsis generation: Given a sensor reading, a

synopsis generation function SG(⋅) produces
the corresponding synopsis for that data.

• Synopsis fusion: Given two synopses, a synopsis
fusion function SF(⋅, ⋅) generates a new synop-
sis that summarizes both.

• Synopsis evaluation: Given a synopsis, a synop-
sis evaluation function SE(⋅) yields up the
final result.

The exact implementations of the functions and
the synopsis definitions are strictly related to the
considered aggregation query. A simple and fast
way to check whether a synopsis diffusion algo-
rithm is ODI-correct is based on the following
four properties:
• Preserves duplicates: if two readings contain the

same data values, the algorithm generates the
same synopsis.

• The synopsis function SF(⋅) is commutative: for
any two synopses s1 and s2 we have that SF(s1,
s2) = SF(s2, s1).

• The synopsis function SF(⋅) is associative: for
any triple (s1, s2, s3) we have that SF(s1,
SF(s2, s3)) = SF(SF(s1, s2), s3).

• The synopsis function SF(⋅) is same-synopsis
idempotent: for any synopsis s, SF(s, s) = s.

The four properties above are necessary and suf-
ficient for ODI-correctness. More properties and
examples can be found in the related paper [8],
where the authors also discuss the advantages of
their solution with respect to TAG [5].

THE QUANTILE DIGEST
Quantile Digest [21] (q-digest) is a data structure
for representing sensor readings with an arbi-
trary degree of approximation (trading data size
for precision). The data compression algorithm
adapts its behavior to the data distribution by
automatically grouping the sensed data into vari-
able size buckets of almost equal weight. As in
[21], we assume that sensor readings are integer
numbers falling within the range [1, σ]. A q-
digest consists of a set of buckets of different
sizes and their associated counts. More specifi-
cally, consider a complete binary tree T. In a q-
digest, each element of the tree v ∈ T can be
considered as a bucket with a specific range. For
example, the range associated with the root of
the q-digest is [1, σ] and its two children have
ranges [1, σ/2] and [σ/2 + 1, σ], respectively. In
addition, every bucket v ∈ T has a counter
(count(v)) associated with it. The structure is
recursive and ranges are halved as we proceed
from the root to the leaves of the tree. A q-
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digest is simply a subset of the (complete) tree
which only contains those elements with positive
counts. For its construction, we say that an ele-
ment of the original tree v ∈ T is in the q-digest
if and only if it satisfies the following properties:
q1) count(v) ≤ n/k, where n is the number of

readings and k is the compression factor. This
rule ensures that the internal (non-leaf) ele-
ment v in the tree does not have a high count.

q2) count(v) +count(vp) + count(vs) > n/k
where vp and vs are the parent and the sibling
of v, respectively.

q3) Since there are no parent and sibling for the
root it can violate property q2). A leaf node is
instead allowed to violate property q1).

In Fig. 7 we show an example illustrating how a
q-digest is built. The example is the same
described in [21]. n = 15 is the number of read-
ings at any one sensor, which are compressed
and summarized in the data structure. The leaf
nodes, from left to right, represent the values 1,
2, …, 8 and the number inside the boxes repre-
sent the counts. The compression factor k is
equal to 5, which means that the q-digest has
n/k = 3 levels. Finally, σ = 8 is the size of the
data interval, where we assume collecting integer
values spanning from 1 to 8. Consider a set of n
= 15 readings within this range, as shown in Fig.
7a. The number of buckets needed to store all
data is 7. In Fig. 7a the children of nodes a, c,
and d do not satisfy the digest property q2).
Hence, we compress their values into a single
bucket by getting to the structure in Fig. 7b. At
this point, node e still does not satisfy property
q2). Hence, we compress the value therein by
getting to Fig. 7c. Now, node g still does not sat-
isfy property q2); hence, a further compression is
needed. This last compression leads us to the q-
digest in Fig. 7d. Note that only 5 buckets are
needed to store the final result, in spite of the 7
buckets that were originally needed to store the
data without compression. As can be observed
from this example, this procedure results in a
larger loss of accuracy for the readings with a
small count. The compression factor k is used to
tune the procedure to the desired accuracy. It
also affects the memory requirements for storing
a q-digest [21].

For its practical implementation, the q-digest
structure needs two functions: to construct the
q-digest, and to merge two or more q-digests.
The first function is called compress as it takes
the uncompressed q-digest, the number of read-
ings n, and the compression factor k as input,
and generates a compressed representation of
the q-digest as output (see the above example).
The second functionality is the merge function,
which is used, for example, when two sensors
send their q-digests to the same parent. The par-
ent merges these two q-digests into a single q-
digest and adds its own values to the new
structure. The merge function first takes the
union of the two q-digests, which is obtained by
adding the counts of the buckets with the same
range. After this, it compresses the resulting q-
digest by applying the compress function above.
As soon as the q-digest structure has been built,
each sensor packs it and transmits it to its parent
(predecessor node) in the data gathering tree.

In principle, this scheme can be used on top

of any routing protocol that avoids loops and
duplicates of the same packet. We observe, how-
ever, that the joint design of these data repre-
sentation and compression techniques with
routing algorithms is still a completely open
research issue.

DISTRIBUTED SOURCE CODING
A recent paradigm to perform data aggregation
exploits Distributed Source Coding (DSC). These
techniques are based on the Slepian-Wolf theo-
rem [72], which allows joint coding of correlated
data from multiple sources and without explicit
communication. This is possible as long as the
individual source rates satisfy certain constraints
about conditional entropies. These techniques
require that the correlation structure is available
a priori at the independent encoders. Reference
[23] gives a good survey on DSC techniques and
related open issues in this emerging field. The
probably most important contribution to DSC
was derived by Slepian and Wolf in their land-
mark paper [24]. A simple way to encode and
transmit the data generated by two generic
sources X and Y is to apply separate coding with
total rate R1 + R2 = H(X) + H(Y), where H(⋅)
denotes the entropy of the data flow. If the two
sources can communicate, then they could coor-
dinate their coding operations and use together
a total rate of H(X, Y) ≤ R1 + R2. The authors in
[24] showed that two correlated sources can be
coded with a total rate equal to the joint entropy
H(X, Y) even though they are not able to com-
municate with each other, as long as their indi-
vidual rates are at least equal to the conditional
entropies H(X|Y) and H(Y|X), respectively.
Although different sources do not need to com-
municate with each other, they do need to have
some common information about the correlation
structure. Toward this end, the sink node may
first collect a certain amount of data from the
network, process it, and subsequently send the
proper correlation information to all sensors.
Only after this operation can each node start
compressing its readings.

The theory has been generalized and recently
applied to wireless sensor networks. For
instance, in [73] the authors focus on LDPC
codes, which are well known for their capacity of
approaching the Shannon limit; Slepian and
Wolf proved that the theoretical limit H(X, Y)
can be reached with equality, but without devis-
ing practical schemes to approach it. In [74], the
authors apply Slepian-Wolf coding in its simplest
form by proving its effectiveness. Note that, in
order for Slepian-Wolf decoding to be effective
we need to have a good estimate of data correla-
tion properties. Accordingly, the scheme in [74]
uses an algorithm, running at the sink, to mea-
sure the actual data correlation. Then, a set of
nodes is allowed to send compressed data, where
the compression is achieved locally and decoding
is performed in a centralized fashion at the data
gathering node. At the sink, the uncompressed
samples coming from the sensors that are not
allowed to compress are used as the side infor-
mation for decoding. Notably, this approach has
the drawback that data is not aggregated along
the path to the sink. Hence, further savings can
be achieved by exploiting in network data fusion

For its practical
implementation, the

q-digest structure
needs two functions:

to construct the 
q-digest and to

merge two or more
q-digests. The first

function is called
compress; the 

second functionality
is the merge 

function.

FASOLO LAYOUT  4/5/07  2:43 PM  Page 83

                                                                                                                                                



IEEE Wireless Communications • April 200784

on top of the distributed per node data compres-
sion. Also, this approach might be affected by
packet losses as, in such a case, the needed side
information might not be fully available at the
sink (decoding entity). In the paper, the authors
discuss these issues but without giving detailed
results. In [75], the authors present and solve the
minimum cost data gathering tree problem. The
network is modeled as a graph G = (V,E), where
V and E are the set of vertices (nodes) and
edges, respectively. Slepian-Wolf coding is used
at every node. Moreover, a communication cost
we is associated with each edge e ∈ E. The cost
function is assumed to be separable, i.e., f(xe, we)
= xewe, where xe is the amount of information to
be sent over edge e and we is the edge cost (e.g.,
transmission power). The minimum cost data
gathering tree problem consists of finding the
spanning tree of G and the rate allocation for
each node in V that minimize the cost function
of the network (i.e., the sum of the costs of all
links). The shortest path tree is optimal for any
rate allocation and thus the optimization prob-
lem can be separated into a spanning tree and a
rate allocation optimization subproblem [75].
gives exact algorithms to solve both of them.
Overall, the results in [75] allow to code the data
in a completely distributed fashion by exploiting
the side information in a recursive manner.

The main drawback of this scheme is that it
involves the calculation of an SPT, and it
requires full (centralized) knowledge of the data
correlation structure for all nodes in the network
to express the rate constraints. Lossless encoders

can then separately and independently encode
data at each node as efficiently as if its encoder
could see the data values sent by all other nodes.
Notably, the scheme’s inability to tolerate fail-
ures may eliminate this advantage. In fact, if the
encoded bits from one node are lost, the sink
may not be able to reconstruct several sensor
values. The authors of [76] highlight the draw-
backs of previous approaches [74, 75] when the
network is error prone and, as a partial solution,
propose exploiting multipath routing schemes.
The advantages of their approach come at the
cost of higher energy consumption to set
up/maintain multiple trees and transmit multiple
copies (extra overhead) of the same message. In
summary, DSC effectively makes routing and
coding decisions independent of each other. On
the downside, however, this solution increases
the computational complexity and requires col-
lection of information about joint statistics,
which may not always be easy in practice.

DISCUSSIONS AND CONCLUSIONS

In this article we have presented a detailed
review of in-network aggregation techniques for
wireless sensor networks. One of the main design
aspects for sensor network architectures is ener-
gy efficiency, to keep the network operational as
long as possible. Therefore, aggregation tech-
niques are an essential building block, as they
aim to reduce the number of transmissions
required for data collection, which, in turn,
reduces energy consumption.

n Figure 7. Q-digest example [21]: the complete tree T is derived by a recursive binary splitting of the original (root) interval [1, σ]. The q-
digest consists of the nonempty boxes of the data structure in subfigure (d).
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In this survey we have provided a definition
of in-network data aggregation and identified its
key elements: data dissemination and query
mechanisms (with particular focus on routing
and MAC layer), aggregation functions, and data
structures. Tables 1 and 2 summarize the basic
characteristics of the presented solutions and
provide a qualitative comparison. By its very
nature, in-network aggregation concerns several
layers of the protocol stack, and any efficient
solution is likely to require a cross-layer design.
However, we note that most existing research
focuses on networking issues such as routing,
often considering only very simple approaches to
aggregate data. In addition, much work still
remains to be done to provide cross-layer solu-
tions, accounting for application, data represen-
tation, routing, and MAC aspects. In fact, the
schemes proposed so far often focus on only a
subset of these aspects, typically trying to merge
routing and data aggregation techniques, but
ignoring MAC, application or data representa-
tion issues. Finally, another aspect still not
deeply investigated concerns the memory and
the computational resources necessary to sup-
port data aggregation [77].

For routing, many protocols are based on
clustering. A major advantage of a clustered
structure is that it directly allows aggregation of
data at the cluster head. Such algorithms work
well in relatively static networks where the clus-
ter structure remains unchanged for a sufficient-
ly long time, but they may be fragile when used
in more dynamic environments. Often, the cost
required to maintain the hierarchical structure is
substantial. Similar considerations apply to tree-
based schemes. Initial work addresses some of
these problems [53, 78], but further research
efforts are required to keep a network functional
under mobility. This last aspect is in fact largely
unexplored, and it is not clear how different pro-
tocols perform in its presence. Also, multipath
algorithms may be able to deal with (limited)
topology changes due to their higher robustness

[8]. An interesting alternative research direction
is provided by reactive and localized routing pro-
tocols [7]. This study is also one of the very few
that take MAC layer issues into account [7, 64].
We stress that without such a joint design, the
performance gained at the routing layer may be
partially lost due to MAC inefficiencies. Hybrid
algorithms allow the combination of the proper-
ties of different approaches. This is the case for
the algorithm in [9], which provides a good
trade-off between tree-based and multipath
schemes. Hybrid algorithms allow to tune the
degree of aggregation and may facilitate the
adaptation of the aggregation scheme (e.g., to
the packet loss probability). For these reasons,
they are particularly suitable for the design of
schemes that are able to adapt to application
needs.

As discussed above, only very few studies pro-
vide a deeper analysis of the aggregation func-
tions. Previous work mostly takes spatial
correlation [13, 79] and temporal correlation
[14] of data into account, but semantic correla-
tion is not sufficiently well studied. In this con-
text, distributed source coding is a fairly recent
and very promising research area. However,
while many theoretical results are known, few of
them have been turned into practical algorithms
applicable to wireless sensor networks.
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Distributed source
coding is a fairly
recent and very

promising research
area. However, while

many theoretical
results are known,
few of them have
been turned into

practical algorithms
applicable to wireless

sensor networks.
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