
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. XX, NO. XX, 2015 1

On the Design of Temporal Compression

Strategies for Energy Harvesting Sensor Networks

Davide Zordan†, Tommaso Melodia, Member, IEEE,, Michele Rossi, Senior Member, IEEE,

Abstract—

Recent advances in energy harvesting devices and low-power
embedded systems are enabling energetically self-sustainable
wireless sensing systems able to sense, process, and wire-
lessly transmit environmental data. In such systems, energy
resources need to be judiciously allocated to processing and
transmission tasks to guarantee high-fidelity reconstruction of
the phenomenon under observation while keeping the system
operational over extended periods of time.

Within this context, this paper addresses the problem of
designing efficient policies to control the task of lossy data
compression for wireless transmission over fading channels in
the presence of a stochastic energy input process and a replen-
ishable energy buffer. As a first contribution, the transmission
and energy dynamics of a sensor node implementing practical
lossy compression methods are modeled as a Constrained
Markov Decision Problem (CMDP). Then, an algorithm is
designed to derive optimal compression/transmission policies
through a Lagrangian relaxation approach combined with a
dichotomic search for the Lagrangian multiplier, while also
obtaining theoretical results on the optimal policy structure.
Furthermore, a thorough numerical evaluation of optimal and
heuristic policies is conducted under different scenarios. Finally,
the impact of practical operating conditions, including perfect
vs delayed channel state information and power control, is
evaluated.

Index Terms—Energy Harvesting Wireless Sensor Networks,
Optimal Control, Protocol Design, Temporal Compression.

I. INTRODUCTION

ENERGY management in Wireless Sensor Networks

(WSNs) has played a central role in recent years.

Previous work has covered efficient designs in terms of chan-

nel access [1], data compression [2] and compressive data

gathering and aggregation [3], [4]. However, the common

objective of this body of work has typically been that of

maximizing the network lifetime through efficient use of

the available energy, considering non-replenishable batteries.
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Recent advances in energy harvesting devices and systems

have opened up new opportunities for energetically self-

sustainable (or energy-neutral) designs. In this case, optimal

policies no longer need to be energy frugal through the entire

lifetime of the nodes, but should intelligently assess when

energy is available, delivering high performance when the

energy income is abundant and putting the nodes into energy

saving modes when it is scarce [5].

In the last few years, a vast literature has emerged on

Energy Harvesting Sensor Networks (EHWSNs), attracting

the interest of theoretical researchers and implementors. Most

existing approaches have focused on the design of energy-

neutral transmission policies [6]–[10]. These papers com-

monly assume some form of knowledge (either deterministic

or statistical) of the energy and data arrival processes, which

is then leveraged to derive optimal power allocation strategies

and transmission schedules to either maximize the throughput

or to minimize the transmission completion time. In [8], a

single sensor node transmitting over a fading channel affected

by additive Gaussian noise is considered. Energy arrivals

and channel states are modeled as Poisson processes and are

assumed to be known causally. Optimal transmission policies

are then evaluated offline for static as well as fading chan-

nels. Online policies are also designed through a dynamic

programming formulation. References [6] and [7] extend and

generalize the results of [8] by relaxing the assumptions on

packet arrivals and infinite size of the energy buffer, respec-

tively. The authors of [9] present structural results on the

optimal transmission policies in the presence of a Markovian

energy input process, and assess the performance gap with

respect to lightweight heuristics. Other approaches attempt

to derive online adaptive optimal transmission policies for

multi user scenarios [10], [11] by maximizing the long-

term transmission rate, whilst satisfying energy and power

constraints. Reference [10] uses Lyapunov optimization to

devise online scheduling algorithms that achieve close-to-

optimal routing performance for EHWSNs with time varying

channels. Reference [11] generalizes [10], proposing utility-

based and online routing policies that approach optimality as

the network size increases.

Fewer papers are available on optimal lossy compression

techniques. In [2], we studied the tradeoffs between recon-

struction fidelity and compression/transmission energy for

practical lossy compression schemes showing that, depending
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on the specific hardware architecture, compression makes it

possible to trade some reconstruction accuracy (data fidelity)

for substantial gains in terms of energy expenditure. Although

energy harvesting is not considered in [2], the energy-fidelity

relationships that were empirically derived in that paper are

instrumental to the present one.

We remark that in EHWSNs the energy buffer dynamics

allow for additional tradeoffs. Specifically, when nodes are

running out of energy, compression may help in lowering

their energy consumption thanks to a reduced transmission

time. Conversely, when the energy income is abundant, good

policies will encourage the transmission of uncompressed

data, so as to maximize the reconstruction fidelity. Hence,

optimal policies in this case depend on energy buffer state,

energy consumption (as caused by processing and communi-

cation) and on the dynamics of the energy harvesting process.

Previous papers that address the problem of designing

optimal compression policies for EHWSNs are [12], [13].

The authors of [12] introduced the concept of energy-

neutral source-channel coding, studying the relevant trade-

offs involved when sensor nodes allocate energy over source

acquisition, compression and transmission. There, optimal

and heuristic policies were analytically characterized and

computed through convex optimization and dynamic pro-

gramming techniques. Among other facts, the authors of [12]

have shown that optimal policies imply the disjoint control

of source and channel coding when the size of data and

energy buffers is sufficiently large, whereas joint designs are

needed for small buffers. The authors of [13] generalized [12]

by considering finite buffer sizes and proposing a heuristic

scheme having a long-term average distortion that approaches

that of the optimal policy. The authors of [14] obtained

information theoretic bounds (capacity laws) for EHWSNs

for a variety of settings, including the one that we consider

in this paper. Paper [15] extends [12] to a multi-hop WSN

scenario. There, the Lyapunov-optimization technique with

penalty functions was used to concoct distributed algorithms

that meet quality of service requirements such as queue

stability and distortion minimization. Differently from [12]–

[15] our approach uses empirical curves that accurately

capture these tradeoffs for real lossy compression schemes.

Our paper bears similarities with [12], [13]. Nevertheless,

our present work differs in terms of data compression,

system models, optimization objectives and results. In fact,

we deal with realistic models for all system blocks and

this somehow requires to give away some of the level of

abstraction that was used in previous articles and adopt a

different modeling approach. In return, our pragmatic design

allows to plug any temporal compression scheme, given

the empirical relationship governing its energy, rate and

representation accuracy. For the channel and energy harvest-

ing, we account for Markov-modulated processes where the

channel is Rayleigh faded and power controlled, whereas

the energy arrival process resembles of that of a real sun

harvester, which was validated in [16]. For the temporal

compression of time series, we consider the Lightweight

Temporal Compression (LTC) scheme [17], that has been

shown to provide excellent tradeoffs in terms of distortion vs

energy consumption and, in turn, is one of the algorithms of

choice for resource constrained sensor network technology,

see [2]. Our optimality objective is the minimization of

the long-term average distortion subject to the energetic

sustainability of the sensor. Moreover, besides providing

efficient algorithms for the numerical solution of the resulting

constrained Markov decision process and obtaining optimal

policies, we theoretically unveil their structure and study the

impact of perfect vs delayed Channel State Information (CSI)

at the transmitter and of power control over a multipath

channel.

The contributions of our work are summarized as follows:

• We model, through a Constrained Markov Decision

Problem (CMDP), the transmission and energy dynam-

ics of a sensor node implementing the LTC compression

method. As we shall see below, our approach is rather

general and can be promptly extended to other com-

pression schemes as well, provided that the relationship

governing their distortion-energy tradeoff is known;

• We design an algorithm to derive optimal compres-

sion/transmission policies, using a Lagrangian relax-

ation approach combined with a dichotomic search1

for the Lagrangian multiplier. These dynamically select

the compression level to maximize the long-term data

reconstruction fidelity at the receiver, while meeting

stability constraints on the energy buffer;

• We derive a set of theoretical results on the structure of

the optimal policy; specifically, we demonstrate that the

optimal policy is non-decreasing in each of the system

state components (energy buffer, channel and energy

source states) under realistic assumptions. Moreover,

the policy has a threshold structure that allows for its

efficient storage in memory arrays;

• We conduct a thorough numerical evaluation of optimal

as well as heuristic policies for different scenarios and

evaluate the impact of perfect vs delayed CSI and power

control.

The reminder of this paper is organized as follows. In

Section II, we give a high-level view of the problem under

analysis and identify the various system blocks. In Sec-

tion III-A, we present our CMDP formulation, whereas in

Section III-B we detail a model for a power controlled

Rayleigh faded channel. In Section IV we propose an algo-

rithm to numerically find the optimal policies and discuss

the theorems unveiling their structure. In Section V, we

validate the main theorems, and analyze various performance

tradeoffs, the role of CSI and power control. In Section VI,

1This algorithm halves the search interval at each iteration as in a divide
and conquer technique.
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we report our concluding remarks.

II. SYSTEM MODEL

We consider a power controlled transmission scenario

where a sensor node communicates wirelessly with a data

collector (the sink). The sender is powered by a rechargeable

battery (energy buffer) that stores the energy harvested from

a renewable source, such as a solar panel. The task of

the sensor is to sense some physical signal every Tsens

seconds and report its measurements to the sink. Thus,

we consider applications with a constant sampling rate of

1/Tsens samples/s. Also, we assume that the sensor node, in

each data reporting window of duration Trep, stores a certain

number of measurements Nm in its memory buffer, where

Trep = NmTsens. At the end of the window, these readings

are compressed into one or more packets of data and sent to

a data collector. Note that, unlike [12], [13] the data queue

stability is not an issue in our framework as exactly Nm

readings per window are processed and the memory is always

flushed at the end of each window of data. This amounts to

assuming that the source rate is smaller than the channel

rate (i.e., that the source is slow-varying). This model is a

simplification with respect to the analysis in [12], [13] but

is accounted here to capture the complex energy-distortion

tradeoffs of practical lossy compression schemes through

empirical curves, see Section III-A. Also, this assumption

is not restrictive for typical WSN applications where, due

to energy efficiency considerations, channel resources are

sparingly used.

For the use of compression, note that most physical

signals exhibit strong temporal correlation. Thus, it makes

sense to compress the Nm samples within each reporting

window through a lossy compression method, which allows

trading accuracy in the data reconstruction at the sink for

energy savings at the transmitter (fewer bits to transmit).

Power control is instead exploited at the sender to keep the

probability of successful reception around a predetermined

target value, see Section III-B.

For the signal model, we consider stationary and ergodic

time series z(k) with given mean, variance and temporal

correlation structure. To emulate the behavior of real WSN

signals, a noise component is superimposed to z(k), so as

to mimic account for perturbations caused for example by

the limited precision of the sensing hardware. The noise

is modeled as a zero mean white Gaussian process with

variance σ2
noise. Hence, the average Signal to Noise Ratio

of the resulting signal is SNR = E[z(k)2]/σ2
noise. We

use the following correlation model: let ρz(n), n ≥ 0,

be the autocorrelation function associated with z(k). We

define correlation length of z(k) as the smallest value n⋆ for

which ρz(n) is smaller than a predetermined threshold ρth.

Formally: n⋆ = argminn≥0{ρz(n) < ρth}. More details on

the selection of these parameters are given in Section V.

Now, consider the diagram in Fig. 1. We assume that the

sensor operates in slotted time t = 0, 1, 2, . . . and identify

the following elements:

• Energy Source. This block models the energy source.

The output of this block is ein, i.e., the number of

energy quanta that are harvested in a time slot (the

energy inflow and the energy cost for compression and

transmission have been quantized for computational ef-

ficiency, see also [9]). The source dynamics are tracked

through a two-state Markov model, see [16], where xt

is the source state in the current slot t. In detail, xt = 0
represents a low energy state (e.g., “night”) and xt = 1
represents a high energy state (“day”). Additional details

on the source model are given in Section III.

• Energy buffer. The energy harvested by the Energy

Source block is stored in the energy buffer, which

could be a rechargeable battery, a supercapacitor or any

other energy storage device. The state of the buffer is

indicated as bt. eout energy quanta are drawn from the

buffer in each time slot. Note that eout depends on the

compression ratio adopted by the sensor in the current

time slot and on the channel state (through power control

as discussed in detail in Section III-B).

• Compression. This block describes the compression

mechanism, linking the energy consumption, the size of

the output packet and the representation accuracy of the

received data to the action taken by the sensor. In this pa-

per, we consider the Lightweight Temporal Compression

(LTC) method, whose compression, energy and error fig-

ures are evaluated in [2]. LTC compresses a time series

by creating an approximate representation through line

segments. The data to be sent by the transmitter are then

the parameters of this representation, i.e., the end points

of the line segments. Note that we consider the energy

spent in the sensing process to be negligible with respect

to that spent for compression and transmission [18]. This

is in fact the case for most of the sensors involved in

environmental monitoring application or wearable IoT

devices. If the energy consumed for the sensing process

is too high, one may adopt adaptive sampling techniques

which are however not considered in the present work.

• Transmitter. This block accounts for the energy con-

sumption associated with data transmission, which de-

pends on the size of the packet to be transmitted

(and hence on the compression ratio) and on the ra-

dio transceiver transmission power. The latter, in turn,

depends on the channel state as will be discussed in

Section III-B.

• Channel. The channel block models channel variations

in time. The channel evolution is tracked through a

Markov chain, where the channel state is indicated with

ht, see Section III-B.

• Decision Maker. This block takes as input the three
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Fig. 1: Sensor Node diagram.

components of the system state, namely bt, xt and

ht and makes a decision on the current compression

ratio at, according to a certain quality criterion (see

Section III).

III. PROBLEM FORMULATION

In the following Section III-A, we formulate the joint

data transmission and compression problem as a Constrained

Markov Decision Process (CMDP). We will then use a

Lagrangian relaxation approach to deal with the energy buffer

constraint, which assures that the node remains energeti-

cally self-sufficient, while delivering the best performance

in terms of reconstruction fidelity at the data collector. In

Section III-B, we present the adopted channel and power

control model.

A. Constrained Markov Decision Process Formulation

The authors of [12], [13] use the following decision vari-

ables: the amount of energy to allocate to source and channel

encoders and the distortion associated with the compressed

data in each time slot t. The objective of their optimization is

to keep the data queue stable, while assuring that the average

distortion at the receiver remains above a certain minimum

threshold. Here, we focus on practical compression schemes

for which the queue stability is no longer an issue, in fact

data is acquired at a constant rate and arrives in batches of

fixed size at the compressor queue.2 Further, we consider

the sole compression ratio ηt as the decision variable and,

given ηt, the amount of energy allocated for compression and

transmission depend on the considered compression scheme

(compression energy), power control and channel model

(transmission energy). Thus, we obtain the compression

policy that minimizes the average long-term distortion subject

to the fact that the energy queue level shall never decrease

below a predetermined threshold. We do so by modeling

practical lossy compression schemes from the literature in

terms of fidelity-energy tradeoffs, obtaining optimal policies

2Although this is a simplification with respect to a variable queue
length, this allows us to model the relations between fidelity and energy
consumption for practical and complex temporal compression algorithms,
see Section II.

for Markov fading channels and a Markov-modulated energy

harvesting process in the presence of packet losses. Our

pragmatic design methodology allows our framework to be

quickly customized to different compression approaches or

power control strategies.

TABLE I: Notation and symbols.

SYMBOL MEANING

t = 0, 1, 2, . . . discrete time index
S, A system state and action sets

st = [bt, xt, ht] ∈ S system state in slot t
bt ∈ B = {0, 1, . . . , B} energy buffer state in slot t

xt ∈ X = {0, 1} energy source state in slot t
ht ∈ H = {1, . . . , H} channel state in slot t

p(st+1|st, at) transition prob. from st to st+1

for action at
at = {0, 1, . . . , n} ∈ A action taken (compression level)

in slot t
ec(at) processing energy in slot t

etx(at, ht) transmission energy in slot t
µt : S → A decision function at ← µt(st)

π = {µ1, µ2, . . . } compression policy
vπ(s) expected average reward

for initial state s and policy π

The notation and symbols used in the following analysis

are summarized in Table I. We consider a transmission

system that operates in a time-slotted fashion, where t =
0, 1, 2, . . . is the time index. The state space is denoted by S
and the system evolves slot by slot according to the behavior

of the energy source and of the channel, and according to

the action taken by the considered node, i.e., the selected

transmission/compression policy. We model the problem as

a CMDP defined through the tuple (S,A, P, r(·), c(·)), where

S represents the system state, A is the action state, P are the

transition probabilities (representing the system dynamics),

r(·) and c(·) represent a reward and a cost function, respec-

tively. Both depend on the system state and on the action

taken in the current time slot. Specifically, let s ∈ S be the

system state at time t, with st = s. We refer to at ∈ As ⊆ A
as the action taken by the decision maker at time t, where As

is a finite set that includes all feasible actions in state s.3 The

3At time t, an action at is termed infeasible if taking it would imply a
negative energy buffer in the next time slot.
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system evolution is Markovian with transition probabilities

p(j|i, a) = P [st+1 = j|st = i, at = a] , i, j ∈ S . (1)

A decision rule is a function µt : S → A that dictates the

action to be taken when the system is in state s at decision

epoch t. In our formulation, actions correspond to the degree

of compression, as we further discuss below. A policy π =
(µ1, µ2, . . . ) is a sequence of decision rules. Let Φ denote

the set of all stationary policies π = (µ, µ, . . . ) where µ is

a (possibly probabilistic) function of the current state s and

does not depend on time t. The (finite) reward r(st, at) ≥ 0
is the instantaneous payoff of taking action at in state st.
The notion of reward is used to quantify the reconstruction

fidelity of the compressed signal. For any admissible policy

π ∈ Φ, the expected average reward is

vπ(s) = lim
N→∞

1

N
E
π
s

[

N−1
∑

t=0

r(st, at)

∣

∣

∣

∣

s0 = s

]

. (2)

Our goal is to compute the optimal policy π⋆ that maximizes

the expected average reward (2)

vπ
⋆

(s) = max
π∈Φ

vπ(s) , ∀ s ∈ S (3)

subject to the global constraint

Cπ⋆

(s) = lim
N→∞

1

N
E
π⋆

s

[

N−1
∑

t=0

c(st, at)

∣

∣

∣

∣

s0 = s

]

≤ Cmax

(4)

Here, c(st, at) ≥ 0 is the (known) finite cost incurred in

slot t, which is related to the energy buffer state, whereas

Cmax ≥ 0 is a user defined parameter. Constraint Cmax is

termed feasible when there exists at least one policy π ∈ Φ
that satisfies (4).

For pure policies the decision µ is deterministic in the

current state. As we shall discuss in Section IV, the optimal

policy, i.e., the policy that maximizes the long-term average

reward (2), while satisfying (4) with equality, is in general a

mixture of two pure policies [19].

Next, we specify each element of the tuple

(S,A, P, r(·), c(·)) for the problem under analysis.

1) States: Each state s ∈ S consists of three components

s = [b, x, h], where S = B × X ×H. B denotes the energy

buffer state space, X denotes the state space of the energy

income process, and H denotes the channel state space. b ∈
B is the energy buffer state, B = {0, 1, ..., B} contains all

possible energy buffer levels, where the available energy has

been discretized into B + 1 energy quanta. x ∈ X = {0, 1}
is the energy source state (assumed to be observable). In

detail, a certain amount of energy can be harvested in each

time slot t. When x = 0, the energy source is in a “bad”

state, where the amount of energy quanta harvested from the

source in slot t is ein = 0 w.p. 1. When x = 1, a number

ein ∈ E(1) = {1, . . . , E} of energy quanta is harvested in

the current slot t, where ein is distributed according to some

mass distribution function (mdf). Hence, the evolution of the

energy source state is represented through a two state Markov

chain, where E represents the maximum number of energy

quanta that can enter the energy buffer in a time slot.

The channel state h ∈ H = {1, . . . , H} affects the

reception probability at the receiver and, since we consider

a power controlled transmission system, it also affects the

power consumption at the transmitter. We assume h to be

independent of x and b and we model it as a Markov

chain. The procedure used to derive the channel state tran-

sition matrix for a Rayleigh channel model is detailed in

Section III-B. Optimal policies are computed in the case

where the transmitter has perfect CSI, where the CSI at the

transmitter is obtained with a certain delay (delayed CSI) and

where the transmitter has no CSI at all.

2) Actions: At each decision epoch t the transmitter

(decision maker) observes the system state s = st and

chooses an action a = at from the action set As. In our

model, at corresponds to the compression ratio ηt to be used

by the transmitter in the current slot t. Here, ηt is defined

as the ratio of the size of the compressed signal with respect

to that of its uncompressed version. For the action set, we

have As ⊆ {0, 1, . . . , n}. In particular, when at = 0 the

transmitter will be silent in the current transmission slot t.
For 0 < at < n, the transmitter will compress the data stored

in the memory buffer with a compression ratio ηt = at/n and

it will thus send the compressed data to the collector. When

at = n, the transmitter will send the data without performing

any compression (ηt = 1).

3) Transition Probabilities: Let t and st = [bt, xt, ht]
represent the current time index and the system state in slot

t, respectively. We indicate with at the action taken in the

current slot t and we refer to eout(st, at) as the number

of energy quanta that are taken from the buffer (i.e., the

energy consumption) given that action at is chosen. Hence,

the energy buffer evolves as:

bt+1 = max{0,min{bt + ein − eout(st, at), B}}
, [bt + ein − eout(st, at)]

† . (5)

If st is the system state, action at is admissible only if

eout(st, at) ≤ bt. Further, eout(st, at) is given by the sum

of two components: the energy consumption associated with

the compression task ec(at) and that associated with the

transmission task etx(at, ht).
4 In the present analysis, as a

compression technique we select the Lightweight Temporal

Compression (LTC) algorithm, since it strikes a good balance

in terms of compression vs energy consumption. As shown

in [2], for LTC the processing energy ec(at) is related to the

4In this work, the sampling rate is fixed. A non-negligible sensing cost
can be accounted for by adding the related (constant) energy consumption
es to the energy budget, i.e., eout(st, at) = ec(at) + etx(at, ht) + es.
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compression ratio ηt = at/n through the linear relationship:

ec(at) =

{

0 at ∈ {0, n}
(

κ
at
n

+ ℓ
)

NbE0 0 < at < n .
(6)

Note that when at ∈ {0, n} the node does not perform

any compression, thus we have ec(0) = 0. In (6), Nb is

the number of bits to be compressed, that is defined as

Nb = Nmnb, where nb is the number of bits used to represent

a single measurement and Nm represents the number of

measurements, to be sent every Trep seconds. E0 is the

energy consumption of the micro controller in one clock

cycle, κ = 16.1 and ℓ = 105.4 are two fitting coefficients,

see [2]. An observation is in order. One might expect that the

compression cost decreases with at, which is not the case

for (6). This is caused by practical implementation details.

In fact, as ηt = at/n decreases (higher compression), LTC

operates using a larger error tolerance, which results in a

lower number of operations. For further details see [2]. Note

that the results that we discuss in this paper are rather general

and can be readily extended to other compression approaches,

i.e., by just replacing (6) with a different appropriate function.

The energy consumption etx(at, ht) depends on the num-

ber of bits Nb to be transmitted, on the action at and on the

channel state ht:

etx(at, ht) =
at
n
NbEtx(ht) , (7)

where Etx(ht) is the energy consumption associated with the

transmission of one bit, which depends on the specific radio

technology and on the channel state ht (through the power

control mechanism).

The transition probability from state st = [bt, xt, ht] to

state st+1 = [bt+1, xt+1, ht+1] given that action at is selected

is:

p(st+1|st, at) = δ
(

bt+1 − [bt + ein − eout(st, at)]
†
)

·
· pein(ein|xt) · px(xt+1|xt) · ph(ht+1|ht) , (8)

where δ(·) is the indicator function (equal to 1 if the

argument is zero and null otherwise), pein(ein|xt) is the

mdf of the input energy in state xt, while px(xt+1|xt) and

ph(ht+1|ht) are respectively obtained from the transition

probability matrices of the energy source and the channel. We

remark that our framework can be promptly adapted to any

Markov-modulated energy arrival and channel processes by

respectively changing the transition probabilities pein(ein|xt)
and ph(ht+1|ht).

4) Reward Function: To maximize the reconstruction fi-

delity at the data collector, the reward function r(at) is

chosen to be a strictly increasing function of the selected

compression ratio ηt = at/n. The reward is zero if the

selected action is at = 0 and reaches one when at = n.

We define r(at) as

r(at) =

{

0 at = 0

1−
(

p1(at/n)
2+p2at/n+p3

at/n+q1

)

σ2
noise at 6= 0,

(9)

where the polynomial function in (9) is the LTC rate dis-

tortion curve obtained in [2], which relates the error in the

reconstruction process to the compression ratio ηt. Here,

p1 = −0.870, p2 = 1.469, p3 = 0.191 and q1 = −0.017 are

suitable constants, that in general depend on the temporal

correlation exhibited by the signal, whereas σ2
noise is the

variance of the white noise that is superimposed to the sensed

signal. Different compression schemes and correlations can

be considered in this framework by substituting (9) with the

appropriate rate-distortion function.

5) Cost Function: Since we want to prevent depletion

of the energy buffer, we impose a positive cost for those

states where the energy buffer level is below a pre-determined

threshold bth (i.e., a soft-constraint on the energy buffer).

Also, the cost increases linearly when b decreases below

bth. We underline that bth in general depends on application

requirements (such as the minimum energy reserve to react

to unexpected and important events) and on hardware con-

straints (a positive but too low charge may not be sufficient to

guarantee the correct operation of the sensor). This extends

the models usually considered in the related literature, see,

e.g., [9], making the analysis of optimal policies more

convoluted but, at the same time, allowing for more practical

designs.

Hence, at time t, the cost is defined as:

c(bt) =







0 bt ≥ bth
bth − b

bth
bt < bth .

(10)

Note that in our case r(st, at) only depends on action

at and cost c(st, at) only depends on the state component

bt, see Fig. 2. These facts will be used in Section IV-B to

characterize the structure of the optimal policies.

B. Channel Model

Next, we present an H-state Markovian model for a power

controlled transmission link in the presence of Rayleigh

fading. With respect to standard modeling approaches [20],

[21], here we partition the Signal to Noise Ratio (SNR) space

according to power control via channel inversion, so that a

minimum Quality of Service (QoS) level is granted for each

channel state, whenever possible. Specifically, we consider

that the node adapts its transmission power according to H
(radio specific) power levels Ptx[i], with i ∈ H = {1, . . . , H}
and Ptx[1] > Ptx[2] > · · · > Ptx[H]. A specific power level

is assigned to each channel state to assure that the packet

error probability Ppkt remains smaller than or equal to a

given target QoS parameter ζ, i.e., Ppkt ≤ ζ for states i > 1.
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Fig. 2: Example of reward and cost functions.

This amounts to identifying H + 1 thresholds for the fading

power. For a certain SNR γ and compression level a, the

packet error rate is:

Ppkt(γ, a) = 1− (1− Pbit(γ))
L(a) , (11)

where L(a) is the packet size expressed in bits and Pbit(γ)
is the bit error rate formula. Note that the packet size

depends on the level of compression a ∈ {0, 1, . . . , n} in

the current time slot, i.e., L(a) = aLmax/n, where Lmax

is the maximum packet size expressed in bits.5 Assuming a

π/4-DQPSK modulation, the bit error rate is approximated

as:6

Pbit(γ) =
4

3
erfc (

√
γ) , (12)

where “erfc” is the complementary error function. From

(11) and (12), assuming L(a) = Lmax (i.e., a = n), the

SNR threshold γth corresponding to the target packet error

probability ζ is:

γth =

(

erfc−1

(

3

4

(

1− (1− ζ)1/Lmax

)

))2

. (13)

Thus, the QoS requirement Ppkt(γ, a) ≤ ζ, with a ∈
{1, . . . , n} corresponds to requiring that γ ≥ γth. For state

i ∈ H, the SNR γ at the receiver in slot t is γ(t) = γ0[i]α(t),

5Taking the IEEE 802.15.4 standard as a reference, in this paper we
consider Lmax = 127 bytes.

6Here, we do not consider coding as current standards for resource
constrained sensor nodes, e.g., IEEE 802.15.4, do not use it. However, the
impact of techniques such as coding and direct sequence spread spectrum
can be assessed by modifying (12) and does not require any other change
in the analysis.

where γ0[i] = P 0
rx[i]/(N0B) is the average SNR, which

depends on the path loss and on the noise power N0B
(N0 is the power spectral density and B is the transmission

bandwidth), whereas α(t) is the fading power. The average

received power P 0
rx[i] for transmission level i is obtained

as:
[

P 0
rx[i]

]

dB
= [Ptx[i]]dB + [G]dB − [A]dB − [PL]dB, where

[G]dB and [A]dB respectively represent the total antenna gains

(transmitter and receiver) and the total attenuation losses

(transmitter and receiver), whereas [PL]dB is the path loss at-

tenuation, expressed in dB, that also depends on the distance

d between the transmitter and the receiver, see, e.g., Chapter

2 of [22]. The fading thresholds α[0] ≤ α[1] ≤ · · · ≤ α[H]
are evaluated as follows. In state i ∈ {2, . . . , H}, the

transmission power is Ptx[i] and the fading is distributed in

[α[i − 1], α[i]]. From the condition γ ≥ γth, for state i we

must have that:

[α[i− 1]]dB ≥ [γth]dB − [γ0[i]]dB , (14)

using equality in the previous equation returns the lower edge

of the interval [α[i − 1], α[i]]. Moreover, we have α[0] = 0
and α[H] = +∞. Note that 1 is the only channel state for

which the QoS requirement Ppkt ≤ ζ cannot be met. Because

of this, for all states s = [b, x, h] with h = 1, we set As =
{0} to avoid degenerative situations where it is convenient

to transmit in this state, as the reward does not deteriorate.

Thus, the SNR interval associated with state i ∈ {1, . . . , H}
is [α[i − 1], α[i]] and power P [i] is used when the channel

is in that state. To fully characterize the Markov channel,

the transition probabilities from state i to state j, ph(j|i),
are derived as in [20], [21] through a double integration over

the respective SNR intervals, normalized to the steady state

probability associated with state i.

IV. OPTIMAL POLICIES

The unconstrained problem (3) can be solved by first

writing the Bellman’s optimality equation

v(s) = max
a∈As

{

r(s, a) +
∑

s′∈S

p (s′|s, a) v(s′)
}

, (15)

where the corresponding optimal policy is given by

a⋆(s) = argmax
a∈As

{

r(s, a) +
∑

s′∈S

p (s′|s, a) v(s′)
}

. (16)

The optimal average reward v(s) can be obtained through,

e.g., the Value Iteration algorithm [23], whereas a⋆(s) in-

dicates the mapping from s to the optimal action, i.e.,

µ : S → A. When the constraint (4) is added to the problem,

a Lagrangian relaxation approach can be used to convert the

constrained formulation (see (3) and (4)) into an equivalent

unconstrained MDP. This is achieved by defining a new

reward function, r(s, a;β), through the Lagrangian multiplier

β > 0
r(s, a;β) = r(s, a)− βc(s, a) . (17)
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The new optimality equation is thus

vβ(s) = max
a∈As

{

r(s, a;β) +
∑

s′∈S

p (s′|s, a) vβ(s′)
}

, (18)

that for any fixed value of β can be solved via Value Iteration.

Theorem 12.7 of [19] proves the existence of an optimal

policy and also the fact that the Lagrangian formulation (18)

can be solved through a search on the parameter β as we

now explain.

In detail, we need to find the optimal Lagrangian multi-

plier β⋆ for which constraint (4) is satisfied with equality.

However, in CMDP with finite state and action sets, we have

a finite number of feasible policies; a single pure policy that

satisfies the constraint with equality, with β⋆ as its associated

multiplier, may not exist. Instead, the optimal policy for this

class of CMDP is a mixture of two policies, a first policy

π− that satisfies the constraint (being as close as possible

from below), and a second one, π+, that does not satisfy

the constraint (but again having a cost that is the closest to

Cmax from above). By mixing these two policies through

an appropriately chosen weight parameter q ∈ [0, 1], the

constraint can be satisfied with equality [24]. In our paper, as

in [25], [26], we apply a Q-learning algorithm to determine

the appropriate Lagrangian multiplier for a given Cmax. This

algorithm finds the two policies π− and π+ from which the

optimal policy π∗ is obtained. Specifically, π− and π+ are

two pure and stationary policies [19], whose actions differ in

a single state. To obtain these policies, we iteratively solve

the constrained problem for two values of β, namely β−

and β+, leading to policies π− and π+, respectively. The

values of β− and β+ are iteratively updated to get closer

to β⋆, as discussed in detail in Algorithm 2 of the next

section. We denote the costs of the two policies π− and

π+ by C− ≤ Cmax and C+ ≥ Cmax, respectively. When

the algorithm stops, q (the weight parameter of the mixed

policy) is computed by solving the following equalion:

Cmax = qC− + (1− q)C+ . (19)

Hence, the optimal policy π⋆ in each state s ∈ S is given

by:

π⋆(s) =

{

π−(s) w.p. q
π+(s) w.p. 1− q .

(20)

Note that when Cmax = 0 the probability that the buffer

is emptied below bth is zero (buffer outage), whereas an

increasing Cmax corresponds to higher buffer outage proba-

bilities.

A. Numerical Solver

In this section we outline the algorithms used to solve

the CMDP. Algorithms 1 is used to solve the unconstrained

MDP obtained through Lagrangian relaxation for a given

value of β. Here, we use (18) as an update rule to iteratively

compute the optimal average reward vβ(s).The convergence

vnβ (s) → vβ(s) is assured since state (S) and action (As)

sets are finite. Also, the process is unichain, which derives

from the fact that we have a single recurrent class for any

possible policy. For unichain CMPD with bounded cost and

reward functions and finite state and action sets, the limits

in (2) and (4) exist and are well defined and this ensures

that Value Iteration converges to the optimal solution [23].

Algorithm 2 implements a dichotomic search over the β
parameter, as an outer loop. Note that this search strategy

is effective because, as proven, e.g., in Lemmas 3.1 and 3.2

of [24], the optimal Lagrangian reward vβ(s) is a uniformly

absolutely continuous, monotone and non-increasing function

of β. Previous algorithms implemented similar searches by

starting with a small (large) initial value of β for which the

cost constraint is not (is) satisfied and increase (decrease)

it using suitable step sizes (that usually get smaller as the

algorithm gets closer to the optimal solution, see, e.g., Eq.

(3.9) of [25]). For each β, vβ(s) is found through the Value

Iteration of Algorithm 1 (as we do here), and the associated

optimal policy πβ is obtained. The algorithm stops when the

average cost gets sufficiently close to the chosen constraint

Cmax, see also Algorithm 2 of [26]. The design of the

(decreasing) step size is however critical. Our algorithm is

instead more robust as it does not require any heuristic for the

adaptation of the step size, which is automatically updated by

the dichotomic adaptation rule βn+1 ← f(βn), where f(·)
is a suitable function (see Algorithm 2). Also, provided that

the initial value for β+ is selected so that the average cost of

the optimal policy π⋆
β+ is larger than Cmax, Algorithm 2 is

guaranteed to converge and this descends from the monotonic

behavior of vβ(s). Thus, it will always find a pair (β+, β−)
that verifies the above properties.

B. Structure of the Optimal Policies

In this section, we present some results on the structure of

the optimal policies arising from the optimization technique

described in Section IV. For improved clarity, the proof of the

theorems is given in the Appendix. Moreover, the properties

that we discuss here are further elaborated in Section V where

we present some numerical results.

Before delving into the description of the main theorems,

in the following we introduce some useful definitions.

Definition 1 (Supermodularity). A function f : X×A×L →
R is supermodular in (x, a) ∈ X ×A for a fixed parameter

β ∈ L, if for all x′ ≥ x and a′ ≥ a

f(x′, a′;β)− f(x′, a;β) ≥ f(x, a′;β)− f(x, a;β) . (21)

In words, supermodularity means that f(x, a;β) has non-

decreasing differences in (x, a), i.e., the difference of f(·)
computed in a′ ≥ a and a is larger for increasing values of

the state x.
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Value Iteration Algorithm

select v0β ∈ V , ǫ > 0 and set n = 0 ;

repeat

vn+1
β (s)=max

a∈As

{

r(s, a;β) +
∑

s′∈S

p(s′|s, a)vnβ (j)
}

;

n = n+ 1 ;

until sp
(

vn+1
β − vnβ

)

< ǫ;

a⋆β(s) = argmax
a∈As

{

r(s, a;β) +
∑

s′∈S

p(s′|s, a)vnβ (j)
}

;

Algorithm 1: Value Iteration for a fixed value of β.

The span seminorm operator sp(v) [27] is defined as:

sp(v)
∆
= maxs∈S v(s)−mins∈S v(s)

Lagrangian multiplier update

set n = 0, β− = 0, β+ , β0 = β− ;

repeat

β = βn ;

compute π⋆
β(s) via Algorithm 1 ;

compute the stationary distribution ρ(s) induced by

π⋆
β(s) ;

if
∑

s∈S ρ(s)c(s, a⋆β(s)) > 0 then

βn+1 =
βn + β+

2
;

β− = βn ;

else

βn+1 =
βn + β−

2
;

β+ = βn ;

end

n = n+ 1 ;

until |βn+1 − βn| < ǫ;

Algorithm 2: Dichotomic Algorithm for the Lagrangian

Multiplier Update

Definition 2 (First-order Stochastic Dominance). Let X1 and

X2 be random variable with the same support X . X1 first-

order dominates X2, or X1 � X2 if

FX1
(x) ≤ FX2

(x) (22)

for all x ∈ X , where FXi
is the cumulative distribution

function (cdf) of Xi.

Definition 3 (Stochastically Increasing Family). Let

{Xθ}θ∈R be a family of random variables on the same

support X . {Xθ} is stochastically increasing if

Xθ′ � Xθ (23)

whenever θ′ ≥ θ.

We now present some results on the structure of the opti-

mal policy. Specifically, we prove that given some properties

for the reward function and for the transition probabilities

of the channel and the source states, the optimal policy has

a three-dimensional threshold structure and is monotonically

increasing in each system state component. This means that

the policy has a staircase shape for each of the state variables

b (energy buffer), x (energy influx) and h (channel state).

In light of this, optimal policies can be efficiently stored

in the node memory in the form of a lookup table with a

few entries. The thresholds are the breaking points where

the policy changes (see Section V for a graphical example)

and are obtained through Algorithm 2. In each decision epoch

then, the node just needs to evaluate its state and accordingly

select the proper action from the lookup table.

The three theorems that follow prove that optimal policies

(i.e., the corresponding optimal actions) are non-decreasing

in the energy buffer state b, in the channel state h and in the

energy source state x. This means that optimal policies are

jointly non-increasing in the three state components and, in

turn, have a staircase structure due to the quantized nature of

states and actions. This is exemplified in Fig. 3 (discussed in

Section V) and proves that optimal policies have a threshold

structure.

Theorem 1. Let the instantaneous Lagrangian reward func-

tion r(s, a;β) be supermodular in the pair (b, a), concave

and non-decreasing in b. Then, the optimal policy π⋆
β is a

monotone non-decreasing function of the buffer state b.

Theorem 2. Let the assumptions of Theorem 1 hold, let

r(s, a;β) be supermodular in the pair (h, a), and let ph(h
′|h)

be stochastically increasing in h. Then, the optimal policy π⋆
β

is a monotone non-decreasing function of the channel state

h.

Theorem 3. Let the assumptions of Theorem 1 hold, let

r(s, a;β) be supermodular in the pair (x, a), and let px(x
′|x)

be stochastically increasing in x. Then, the optimal policy π⋆
β

is a monotone non-decreasing function of the energy source

state x.

Discussion: We recall that, as discussed in Section III-A,

for the considered scenario the reward r(s, a) only depends

on action a and the cost c(s, a) only depends on the state

component b. Given this, for the sake of clarity, and with

a slight abuse of notation, reward and cost functions will

be respectively written as r(a) and c(b). Also, since state

s is defined through the tuple [b, x, h], when checking the

supermodularity considering one of such variables, the re-

maining two are kept fixed: the above theorems consider one

variable at a time. For Theorem 1, the supermodularity of

r(s, a;β) in the pair (b, a) is a relatively weak assumption,

in fact, if the reward function r(a) is an increasing function

of a and the cost function c(b) is a decreasing function of b
the assumption is satisfied. These are rather obvious choices

for a model that has to optimize the representation accuracy

of transmitted data (r(a)) giving a penalty for low energy
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buffer states (c(b)). For Theorem 2, the supermodularity of

r(s, a;β) in the pair (h, a) in our case is assured by the

assumption of Theorem 1 and by the fact that eout(h, a)
is monotonically increasing in h. This means that the en-

ergy consumption for a transmission when the channel is

in a bad state is higher than that for a transmission over

a good channel state. The assumption on ph(h
′|h) to be

stochastically increasing in h means that the probability of

going to a state h′ ∈ H is higher from a state h1 ∈ H
that is closer to h′ than from any other state h2 ∈ H such

that |h1 − h′| < |h2 − h′|. This is true if the channel state

transitions are assumed to be correlated, as in our case, but

also if the channel states are assumed to be equally likely.

For Theorem 3 the supermodularity of r(s, a;β) in the pair

(x, a) is assured by the assumption of Theorem 1 and by the

fact that eout(h, a) is monotonically increasing in a. This

means that the energy cost of transmitting a packet grows

with the number of bits therein, which is realistic. Moreover,

the assumption on px(x
′|x) to be stochastically increasing

in x means that, for the energy source, for two consecutive

time slots the probability of changing state is no higher than

that of remaining in the current one. This is true in our case,

were the two energy source states represent night and day,

but it would also be true in the limiting case of equally-likely

transition probabilities (i.e., when the process is iid).

V. RESULTS

In this section, we discuss the performance of the optimal

policies obtained as discussed in detail in Section III. We

first look at their structure, validating what predicted by

Theorems 1, 2 and 3. After that, we present a thorough

performance evaluation for different energy budget scenarios,

highlighting the relationships among the system parameters

and the average reconstruction fidelity at the sink. Moreover,

we show how the performance scales when the assumption

of perfect CSI is removed, i.e., when the channel state

information is retrieved with a certain delay (delayed CSI).

Finally, we describe two heuristic policies, comparing them

against the optimal solution and investigating the impact of

power control. In the results that we discuss in this paper,

we use Cmax = 0 so that π⋆ always avoids actions that

lead to buffer outage events. Since the cost in our model

is non negative and Cmax = 0, the weight parameter q is

always equal to 0 and we always take π− as the optimal

policy. For the power control we have set a target packet

error probability of ζ = 0.001. Also, Nm = 60 measure-

ments with nb = 16 bits and Tsens = 30 s, which gives

Trep = NmTsens = 30 minutes. For the following plots,

we use environmental signals from [28], which are collected

from Global Historical Climatology Network and Legates

and Willmott’s meteorological stations of air temperature

and precipitation. These, for the considered sampling time

Tsens and threshold ρth = 0.05 have a correlation length n⋆

ranging between 100 and 500 samples. As shown in [2], the

compression performance of LTC is nearly constant within

that interval.

A. Optimal Policies: Structural Results

Theorem 1 states that the optimal policy is non-decreasing

in the energy buffer state b. For this result to hold, we need

the Lagrangian reward function r(s, a;β) to be:

A1) supermodular in the pair (b, a);
A2) concave and non decreasing in b.

From (17), we have that the reward function only depends on

a, whereas from (10) it descends that the cost function only

depends on b. From these facts and β > 0, it follows that the

Lagrangian reward function r(s, a;β) satisfies A1 and A2.

Theorem 2 states that the optimal policy is also non-

decreasing in the channel state component of the system state,

provided that:

A3) the family of transition probabilities ph(h
′|h) is

stochastically increasing in h;

A4) r(s, a;β) is supermodular in the pair (h, a),

With our channel modeling technique of Section III-B as-

sumption A3 is verified. Besides that, since the reward only

depends on s through its buffer component b, condition A4

is also met.

In order for Theorem 3 to hold, we need the following

assumptions to be verified:

A5) px(x
′|x) has to be stochastically increasing in x;

A6) the energy income in states xi has to take values in

disjoint ordered sets;

A7) r(s, a;β) must be supermodular in the pair (x, a).

Here, we model the energy source through a Markov chain

with transition probabilities that verify A5. Moreover, we

deterministically set the energy income in state x = 0 to

0, while the energy income in state x = 1 is distributed

according to a truncated Gaussian r.v. that takes values in

[1, E]: hence, the assumption A6 is also verified. Finally, A7

is also met based on arguments similar to those discussed for

Theorem 1 above.

In Fig. 3, we show an example policy for B = 1000
energy quanta, where the action space is quantized according

toAs = {0, 1, . . . , n} with n = 10 and there are nine channel

states (H = 9). From this plot we see that the results of the

theorems hold. In detail, the optimal policy is monotonically

non decreasing in the buffer state (i.e., along each stripe in

the figures), in the channel state (across different stripes in

the same figure) and in the source state (see any two stripes,

for the same channel state, in Figs. 3a and 3b).

B. Optimal Policies: Performance Evaluation

In this section, we discuss the performance of the optimal

policies that have been numerically obtained utilizing the

algorithms of Section IV-A. Different scenarios have been
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(a) Night

(b) Day

Fig. 3: Structure of the optimal policy.

considered, varying the energy buffer size, the average energy

income in state x = 1, the transition probabilities for the

energy source and the distance d between the sensor node and

the sink. These settings have been summarized introducing

the new variable ξ, which describes the average energy

income for each set of parameters. Specifically, ξ is defined

as ξ = q1τ1/B, where q1 is the average energy income in

the “good” state x = 1, τ1 represents the average time the

energy source model stays in x = 1 before moving to x = 0
and B is the energy buffer size. We start by investigating the

average reward (reconstruction fidelity) that is earned at the

sink by the optimal policy, which is evaluated as

R
def
=

∑

s∈S

ρ(s)r(s, a⋆(s))Psuc(s, a
⋆(s)) , (24)

where ρ(s) is the steady state probability distribution induced

by the optimal policy π⋆, r(s, a⋆(s)) is the immediate

reward accrued by π⋆ in state s = [b, x, h], see (9), and

Psuc(s, a
⋆(s)) = E[(1 − Ppkt(γ, a

⋆(s)))] (see (11)) is the

average probability that a packet compressed according to

the optimal action a⋆(s) is successfully received at the sink,

when the channel is in state h ∈ H (the expectation is taken

for the SNR γ in the interval [γ0[h]α[h−1], γ0[h]α[h]], which

corresponds to the SNR range associated with state h, see

Section III-B). Note that compressing the packet provides an

additional gain in terms of Psuc(s, a
⋆(s)), as smaller packet

sizes result in smaller packet error probabilities. Hence, the

average reconstruction fidelity at the sink, evaluated through

(24), benefits from a higher degree of compression when

the SNR is low. Conversely, for high SNR values, a higher

fidelity is obtained for a = 1 as in this case the dominating

term in (24) is the immediate reward r(s, a⋆(s)).
Figure 4 shows the results for the average reward R for dif-

ferent values of ξ. In particular, we considered two different

scenarios for the average duration τ1 of the “good” energy

state x = 1, picking τ1 = 14 hours and τ1 = 10 hours. These

parameters are taken from [16], where a Markovian model

for the statistical description of the energy harvested by out-

door micro-solar panels for WSN applications is presented.

According to the results in this paper, τ1 = 14 and τ1 = 10
respectively correspond to the average duration of sunlight in

a day for the city of Los Angeles in the months of August and

December. For the energy buffer size, we considered three

values, i.e., B ∈ {100, 300, 500} energy quanta. Finally, for

each pair (τ1, B), the average energy income in a time slot q1
is varied in the set {8, 12, 16, 20, 33, 43, 53} energy quanta.

Also, in Figs. 4a and 4b we plot R for the two cases of

perfect and delayed-CSI at the transmitter, respectively.

From Fig. 4, we see that for any given pair (τ1, B),
the average reward R increases with ξ. This is due to the

higher average energy income q1, which allows the system

to reach the end of a “good” period x = 1 (i.e., day) with

a higher residual level of energy in the energy buffer which,

in turn, permits to additionally transmit a certain amount of

data during the “bad” state (night). R is also monotonically

increasing in B and τ1. Again, this happens because a larger

energy buffer (higher B) or a longer duration of the “good”

state (higher τ1) both result in higher energy availability.

In Fig. 4a we also plot results for different values of d, i.e.,

the distance between the transmitting node and the sink. We

only show these results for one scenario (December, B = 100
energy quanta) - other scenarios show a similar behavior.

d only affects the channel transition probabilities ph(h
′|h),

with higher values of d leading to worse performance, since

on average the channel is more likely to be in a SNR region

where the required energy consumption (for the given quality

parameter ζ) is higher.

In Fig. 4b we show the average reconstruction fidelity at

the sink, R(T ), when the CSI at the transmitter is known

subject to a certain delay T ≥ 1 (expressed in time slots):

R(T )
def
=

∑

s∈S

ρ(s)r(s, a⋆)

[

∑

h′∈H

pTh (h
′|h)Psuc(s

′, a⋆(s))

]

,

(25)
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Fig. 4: Average reconstruction fidelity at the sink vs ξ (see (24) and (25)). τ1 ∈ {10, 14} hours, B ∈ {100, 300, 500} energy

quanta.

where s = [b, x, h], s′ = [b, x, h′] and pTh (h
′|h) corresponds

to the probability that the channel is in state h′ in slot t+T ,

given that the channel state is h in slot t, for any given

t ≥ 0. If H is the channel transition probability matrix, see

Section III-B, pTh (h
′|h) is the entry in position (h, h′) of

the T -step channel transition probability matrix H
T . This

probability is used to track a delayed representation of the

channel behavior, where T is the delay in the acquisition

of the CSI. Note that for T = 0, H0 is the identity matrix

and (25) reduces to (24). As expected, from Figs. 4a and

4b we see that adding some uncertainty in the channel

state at the transmitter results in an overall reduction of the

system performance. This is especially detrimental when the

transmitter thinks that the channel in the current slot is good

(high SNR) and, in turn, sends its packet uncompressed and

using a small power level. In fact, if the actual channel state

is instead rather bad (low SNR), this behavior is exactly the

opposite of what the transmitter should do. As a result, the

packet is lost with high probability and this corresponds to

a waste of energy and also to a loss of reward, as no signal

is recovered at the sink for this time slot.

In Fig. 5a we show the average reward R(T ) as a function

of T in the August scenario, with B = 500 and varying q1.

We observe that as the value of T increases, the performance

decreases until reaching a minimum value (around T ≃ 10
time slots) and this occurs for all the considered values of q1.

This is because, with increasing T , HT converges towards

the stationary distribution of the channel.

Figure 5b shows the average reward R(T ) in the same

scenario for different values of T . In this plot, the upper

bound from [13] is also shown for comparison. This bound

has been obtained adapting the analysis in [13], accounting

for the rate-distortion curve of LTC and removing the data

queue stability constraint, as per our application model (see

Section II). Also, the Shannon capacity formula has been

considered to map the SNR into the corresponding transmis-

sion rate, while transmission power and compression level

were jointly modulated. In contrast to this, in our model the

transmission power is independently adapted, according to

the channel inversion criterion of Section III-B, channel er-

rors are accounted through (12) and the optimization is solely

carried out over the compression action. For T ∈ {0, 3, 10},
the performance gap R(0) − R(T ), with T ≥ 1, is an

increasing function of ξ. This is because, as discussed above,

an increasing T corresponds to a higher transmission error

probability. Moreover, for higher value of ξ, the optimal ac-

tion in most of the system states corresponds to transmitting

the data packets uncompressed and transmission errors when

ξ is higher have a higher impact on the performance. In fact,

errors on uncompressed packets are more detrimental (both

in terms of energy expenditure and loss of accuracy) and

when T and ξ are large these error events are more likely.

As expected, the upper bound achieves higher rewards across

the entire range of q1.

C. Optimal vs Heuristics Policies

In this section, we compare the performance of the optimal

policy against that of two heuristic policies:

• Constant Compression Policy (CC): in any given time

slot, CC transmits a compressed data packet according

to a constant compression level aCC ∈ {1, . . . , n} for

each state s where b > bth, whereas no transmission

is performed otherwise. With this policy, the reward

and the energy consumption per transmitted packet are

constant, and can be tuned according to the selected

compression level. In the results that follow, we have

set aCC = 1, corresponding to the smallest compression

ratio aCC/n = 0.1.
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Fig. 5: Average reconstruction fidelity at the sink R(T ):
impact of delayed CSI.

• No Compression Policy (NC): in any given time slot,

NC transmits a data packet uncompressed (aNC = 0)

if b > bth, whereas no transmission is performed

otherwise. Note that an uncompressed packet implies

the highest reward, but at the same time the energy

consumption associated with the transmission of a full

packet is the highest.

In Fig. 6, we show the temporal evolution for the first 500
time slots for CC, NC and the optimal policy, along with the

corresponding evolution of channel and source states. The

first three graphs show the energy buffer state evolution (red

solid line) and the action taken in each time slot (blue dots)

for the optimal policy, CC and NC, respectively. The last

graph shows the channel state (blue solid line) and the energy

source state (red dashed line). It is interesting to note how

the optimal policy manages to keep the energy buffer in a

state that is neither fully charged nor below the threshold

bth = 50, modulating the action that the system takes in each
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Fig. 6: Performance comparison between optimal and heuris-

tic policies: temporal evolution example.

state. In this way, the buffer constraint is met, the average

fidelity is maximized and no input energy is wasted. This is

not the case for the other two policies. In particular, CC loses

some efficiency as it wastes some harvested energy when the

energy buffer is full, while NC drains out the energy buffer

too fast and, in turn, forces the node to remain idle more

often.

Fig. 7 shows the percentage of used transmission slots and

the average reward per slot R. We consider the same scenario

of Fig. 5a, with perfect CSI (i.e., T = 0). For all the policies

the percentage of used slots increases with ξ. CC achieves

the best performance since its energy consumption is always

that of acc = 1, which is the least energy demanding action.

NC, on the other hand, always uses the most expensive action

and thus it more often drains out the energy buffer. Thus, the

percentage of used slots for this NC is smaller. The optimal

policy modulates the behavior of the node depending on the

system state, the percentage of used slots is in between that

of CC and NC, but as Fig. 7b shows, its average reward is

always higher.



14 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. XX, NO. XX, 2015

0

20

40

60

80

100

0 0.5 1 1.5 2 2.5 3

%
u
se

d
sl

o
ts

ξ = (q1τ1)/B

Optimal policy
Constant compression

No compression

(a) Percentage of used transmission slots.

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3

A
v
er

ag
e

fi
d
el

it
y

(R
x

si
d
e)

ξ = (q1τ1)/B

Optimal policy
Constant compression

No compression

(b) Average reconstruction fidelity at the sink R.

Fig. 7: Performance comparison between optimal and heuristic policies.

D. Impact of Power Control

In this section, we evaluate the impact of power control

at the transmitter. This means that the system state is only

composed by the energy buffer state b and the energy

source state x. Thus, we obtain the optimal policy for this

new system state and we investigate its performance in the

presence of a Rayleigh faded channel, see Section III-B, and

a fixed transmission power. The probability of a successful

transmission is still a function of the channel state, but with

a fixed transmission power we can no longer assure that the

error probability will be bounded. In fact, setting a low trans-

mission power will lead to small energy consumption, but the

only successful transmissions will occur when the channel

state is good (i.e., high SNR). On the other hand, with a

high transmission power almost all the transmitted packets

will be correctly received, but the energy consumption will

be very high and the energy buffer will be drained quickly,

forcing the transmitter to stop and wait for incoming energy

in order to satisfy the constraint on the energy buffer level.

Fig. 8 shows the performance of the optimal policy (“Opti-

mal policy”) along with the performance of CC and NC when

power control is not applied. We set the transmission power

to the maximum level for this graph. For comparison, we

also show the performance of the optimal policy when power

control is applied (“Optimal policy-PC”). The performance

without power control is lower for all policies, both in terms

of transmission activity (% of used slots) and fidelity R.

The optimal policy without power control shows a transition

around ξ = 1. This happens because, in the considered

example, when ξ < 1 the average amount of energy harvested

during a “good” period is no longer sufficient to fully

replenish the energy buffer. Thus, the behavior of the optimal

policy tends to mimic that of CC, favoring the transmission

of many compressed packets with low average reward over

the transmission of a smaller number of high rewarding

(uncompressed) data packets. On the other hand, when ξ > 1,

the input energy is more abundant, and the behavior of the

optimal policy is similar to NC.

VI. CONCLUSIONS

We studied the problem of of designing efficient policies

to control the process of data compression for wireless trans-

mission over fading channels in the presence of a stochastic

energy input process and a replenishable energy buffer.

We first modeled the transmission and energy dynamics

of a sensor node implementing practical lossy compression

methods as a constrained Markov decision problem. With an

optimality criterion identified as maximizing the long-term

data reconstruction fidelity at the receiver (while meeting

stability constraints on the energy buffer), we derived opti-

mal compression/transmission policies through a Lagrangian

relaxation approach combined with a dichotomic search for

the Lagrangian multiplier.

We finally characterized theoretically and numerically the

derived optimal policies. We proved that, under realistic

assumptions, the optimal policy is non-decreasing in each

of the system state components, i.e., energy buffer state,

channel state, and energy source state. We also presented

a thorough performance evaluation of the optimal policy and

of a set of heuristic policies under different energy budget

scenarios, highlighting the relationships among system pa-

rameters and reconstruction fidelity at the sink. Future work

will address modeling of the coupled dynamics of multiple

energy-harvesting sensors interacting through a shared wire-

less channels in a multi-user scenario.

APPENDIX

In this Section we give the proof of Theorem 1, 2 and 3.

In what follows, we omit the dependence on the time index t.
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Fig. 8: Impact of power control.

For improved readability and with a slight abuse of notation,

with ai, bi, hi and xi we respectively indicate elements of

action, energy buffer, channel and energy source sets.

Lemma 1. Under the assumptions of Theorem 1, the ex-

pected average reward function vβ(s) is concave and mono-

tonically non-decreasing in the energy buffer state b, for any

channel state h, and energy source state x.

Proof: Proceeding by induction, since the value itera-

tion algorithm converges for any v0β([b, x, h]), let us choose

v0β([b, x, h]) concave non-decreasing function of the buffer

state b. Now, assume that vmβ ([b, x, h]) is concave and non-

decreasing in b. We have to prove that vm+1
β ([b, x, h])

is also concave and non-decreasing in b. We recall that

vm+1
β ([b, x, h]) is defined as:

vm+1
β ([b, x, h]) = max

a
Qm

β ([b, x, h], a) (26)

If vmβ is concave in b it can be shown (see proof of Theorem

1) that Qm
β ([b, x, h], a) is supermodular in the pair (b, a).

Therefore,

Qm
β ([b′, x, h], a′)−Qm

β ([b, x, h], a′) ≥
≥ Qm

β ([b′, x, h], a)−Qm
β ([b, x, h], a) (27)

for some a′ ≥ a and b′ ≥ b. Using the concavity of

Qm
β ([b, x, h], a) in b, we can write:

Qm
β ([b′, x, h], a′)−Qm

β ([b, x, h], a′) ≥
≥ Qm

β ([b′ + p, x, h], a)−Qm
β ([b+ p, x, h], a) (28)

for some p ≥ 0. Now substituting b′ = b̄ and b = b̄− p, we

obtain

Qm
β ([b̄, x, h], a′)−Qm

β ([b̄− p, x, h], a′) ≥
≥ Qm

β ([b̄+ p, x, h], a)−Qm
β ([b̄, x, h], a) , (29)

and rearranging the terms

Qm
β ([b̄+ p, x, h], a)−Qm

β ([b̄, x, h], a′) ≤
≤ Qm

β ([b̄, x, h], a)−Qm
β ([b̄− p, x, h], a′) . (30)

Taking a′ = a = argmaxa Q
m
β ([b̄, x, h], a) and using (26),

we get

vm+1
β ([b̄+ p, x, h])− vm+1

β ([b̄, x, h]) ≤
≤ vm+1

β ([b̄, x, h])− vm+1
β ([b̄− p, x, h]) , (31)

which proves concavity of vm+1
β in b.

A. Proof of Theorem 1

Proof: Since

π⋆
β([b, x, h]) = argmax

a
{Qβ([b, x, h], a)} , (32)

to prove that the optimal policy is non-decreasing in the

buffer state b, we have to prove that Qβ([b, x, h], a) is su-

permodular in the pair (b, a). Now, Qβ([b, x, h], a) is defined

as:

Qβ([b, x, h], a) = r(s, a;β) +
∑

s′∈S

p(s′|s, a)vβ(s′), (33)

where the first term in the right hand side of the equation,

i.e., r(s, a;β), is supermodular by assumption. Let us rewrite

the second term as:

Q1([b, x, h], a) =
∑

s′∈S

p(s′|s, a)vβ(s′) (34)

=
∑

h′∈H

∑

x′∈X

E
∑

ein=0

ph(h
′|h)px(x′|x)·

· pein(ein|x)vβ([b+ ein − eout(h, a), x
′, h′]) ,

(35)
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where we used the independence of the channel evolution and

of the source state evolution. We need to prove that the sum

in (35) is supermodular in (b, a) for any h ∈ H and x ∈ X .

Using Lemma 1 we have that vβ([b, x, h]) is concave in b,
thus it can be shown that vβ([b+ ein − eout(h, a), x

′, h′]) is

supermodular in (b, a) for any h′ ∈ H and x′ ∈ X . In fact,

since vβ([b, x, h]) is concave in b, it holds that:

vβ([b1, x, h])+vβ([b2, x, h]) ≤ vβ([αb1+(1−α)b2, x, h])+
+ vβ([(1− α)b1 + αb2, x, h]) (36)

for 0 ≤ α ≤ 1. Substituting b1 = b + ein − eout(h, a
′)

, b2 = b′ + ein − eout(h, a) and α = (eout(h, a
′) −

eout(h, a))/(eout(h, a
′)−eout(h, a)+b′−b), and rearranging

the terms we get:

vβ([b
′ + ein − eout(h, a

′), x, h])−
− vβ([b

′ + ein − eout(h, a), x, h]) ≥
≥ vβ([b+ ein − eout(h, a

′), x, h])−
− vβ([b+ ein − eout(h, a), x, h]) , (37)

that for a′ ≥ a and b′ ≥ b proves the supermodularity of vβ in

(b, a) for any channel state h and source state x. Furthermore,

positive weighted sum of supermodular function is also

supermodular, hence Qβ([b, x, h], a) is supermodular in (b, a)
and the monotonic structure of the optimal policy in the

energy state b is proven.

B. Proof of Theorem 2

Proof: Since

π⋆
β([b, x, h]) = argmax

a
{Qβ([b, x, h], a)} , (38)

to prove that the optimal policy is non-decreasing in the

channel state h, we have to prove that Qβ([b, x, h], a) is

supermodular in (h, a). Now, Qβ([b, x, h], a) is defined as

Qβ([b, x, h], a) = r(s, a;β) +
∑

s′∈S

p(s′|s, a)vβ(s′), (39)

where the first term in the right hand side of the equation,

i.e., r(s, a;β), is supermodular in (h, a) since it does not

depend on h and it is monotonically non-decreasing in a.

Let us rewrite the second term as

Q1([b, x, h], a) =
∑

s′∈S

p(s′|s, a)vβ(s′) (40)

=
∑

h′∈H

∑

x′∈X

E
∑

ein=0

ph(h
′|h)px(x′|x)·

· pein(ein|x)vβ([b+ ein − eout(h, a), x
′, h′]) ,

(41)

where we used the independence of the channel evolution

and of the source state evolution. We need to prove that the

sum in (41) is supermodular in (h, a) for any b ∈ B and

x ∈ X , that is

∑

x′∈X

px(x
′|x)

E
∑

ein=0

pein(ein|x)
∑

h′∈H

ph(h
′|h1)·

· vβ([b+ ein − eout(h1, a1), x
′, h′])−

−
∑

x′∈X

px(x
′|x)

E
∑

ein=0

pein(ein|x)
∑

h′∈H

ph(h
′|h1)·

· vβ([b+ ein − eout(h1, a2), x
′, h′]) ≥

≥
∑

x′∈X

px(x
′|x)

E
∑

ein=0

pein(ein|x)
∑

h′∈H

ph(h
′|h2)·

· vβ([b+ ein − eout(h2, a1), x
′, h′])−

−
∑

x′∈X

px(x
′|x)

E
∑

ein=0

pein(ein|x)
∑

h′∈H

ph(h
′|h2)·

· vβ([b+ ein − eout(h2, a2), x
′, h′]) (42)

for h1 ≥ h2, a1 ≥ a2, for any x ∈ X and any b ∈ B. Getting

rid of the constant terms, (42) can be rewritten as:

∑

h′∈H

ph(h
′|h1)(vβ([b+ ein − eout(h1, a1), x

′, h′])−

−vβ([b+ ein − eout(h1, a2), x
′, h′])) ≥

≥
∑

h′∈H

ph(h
′|h2)(vβ([b+ ein − eout(h2, a1), x

′, h′])−

−vβ([b+ ein − eout(h2, a2), x
′, h′])) .

(43)

Since ph(h
′|h) is stochastically increasing in h, a sufficient

condition for (43) to hold (see Lemma 4.7.2 in [27]) is that

vβ([b+ ein − eout(h1, a1), x
′, h′])−

− vβ([b+ ein − eout(h1, a2), x
′, h′]) ≥

≥vβ([b+ ein − eout(h2, a1), x
′, h′])−

− vβ([b+ ein − eout(h2, a2), x
′, h′]) (44)

i.e., vβ is supermodular in (h, a). Since b, x′, h′, ein are

fixed, and eout(h, a) is monotonically decreasing in h, (44)

can be rewritten (with some abuse of notation) as

vβ([(b
′, a′), x′, h′])− vβ([(b

′, a), x′, h′]) ≥
≥ vβ([(b, a

′), x′, h′])− vβ([(b, a), x
′, h′]) (45)

where b′ ≥ b and a′ ≥ a. But this is the condition for the

supermodularity of vβ in (b, a) that holds for Theorem 1.

C. Proof of Theorem 3

Proof: Since

π⋆
β([b, x, h]) = argmax

a
{Qβ([b, x, h], a)} , (46)



ZORDAN et al.: ON THE DESIGN OF TEMPORAL COMPRESSION STRATEGIES FOR ENERGY HARVESTING SENSOR NETWORKS 17

to prove that the optimal policy is non-decreasing in the

source state x, we have to prove that Qβ([b, x, h], a) is

supermodular in (x, a). Now, Qβ([b, x, h], a) is defined as

Qβ([b, x, h], a) = r(s, a;β) +
∑

s′∈S

p(s′|s, a)vβ(s′), (47)

where the first term in the right hand side of the equation,

i.e., r(s, a;β), is supermodular in (x, a) since it does not

depend on x and it is monotonically non-decreasing in a.

Let us rewrite the second term as

Q1([b, x, h], a) =
∑

s′∈S

p(s′|s, a)vβ(s′) (48)

=
∑

h′∈H

∑

x′∈X

E
∑

ein=0

ph(h
′|h)px(x′|x)·

· pein(ein|x)vβ([b+ ein − eout(h, a), x
′, h′]) ,

(49)

where we used the independence of the channel evolution

and of the source state evolution. We need to prove that the

sum in (49) is supermodular in (x, a) for any b ∈ B and

h ∈ H, that is

∑

h′∈H

ph(h
′|h)

∑

x′∈X

px(x
′|x1)

E
∑

ein=0

pein(ein|x1)·

· vβ([b+ ein − eout(h, a1), x
′, h′])−

−
∑

h′∈H

ph(h
′|h)

∑

x′∈X

px(x
′|x1)

E
∑

ein=0

pein(ein|x1)·

· vβ([b+ ein − eout(h, a2), x
′, h′]) ≥

≥
∑

h′∈H

ph(h
′|h)

∑

x′∈X

px(x
′|x2)

E
∑

ein=0

pein(ein|x2)·

· vβ([b+ ein − eout(h, a1), x
′, h′])−

−
∑

h′∈H

ph(h
′|h)

∑

x′∈X

px(x
′|x2)

E
∑

ein=0

pein(ein|x2)·

· vβ([b+ ein − eout(h, a2), x
′, h′]) (50)

for x1 ≥ x2, a1 ≥ a2, for any h ∈ H and any b ∈ B. Getting

rid of the constant terms, (50) can be rewritten as

∑

x′∈X

px(x
′|x1)

E
∑

ein=0

pein(ein|x1)·

· (vβ([b+ ein − eout(h, a1), x
′, h′])−

− vβ([b+ ein − eout(h, a2), x
′, h′])) ≥

≥
∑

x′∈X

px(x
′|x2)

E
∑

ein=0

pein(ein|x2)·

· (vβ([b+ ein − eout(h, a1), x
′, h′])−

− vβ([b+ ein − eout(h2, a2), x
′, h′])) . (51)

Since px(x
′|x) is stochastically increasing in x, a sufficient

condition for (51) to hold (see Lemma 4.7.2 in [27]) is that

E
∑

ein=0

pein(ein|x1)(vβ([b+ ein − eout(h, a1), x
′, h′])−

− vβ([b+ ein − eout(h, a2), x
′, h′])) ≥

≥
E
∑

ein=0

pein(ein|x2)(vβ([b+ ein − eout(h, a1), x
′, h′])−

− vβ([b+ ein − eout(h2, a2), x
′, h′])) . (52)

for each x1 ≥ x2. If the energy income from states xi

takes values in disjoint ordered sets, i.e., exi

in ∈ Exi =
{Exi

min, E
xi

min + 1, . . . , Exi
max}, Exi ∩ Exj = ∅ for i 6= j,

∪iExi = {0, 1, . . . , E}, Exi
max < E

xi+1

min , and since the sums

in (52) are convex combinations, we can write

E
∑

ein=0

pein(ein|x1)(vβ([b+ ein − eout(h, a1), x
′, h′])−

− vβ([b+ ein − eout(h, a2), x
′, h′])) ≥

≥ vβ([b+Ex1

min − eout(h, a1), x
′, h′])−

− vβ([b+ Ex1

min − eout(h, a2), x
′, h′]) ≥

≥ vβ([b+Ex2

max − eout(h, a1), x
′, h′])−

− vβ([b+ Ex2

max − eout(h, a2), x
′, h′]) ≥

≥
E
∑

ein=0

pein(ein|x2)(vβ([b+ ein − eout(h, a1), x
′, h′])−

− vβ([b+ ein − eout(h2, a2), x
′, h′])) . (53)

Thus, (52) holds if the innermost inequality in (53) holds.

Rearranging the term, we can write

vβ([b+ Ex1

min − eout(h, a1), x
′, h′])−

− vβ([b+ Ex2

max − eout(h, a1), x
′, h′]) ≥

≥ vβ([b+ Ex1

min − eout(h, a2), x
′, h′])−

− vβ([b+ Ex2

max − eout(h, a2), x
′, h′]) , (54)

which holds since eout is monotonically increasing in a and

vβ is concave and increasing in b because of Lemma 1.
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