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Abstract— In this abstract we present novel on–line routing
strategies to achieve cost/energy efficient data forwarding in wireless
sensor networks. Our algorithms are suitable for the cases where
data packets have to be transmitted through multi-hop forwarding
techniques to a central unit (the sink) and the aim is to realize
the data delivery in a cost efficient manner. In our framework, each
sensor node is characterized by a cost which is used to represent the
status of the sensor (energy, queue, etc.) as well as its suitability to
be selected as a relay node for data forwarding. In addition to node
costs, node hop counts are accounted for as a rough representation
of the underlying topology and are used to drive the forwarding
process toward efficient solutions. We then compare the proposed
on–line HC routing algorithms against globally optimal solutions.

I. INTRODUCTION

One of the most challenging problems in wireless sensor
networks (WSNs) is to provide energy efficient solutions for data
forwarding so as to prolong the network lifetime. In particular,
we seek to achieve robust and long-lived WSNs. Due to the
energy/computation constraints characterizing micro-sensors, it
is desirable to obtain such a goal by means of very simple
algorithms.

The goal of our work is to discuss some design methodologies
for data forwarding in WSNs. These algorithms, in order to
be used in sensor networks should involve a small number of
operations. For example, classic pro-active or reactive routing
algorithms, proposed for Ad Hoc networks, are not a good choice
in such a scenario as they need a substantial exchange of informa-
tion among nodes to update routing tables. In sensor networks,
due to energy constraints, this approach is not usable; instead,
it is better to route packets based on localized information [1],
where the next hop is decided, at every node, based on a local
view of the network status. A typical approach in that sense
is given by geographic routing schemes [2], where the next
hop is decided based on the node position, on the position of
the sink and on the coordinates of the nodes in the first–order
(within range) neighborhood. In this work, we investigate on-line
local forwarding techniques where hop counts are used instead
of geographical coordinates in order to assess the direction to
be followed to forward data. In addition, properly defined costs
are used to represent the internal state of every node (possibly
including link qualities). Costs and hop counts are therefore
exploited as the local information to be considered to make
routing decisions.
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II. SYSTEM MODEL

We model the network as a directed weighted graph G =
(N, A), consisting of a set N of nodes. |N | = m is the cardinality
of N , that is composed by m−1 nodes and one special node (the
sink) whose function is to gather and process network messages.
The set A is a set of ordered pairs (i, j), where i, j ∈ N . The pair
(i, j) is referred to as the link connecting node i with node j. The
link (i, j) exists if i and j are within transmission range. In order
to keep the analysis as general as possible, we do not specify here
any propagation/connectivity model. In fact, our analysis is based
on neighboring sets, i.e., on sets of nodes within coverage that
verify certain properties. As the network may be highly dynamic,
these sets may vary between subsequent forwarding actions and
are therefore dependent on many factors such as connectivity
model and node sleeping features. It is then reasonable to obtain
these sets on–demand when forwarding decisions have to be
actually made. For what concerns the cost associated with a link
it can be represented, for instance, by a function related to the
energy required to transmit an information bit from node i to
node j, but other factors can also be taken into account, such
as the node failure probability and/or the amount of traffic at
node j, i.e., the state of its queue. In our investigation, we do
not propose a specific cost model, so as to keep our results as
general as possible. We define a path P from node s to node d as
an ordered list P = {s, r1, r2, . . . , rn, d}, where nodes s and d
are referred to as the source and the destination node, respectively.
Here, we only consider the loop–free oriented paths connecting
node s to node d. The nodes ri, i ∈ {1, 2, . . . , n} are referred to
as relay nodes. The cost C(P) associated with a path P is given
as follows1

C(P) = csr1
+

n−1
∑

i=1

criri+1
+ crnd (1)

Choosing an additive cost function as the path cost criterion is
reasonable as additive metrics arise in many settings. For instance,
end-to-end delay, delay jitter, maximum total residual energy and
reliability (logarithms) all correspond to the sum of link weights.

We further assume that the cost cij does not depend on node
i, i.e., cij = cj , ∀ j ∈ N . This is, of course, a simplifying
assumption that can be removed in future research. This as-
sumption is reasonable when all nodes transmit with the same
constant power. Hence, no power control is accounted for here.
A possible model for the cost function could be, for instance,
related to the residual energy at every node. Consider node j ∈ N
and let its residual and initial energy be Eres(j) and Einit(j),

1Under the assumption of additive cost function, see [3].



D ← sink node;
k ← current node;
repeat
N (k)< = {i ∈ N (k) s.t. HC(i) < HC(k)};
i? = argmini∈N (k)< cki;
Break ties arbitrarily. k ← i?;

until k = D;

Algorithm 1: Greedy forwarding algorithm.

respectively. If Einit(i) = Einit(j) = Einit, ∀ i, j, the cost
associated to transmitting to node j could therefore be written
as cj = 1 − Eres(j)/Einit, where 0 ≤ Eres(j) ≤ Einit and
cj ∈ [0, 1]. Of course, the lower the residual energy, the higher
the cost of choosing that node as the relay. Observe that the
cost model is itself very important since it strongly influences
the properties of the solutions found by the cost–based routing
algorithms that will be discussed in the sequel.

III. HOP COUNT ROUTING ALGORITHMS

A. Greedy Path Selection Algorithm (GREEDY)

In addition to node costs, in the following we consider node
hop counts. We say that a given node has hop count (HC) equal to
i > 1 if the minimum number of hops (transmissions) for a packet
to get to the sink from that node is equal to i. A first routing
scheme is reported in Alg. 1, and is based on the same concepts
as in [4], with the difference that here the next hop is selected
thanks to node HC rather than using geographical coordinates.
When a data packet is generated at a source node, say node k, a
neighbor set N (k)< is obtained from N (k) by picking the nodes
in N (k) with a lower hop count value with respect to the HC
at node k (HC(k)). In this way, we select the next hop among
the nodes that lead to the maximum advancement toward the
sink. Moreover, we pick the next hop from the set N (k)< by
selecting the lowest cost node in the set. This second action is
performed with the aim of minimizing the overall path cost. In
the following sections, we propose a refined greedy forwarding
algorithm, where some statistical knowledge regarding the costs
of the nodes placed in the second–order neighbor (two hops away)
is considered to improve forwarding decisions.

B. Routing as a Sequential Decision Problem

We formulate the routing problem as a sequential decision
problem, where at every stage a node has to select a specific
action, i.e., the best node to act as relay for the current packet. In
particular, we are interested in on–line routing algorithms, where
forwarding decisions are made based on local knowledge and
on some statistical information regarding the second-order (two
hops away) neighborhood of the current node. With the term
local knowledge, we mean here the knowledge of the costs of
those nodes within radio range. We assume that the currently
occupied node is node i ∈ N , that its hop count is HC(i) = n
and that the forwarding process is at stage t ≥ 0, t ∈ N where the
time evolves by one unit every decision round. We define N (i)<

and N (i)= as the set of nodes within range of node i with hop
count n−1 and n, respectively. The problem to be solved by the
decision maker is therefore to assess the best node to be selected

to act as relay among the nodes in sets N (i)= and N (i)<. Nodes
in set N (i)> are excluded a priori since, in normal operational
conditions, they do not lead to satisfactory solutions.2 We refer
to jt

n−1 ∈ N (i)<, jt
n ∈ N (i)= and to ct

n−1, ct
n as the minimum

cost nodes3 in sets N (i)= and N (i)< and their associated costs,
respectively. We finally refer to forwarding cycle for hop count
n as the forwarding history between the first selection of a node
with HC equal to n and the first selection of a node with HC
equal to n + 1.

C. One-Step Ahead Prediction Routing Techniques

Consider a generic forwarding step t ≥ 0, t ∈ N and consider
that the packet at time t is at node i with HC(i) = n and that
time 0 corresponds to the instant when the current forwarding
cycle has started. At time t the decision maker (node i) has to
choose a forwarding action, i.e., whether the packet has to be
forwarded to node jt

n−1 or to jt
n. We define the action set and the

decision maker’s current state as At = {at
n−1 = jt

n−1, a
t
n = jt

n}
and Xt = (ct

n, ct
n−1), respectively. Moreover, we assume that

if action a(t) ∈ At is chosen when in state Xt, t ≥ 0, a cost
C(Xt, a(t)) ≥ 0 is incurred. For any routing policy π, the total
expected cost incurred over time when X is the initial state is
defined as [5]

Vπ(X) = Eπ

[ +∞
∑

n=0

C(Xn, a(n))|X0 = X

]

(2)

Moreover, let V (X) = infπ Vπ(X) be the minimum expected
cost under any policy [5]. We say that a policy π∗ is optimal if
Vπ∗(X) = V (X), ∀X . The optimal policy is determined by the
following optimality equation [5]

V (Xt) = min
a(t)∈At

[

C(Xt, a(t))+

∫

DX

V (Xt+1) dF (Xt+1)

]

(3)

where Xt and Xt+1 are the current and the next state, respec-
tively, C(Xt, a(t)) is the cost incurred at the current decision step
t, the term

∫

DX
V (Xt+1) dF (Xt+1) accounts for the average cost

incurred in future decisions, DX is the domain set of Xt+1 and
F (Xt+1) is the cdf governing the state for the next forwarding
step. Our forwarding process can therefore be modeled as an
optimal stopping problem, where at the generic step t the decision
maker can either decide to continue (a(t) = at

n) or stop (a(t) =
at

n−1). In what follows, we discuss a first possible (and simple)
way to model the costs associated with this decision process.
In this first approach if a(t) = at

n, a cost C(Xt, a
t
n) = ct

n is
paid and the cycle is continued, while if a(t) = at

n−1 the cycle
is ended with a final cost C(Xt, a

t
n−1) = ct

n−1 and the integral
∫

DX
V (Xt+1) dF (Xt+1) is zero because once the cycle has ended

all the future costs are zero by definition. Keeping this in mind

2This has been verified by extensive simulations and is also supported by
previous studies.

3In the case where there are multiple nodes with the same minimum cost in one
of the two sets, we indifferently refer to one of them as they are, by definition,
equivalent. Moreover, without losing generality, we consider cij = cj , i.e., costs
only depend on the receiving node.



and considering Eq. (3), we may define the following set

B1 =

{

Xt : C(Xt, an−1) ≤ C(Xt, an)

+

∫

DX

C(Xt+1, an−1) dF (Xt+1)

}

(4)

this set contains the states for which stopping is at least as good
as continuing for one more period and then stopping. The policy
that stops the first time the process enters the set B1 is called
one–stage look–ahead policy. Set B1 simplifies to

B1 =

{

Xt : ct
n−1 − ct

n ≤ E

}

(5)

where

E = E[ct+1
n−1] =

∫ 1

0

ct+1
n−1 dF (ct+1

n−1) (6)

is the expected minimum cost among nodes with hop count n−1
at stage t + 1.4 Therefore, the one–stage optimal policy tells us
to stop at the instant in which set B1 is entered for the first time,
i.e., at time t we should select node jt

n−1 and end the cycle only
if ct

n−1 − ct
n ≤ E . Note that the one–stage policy is only locally

optimal, whereas in general this policy does not correspond to the
globally optimal behavior. Global optimality and related policies
are the object of our current research. However, in the next
section, we will show that this routing scheme is able to highly
improve the performance of the greedy solution presented in
Section III-A.

IV. RESULTS

In this section we compare the performance of the routing
algorithms presented above. As a reference model, we consider a
random topology network, where nodes are placed according to
a planar Poisson process with node density λn = λπR2, whereas
R is the constant node transmission range. We consider a unit
disk connectivity model, i.e., two nodes can communicate iff
their distance is within R. However, it is worth observing that
the schemes discussed here can work for any topology setting
as λ and the connectivity model just translates into different
neighboring sets. In the following numerical results, we consider
λn = 15, R = 1 and nodes are randomly placed on a square
area of 16R × 16R. Moreover, we focus on the quality of the
path from a source node with HC = 8. Every node is assumed to
have a good estimate of the expected minimum cost E (Eq. (6))
related to the second order neighborhood of the current node
and node costs are uniformly distributed in their definition set.
This is assumed here with the aim of understanding how close
to the optimal solution we can get with HC policies. The next
results are therefore valid from a theoretical point of view (cost
estimates are error free) and give us an indication of the maximum
achievable gains with respect to geographical and greedy routing.
As will be shown in the following, the performance gain is
good and thereby encouraging to proceed with further research
in this direction. In addition to the hop count based schemes
discussed above, we consider an idealized geographic routing

4We restrict the relay selection to the minimum cost nodes in sets N (·)= and
N (·)<.
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Fig. 1. Complementary distribution function of the cost difference between on–
line routing strategies and the (off–line) non–dominated optimal cost solution.

algorithm where we subdivide the relaying area into a number Nr

of priority regions, according to the related advancement toward
the destination [2]. In this scheme, the relay is always the lowest
cost node within the non-empty region with the highest priority,
i.e., the lowest cost node leading to the maximum advancement
toward the destination. In Fig. 1, we plot the probability that
the cost of on–line routing algorithms exceeds the cost of the
optimal path by ∆C, where ∆C is expressed as a percentage
of the optimal path cost (computed by means of an off-line
standard optimization procedure). In particular, we show the
performance of the geographic routing scheme (GEO) and of the
on–line routing schemes reported in Section III-A (GREEDY)
and Section III-C (that we name here as Statistically assisted
Greedy Routing, SGR). Clearly, geographical routing performs
worse than both GREEDY and SGR. Further, it is not clear how
the number of geographical regions Nr can be chosen in order to
improve the optimality in terms of cost. Apparently, the maximum
geographical advancement is not a good strategy to select low
cost paths. How to couple geographical advancements and costs
in a more effective strategy than subdividing the forwarding area
into priority regions (Nr) is the objective of our current research.
From this figure, it is also clear that the exploitation of one–step
ahead cost predictions makes SGR perform significantly better
than GREEDY.
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