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Abstract

This thesis contains an accurate selection of the research activities I performed as a Ph. D. candidate.

The main focus of my work was on higher layer protocols such as TCP/IP [84] and the characterization of

link layer techniques that are used in modern wireless communication systems to counteract the residual

errors affecting wireless channels that are still present even after physical layer processing. In modern

telecommunications systems, such as the UMTS [1], link layer techniques are coupled with higher layer

TCP/IP transmissions to improve performance and to solve some problems affecting protocols as TCP

when they are operating over a wireless medium. These techniques are also gaining interest in modern

mobile satellite architectures (see Chapter 3 for a better introduction and a detailed list of references),

where the wireless channel is impaired by errors due both to the user mobility and to atmospheric phe-

nomena such as rain and fog. For these reasons, it is important to gain precise indications on the way in

which link layer and TCP interact and on the correct setting to achieve optimal performance depending

on the underlying channel error process. The thesis is dedicated to this understanding as well as to the

application of these two techniques to different scenarios and problems. The results presented in the fol-

lowing chapters have been obtained by a mixture of simulation and analytical techniques.

The thesis is organized in such a manner that it presents the results to the reader following an in-

creasing level of complexity. The study is started by considering high level retransmission policies (i.e.,

TCP), and by pointing out their inefficiencies over the wireless links. Subsequently, lower layer recovery

schemes (algorithms operating at the link layer) are considered in order to cope with these inefficiencies,

and the performance is characterized considering both approaches working together. In the last part of

the thesis, the focus is shifted towards the characterization and optimization of link layer algorithms only.
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The document is subdivided in two main parts. In the first part (Chapters 1–4), the TCP protocol is

addressed by studying its performance over several networks both by simulation and analysis. In the first

Chapter, the TCP algorithm is investigated in a W–CDMA cellular environment, where the achievable

performance is derived as a function of the system load and other user parameters (such as mobility and

spreading factor, i.e., user bit rate). Here, the TCP protocol is the only mechanism which is responsible

for the retransmission of corrupted data. In Chapter 2, a novel TCP header compression algorithm is pro-

posed to save bandwidth, thereby improving the transmission efficiency of the TCP flows in a W–CDMA

cellular system. However, as it will be highlighted in Chapter 2, this mechanism alone is not able to

completely cope with the inefficiencies of TCP over wireless links. Further solutions to solve these prob-

lems are presented in Chapter 5. Later on, the focus is moved to the satellite environment (Chapter 3),

where TCP is used together with other protocols to achieve optimal performance. In this scenario, TCP

is considered together with other recovery algorithms. For instance, a special retransmission scheme was

designed for the satellite link. However, only one retransmission protocol is considered at one time, i.e.,

only one retransmission protocol is operating over a single link. Next, in Chapter 4 the TCP algorithm is

studied analytically following a semi–Markov approach. The aim of this Chapter is to provide an accu-

rate understanding of the mechanisms involved in various versions of TCP and to point out how the TCP

performance depends on the underlying channel statistics.

In the second part of the thesis, the focus is being put on lower layer retransmission mechanisms

(mechanisms operating at the link layer) and on their interaction with higher layer protocols (i.e., TCP).

This second part starts with Chapter 5, with the characterization of the performance of TCP operating in

a W–CDMA cellular environment, but considering a link layer retransmission scheme to cope with the

inefficiencies of TCP over the wireless link. In this Chapter several useful guidelines for an optimal design

of this coupled system (TCP plus link layer algorithm) are derived. In Chapter 6, the focus has been put on

retransmission schemes only, by providing a complete theoretical framework in order to derive link layer

delay statistics. These delay statistics are useful since they can be used to estimate several performance

metrics at higher layers (e.g., the TCP timeout event probability). Finally, in Chapter 7 we exploit link

layer algorithms to improve the performance of the multicast data transmission in W–CDMA cellular

systems. In this case, particular attention has been paid to the video streaming case. In the following, a

more detailed summary of the results contained in every Chapter is given.

Overview

The thesis starts with Chapter 1 with the performance evaluation of the TCP/IP protocol suite oper-

ating in a multi-cellular system, where W–CDMA (Wideband CDMA) [83] is considered as the access

technique used over the air interface. In this Chapter, the main focus is on the characterization of how

the user interference affects the TCP/IP performance. In particular, this investigation is carried out as a

function of various system parameters such as the user Doppler Frequency (a parameter directly related

to the user speed, i.e., to the fast fading propagation phenomenon) the system load and the TTI (Time

Transmission Interval), i.e., the reference time period over which the coding and interleaving processes

are performed at the physical layer. Heuristics are derived to approximate the TCP/IP throughput as a
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function of the above cited parameters.

In Chapter 2, Header Compression (HC) techniques are introduced to improve the TCP/IP flows per-

formance over wireless channels. In more detail, HC is employed to reduce the size of the transmitted

TCP/IP headers. This size reduction, results in a saving of the bandwidth required to transmit the TCP

traffic and in an improvement of the response time for interactive sessions. Here, new algorithms are

proposed to improve the HC robustness against wireless channel errors. The performance of these algo-

rithms is tested again in the cellular scenario considered in Chapter 1.

In Chapter 3, the TCP/IP protocol performance is investigated in a satellite environment. In particular,

a scenario including geostationary satellite links is considered, and a set of techniques is introduced to

improve the performance of end-to-end TCP/IP sessions in such cases. These techniques include some

architectural modifications of the existing architecture as well as the introduction of a new protocol oper-

ating over the wireless link. This protocol is based on a Selective Repeat [82] algorithm to which some

new features have been added to allow for flow control between the wired and the wireless portions of

the network (the Internet backbone and the satellite link). Performance evaluation is carried out by both

simulation and analysis. The proposed solution is shown to highly improve the throughput efficiency as

well as the end-to-end delay in case of error prone satellite links.

The throughput of TCP/IP running over a wireless link is derived in Chapter 4 where a Markov an-

alytical technique is used to describe the behavior of the protocol and derive the throughput curves as a

function of the wireless channel characteristics (Doppler Frequency and round trip delay). The analysis

presented in this Chapter is quite general and applicable to any wireless channel since the error statistics

is modeled by means of a Two-State Markov model [52].

A first characterization of link layer algorithms is carried out in Chapter 5, where the link layer (RLC,

Radio Link Control [4]) of a UMTS system is considered. In this Chapter, all the RLC parameters are

considered as specified in the standard [1]. The RLC layer is a Selective Repeat based algorithm that is

used at the second layer of the UMTS protocol stack to counteract the residual errors that are still present

after physical layer processing. The role of RLC is to shield higher layers from these errors so as to

avoid the triggering of some error recovery mechanisms that, in some cases, could lead to a substantial

decrease in performance (i.e., in the TCP case to avoid a spurious occurrence of the timeout mechanism).

The performance evaluation is carried out considering higher layer metrics such as TCP/IP throughput

and delay. Indications on the correct RLC parameter settings are derived as a function of the size and the

typology of traffic considered at higher layers.

In Chapter 6, the delay of Selective Repeat algorithms is investigated in great detail by deriving delay

statistics over independent (iid) and correlated channels. The results obtained in this Chapter are analyti-

cal and applicable to a large set of systems. In the last part of the Chapter, the delay statistics are derived

modeling the wireless channel as an N–State Markov model so as to obtain a good level of accuracy with

respect to the simulation results obtained over a Rayleigh fading channel. In fact, this channel is often
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not very well approximated by the Two-State Markov Model introduced and used in Chapter 4.

Finally, in Chapter 7 some solutions to improve the performance of multicast streaming in 3G cellular

systems are proposed. In UMTS, for instance, this service is referred to as MBMS [1] (Multimedia

Broadcast/Multicast Service). In that Chapter, the best way to manage the available resource to handle

the multicast traffic is investigated first; the focus here is on the best way to allocate channel resources

to provide such a traffic. This point is discussed both qualitatively and by means of simulation results.

Subsequently, once the correct channel has been established, some new Hybrid ARQ (HARQ) schemes

are presented to improve the performance of the multicast sessions over standard ARQ mechanisms.

These new schemes and their advantages are then investigated in detail.
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Chapter 1

Performance Evaluation of TCP/IP over a

W–CDMA Wireless Air Interface

In this Chapter, a study on the performance of TCP in terms of both throughput and energy consump-

tion in the presence of a Wideband CDMA radio interface typical of third generation wireless systems is

presented. The results show that the relationship between throughput and average error rate is largely in-

dependent of the network load, making it possible to introduce a universal throughput curve, empirically

characterized, with gives throughput predictions for each value of the user error probability. Further-

more, the study of the energy efficiency shows the possibility to select an optimal power control threshold

to maximize the tradeoff between throughput and energy, thereby potentially achieving very significant

energy gains.

1.1 Introduction

In the past decade, the introduction of mobile phones and the rate of subscription to wireless com-

munication systems have been spectacular. The access to the Internet is becoming part of everyday’s life

for a large number of people throughout the world. Even though voice applications will still dominate

the wireless market in the immediate future, everybody expects that the real future of wireless is in IP-

based data applications, which will deliver the promise of easy access to large amounts of information for

anyone at any time and from anywhere [62].

Based on this evolutionary trend of the telecommunications market, a significant step has been taken

by the wireless industry, by developing a new generation of systems whose capabilities are intended to

considerably exceed the very limited data rates and packet handling mechanisms provided by current

second generation systems, such as GSM, IS-136, IS-95 and PDC. Third generation systems are already

at the advanced stage of standardization [55]. For example, a self-contained set of specifications for the

Universal Mobile Telecommunications System (UMTS, the European/Japanese version of third genera-

tion wireless) has already been published last year, and a new release is expected soon, based on an all-IP

Core Network architecture [1, 87, 95].

The goal of providing multimedia services to the wireless terminals and of offering transport ca-

pabilities based on an IP backbone and on the Internet paradigm calls for the extension of widespread
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2 Chapter 1

Internet protocols to the wireless domain. In particular, extension of the Transmission Control Protocol

(TCP) [97] has received considerable attention in recent years, and many studies have been published

in the open literature, which address the possible performance problems that TCP has when operated

over a connection comprising wireless links, and propose solutions to those problems (see for exam-

ple [17, 25, 28, 30, 68, 70, 106]).

When TCP is run in a wireless environment, two major considerations must be made regarding its

performance characterization. First of all, wireless links exhibit much poorer performance than their

wireline counterparts and, even more importantly, the effects of this behavior are erroneously interpreted

by TCP, which reacts to network congestion every time it detects packet loss, even though the loss itself

may have occurred for other reasons (e.g., channel errors). Furthermore, it has been shown that the

statistical behavior of packet errors has a significant effect on the overall throughput performance of TCP,

and that different higher-order statistical properties of the packet error process may lead to vastly different

performance even for the same average packet error rates [113]. It is therefore important to be able to

accurately characterize the actual error process as arising in the specific environment under study, as

simplistic error models may just not work.

Another critical factor to be considered when wireless devices are used is the scarce amount of energy

available, which leads to issues such as battery life and battery recharge, and which affects the capabilities

of the terminal as well as its size, weight and cost. Since dramatic improvements on the front of battery

technology do not seem likely, an approach which has gained popularity in the past few years consists in

using the available energy in the best possible way, trying to avoid wasting power and to tune protocols

and their parameters in such a way as to optimize the energy use [2]. It should be noted that this way of

thinking may lead to completely different design objectives or to scenarios in which the performance met-

rics which have traditionally been used when evaluating communications schemes become less important

than energy-related metrics. This energy-centric approach therefore gives a different spin to performance

evaluation and protocol design, and calls for new results to shed some light on the energy performance of

protocols.

Studies on the energy efficiency of TCP have been very limited so far [100,101,111,114]. In addition,

they do not address specifically the Wideband CDMA environment typical of third generation systems,

and therefore do not necessarily provide the correct insight for our scenario. The purpose of the results

reported in the next is to provide a detailed study of the performance of TCP, in terms of both throughput

and energy, when a Wideband CDMA radio interface is used. In particular, the parameters of the UMTS

physical layer will be used in the study. As a first step, in this Chapter we present results in the absence

of link-layer retransmissions. This is done in order to more clearly understand the interactions between

TCP’s energy behavior and the details of the radio interface. Results on the throughput performance

of TCP in the presence of link-layer retransmissions will be presented in details later on in Chapter 5

(see [28, 30, 63] for some contributions on this topic).

The Chapter is organized as follows. In Section 1.2, the main system assumptions and some details of

the simulation tool are described. In Section 1.3, the throughput performance of TCP in various scenarios

is discussed, and an analytical approximation for the TCP throughput performance curves is proposed. In

Section 1.4, the energy performance of TCP is directly addressed. In particular, the effect of the power

control threshold, which affects both the error statistics and the transmit power consumption, is examined,
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and the tradeoff between QoS and energy efficiency is explored. A main conclusion is that an appropriate

choice of the power control threshold, while leading to incremental (though non-negligible) throughput

improvements, has the potential to produce multiple-fold energy savings.

1.2 System Model

1.2.1 System–Level Simulation

In order to carry out the proposed research, an accurate simulation tool has been developed. It sim-

ulates the operation of a multicellular wideband CDMA environment, where user signals are subject to

propagation effects and transmitted powers are adjusted according to the power control algorithm detailed

in the specifications [1].

We consider a hexagonal cell layout with 25 cells total. This structure is wrapped onto itself to

avoid border effects. Each simulation is a snapshot in time, so that no explicit mobility is considered

while running the simulation. However, the fact that users may be mobile is taken into account in the

specification of the Doppler frequency, which characterizes the speed of variation of the Rayleigh fading

process. For the same reason, long-term propagation effects, namely path loss and shadowing, are kept

constant throughout each simulation. Path loss relates the average received power to the distance between

the transmitter and the receiver, according to the general inverse-power propagation law Pr(r) = Ar−β ,

where in our results we chose β = 3.5. Shadowing is modeled by a multiplicative log-normal random

variable with dB-spread σ = 4 dB, i.e., a random variable whose value expressed in dB has Gaussian

distribution with zero mean and standard deviation equal to 4 [61].

At the beginning of each simulation, all user locations are randomly drawn with uniform distribution

within the service area, and the radio path gains towards all base stations are computed for each. Users

are then assigned to the base station which provides the best received power. Such assignment does not

change throughout the simulation. Also, note that each user is assigned to a single base station, i.e., soft

handover is not explicitly considered here. Extension of the program to include soft handover is currently

in progress, although qualitatively similar results are expected.

During a simulation run, the fading process for each user is dynamically changed, according to the

simulator proposed by Jakes [61] and to the selected value of the Doppler frequency. Note that the

instantaneous value of the Rayleigh fading does not affect the base station assignment. In order to take

into account the wideband character of the transmitted signals, a frequency-selective fading model is used,

with five rays whose relative strengths are taken from [36]. Maximal ratio combining through RAKE

receiver is assumed at the base station. Only the uplink is considered here, although similar results have

been obtained for the downlink as well.

Each connection runs its own power control algorithm as detailed in the specifications. The resulting

transmitter power levels of all user, along with the instantaneous propagation conditions, determine the

received signal level at each receiver, and therefore the level of interference suffered by each signal.

We assume here perfect knowledge of the Signal-to-Interference Ratio (SIR) which is used to make the

decision about whether the transmitted power should be increased or decreased by the amount ∆. A

finite dynamic range is assumed for the power control algorithm, so that under no circumstances can the

transmitted power be above a maximum or below a minimum value. The delay incurred in this update is
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PARAMETER VALUE

Cell Side 200 m
β (path loss model) 3.5

A (path loss model) −30 dB
Max. TX Power −16 dBW
Power Range 80 dB
σ (shadowing) 4 dB
Time Unit (physical slot duration) 0.667 ms
Number of Oscillators (Jakes) 8

n rays (Selective Channel) 5

Chip Rate 3.84 Mcps
Data Rate 240 kbps
SF (Spreading Factor) 16
∆ (Power Control Step) 0.5 dB
Noise −132 dBW

Table 1.1: System-level simulation parameters

assumed to be one time unit (given by the power control frequency of update), i.e., the transmitted power

is updated according to the SIR resulting from the previous update. The effect of late updates on the

overall performance has been studied in [47].

Table 1.1 summarizes the various parameters used in the simulation.

1.2.2 Block Error Process Generation

The output of the system level simulations is a log of the values of the SIR, transmitted power and

fading attenuation for all users, which allows us to gain some understanding on the time evolution of

these quantities, as well as on the behavior of the network at the system level. A post-processing package

translates the SIR traces into sequences of block error probabilities (BEP). This is done while taking

into account how the radio frames are deinterleaved and decoded. The interleaving schemes have been

taken from the specifications, and a convolutional code with rate 1/2 and constraint length 8 with Viterbi

decoding has been considered. An analytical approximation has been used to relate a string of SIR values

(one per time unit) to the probability that the corresponding block (transmitted within one or more radio

frames) is in error. The resulting trace of the block error probabilities can then be used in the simulation

of higher-layer protocols, as is done here, or to perform some statistical analysis of block errors. The

latter approach is explored in [107], where the burstiness of the error process is investigated.

1.2.3 TCP Simulation

For each simulation run (which corresponds to a given set of parameters), the SIR traces of all users

are produced, which are then mapped into BEP traces as explained above. The latter are then used to
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randomly generate a block error sequence (BES). The BES is generated from the BEP traces by just

flipping a coin with the appropriate probability in each Time Transmission Interval (TTI), which is the

time used to transmit a block. The BES obtained is then fed to the TCP simulator that uses it to specify

the channel status in each TTI. By doing so, the SIR traces generated for all users in a simulation run are

used by the TCP simulator to compute the throughput.

The average throughput is defined as the fraction of the channel transmission rate (considered at

the IP level output) which provides correct information bits at the receiver, i.e., not counting erroneous

transmissions, spurious retransmissions, idle time and overhead. In addition to the throughput value,

the TCP simulator computes other metrics of interest. In particular, we are interested in the average

block error probability, Pe, which is obtained for every user simply by averaging all the values of its

BEP sequence, and which will be used later to report the obtained results. Another metric of interest is

the average energy spent in transmitting data. For this purpose, besides BEP, we have also considered

the transmit power traces generated by the system-level simulator. These traces have been generated

assuming continuous channel transmission (transmitter is always active) and by updating the transmitted

power according to the power control algorithm. However, when TCP is considered, transmission is

bursty, due to the window adaptation mechanism implemented by the TCP algorithms, i.e., idle times

occur when the window is full or the system is waiting for a timeout. To account for idle times, we

have considered the actual transmitted power, equal to the one obtained from power traces when TCP

transmits, and to zero otherwise. The average transmitted power is then computed by summing the actual

transmitted power throughout the simulation (all slots) and dividing it by the total simulation time (in

number of slots). Moreover, to obtain the average consumed energy per correctly received bit, we simply

divide the average transmit power by the correct information bit delivery rate. In the following, we report

the throughput and average consumed energy expressions

S =
CIB

CBR
(1.1)

ACE =
ATP

CIB
=

ATP

S · CBR (1.2)

where S=average throughput, CIB=correct information bits per second, CBR=channel bit rate at

the IP level output, ACE=average consumed energy per bit, and ATP=average transmitted power. We

remark that, with our definitions, ACE is the average consumed energy per correctly received bit, i.e.,

the energy cost of delivering a single bit to the destination. Notice that this quantity is equal to the inverse

of the energy efficiency of the protocol as defined in [108].

The TCP simulator implements fragmentation of TCP segments, window adaptation and error re-

covery. It simulates a simple unidirectional FTP (File Transfer Protocol) session, where the direct link

packet generation is assumed continuous as in a long FTP transfer. The TCP algorithm considered is New

Reno [44]. Data flow is unidirectional, i.e., data packets flow only from sender to receiver, while ACKs

flow in the reverse direction. Receiver generates non-delayed ACKs, i.e., one ACK is sent for each packet

received. The TCP/IP stack is version 4, with a total of 40 bytes (including both TCP and IP overhead) for

each header (compression is not taken into account in the presented results, its effect will be investigated

in Chapter 2) and MTU size of 512 bytes. In the results presented in this Chapter, RLC and MAC levels
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are assumed to operate in transparent mode. Detailed results on the RLC impact will be presented later

on in Chapter 5.

To compute the bit rate at the output of the IP level, we have to account for overhead added by the

physical layer as well as possibly due to multiplexing of other channels. For the purpose of discussion,

we assume the following figures: a transport block is 1050 bits, including 16 bits of overhead due to

transparent RLC/MAC operation; a CRC and tail bits for code termination are added to this block, and

the result is convolutionally encoded at rate 1/2. The resulting encoded block is then brought to 2400

encoded symbols by the rate matching algorithm, so that the raw physical layer symbol rate is 240 kbps.

The application of a spreading factor SF = 16 makes it 3.84 Mcps, which is the standard channel

transmission rate [1]. At the IP level output, we then have a block of 1034 bits of data every 10 ms,

thereby yielding a net bit rate of 103.4Kbps, which is the bit rate used in the TCP simulator.

The use of TCP New Reno algorithm has been motivated by its implementation of fast recovery and

fast retransmit algorithms [14], as recommended in [32], especially for wireless environments. This is an

optimization over previous TCP versions.

1.3 TCP Throughput Performance

In this Section, we present some numerical results which illustrate the behavior of TCP throughput in

the considered environment.

In the graphs presented we will indicate with Nu the number of users in the simulation, with TTI

the number of radio frames over which interleaving is performed, SIRth = t + ∆ dB indicates that the

threshold used in the power control algorithm is t, while ∆ is its increment as described in Section 1.2.

Finally, with the term fd we refer to the Doppler frequency used in the Rayleigh fading simulator. In the

following graphs, the results will be represented as average TCP throughput, S, vs. average block error

probability, Pe, thereby assigning a single point in the graph to each user.

1.3.1 Sensitivity to the Doppler Frequency

Fig. 1.1 shows the TCP throughput performance for different values of the Doppler frequency. The

graph is plotted by reporting throughput vs. Pe for each of the 90 users involved in the simulation; each

user is identified by a marker. The case of independent errors is also reported for comparison purpose

(here the markers are used only to identify the curve and are not related to the users). The first interesting

observation concerns the fact that, for a given value of the Doppler frequency, fd, the points representing

the various users of a simulation appear to lie along a fairly well-defined curve. It is worth stressing

that this was not obvious a priori since different users are placed in different locations and are subject

to different propagation conditions, both in terms of slow impairments (log-normal shadowing) and in

terms of fast fading. This allows us to introduce the concept of “universal throughput curve” for a given

situation, in the sense that users which suffer similar values of Pe will enjoy about the same throughput.

Again, this is not obvious since different users in a simulation may see different statistical behaviors of

the errors, which could in principle lead to different performance even in the presence of the same average

error rate [113]. An explanation can be drawn from the results in [107], where it was found that for a

given value of fd there is a strong correlation between Pe and the error burstiness. In this situation, Pe
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Figure 1.1: TCP/IP Sensitivity to Doppler, (Nu = 90, TTI = 1, SIRth = 5.5 + 0.5dB, fd =
2, 6, 20, 40Hz).

essentially determines the full second-order characterization of the error process, which in turn almost

fully specifies the value of the TCP throughput. On the other hand, for different values of fd we observe

different curves. In fact, even in the presence of the same Pe the different extent of the channel memory

results in different performance.

Another interesting observation from Fig. 1.1 is that as the Doppler frequency increases the perfor-

mance degrades, i.e., slower channels correspond to better performance, as already observed in [106].

As expected, for sufficiently high values of the Doppler frequency, the behavior of the system is close

to the iid case. Finally, we note that the shape of the curves appears to be fairly regular, with a smooth

transition from highest throughput values (essentially limited only by the percentage of overhead in the

TCP packets, far left of the graph), to essentially zero throughput when errors are very likely (right end of

the graph). This shape, which has been observed by other authors, lends itself nicely to numerical fitting,

as detailed later.

1.3.2 Sensitivity to Interleaving Depth

In UMTS, besides the so-called intra-frame interleaving, which is always used to scramble the bits

within a radio frame (10 ms) before encoding, it is also possible to use a second, interframe, interleaving,
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Figure 1.2: Average throughput vs TTI, (Nu = 90, TTI = 1, 2, 4, 8, SIRth = 5.5 + 0.5dB, fd = 6Hz).

which mixes bits across frames. By doing so, the performance of the decoder is of course improved also

in the presence of burst errors, but a larger interleaving delay is introduced. Therefore, another interesting

sensitivity analysis regards the interleaving span allowed by the application. While keeping in mind the

price to be paid in terms of delay (an increase of the TTI corresponds to a larger delay), we can note

from Fig. 1.2 how a deeper interleaving gives a beneficial effect. Notice also that the shape of the curves

is similar to what observed in the previous case.

1.3.3 Effect of the Network Load

The effect of the network load is shown in Figs. 1.3(a) and 1.3(b). In Fig. 1.3(a), results from three

simulations are shown, with 80, 90 and 100 users in the network, respectively. For each simulation, all

users are assigned a point with the same abscissa (which is given by the number of users in the system)

and with vertical coordinate given by their average TCP throughput. We can see how for increasing load

the presence of disadvantaged users becomes more noticeable, as expected, and the system is more and

more unfair. The same results are represented in Fig. 1.3(b) by reporting the throughput as a function of

Pe where the curve along which the various points are aligned is relatively insensitive to the system load.

In Fig. 1.1, it was observed that, in a given scenario, two users whose average block error probability is

the same will have essentially the same throughput, regardless of the specific situation of each. What we

see here is that this behavior still holds across simulations in which different levels of network load are

considered (but for the same Doppler frequency). For higher network load, each user will certainly see

worse performance due to the increased interference, but the relationship between average throughput and
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Figure 1.3: Impact of the network load.

average error rate is essentially unaffected. This highlights the power of the concept of “universal curve”

which can be used to study typical cases and to infer TCP throughput performance based only on easily

measurable physical layer parameters. In Fig. 1.3(b) a possible form for the universal curve is given for

comparison with the simulator output points; more details about this fitting function will be presented

below. Similar behavior has been observed for other values of the Doppler frequency.

1.3.4 Analytical Throughput Prediction

The observed shape of the throughput curves, which tend to a constant equal to one minus the per-

centage of overhead for Pe → 0 and to zero for Pe → 1, suggests a numerical fit involving the logarithm

of Pe. Also, the shape of the transition is seen to depend on the value of the Doppler frequency. In Fig. 1.4

we propose a function for the modeling of the TCP throughput behavior through a heuristic function f(x),

independent of the network load and parameterized only by the Doppler frequency, as suggested by the

curves of Fig. 1.3(b) as well as by other results not reported in the thesis. The proposed expression for

f(x) is as follows

f(x) = S(0) · 10α·ln( 1

x̃−xs
−1)

10α·ln( 1

x̃−xs
−1) + 1

(1.3)

where

x̃ = 1 +
log10(x)

3
(1.4)

α = 1.3 (1.5)

xs =
1

Afd +B
− k (1.6)
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and where A = 1.39, B = 2.78, k = 0.03, and S(0) is the average throughput for Pe = 0 and fd is

the Doppler frequency in Hz.

The accuracy of the proposed fit has been tested for various values of the parameters involved. Ex-

amples of these tests are given in Figs. 1.3(b) and 1.5, in which the fitting expression is compared against

the simulation results for two values of the Doppler frequency. These graphs show that the analytical

expression is reasonably close to the actual points obtained by simulation.

1.4 TCP Energy Performance

All previous results were obtained for a given value of the power control threshold, SIRth, which is

used to drive the transmit power dynamics at each user and which directly affects the error performance.

In fact, choosing a higher value of this threshold has the double effect of forcing the users to transmit

more power in order to achieve a higher SIR (thereby consuming more energy) but also of causing the

SIR experienced by the typical user to be higher (thereby improving the error rates and therefore the TCP

throughput). It is therefore of interest to study how varying the power control SIR threshold makes it

possible to cut a tradeoff between QoS and energy consumption.

Figs. 1.6(a) and 1.6(b) show the trade-off between TCP throughput and consumed energy. Each curve

corresponds to a given user for a given set of parameters, whereas different points on the same curve refer

to different values of the power control threshold. Fig. 1.6(a) shows the effect of using different threshold

values in terms of S as a function of ATP . In this figure only the behavior of some selected users has

been reported. These users can be seen as representative of all users in the network, in the sense that

they illustrate typical behaviors as they arise in the system. In Fig. 1.6(b) the same results are shown, by
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considering ACE instead of ATP ; as expected, for low throughput the obtained curves are shifted to the

right, since ACE is obtained by dividing ATP by the throughput S (except for an inessential constant

scaling factor, see equation (1.2)). This is intuitively explained by the fact that, for a given average

consumed power, the energy per correct information bit is greater for low throughput values, i.e., when it

is hard to deliver bits correctly, the cost associated to each one of them is higher. Notice that TCP already

does the right thing by stopping transmission when the channel is very bad (the timeout event), whereas

it tries to recover from errors whenever possible through retransmissions, which may waste some power.

In general, increasing the threshold should lead to better performance for many users, since the SIR

experienced is expected to be higher; this is not necessarily true, however, since, in order to achieve a

higher SIR threshold, many users will transmit more power, thereby causing more interference in the

system. If the SIR objective is not achievable for all users in the system, some users will actually see

degraded performance for higher values of the threshold since, although the threshold value would corre-

spond to better performance, they cannot achieve its value.

From the obtained results we have noted different users behavior. For some users an increasing power

threshold always corresponds to a greater throughput: for these users the throughput as a function of the

power threshold is a monotonic curve. For others, the throughput vs. consumed power curve increases up

to a breakpoint, after which an increment of the power threshold (and thereby of the transmitted power)

actually leads to worse performance, due to greater interference as discussed above. In our results, user

14 is the one showing monotonic behavior, since it experiences favourable propagation conditions, and

therefore is not significantly affected by the increased interference level in the system. For users 11, 33

and 114, a different situation can be observed. In particular, user 11 is the one with the worst behavior as

the power threshold increases.

In any event, from these results we can conclude that increasing the target value of the SIR in the sys-

tem does not necessarily translate into improved quality, but there exists an optimal value of the threshold,

beyond which some users will experience negligible throughput improvements, whereas others will even

see degraded performance. In the cases considered here, this optimal value is seen to be close to 3.5 dB.

Another important remark regards the numerical values shown in Figs. 1.6(a) and 1.6(b). It can be

clearly seen that unlike for throughput, which except for badly chosen values of the threshold exhibits

relatively small variations, the range spanned by the energy performance extends over multiple orders of

magnitude. This indicates that the choice of the proper power control threshold, while certainly important

for error and throughput considerations, becomes critical when energy performance is considered.

Fig. 1.7(a) shows the average consumed power as a function of the power threshold. As expected,

a greater threshold value always corresponds to a higher consumed power, i.e., all curves have a strictly

monotonic behavior. This is due to the fact that for higher threshold values, more power is necessary

in order to obtain the required SIR target. A different behavior is observed in Fig. 1.7(b) in which the

consumed energy per bit is reported instead. In particular, notice that in the far left of the graph, a decrease

of the threshold, although corresponding to smaller average power (see Fig. 1.7(a)), results in a higher

energy cost per bit. This behavior corresponds to users suffering from low throughput performance,

where the consumed energy per correct information bit grows, as explained before. As a last observation,

we note from Fig. 1.7(a) that users 11, 33 and 114, i.e., the ones that suffer from system interference as

the threshold grows, show a transmitted power which is essentially constant for values of the threshold
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beyond 4 dB, This is due to the fact that these users, in trying to achieve the required SIR and to make

up for the increased interference, have reached the maximum allowed value for the transmit power, and

therefore their power can not be increased any more.
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Figure 1.7: Performance as a function of the power control threshold.

A similar QoS-energy trade-off relates to the error rate performance instead of the TCP throughput. In

Fig. 1.7(c) the block error probability Pe has been reported against the average transmitted powerATP by

using different values of the threshold. From the graph, we note that Pe decreases as the threshold grows

until a minimum is reached. After this point Pe starts to grow, again due to the increased interference

in the system. The points in which Pe has a minimum are the same on which the throughput of the

system is maximized (see Fig. 1.6(a)). As before, user 14 is the only user considered for which Pe never
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grows, i.e., increasing the threshold always leads to better performance. In Fig. 1.7(d) ACE is reported

instead of ATP and, as in the previous cases, some points are shifted to the right due to poor throughput

performance.

From the above results, we may conclude that the selection of the power control SIR threshold is

critical in cutting the right trade-offs between QoS and energy performance. In particular, we observe

that the potential for energy gains is very significant compared to similar effects on throughput, being

measured over multiple orders of magnitude. Therefore, it seems that more attention should be given to

energy consumption issues at the Radio Resource Management level, which is responsible for the power

control parameter selection.

1.5 Conclusions

In this Chapter, some results on the behavior of TCP over a Wideband CDMA air interface have

been reported. In particular, TCP throughput curves have been obtained, and their dependence on various

parameters, such as the number of users, the interleaving depth, and the Doppler frequency, has been

investigated. From this study, we have found that the relationship between average TCP throughput and

average block error rate is largely independent of the number of users in the system. For this reason, it

is possible to empirically characterize such a curve with a matching function that only depends on the

Doppler frequency. A study of the energy consumption has also been performed, showing that a trade-off

between the throughput and the power control threshold exists. It is therefore possible to trade-off QoS

of the data transfer for increased energy efficiency. For many users, it has been shown that an optimal

value of the threshold exists, potentially leading to very significant energy savings in return for very small

throughput degradation. In the considered case, values of the power control threshold close to 3.5 − −4

dB cut the best tradeoff.

In order to focus exclusively on the interactions of TCP with the WCDMA radio technology and as

a preliminary step in characterizing TCP’s energy performance in this scenario, no link-layer retransmis-

sions have been considered in the study presented in this Chapter. The impact of a radio link layer on the

TCP/IP performance will be persented in detail later on in Chapter 5.
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Enhanced Header Compression algorithms

for TCP/IP operating over wireless links

In this Chapter, the existing TCP Header Compression algorithms are first reviewed and then a new

proposal, specifically tailored for the wireless channel, is presented.

Header Compression consists in compressing the TCP/IP headers prior to their actual transmission

over the channel. These techniques have been studied since 1990 [59] with the original aim of improving

performance over slow serial IP links, i.e., by the need for good interactive response time over such lines.

Human factor studies have found that interactive response is perceived as “bad” when low-level feedback

(character echo) takes longer than 100 to 200 ms. The reduction of header sizes helps, over such slow

links, to keep the response time to a reasonable level and, this is achieved by limiting, as much as pos-

sible, the amount of redundancy to be sent over the transmission medium. The reader is referred to [59]

and to the references therein for a detailed discussion on the implications of transmitting full IP headers

over slow serial links.

Recently, these techniques have gained new attention in the wireless communication world. Taking

as an example 3G cellular systems [1], these algorithms would indeed allow a more efficient usage of

the limited available bandwidth. Bandwidth saving, in such scenarios, turns out in an increased system

capacity as well as improved performance perceived by the users that, due to header compression, can

experience lower interactive delays as well as higher throughputs.

In the past few years, different compression techniques have been proposed and tested. These algo-

rithms have been mainly developed to operate over the wired Internet, where they present good perfor-

mance. However, over wireless links, which are usually error prone, such techniques often fail. In more

details, due to the error proneness of the communication medium, such techniques could experience a loss

of synchronization (out-of-synch) between the transmitter and the receiver. These out-of-synch periods

cause the receiver to temporarily drop packets, since it is unable to correctly decode their compressed

headers. As a consequence, the throughput in the presence of errors can be lower than the one character-

izing a plain TCP/IP flow, i.e., a flow to which header compression is not applied. For these reasons, it is
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clear that new solutions have to be found for a successful integration of compression algorithms in sys-

tems including wireless links or, in general, over error prone channels. The aim of the research presented

in this chapter is indeed to propose HC schemes able to deal with the errors occurring over a wireless link

and to avoid the out-of-synch problem.

In this chapter, a discussion and a brief explanation of the mechanisms governing the existing com-

pression algorithms is given first. Then, a new TCP/IP header compression scheme for wireless networks

is proposed and tested. Header compression schemes are investigated here over a WCDMA air interface

using the error traces discussed in Chapter 1. The results are encouraging. The proposed algorithm is

able to trade-off some bandwidth saving for a greater robustness against the out-of-synch. This obviously

comes at the expense of some additional complexity.

2.1 Introduction

The wide diffusion of Internet and wireless networks leads to the integration of these two technologies

to provide wide-area wireless Internet access. TCP/IP [97] is probably the most important protocol stack

used over a wide range of different physical networks.

First of all, note that compared with fixed and wired networks, wireless networks have higher bit-

error rate (BER) and, due to the limitations characterizing most of the modern wireless systems, offer less

available bandwidth with respect to their wired counterpart. Furthermore, in the wireless case host mobil-

ity can also result in packet loss or delay during handoff procedures. Hence, the performance of TCP/IP

over such networks without any modification would suffer from significant throughput degradations as

well as large delays.

One way to efficiently use the available resources is to reduce the size of the protocol headers through

TCP/IP Header Compression [59] [34] [33] [89]. These techniques are advantageous both in interactive,

i.e., telnet sessions, and in continuous applications, i.e., FTP sessions. In the former case the packet

payload is usually smaller with respect to the latter, but in both cases the header overhead leads to a

degradation in terms of throughput. Furthermore, compressing the TCP/IP header sizes reduces packet

losses in force of the reduced packet sizes.

In this chapter, we investigate the performance of classic TCP/IP (IPv4) header compression schemes

on a WCDMA wireless channel and propose a new compression technique [46] to reduce the header

synchronization loss problem [59] [34] [33] [89]. The performance has been evaluated by means of

the TCP/IP New Reno simulator, taking as input WCDMA channel traces generated according to UMTS

standard requirements [1] as explained in Chapter 1. The Radio Link Control (RLC) layer [1] is consid-

ered here as operating in transparent mode, while a fixed overhead is added for each packet to simulate

the presence of the Medium Access Control (MAC).

The chapter is structured as follows: in Section 2.2 the existing and new proposed header compression

schemes are discussed; in Section 2.3 the WCDMA channel and TCP/IP simulator are described; in

Section 2.4 simulation results, comparing several compression techniques and varying some significant

WCDMA channel parameters, are reported. Finally, in Section 2.5 some conclusions are given.
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Figure 2.1: The header of a TCP/IP datagram.
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Figure 2.2: Changing fields during a TCP connection.

2.2 Header Compression Schemes

The existing TCP/IP header compression algorithms considered here are: Van Jacobson Header Com-

pression (VJHC) [59], DEgermark Header Compression (DEHC) [34] [33] and PErkins Header Compres-

sion (PEHC) [89]. In the next section, we first give a brief review of these schemes to understand in some

details the way in which standard compression techniques operate.

2.2.1 Previously Proposed Header Compression Algorithms

VJHC is the first header compression scheme proposed and tested for the TCP/IP protocol stack

over wire-line networks. In such environments, this algorithm gives very good performance, allowing a

reduction of up to 90 % on the overall header sizes. In the next the VJHC algorithm is first described in its

main functionalities without going into the implementation details, but giving an introductory explanation

of the main concepts and techniques involved in this header compression scheme. More details, together
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with implementation issues, can be found in the standard IETF document [59].

Fig. 2.1 shows a typical (and minimum length) TCP/IP datagram header1. The header size is 40

bytes: 20 of IP and 20 of TCP. TCP establishes connections, and roughly half of the TCP/IP header

fields are likely to remain unchanged over a connection lifetime. These constant fields are the shaded

ones in Fig. 2.2. Hence, if the sender and the receiver keep track of active connections and the receiver

gets a copy of the last packet it saw from each connection, the sender gets a factor-of-two compression by

sending only a small (≤ 8 bits) connection identifier together with the 20 bytes that change and letting the

receiver fill the 20 fixed bytes from the saved header. Moreover, one can save a few more bytes by noting

that any reasonable link-level framing protocol will tell the receiver the length of a received message, so

the total length field is redundant and could be neglected as well. In addition, the transmission of the IP

header checksum field can be avoided as well, since it is useless to protect the transmission of information

regarding fields that are not actually transmitted2. For this reason, the IP checksum can be neglected and

regenerated at the receiver side when the entire header is being reconstructed. This leaves 16 bytes of

header information to be sent. All of these bytes are likely to change over the life of the connection, but

they do not change all at the same time. For instance, during an FTP file transfer only the packet ID (IP

identification field), TCP sequence number and TCP checksum change in the sender → receiver direction

and only the packet ID, TCP acknowledgment number, TCP checksum and possibly window size change

in the receiver → sender direction. Hence, with a copy of the last packet sent for each connection, the

sender can figure out which fields have changed in the current packet, sending a bit-mask indicating the

changes followed by the changing fields. Following this procedure, the average header size is decreased

to about 10 bytes. However, by looking at how the fields change it is possible to further improve the

compression ratio. For instance, the packet ID typically comes from a counter which is incremented by

one for each packet sent, i.e., the difference between the previous and the current packet ID should be

small, usually smaller than 256 and frequently equal to one. For packets belonging to a data transfer,

the sequence number in the current packet will be the sequence number of the previous packet plus the

amount of data contained in the previous packet (assuming that packets arrive in order). Since IP packets

can be at most 64 Kbytes long, the sequence number change must be smaller than 216 (two bytes). So, if

the differences in the changing fields are sent rather than the changing fields themselves, it is possible to

save another three or four bytes per packet. In conclusion, by sending only the information regarding the

changing fields in a TCP/IP header and by carefully encoding the differences of these changing fields with

respect to their previous values, the full header can be substituted by a 5 byte long compressed header,

without loss of information. Moreover, recognizing a couple of special configurations it is possible to

save, in some cases, two additional bytes, leading to three byte headers. In Fig. 2.3 the above introduced

delta coding approach is depicted: at the sender side the current packet header is compared with the

previously transmitted header and the following data is sent in a compressed header format:

• A byte (byte 0) containing a bit-mask indicating the changing fields that have modified their value

in the current header.

• A connection number, so that the receiver can infer the constant fields for the current header.
1See [84] and [97] for further details.
2This is not an end-to-end checksum. End-to-end checksums as the TCP checksum field must be transmitted without any

compression.
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Figure 2.3: Delta coding approach.

• The unmodified TCP checksum field.

• The differences between the current and the previous value for every changing field. These differ-

ences will be referred in the sequel as delta fields.

At the receiver side, the uncompressed version of the last received header (referred here as header

base) is stored and used together with the received delta fields to reconstruct the current TCP/IP header.

In more detail, the received header delta fields are summed to the correspondent header base fields to

obtain the values for the changing fields in the current header. Subsequently, these fields are used together

with the constant fields to derive the new uncompressed header. The connection identifier is used here to

identify the header base to be considered to decompress the current header.

It is worth noting that, since VJHC uses a differential encoding scheme, the loss of a packet always

leads to a loss of synchronization i.e., the event in which the last transmitted header delta fields are not

correctly received by the decompressor and the decompression fails [34] [89] [26]. In fact, once the delta

fields have been received, they are used to construct the uncompressed version of the new header which

is also stored in a status vector to decompress the next incoming packet. Suppose now that a packet (say

packet n − 1) is lost, while the following packet n is received correctly. In this case, the decompressor

will try to obtain the uncompressed header for packet n using the last stored uncompressed header for the

connection, i.e., the header relative to packet n− 2. However, the decompressor will fail since the correct

header base to be summed to the delta fields contained in packet n is the one of packet n− 1. This failure

occurs every time either a single packet or a sequence of subsequent packets is lost. To recover from this

situation, the compressor sends uncompressed packets at each TCP retransmission. These uncompressed

packets are used by the decompressor to resynchronize the header base and restart the decompression

process. VJHC works fine over wired links, where the packet error rate is usually low, while in a wireless

environment the high packet loss probability leads to frequent out-of-synch events followed by a decrease



20 Chapter 2

of the performance. In the sequel, the Header Compressor and Header Decompressor units will be re-

ferred as HC and HD, respectively.

A second Header Compression scheme, proposed by Degemark et al. (DEHC) [34], improves VJHC

by enhancing the synchronization robustness. In more detail, when the synchronism is lost, HD assumes

that this is due to the loss of a single packet (say packet n− 1) and that its header delta fields are equal to

those of the current packet (i.e., n). The correct header base is then computed by adding twice the header

delta fields of packet n to the last reference header base, while ignoring the contents of packet n − 1. If

the assumption is correct, the synchronism is preserved, otherwise a resynchronization request is sent to

the HC by exploiting the TCP ACK flow from HD to HC. Note that the “twice” mechanism avoids loss

of synchronization only if exactly one packet is lost or corrupted and only if its delta fields are equal to

those of the following received packet. For these reasons DEHC has poor performance in a bursty error

environment or when delta fields are not stationary.

A third and last algorithm which aims at reducing the synchronization loss probability is PEHC [89].

Here, the differences are computed with respect to a slowly changing base, i.e., the header base is updated

less frequently, every K > 1 packets (in VJHC K is equal to one). Furthermore, in PEHC each update is

performed by sending an uncompressed header. Thus, in PEHC a packet loss does not necessarily lead to

a synchronization loss. K is set as large as possible, while respecting the constraint on the header delta

fields sizes [59]. Obviously, since the delta fields are computed with respect to a slowly-varying header,

this last method has the drawback that the header delta fields can grow larger than in VJHC. Hence PEHC

is more robust to synchronism loss with respect to VJHC but it is less efficient in terms of compression

ratio.

2.2.2 A New Header Compression Algorithm

In the following, the new header compression algorithm is presented in detail. This scheme avoids

the synchronization loss problem while keeping the compression ratio to a reasonably good value. The

algorithm works as follows:

• As in previously proposed header compression schemes a header base is maintained at both sides

of the link, i.e., at the compressor (sender side) and at the decompressor (receiver side). These two

copies of the base MUST be equal for the decompression algorithm to succeed; for this reason in

the sequel we will talk of “common base”. At the compressor/decompressor, the base corresponds

to the uncompressed version of the last transmitted/received header. At the compressor the base is

used to compute the differences (delta fields) with respect to the current header to be transmitted,

whereas at the decompressor these differences are summed back to the base to obtain the full

version of the changing fields. The compression method relies on sending differences, as in VJHC.

The differences with respect to the VJHC algorithm are in the way in which the base is updated.

• As the compressor (HC) decides to update the common base, it sends to the decompressor (HD)

a compressed header3 having set a suitable flag, called Request Flag (RF). This flag is used to

3Which is compressed using the old base.
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Figure 2.4: New Header Compression algorithm.

indicate that HC is willing to change the base and that the new base has to be derived using the

uncompressed version of the current packet. HC also keeps track of the TCP sequence number

relative to this request packet and stores the new proposed base in its internal memory as the new

proposed base.

• If the packet containing the RF flag is correctly received at HD, the decompressor performs the fol-

lowing actions: 1) The packet is uncompressed and its uncompressed version is stored in memory

as new proposed base 2) The decompression algorithm temporarily continues to use the old base.

• In the case the request packet is correctly received at HD and the decompression of its header is

successful, a TCP ACK, containing the sequence number for that packet, is generated and sent back

to the sender. At the sender side, HC, which is monitoring the backward TCP ACK flow, can then

infer whether the request message has been correctly received or not.

• If HC receives the TCP ACK indicating the correct reception of the previously transmitted request

message it starts using the new proposed base and notifies this to HD by changing the state of a

Bistable Flag (BF) which is included in every compressed header. Only at this point can the new

proposed base be used as the new current base at the compressor.

• As HD detects a state change for the BF flag it starts using the previously stored proposed based.

Only at this point can the new proposed base be used as the new current base at the decompressor.

The procedure presented above is the core of the proposed compression algorithm. Nevertheless,

some optimizations are still possible for the encoding of RF and BF flags. In Fig. 2.4, a typical behavior

for the RF and BF flags is reported. It is easy to observe that, since their transitions always occur at differ-

ent times, the two flags can be XOR-ed in a single bit without loss of information. The resulting flag can

be sent from HC to HD by means of the unused flag in the bit-mask sent along with VJHC compressed

headers (byte 0 in Fig. 2.3). Using this technique, RF and BF messages are both encoded by means of

changes in the resulting flag, i.e., HD only needs to detect changes in the flag trace rather then absolute

values.
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In the new scheme, the base update is requested by HC every time a new base has been successfully

established between HC and HD4. Hence, the base update frequency depends on factors such as packet

errors and round trip delay experienced by IP packets. For this reason, the K introduced in the previous

section as the number of subsequent headers between two header base updates is here variable. It is

worth noting, however, that depending on the channel condition and on the IP round trip time, the base

update is always proposed with the minimum possible delay once the new base has been recognized as

successfully established. This is done to minimize the header delta fields resource occupancy. Moreover,

let us note that in our proposal, as depicted in Fig. 2.4, each header base is used for at least the number of

packets sent in one IP round trip time, i.e., for the number of packets sent between the transmission of a

base change request and the reception of the corresponding TCP ACK. Furthermore, the update confirm

mechanism, which is based on TCP ACKs, makes our update method more efficient if the TCP receiver

operates in the non delayed ACK mode, i.e., one ACK is sent for each packet received. In fact, if either

delayed ACKs are adopted or some ACK is lost, the IP round trip time is increased with a consequent

decrease of both the base update frequency and the compression ratio.

To sum up, the new algorithm is able to completely avoid the loss-of-synch problem by proposing a

base first and starting to use it only when a message arrives, ensuring that the new base has been success-

fully established at both sides. The procedure implies some additional steps, namely, the base proposal

and the base confirmation that have to be accomplished to use a new base. These procedures introduce

some additional delay on the base change updates (with respect to VJHC) but ensure robustness for the

loss-of-sych problem.

As a last observation, note that if a transmission error occurs, i.e., HC does not receive a TCP ACK

for a given packet, then that packet will be retransmitted without compression as in [59]. HC in this

case restarts the compression mechanism with the first new packet after the last retransmission, without

waiting for the corresponding TCP ACK.

2.3 General Simulator Description

In order to test and compare the classic and proposed Header Compression schemes on a WCDMA

air interface, a UMTS simulator which generates WCDMA channel traces5 and a TCP/IP HC algorithm

simulator, taking these traces as input, have been developed.

The UMTS simulator is based on two steps. The first step simulates multi-user communications in a

multi-cell system, accounting for user placements, signal propagation, power control, intra and inter-cell

interference, Doppler frequency (which in our simulation accounts for user mobility) and other factors.

In this first step Signal to Interference Ratio (SIR) traces are computed for each user. The second step is

based on a post-processing of the SIR traces accounting for channel coding and interleaving. From this

we obtain sequences of block error probabilities, one for each user, called channel traces.

4This is detected by monitoring the TCP ACK flow at HC. Referring to Fig. 2.4, the second base request occurs only when
the TCP ACK for the new adopted base has been received at HC.

5The same procedure considered in Chapter 1 has been used here to obtain channel traces. This procedure in the next is
summarized for the sake of clarity.
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These channel traces are used to randomly generate sequences of block error, BESs, one for each

user, that are then fed to the TCP/IP simulator. This simulator implements the VJHC, DEHC and PEHC

schemes as well as the new HC scheme. From that simulator some metrics are obtained. The throughput

is defined as the fraction of the channel transmission rate (considered at the IP level) which provides

correct information bits at the receiver (not counting erroneous transmissions, spurious transmissions,

idle time and overhead). The final throughput, S, of each user is averaged over the entire simulation. The

HC simulator also returns the average header base update rate, fH , defined as the inverse of the average

number of packets between two successive header base changes. This performance figure is an index of

the header compression gain; in fact, high fH implies lower differences on the header delta fields and so

higher degree of compression. Another output of the simulator is the average compressed header size,

Hs, expressed in bytes, not considering the effect of window, ACK and urgent pointer fields.

2.3.1 UMTS Simulator

The UMTS simulator considered here to obtain WCDMA error traces is the same that has been used

to derive the results in Chapter 1. The reader is referred to Section 1.2 of that chapter for a detailed

discussion on the channel simulation environment and related parameters.

2.3.2 Header Compression Simulator

In this simulator, TCP/IP New Reno [44] version 4 is considered and all HC algorithms described

above have been implemented. The data transmission is unidirectional, i.e., packets flow from HC (sender

side) to HD (receiver side), whereas in the reverse direction only ACKs flow. The TCP receiver generates

non delayed ACKs. The direct link packet generation is assumed continuous, as in a long FTP session,

the bit rate at the IP level output is 103.5 Kbit/s, the full TCP/IP header is 40 bytes, whereas the MTU

size is considered to be 512 bytes. In VJHC, the compressed header size is fixed at 4 bytes. In fact,

as observed in [59], in VJHC the compressed header size spans typically from 3 to 5 bytes. Given its

very limited oscillation range, it seems to be reasonable to consider the average value of 4 bytes for the

results presented here. Since DEHC uses the same header compression algorithm as VJHC, we consider

the same header size. On the other hand, in all other HC schemes the header size has been derived by

keeping track of the header fields variations.

For the sake of comparison, in addition to the HC schemes previously described, we have defined

and simulated a special Header Compression algorithm, named as IDEAL. In this scheme, VJHC is

considered, under the assumption that packet losses due to channel errors affect TCP operation but never

lead to loss of synchronization. Note that VJHC is the scheme which provides the best compression

performance. Hence, our assumption for the ideal case is expected to provide an optimistic bound for both

throughput and compression ratio performance, as discussed in [34]. RLC and MAC levels are configured

to operate in transparent mode [1]. The bit rate used in the TCP/IP HC algorithm simulator, i.e., the bit

rate at the output of the IP level, has been fixed to 103.5 Kbit/s, which has been derived considering that

the raw channel transmission bit rate is 240 Kbit/s, the rate reduction due to the convolutional coding is

1/2, and accounting for some overhead due to a possible control channel and to RLC/MAC headers.
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Figure 2.5: Throughput performance for a FTP long file transfer as a function of the Block Error Proba-
bility (Pe). 90 users, TTI = 1, MTU = 512 bytes.

2.4 Numerical Results

In this section some numerical results are reported to highlight the pros and cons of the Header Com-

pression algorithms discussed above. Performance is investigated considering the throughput, the header

base update frequency and the compressed header size metrics.

In Fig. 2.5 the TCP/IP throughput is plotted as a function of the Block Error Probability6 (Pe) con-

sidering a system load of 90 users, markers are used to plot the performance of the users in the system.

In the figure, the case where no Header Compression is applied to the TCP flow is labelled as NONE,

whereas the new proposed scheme is referred as NEW. As explained above in Section 2.3.2, the name

IDEAL is assigned to the VJHC scheme without synchronization losses. This is an ideal scheme which

is considered as an upper bound for the performance. As a first observation, it is worth noting that the

VJHC scheme presents very poor performance when Pe is not negligible and that, in such cases, it is

better to consider a plain TCP/IP transmission (labelled as NONE), i.e., without header compression. In

fact, in VJHC every out-of-synch event 7 is detected and repaired by timeout and subsequent retransmis-

sion of uncompressed packets. Thus, this procedure is very inefficient over error prone channels. Note

also that the only reason for the poor performance of the VJHC scheme is the out-of-synch problem (see

differences between IDEAL and VJHC). DEHC, despite its very simple algorithm, presents a much better

throughput. However, its performance falls below the plain TCP case as well, as Pe increases. Finally,

6A block corresponds to a UMTS radio frame.
7Rememeber that there is a correspondence one-to-one between packets in error and out-of-synch events.
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Figure 2.6: Throughput performance for a FTP long file transfer as a function of the Block Error Proba-
bility (Pe) by varying the Doppler frequency (fd). 90 users, TTI = 1, MTU = 512 bytes.

we note that DEHC and the new scheme perform similarly and that their performance is very close to the

IDEAL algorithm. Moreover, their throughput is always larger than the one in the plain TCP case and

this makes these schemes suitable to be used over a wireless link.

In Fig. 2.6 the throughput sensitivity to the Doppler frequency of the new proposed scheme is re-

ported. The Doppler frequency is varied in the set fd ∈ {2, 6, 20, 40} to investigate the effect of the user

mobility on throughput performance. The case with independent and identically distributed (iid) packet

errors is also reported for comparison. As expected, the throughput decreases as fd increases. Further-

more, as fd > 20 Hz the curves do not significantly differ. This indicates that, for such values of the

Doppler frequency, the IP packet error statistics at the application (IP) layer is approaching the indepen-

dent assumption (which is the worst case for TCP/IP performance, regardless of the considered header

compression scheme).

In Fig. 2.7, the average header base update rate is reported as a function of Pe. Here, the advantage

of using the new proposed algorithm can be clearly understood. In fact, the header update frequency for

the new algorithm is almost two orders of magnitude lower than the one in PEHC. The header update

period, i.e., the number of headers transmitted between two subsequent base updates is directly related

to the size of the compressed header. In fact, since the compression is achieved by means of differences

with respect to a header base, the longer the base will remain constant, the larger will be the size of the

delta fields sent along with compressed headers. Therefore, a higher base update frequency also implies
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Figure 2.7: Header base update rate for fd = 6 Hz, 90 users, TTI = 1, MTU = 512 bytes.

a higher degree of compression. From the figure it is also evident that fH increases with Pe. This fact is

promptly explained as follows: by increasing the error probability, the rate of TCP retransmissions grows

due to the TCP timeout and Fast Retransmit algorithms. In addition, for both the new and the PEHC

schemes, an uncompressed header is sent along with each retransmission8 and every retransmission also

contributes to re-synchronize compressor and decompressor by updating the header base at both sides.

The new compression scheme, thanks to the new base request/confirm mechanisms, is able to adapt its

base update period to the channel conditions, i.e., it keeps a high base update frequency over error free

channels, whereas the frequency decreases as the error rate affecting the IP flow increases. For highly

error prone channels, the base update in the new compression algorithm is approaching that of PEHC9,

whereas as the error rate decreases, the base update frequency is kept at a very high value. This self-

adaptation is not possible with the PEHC scheme that, instead, can only work with a fixed base update

period, usually fixed at the maximum admitted value (that in PEHC is the only way of diminishing the

loss-of-synch problem). For this reason, our new scheme is suitable for use over wireless links, where the

bit error rate is variable, due to user mobility, channel conditions (i.e., obstacles and fading). In such a sce-

nario, it is more convenient to use a scheme that is self-adapting and able to achieve optimal performance.

Finally, in Fig. 2.8 the average and the standard deviation of the compressed header size, Hs are

reported as a function of Pe. The new compression scheme is characterized by a higher compression ratio

8This behavior is crucial to recover from decompressor failures of any kind, see [59] for further reading on this feature.
9Here, TCP reacts to the high IP error rate by retransmitting. The base update period is then decreased since every retrans-

mission also corresponds to a base update. This feature is the same in both compression schemes and it is necessary to recover
from fault conditions at the compressor/decompressor.
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Figure 2.8: Header compression efficiency. fd = 6 Hz, 90 users, TTI = 1, MTU = 512 bytes.

together with lower standard deviations on the compressed header sizes. This means that, especially for

interactive applications, the new scheme can guarantee a more stable flow also characterized by a shorter

response time. Moreover, it is worth reminding that, in our study, the impact of some header fields has

been neglected. Even higher gains are expected in a real scenario, where all the protocol details can be

taken into account. In this case, the impact of header fields such as urgent pointer, window and ACK can

be evaluated. Our expectation is that, thanks to a more frequent base update10 and also depending on

the kind of traffic, the additional header occupancy will grow and several additional bytes could be saved

using the new approach.

2.5 Conclusions

In this chapter, after a brief review of existing TCP/IP Header Compression algorithms we have de-

scribed a novel TCP/IP Header Compression scheme for wireless networks which is able to avoid the

synchronization loss problem. The performance of these schemes has been investigated by considering a

WCDMA air interface. The proposed solution presents some advantages over existing algorithms: first

of all, it is self tunable, i.e., due to the new header base request/confirm mechanism, the compression

base update frequency is self adapted to the error/delay characteristics of the channel so as to achieve

optimal performance. Moreover, higher compression ratios are reached together with a lower base update

10In fact, a single change in one of these fields is then affecting every single header up to the next header base change. In the
new algorithm this change will be absorbed in a few packets, whereas in the PEHC scheme even more than 100 packets would
have to be waited for before a base refresh occurs.



28 Chapter 2

frequency. Both these advantages contribute to making the new scheme suitable for interactive appli-

cations over bandwidth limited wireless channels. For what concerns file transfer applications, the new

scheme only slightly outperforms the existing ones. Test implementations of both solutions are important

to evaluate additional expected gains when all the protocol header details are taken into account.



Chapter 3

PETRA: Performance Enhancing

TRansport Architecture for Satellite

Communications

In this Chapter a performance enhancing transport architecture for the satellite environment is pre-

sented. This solution is aimed at improving the network transport performance by overcoming the limits

imposed by a TCP/IP based protocol stack, while maintaining the interfaces offered by it. This is an im-

portant issue since TCP/IP is widely used and most of the applications are based on it. The Chapter starts

from the state of the art about the transport layer over satellite by distinguing two alternative frameworks:

the Black Box (BB) and the Complete Knowledge (CK) approach. In the former, the network is consid-

ered as a ”black box” and modifications in the terminal tools are only permitted. In the latter, the complete

control of any network element is allowed so that a performance optimization procedure is possible. The

proposed architecture (called Performance Enhancing TRansport Architecture - PETRA) is designed

in all details using the second approach. PETRA uses network elements, called Relay Entities, to isolate

the satellite portions in case of heterogeneous networks, while a transport layer protocol stack is used to

optimize the transport of information over satellite links. A special Satellite Transport Protocol, that is

part of the transport layer protocol stack, is used over such links to perform error recovery. Simulation

results show that the proposed framework significantly enhances throughput performance.

3.1 Introduction

The Transmission Control Protocol (TCP) is the connection-oriented, end-to-end reliable transport

protocol utilized in the Internet. The motivations, the philosophy and the functional specification of the

protocol are contained in [84]. TCP assumes that the service offered by lower layer protocols is unreliable;

various features such as timeout timers, packet reordering and retransmissions are used in TCP with the

aim of providing a reliable channel to higher layer applications. Unfortunately, these features have been

designed to be effective over wired networks, but it is well known that they often fail when the underlying

channel is characterized by both a large bandwidth delay product and high error rates. This is the case

of heterogeneous networks containing satellite links, where special countermeasures have to be taken to

29
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correct the inefficiencies of the TCP protocol.

Satellite networks are attractive since they offer clear advantages with respect to cable networks [66]:

their architecture is more scalable, the diffusion throughout the land is wide and the multicast service

is very simple. Given the inefficiencies of standard TCP over such networks, one could design a new

protocol, specifically tailored for these environments. However, given the widespread diffusion of TCP/IP

applications, it is very difficult to think of a protocol different from TCP, that is still transparent to the

user, to be used over satellite links. For these reasons, it is more appealing to provide new solutions,

where the TCP/IP can still be used at the end terminals and its inefficiencies are accounted by algorithms

and protocols running at the end-terminals and in the satellite portion of the network. The aim of the

following work is to propose and validate a transport architecture to deal with this problem.

In the sequel, a transport layer architecture that allows transporting TCP/IP flows efficiently and trans-

parently through satellite networks to the final user is presented. The proposed architecture, which we

call Performance Enhancing Transport Architecture (PETRA), divides the end-to-end connection into

different segments. The bridging between different network segments is performed by elements named

Relay Entities. The objective of PETRA is the optimization of both the throughput performance for the

satellite network environment and the efficient utilization of network resources. This is achieved with-

out re-designing the protocol interfaces, so that they maintain the same characteristics of the interfaces

currently used. As a consequence, system performance is optimized and at the same time, utilization of

standard applications is still possible, thus reaching a high degree of portability. Moreover, the proposed

solution preserves the end-to-end reliability and semantic of the transport layer by introducing, at the

transport layer, a new sublayer named Upper Transport Layer. The transport layer is divided into two

sublayers:

• Lower Transport Layer (LTL): A different LTL instance is utilized in each segment of the end-to-

end path. The LTL is responsible for the transport in each of these segments. The LTL utilized

in the satellite segment is called Satellite Transport Protocol Plus (STPP). It is similar to the STP

proposed in [51] with the following differences:

– STPP introduces a mechanism that avoids deadlock situation.

– STPP introduces a mechanism which stops the flow over the satellite link to avoid buffer

overflows in the Relay Entities.

• Upper Transport Layer (UTL): Its algorithms are executed end-to-end and are responsible for main-

taining the end-to-end reliability and semantics of the transport layer.

PETRA is targeted towards a GEO (Geostationary Orbit) satellite environments, where the long

round-trip delay heavily affects the system performance, but radio-mobile and LEO (Low Earth Orbit)

satellite systems, characterized by channels with fading and high bit-error rate, are not excluded. PE-

TRA has a high degree of flexibility that allows an efficient adaptation to these peculiarities. The idea

of splitting the connection into different segments has been already proposed in the past [22]. The major

contributions of the paper are the following:

• A new transport layer protocol architecture is proposed where two sublayers (LTL and UTL) coexist

as explained above.
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• Algorithms and their interactions are considered in all details. Moreover, the optimal values of

several algorithm parameters are calculated analytically or empirically.

• New flow control algorithms are proposed for enabling effective integration of satellite systems in

the Internet.

The rest of the Chapter is organized as follows. Section 3.2 presents the state-of-the-art regarding

transport layer issues in satellite networks. Section 3.3 contains the description of new protocol architec-

ture (PETRA) and a list of requirements oriented to the implementation of the architecture. Section 3.4

concerns the parameters setting within the PETRA architecture. Performance evaluation is provided in

Section 3.6, whereas our conclusions are drawn in Section 3.7.

3.2 State of the Art

The problem of improving the performance of TCP over satellite has been investigated in the literature

for some years. Many national and international programs and projects (extensively listed in [77]) in

Europe, Japan and USA have been devoted to satellite networks and applications. In particular, some of

them, or part of them, are aimed at improving performance at the transport level. NASA ACTS (in [23]

and [57]), ESA ARTES-3 (in [37]) and CNIT-ASI (in [6]) deserve a particular attention, among many

others.

Also International Standardization Groups as the Consultative Committee for Space Data Systems -

CCSDS, which has already emitted a recommendation (see [3]) and the European Telecommunications

Standards Institute - ETSI [36], which is running its activity within the framework of the SES BSM

(Satellite Earth Station - Broadband Satellite Multimedia) working group, are active on the subject.

Accordingly, a large literature exists on this topic, see [86] for a first overview and [70] for a more

specific study in TCP/IP networks with high delay per bandwidth product and random loss. More re-

cently, [45] provides summaries of improved TCP versions as well as issues and challenges in satellite

TCP; [51] highlights the ways in which latency and asymmetry impair TCP performance; [12] lists the

main limitations of the TCP over satellite and proposes many possible methods to act. References [18]

and [9] represent, at the best of the authors’ knowledge, the more recent tutorial papers on the topic:

various possible improvements both at the transport level and at the application and network level are

summarized and referenced.

A recent issue of International Journal of Satellite Communications is entirely dedicated to IP over

satellite [35]. In more details, reference [21] proposes a TCP splitting architecture for hybrid environ-

ments (see also [105]); reference [67] analyses the performance of web retrievals over satellite and ref-

erences [77] [75] and [76] show an extensive analysis of the TCP behavior by varying parameters as the

buffer size and the initial congestion window. Reference [49] focuses also on the buffer management but

in an ATM environment. The proposed approaches can be divided into two classes1 [78]:

• Black Box (BB) Approaches: only the end terminals are modified. The rest of the network is

considered non-accessible (i.e., a black box).

1The classification proposed is not the only possible one and, probably, it is not exhaustive (i.e., not all the algorithms and
methods in the literature can be classified within one of the two classes).
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Figure 3.1: PETRA architecture.

• Complete Knowledge (CK) Approaches: tuning of the parameters and algorithms of all the net-

work components is allowed.

Many solutions based on the BB approach have been proposed so far, e.g., [10, 11, 13, 27, 60]. These

solutions are general and do not violate the end-to-end semantic of TCP. Also considerable work has been

carried out according to the CK approach. Such methodologies, e.g., TCP splitting [86] [45] [21] [105]

and TCP spoofing [86] [105], bypass the concept of end-to-end service by either dividing the TCP connec-

tion into segments or introducing intermediate gateways, with the aim of isolating the satellite link. The

recent RFC 3135 [22] is dedicated to extend this concept by introducing Performance Enhancing Prox-

ies (PEPs) intended to mitigate link-related degradations. RFC 3135 is a survey of PEP techniques, not

specifically dedicated to the transport layer, even if the emphasis is put on it. Motivations for their devel-

opment are described as well as consequences and drawbacks. The solutions based on the CK approach

provide higher throughput performance with respect to BB but violate the end-to-end characteristics of

the transport layer [86] [9].

3.3 Performance Enhancing Transport Architecture (PETRA)

3.3.1 Operative Environment and Proposed Approach

The operative environment is shown in Fig. 3.1. The two Application PCs are the end systems and are

connected through terrestrial segments to the Relay Entities (REs). Observe that the terrestrial segments

can be the access LAN (Local Area Network) as well as the Internet. The REs are connected with each

other by means of the satellite communication system. In Fig. 3.1 only one satellite segment is considered,

however the extension to the case with multiple satellite segments is straightforward.

Also note that in Fig. 3.1 the satellite network is within the backbone. If the satellite network is,

instead, the access network, then the RE is a software module directly connected to the Application PC
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Figure 3.2: End-to-end PETRA architecture.

or a hardware card inside the Application PC. PETRA algorithms are deployed in the Application PCs

and Relay Entities. A different transport protocol is run in each network segment. This allows to adapt

the protocol to the specific characteristics of the segment. Moreover, an end-to-end algorithm is used

between the two Application PCs in order to maintain the end-to-end semantics and reliability of the

transport protocol.

3.3.2 Transport Layer Protocol Stack

The proposed protocol architecture is called Protocol Enhancing Transport Architecture (PETRA)

and is shown in Fig. 3.2. The transport layer is divided into two sub-layers:

• Upper Transport Layer (UTL) which guarantees the end-to-end semantics.

• Lower Transport Layer (LTL) which is responsible for the transport within a single communication

segment. The LTL in the satellite segment is denoted as Satellite Transport Layer (STL).

A Relay Module is defined in the Relay Entities which bridges the different LTLs. Note that the Relay

Module is a part of the transport layer.

3.3.3 Upper Transport Layer (UTL)

The Upper Transport Layer (UTL) is responsible of preserving the end-to-end semantic of the trans-

port layer. UTL segments data coming from the user application into ULT data units (called batches) and

transmits them according to a window-based flow control characterized by a window size WUTL. The

value of WUTL must be large enough to ensure a continuous transmission flow over the satellite link for

an entire end-to-end round trip time2. Optimal choice of the WUTL is given in Section 3.4.1. UTL is also

responsible for failure recovery. To this purpose a timeout T0(UTL) is defined. If an UTL batch is not

acknowledged within a time period equal to T0(UTL), then the connection is terminated. The timeout

value depends on the end-to-end round trip time, whose accurate estimate is, therefore, critical.

2It is the time elapsed between the departure of the first bit of a UTL batch and the instant in which the relative (end-to-end)
UTL ACK is received.
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3.3.4 Lower Transport Layer (LTL)

The Lower Transport Layer (LTL) is responsible of the data integrity over the wired portions of the

path. It segments the batches coming from the UTL layer into segments of (usually) smaller size (equal

to the LTL MSS). In the terrestrial segments, LTL runs a TCP-like algorithm, with the only exception that

the LTL ACK policy is slightly different from the one adopted in a standard TCP receiver. In particular,

the LTL ACK flow can be stopped to realize the flow control at Relay Entity buffers. The ACK stopping

technique is explained in more detail in the next section. Instead, the protocol executed in the STL is

called Satellite Transport Protocol Plus (STPP) and will be presented in Section 3.3.6.

Moreover, UTL batches are considered to be composed of n LTL segments, where n is an integer

number such that n ≥ 1. The choice of n is a design parameter that must be optimized jointly considering

user and network requirements. In fact, a large n leads to a long end-to-end round tip time (that translates

in a long UTL timeout value) and, as a consequence, the connection will be characterized by a long system

failures reaction time. On the other hand, when n is small, we have a short network failure reaction time,

but the number of UTL ACKs flowing on the backward path increases (leading to a waste of system

resources in the reverse path). The choice of n is discussed in more detail in Section 3.4.1.

3.3.5 Relay Module

At the Relay Module some buffer space is reserved for each connection. Since the terrestrial and

satellite segments are characterized by very different bandwidth, this buffer is utilized to harmonize the

entering and the outgoing flows. Substantially, to control the Relay buffer occupancy a stop-and-wait

strategy is used. For instance, focusing on a Relay Entity placed between the terrestrial segment and the

satellite channel (i.e., Relay1 buffer in Fig. 3.2), the Relay Buffer input flow is due to LTL segments,

whereas the output flow is composed by STPP packets.

To avoid buffer overflow problems, as the Relay buffer size reaches a given threshold, Bth, the LTL

ACK transmission is inhibited and, as a consequence, the forward LTL flow is also stopped. Moreover,

as the buffer occupancy becomes lower than Bth the LTL ACK flow is resumed. The LTL forward packet

flow will be also resumed after a half wired round trip time (RTTwired/2), i.e., the time needed for the

resumed ACK flow to reach the LTL sending entity.

3.3.6 Satellite Transport Protocol (STPP)

The STPP is the protocol responsible of the data integrity over the satellite channel. It is similar to

the STP proposed in [51] with the following differences:

• STPP introduces a mechanism that avoids deadlock situations.

• STPP introduces a mechanism which stops the flow to avoid buffer overflows in the Relay Entities.

STPP must then counteract for channel errors due to wireless propagation phenomena allowing re-

transmission for lost packets. The STPP is a sliding window based protocol. At the sender side, incoming

packets from higher layers (STPP SDUs) are segmented into STPP packets (STPP PDUs) and transmit-

ted over the satellite channel. At the receiver side, these packets are ordered and the original higher level
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packets are re-constructed. Retransmissions follow a NACK based Selective-Repeat ARQ mechanism as

explained in the following:

1. At the STPP sender packets are taken from the STPP input queue (LTL SDUs) and segmented

into STPP PDUs (the packet units handled at the STPP level). Then, a CRC (Cyclic Redundancy

Check) field is attached to each STPP PDU before its insertion into the STPP transmission queue.

2. At the sender, a retransmission buffer is accounted for. Retransmissions are requested by the re-

ceiver by means of special status messages, as described below. All the packets indicated in these

status messages are inserted in the retransmission queue. At a given time, if no retransmission

requests are pending (the sender retransmission queue is empty) then a new PDU is taken from the

transmission queue and is transmitted over the channel. Instead, if the sender retransmission queue

is not empty then the first PDU is taken from that queue and transmitted over the channel. The

retransmission of each packet is inhibited for a full satellite round trip time from the instant of its

transmission, i.e., all retransmission requests for that packet during this time period are ignored.

3. At the STPP sender, associated with each transmitted PDU, there is a timeout timer, which is ini-

tially set to To(STPP ) seconds. If this timer expires for a given PDU, then such PDU is scheduled

for retransmission by inserting it into the STPP retransmission queue.

4. At the STPP receiver, correctness of received packets is determined by using the CRC field. In

addition, the STPP receiver identifies the gaps in the received PDUs sequence numbers to infer lost

packets.

5. If erroneous or lost PDUs are detected, the STPP receiver periodically (every Tstat seconds) sends

back to the transmitter one Unsolicited STATUS message (USTAT) containing the highest PDU

sequence number correctly received in order (LAST IO), the highest sequence number correctly

received (LAST SEQ NO) and a sequence number mask in which all the sequence numbers of the

erroneous and lost PDUs are listed. USTAT messages are used by the STPP receiver to request the

retransmission for lost PDUs. In the case where no errors are detected, USTAT messages containing

the LAST IO identifier are sent back every Tstat seconds to advance the sender window.

6. At the STPP sender when an USTAT is received, all the requested PDUs not present in the retrans-

mission queue are scheduled for retransmission by inserting them into the STPP sender retrans-

mission queue. Moreover, all PDUs with sequence number lower than or equal to LAST IO are

deleted from the STPP memory.

7. When the UTL window is utilized for more than the 90% of its maximum size, the STPP sender

generates a POLL message triggering an advance of the UTL window in order to avoid deadlock

situations. The POLL message is sent to the receiver by setting a special POLL bit in the STPP

PDU headers. When the POLL message arrives at the receiver, a Solicited STAT message (SSTAT)

is immediately sent back to the sender. This message is identical to the USTAT, with the only

difference that it is sent on-demand (upon the reception of a POLL) The POLL message is re-sent

repeatedly for every following satellite z round trip time until reception of a SSTAT.
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Note that the STPP receiver uses STATUS messages in order to save bandwidth in the feedback

channel. In the following we show that Tstat is a crucial parameter because STPP performance is highly

dependent on its choice. Moreover, in order to fully utilize the channel resources over the wireless

satellite link it is pivotal to correctly set the STPP window size. Specifically, it must be chosen to ensure

that the satellite link is entirely filled by transmitted packets. Referring to the STPP window as WSTPP

(expressed in units of STPP PDUs), to the STPP PDU size as PDUlen (expressed in bit), to the satellite

channel bandwidth as Bsat (expressed in bps) and to the satellite round trip time as RTTsat (expressed in

seconds), the constraint that the STPP window must meet in order to be able to entirely fill the satellite

channel with transmitted packets can be written as

WSTPP ≥
⌈

BsatRTTsat

PDUlen

⌉

(3.1)

The bandwidth available in the forward satellite channel is a known quantity. Therefore, the STPP

protocol does not need to incrementally probe the channel for available bandwidth. Accordingly, the

STPP level does not rely on algorithms such slow-start and congestion avoidance. Instead, it simply uses

a sliding window approach by sending, at any time, the maximum amount of data allowed by the current

value of WSTPP . In addition to the normal operative mode presented above, to avoid buffer overflow at

the Relay Node buffer at the receiving STPP entity, the following flow-control policy is implemented:

1. When the number of packets in the Relay Node buffer becomes larger than a given buffer threshold

(Bth), the STPP ACK flow is stopped3 by sending a stop transmission (STOP TX) message.

2. When the number of packets in the receiver Relay Buffer becomes lower thanBth, the transmission

is resumed by sending back a resume transmission (RESUME TX) message. This message in

inserted in a USTAT packet.

3. Upon receiving the RESUME TX message, the sender re-starts transmitting following the rules

presented above.

3.4 Protocol Parameter Design

The PETRA architecture introduced in the previous sections utilizes several parameters. In the fol-

lowing it is shown how these parameters should be set based both on simulation and analytical results.

3.4.1 Dimensioning the UTL Timeout

Referring to a generic UTL packet, we define the UTL round trip time (RTTUTL) as the time elapsed

between the transmission time of the first bit of that packet and the instant at which its UTL ACK is

received. The UTL timeout (To(UTL)) must be set such that To(UTL) ≥ RTTUTL. In this Section,

we compute an upper bound for RTTUTL, i.e., where the LTL level has already reached its maximum

allowed window size, Wmax
LTL (measured in units of LTL segments).

3Note that, due to the PDUs in flight over the channel, after this action, at most one further satellite round trip time of STPP
PDUs is received. This must be considered in the dimensioning of Bth.
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Figure 3.3: Relay buffer behavior.

According to the scenario depicted in Fig. 3.2 let us consider first the behavior of the Relay Buffer

placed in the first Relay Entity encountered along the forward path (the leftmost Relay Entity in Fig. 3.2).

We assume that the available bandwidth over terrestrial paths4 is larger than the one characterizing the

satellite link (Bsat), i.e., Bwired(i) > Bsat, ∀i. In this case, the Relay node buffer is a bottleneck for the

incoming LTL flow and the ACK stopping feature at the receiving LTL Entity is used to harmonize the

incoming and the outgoing flows.

In Fig. 3.3, we show an example behavior for the Relay buffer occupancy as a function of time. Let us

start our description from point A of this figure, where the LTL ACK flow is restored because the number

of segments in the buffer is below the threshold Bth. Due to the finite round trip time characterizing

the first terrestrial link (RTTwired(1)) no LTL segments are received at the Relay node up to point5

B. Hence, between time A and time B at the Relay buffer, we only have the presence of the outgoing

satellite link flow (Bsat). The LTL flow is restored at time B and is stopped again at time C, when

the buffer occupancy grows beyond Bth. Note that after point C, under the steady-state condition, an

additional number of Wmax
LTL packet is received. This is the number of segments that the LTL protocol

(that is a TCP-link protocol) can send without receiving any ACK. Hence, between pointC andD,Wmax
LTL

LTL segments are received (also in this interval of time we have the presence of both flows). After time

D no more LTL segments are received. The ACK flow is restored again at time6 E, where B decreases

below Bth. The behavior of the Relay buffer occupancy continues in this way cyclically until all data has

been transferred.

4We refer to the bandwidth of the i-th terrestrial link encountered along the path, P , as Bwired(i) and to the round trip time
of the i-th terrestrial link as RTTwired(i).

5The time difference between point B and point A is given by RTTwired(1), i.e., the first terrestrial link round trip time.
6The first LTL packet is received at the Relay node RTTwired(1) seconds later.
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We define tcycle as the time elapsed between B and F (the buffer occupancy function period), where

F is the end point of the cycle starting in B (see Fig. 3.3). To compute RTTUTL we need to find tcycle

and the number of LTL segments transmitted during this period of time.

First of all we focus our attention on the time interval [A,C]. During this time interval the maximum

input rate is given by

fin(t) =







0 A ≤ t < B

Bwired/LTLlen B ≤ t ≤ C
(3.2)

where LTLlen is the length of a full LTL packet. The output flow is constant and it is due to the satellite

link

fout(t) = −Bsat/LTL
′
len (3.3)

where

LTL′
len =

(LTLlen +RLHlen)PDUlen

PDUlen(payload)
(3.4)

The parameter RLHlen represents the size of the header added by the Relay Node to each LTL segments

to store connection information7, whereas PDUlen and PDUlen(payload) are the size of a full STPP

packet and of its payload, respectively. In Eq. (3.4), we compute the number of STPP PDUs needed to

transmit a full LTL packet ((LTLlen+RLHlen)/PDUlen(payload)) and then we multiply it by the STPP

PDU size. So, the number of transmitted bit per LTL packet at the STPP level can be easily obtained.

Since the buffer in points A and C contains the same number of segments we can solve
∫ C
A (fin(t) +

fout(t))dt = 0. This integral can be easily solved by noting that C − B = t2 and that C − A =

RTTwired(1) + t2, hence

t2 =
BsatRTTwired(1)

LTL′
len

(

Bwired

LTLlen
− Bsat

LTL′

len

) (3.5)

Moreover, the number of LTL segments received during time t2 (interval [B,C]) is given by

r(t2) =
Bwired

LTLlen
t2 (3.6)

The time interval t3 can be easily obtained by observing in Fig. 3.3 that it is the time needed to the satellite

link to free the buffer from Wmax
LTL segments8

t3 =
LTL′

len

Bsat
Wmax

LTL (3.7)

So, tcycle is computed as tcycle = RTTwired(1) + t2 + t3.

In the following we compute the maximum time elapsed between the transmission of the first bit of

a UTL packet and the instant at which the last LTL packet composing it is inserted into the Relay buffer.

We refer to this time as t(n). The worst situation is the one where the first LTL packet is inserted into

the buffer at time D, i.e., it is the last of the Wmax
LTL segments received after point C. In this case a time

equal to t4 = F −D has to be waited before the second LTL packet will be inserted into the relay buffer.

7To reserve the bandwidth pipe and to keep other flow specific information (flow identifier, priority).
8These segments are the ones received after the ACK stopping time, i.e., time C.
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D − C can be easily computed by noting that it is the time needed to transmit Wmax
LTL segments over the

wired link. Hence D − C = LTLlenW
max
LTL/Bwired and t4 is obtained as

t4 = t3 +RTTwired(1) − (D − C) (3.8)

Furthermore, by noting that r(tcycle) = Wmax
LTL + r(t2), LTL segments are inserted into the Relay buffer

for each following cycle and accounting for the fixed propagation delay (tprop = Bwired/LTLlen +

RTTwired(1)/2) for the reception of the first LTL packet (of n) we can upper bound t(n) as follows

t(n) = tprop + t4

+

⌊

n− 1

r(tcycle)

⌋

tcycle

+

(

n− 1 −
⌊

n− 1

r(tcycle)

⌋

tcycle

)

Bwired

LTLlen
(3.9)

At this point, a worst case estimate of RTTUTL can be computed as

RTTUTL ≤ tinit + t(n) + tbuffer + tACK +RTTsat

+
RTTwired(1)

2
+RTTwired(2) (3.10)

where

• tinit is the time elapsed between the beginning of the LTL transmission and the instant at which

the buffer occupancy grows to Bth for the first time. tinit is computed as the lowest value of t that

verifies the following inequality
⌈

TX(t−RTTwired(1)/2) −
LTL′

len

Bsat
(t−RTTwired(1)/2)

⌉

≥ Bth (3.11)

where the function TX(t) (derived in the following Section 3.5) represents the number of seg-

ments transmitted by the LTL sender at time t, whereas
LTL′

len

Bsat
t is the number of LTL segments

transmitted over the satellite up to and including time t.

• t(n) is an upper bound of the time needed to insert one entire UTL packet (n LTL segments) into

the Relay buffer.

• tbuffer: in the worst case the n-th LTL packet arriving at the Relay Node finds (Wmax
LTL − 1 +Bth)

segments waiting in the Relay buffer. In this case the n-th packet is transmitted after a time tbuffer

given by

tbuffer =
LTL′

len

Bsat
(Wmax

LTL +Bth) (3.12)

• tACK is the (total) transmission time of a full UTL ACK, it it obtained as the sum of the transmis-

sion time experienced by the ACK on all links

tACK =
∑

i∈P

ACKlen

Bwired(i)
+
ACK ′

len

Bsat
(3.13)

where we consider the presence of a unique satellite link (Bsat) and ACK ′
len is the number of bit

needed to transmit an UTL ACK over the satellite channel.
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Eq. (3.10) can be used to obtain the worst case estimate of the UTL round trip time in the error free

case. Moreover, by considering a lossy link for what concerns the satellite channel, this equation can be

still applied replacing Bsat with B(eq)
sat in the previous equations, where Beq

sat is the equivalent satellite

bandwidth in presence of satellite channel errors.
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(a) Estimate of RTTUTL as a function of the satellite
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(n).

1

10

100

1000

10000

1e-05 0.0001 0.001 0.01
U

T
L

 R
T

T
 [

s]
bit error probability

analysis
simulation

(b) UTL round trip time: comparison between esti-
mate and simulation, Bwired(1) = Bwired(2) =
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Figure 3.4: Characterization of the UTL round trip delay (RTTUTL).

If ε is the STPP PDU error probability9, Beq
sat is computed as Beq

sat = Bsat(1 − ε). In Fig. 3.4(a)

we report the RTTUTL estimate as a function of the satellite channel bit error probability by varying

n. We considered the scenario in Fig. 3.2 with Bwired(1) = Bwired(2) = 2 Mbps, RTTwired(1) =

RTTwired(2) = 100 ms, RTTsat = 0.5 s, LTLlen = 1 kbyte and Bsat = 128 Kbps. In Fig. 3.4(b)

we report the comparison between simulation points and analysis considering the same parameters for

n = 100.

3.5 Derivation of the Function TX(·)

We refer to standard TCP that, after the connection setup phase, is initiating the transmission phase.

At the beginning of this phase, the TCP is in Slow-Start, i.e., its congestion window,W , is incremented by

one full segment for each received ACK. This phase finishes when W reaches the TCP window threshold

value, Wthresh that at the beginning of the connection is always set to the maximum congestion window

sizeWmax. Here we are interested in the computation of the function TX(t) (assuming no packet errors),

i.e., on the number of full transmitted TCP segments between time 0 (where the connection started) and

time t ≥ 0. We call ttx the time needed to transmit a full TCP packet, ttx = TCPlen/Bwired, where

TCPlen is the total length (header and payload)10 of a TCP packet expressed in bits, whereas Bwired is

9Here we consider the independent error case.
10In this document we consider the TCP segments to be of fixed size given by the Maximum segment size, MSS.
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the available bandwidth on the terrestrial part of the connection. We approximate11 the number of TCP

segments transmitted in one entire RTTwired with the quantity: nrtt = bRTTwired/ttxc. Moreover, the

instant t can be written as the sum of two terms:

t = t1 + t2 =

⌊

t

RTTwired

⌋

RTTwired + ∆t (3.14)

where the first term (t1) accounts for the number of complete rounds while the second (t2 = ∆t) gives

the fraction of time elapsed in the current round. In the no delayed ACK case, the window size at the

generic round i is equal to: W (i) = min(2i−1,Wmax) The number corresponding to the current round

(starting from round 1) is given by: cr =

⌊

t
RTTwired

⌋

+ 1. Hence the maximum window Wcr reached in

the current round (cr) can be computed as Wcr = W (cr). TX(t) can be computed by summing TX(t1)

to TX(t2). TX(t1) is computed as follows:

TX(t1) =















cr−1
∑

i=1

min(2i−1, nrtt) cr > 1

0 elsewhere

(3.15)

For what concerns TX(t2):

TX(t2) =







p Wcr ≥ p

nrtt Wcr < p
(3.16)

where p is the integer number of transmission periods in t2: p = b(t − t1)/ttxc. Finally, TX(t) is

obtained by TX(t) = TX(t1) + TX(t2).

3.5.1 Dimensioning of the UTL Window Size

The UTL window size must be chosen to ensure that during the time elapsed between the departure

of a UTL packet and the instant at which the End-to-End acknowledgment is received, the satellite link

is always filled by transmitted segments. By expressing the UTL window size (WUTL) in unit of UTL

packets, this condition is verified when the following inequality holds

WUTL ≥
⌈

BsatRTTUTL

UTL′
len

⌉

(3.17)

where UTL′
len is the number of bits needed to transmit a full UTL packet over the satellite channel

(including STPP overhead). The relation in Eq. (3.17) is valid as long as the satellite link is a bottleneck

for the connection, i.e., Bsat is lower than the bandwidth of all the links upstream the satellite channel.

3.5.2 Dimensioning the Relay Buffer Threshold

The correct dimensioning of the Relay buffer threshold (Bth) is a pivotal point in the design of the

PETRA architecture. This threshold is responsible of flow control at the Relay Nodes and (as will be

11The error introduced in the computation of TX(t) is negligible when Bwired is high. When this error is not negligible (at
very low Bwired), TX(t) is always less than the actual number of transmitted segments, hence the analysis performed in this
document is still valid (being a worst case dimensioning).
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max = 32 LTL segments,
LTLlen(payload) = 1 Kbyte, LTLlen(header) = 40 bytes.

shown in the following) misconfigurations could lead to LTL premature timeouts. Focusing on the sce-

nario depicted in Fig. 3.2, we consider first the Relay node placed in the leftmost side of the figure. When

Bsat ≥ Bwired(1), the choice of Bth at such Relay is irrelevant because the buffer in this situation is

always empty. In the case where Bsat < Bwired(1) instead a correct dimensioning of the threshold is

required. In particular, if the values of Bth is too large, the following events would occur

1. In the initial connection phase a large number of LTL segments (W ∗) can be stored into the Relay

buffer before the LTL ACK flow is stopped (see Fig. 3.5).

2. The LTL during this time period experiences a very short round trip time (equal to RTTwired) and

estimates the timeout (To(LTL)) accordingly.

3. After the ACK stopping point, a long period is needed to the satellite link to restore the buffer

occupancy below Bth and during this period the LTL flow remains stopped.

4. If the length of this period is greater to or equal than To(LTL) (the timeout estimate in point 2)

then a LTL timeout event has to be waited for.

In order to avoid the LTL timeout problem, Bth must be set to a small value. In this way W ∗ is

limited and the LTL timeout event probability is decreased. In general, the smaller Bth, the lower the

LTL timeout event probability. However, a necessary condition to ensure that the satellite link is always
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filled by transmitted segments is that the Relay buffer must be never emptied. This condition poses a

lower bound on the minimum allowed value of Bth

Bth ≥ Bmin
th (3.18)

Now, noting that:

• The time elapsed at the Relay buffer between the instant when the buffer size decreases below Bth

(the LTL ACK flow is restored) and the reception of the first LTL packet of the restored flow is

equal to RTTwired(1).

• The satellite channel during this time period consumes dBsatRTTwired(1)/LTL
′
lene LTL segments

(LTL′
len is the number of bits needed to transmit a full LTL packet over the satellite link).

Condition in Eq. (3.18) can be written as follows

Bth ≥
⌈

BsatRTTwired

LTL′
len

⌉

(3.19)

Hence, the Bth that minimizes the timeout event probability is the minimum value verifying the

condition in Eq. (3.19), i.e., Bmin
th = dBsatRTTwired/LTL

′
lene. As an example, in Fig. 3.5 we report

the Relay buffer occupancy as a function of the time for the two cases where Bth = 20(� Bmin
th = 1)

and Bth = 5. In the last case the timeout event is avoided and the satellite channel is always filled by
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transmitted PDUs. On the contrary, when Bth is too large a spurious timeout event is observed for the

reasons discussed above. Note that the problem addressed here could heavily degradate the performance

of the LTL running over terrestrial paths, especially in the case where Bsat � Bwired(1). Moreover, in

Fig. 3.5 (Bth = 20) we have only one timeout event (at the beginning of the connection); after this timeout

the LTL connection stabilizes and no more timeouts are observed. However, some particular cases exist

in which timeout events occur repeatedly when the buffer threshold is misconfigured. In Fig. 3.6 we show

how for particular values of the system parameters, a misconfiguredBth can lead to multiple LTL timeout

events, whereas in Fig. 3.7 we report the discontinuous transmission effect on the STPP flow due to a too

small Bth value (Bmin
th in this case is equal to 24 LTL segments). Similar considerations apply to the

Relay node in the rightmost side of Fig. 3.2.

3.5.3 Dimensioning the Relay Buffer Size

We first proceed to the dimensioning of the buffer on the leftmost side of Fig. 3.2.

Consider the buffer behavior reported in Fig. 3.3. We observe that in order to avoid buffer losses, the

relay buffer size (Bsize) must be greater than the value reached in point D. Specifically, at time C exactly

Bth LTL segments are stored into the buffer, while during the interval (C,D], at most Wmax further

segments arrive at the relay node. Moreover, during (C,D] exactly (Bsat/LTL
′
len)(D − C) segments
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are consumed by the satellite level. Hence, the buffer size in point D, BS(D) is given by

BS(D) = Bth +WLTL
max − Bsat

LTL′
len

(tLTLW
LTL
max )

= Bth +WLTL
max − Bsat

Bwired(1)

LTLlen

LTL′
len

WLTL
max

(3.20)

where tLTL is the transmission time of one LTL packet over the first terrestrial link, tLTL = LTLlen/Bwired(1).

If the satellite bandwidth is completely utilized the correct value of Bsize is given by

Bsize =

⌈

Bth +WLTL
max − Bsat

Bwired(1)

LTLlen

LTL′
len

WLTL
max

⌉

(3.21)

Due to channel impairments, the available bandwidth Bsat may be less than the one used in Eq. (3.20). If

this is the case, the correct value of the buffer size is computed as follows

Bsize = Bth +WLTL
max (3.22)

We suggest to use Eq. (3.22) in order to set the relay buffer size at Node 1 under all possible satellite

channel error conditions.

Note that, for the correct working of the presented network architecture, the dimensioning of the relay

buffer is a crucial point. In fact, if a packet is lost due to buffer overflow, no End-to-End retransmissions of

the UTL batch including that packet are performed by UTL and a UTL timeout event has to be waited for.

In this case, the connection is closed by UTL upon timeout timer expiration. For this reason, the buffer

size must be dimensioned in order to completely avoid the buffer overflow problem. Similar reasoning

apply to the dimensioning of the buffer placed on the rightmost part of Fig. 3.2, where input and output

buffer flows are due to STPP and LTL, respectively.

3.5.4 Dimensioning of the STPP Packet Size

Another issue in the design of the STPP protocol is the choice of the STPP packet size. Regarding

this point, there is a trade-off between the overhead added by STPP PDU headers and CRC fields and the

STPP PDU error probability. Defining Pe as the bit error probability at the STPP level12, the maximum

STPP throughput is given by13

f(P,O, Pe) =
P

P +O
(1 − (1 − Pe)

P+O) (3.23)

where P and O are PDUlen(payload) and PDUlen −PDUlen(payload) as defined in Subsection 3.4.1.

To find the optimal value for P given O = O∗ and Pe = P ∗
e it is sufficient to solve

∂f(P,O, Pe)

∂P

∣

∣

∣

∣

O=O∗,Pe=P ∗

e

= 0 (3.24)

12It is the bit error probability after channel coding and interleaving operations. Here an independent error process is
considered.

13Considering that the STPP level is rightly configured so to have a continuous transmission flow, i.e., the available bandwidth
over the satellite link (Bsat) is fully exploited.
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The optimal value of the PDU payload size is then given by

Popt =
−O∗√p+

√

O∗(4 + pO∗)

2
√
p

(3.25)

where p = | log(1 − P ∗
e )|. In Fig. 3.8, we report the STPP throughput as a function of the bit error

probability considering both the case where O is constant and the case where (solid bold line in Fig. 3.8)

O is chosen in order to maximize the STPP throughput (using Eq. (3.25)).

3.5.5 Dimensioning the Bandwidth in the Reverse Channel

In order to dimension the satellite reverse channel, the bandwidth requirements must be evaluated.

Let first evaluate the average size of a STAT message, SSTATlen. This is given by the size of the

STPP PDU header and the average size of the mask utilized to identify the STPP PDUs which have been

received corrupted or have not been received at all. Accordingly, the average size of the STAT message,

SSTATlen. can be evaluated as follows

SSTATlen = O + α · ne (3.26)

where:

• O is the STPP PDU header size.

• α is the number of bits required to signal an erroneous STPP PDU in the STAT mask.
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• ne is the average number of corrupted PDUs in a time interval equal to the satellite round trip time,

RTTsat. If we denote εPDU the PDU error probability in the satellite forward channel, ne can be

computed as follows

ne = εPDU ·Bsat ·RTTsat/PDUlen (3.27)

Now, the average bandwidth required in the satellite reverse channel, B(Rev)
STPP , can be easily evaluated

B
(Rev)
STPP = SSTATlen/Tstat (3.28)

3.6 Performance Evaluation

In this Section PETRA performance is evaluated by using analysis where possible and simulation

otherwise. PETRA performance will be compared to the performance obtained in the following cases:

• TCP E2E Case: Traditional TCP-NewReno is utilized End-to-End. Moreover, in the satellite seg-

ment a Selective Repeat ARQ scheme is implemented at the link layer to counteract wireless chan-

nel errors.

• Split-TCP Case: A splitted-TCP solution is utilized14. In the satellite channel, a Selective Repeat

ARQ technique which assigns higher priority to retransmission is considered. The receiver sends

back a NACK for each erroneous PDU. At least one acknowledgment message per round trip time

is transmitted to advance the sender window.

The last solution allows keeping a constant information about the status since each erroneous packet is

tracked. However, when the forward channel error rate is relevant this scheme is bandwidth consum-

ing. The measure of the reverse bandwidth gain obtained by using PETRA with respect to Split-TCP is

reported in the following Subsection 3.6.3.

3.6.1 Effects of Link Errors in the Satellite Forward Channel

Results shown in this Section have been obtained by simulating the transfer of a 10 Mbytes file. In

Fig. 3.9, we show the throughput performance versus the bit error probability achieved using PETRA. We

considered different values of Tstat and assumed the satellite feedback channel and the wired segments

to be error free. For the sake of comparison, in the same figure throughput performance obtained in the

Split-TCP and in the E2E case are also reported. Throughput has been evaluated as follows:

throughput =
data transferred [bit]

transfer time [s] ×Bsat[bit/s]
(3.29)

In Fig. 3.9, it is evident that the choice of Tstat does not have significant impact on the throughput per-

formance (it is only necessary that at least one STAT message per round trip time is correctly received

to advance the window at the sender). The throughput achieved by PETRA is considerably higher than

in the E2E Case and close to that achieved in the Split-TCP Case. This is due to the fact that a correct

management of the relaying buffer is performed so that losses due to buffer overflow and LTL timeout

14We consider Split-TCP because it achieves the best throughput performance [86].
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events are avoided. Obviously, the good PETRA performance is obtained at the expense of higher compu-

tational complexity and the overhead introduced by the double transport layering. Moreover, to evaluate

the impact of an optimal STPP PDU size selection as a function of the forward channel error rate, in

Fig. 3.9 two sets of results are shown:

• OSS: The optimal STPP PDU size is utilized.

• FS: A constant STPP PDU size is utilized for any value of the bit error probability. In Fig. 3.9,

the payload size has been set to 600 bytes, whereas the STPP overhead (header and CRC fields) is

fixed to 20 bytes in both cases (OSS and FS).

Fig. 3.10 shows the average delivery delay of the STPP segments versus the bit error probability in

the satellite forward channel. In other words, while Fig. 3.9 contains the average end-to-end throughput,

Fig. 3.10 allows measuring what happens over the satellite portion of the network and focusing on the

role of the parameter Tstat. If the bit error probability is low, the impact of Tstat on the delay is negligible,

but if the channel is severely errored, the performance heavily depends on its choice. In more detail, the

performance of PETRA is close to the one achieved in the Split-TCP case if the STATUS message is

transmitted frequently (Tstat = RTTsat/8); the delay increases when the information about the status

is operated after a larger lapse of time. It is interesting to observe that the delay of the STPP segments

over the satellite link has no impact on the end-to-end throughput, as clear from Fig. 3.9, where the
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performance offered by ”PETRA Tstat = RTTsat” and ”PETRA Tstat = RTTsat/8” is completely

equivalent. It means that the overall architecture, by means of properly dimensioned buffering at the

relay entities, can match the delay increase without affecting the end-to-end throughput performance.

This is not true if the feedback channel is errored, as will be clear in the next figures.

3.6.2 Effects of Link Errors in the Satellite Feedback Channel

Here we assume a very low (10−9) satellite forward channel bit error probability, while we con-

sider the satellite feedback channel unreliable. In Figs. 3.11(a) and 3.11(b), we report the throughput

performance and average LTL packet delivery delay, respectively. Both throughput and delay are given

versus the bit error probability in the satellite feedback channel for different values of the STAT message

period, Tstat. The results presented in both figures were obtained by considering the following simu-

lation parameters: STPP PDUlen = 620 bytes, RTTsat = 0.5 s, RTTwired(1) = RTTwired(2) =

100 ms, Bwired(1) = Bwired(2) = 10 Mbps, Bsat = 384 Kbps, LTLlen(header) = 40 bytes,

LTLlen(payload) = 1 Kbyte, the forward channel bit error probability is 10−9.

In Figs. 3.11(a) and 3.11(b), we observe that performance improves as the Tstat value decreases.

This is because lower values of Tstat result in a larger number of STAT messages which allow a more

efficient error recovery as well as a faster advancement of the sliding window. As envisaged in the

previous Subsection, if, as in this case, the feedback channel is severely errored, also a slight delay of the
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Figure 3.11: Performance as a function of the reverse channel error probability.

order of tens of milliseconds (Fig. 3.11(b)) corresponds to an heavy end-to-end performance degradation

(Fig. 3.11(a)). This highlights the importance of the correct delivery of the STATUS information for the

system performance, i.e., at least one STATUS message must be correctly received in every RTTsat in

order to advance the STPP window.

Anyway, the results offered by PETRA scheme are really satisfying: on one hand, bit error probabil-

ities above 0.001 are a real worst case and very rare over real satellite systems; on the other hand, also in

these cases, PETRA can be configured (e.g., Tstat = RTTsat/8) so to be very robust against forward and

feedback channel errors and to offer performance suited for any type of application.

3.6.3 STPP Performance

LetB(Rev)
Split−TCP the average bandwidth utilized in the satellite reverse channel for the Split-TCP case.

Then, we can compute the relative bandwidth gain as:

gain =
B

(Rev)
Split−TCP −B

(Rev)
STPP

B
(Rev)
STPP

(3.30)

Observe that analytical evaluation of the gain value can be easily achieved. In fact, the value of

B
(Rev)
STPP can be computed as given in Eq. (3.28), whereas B(Rev)

Split−TCP is given by:

B
(Rev)
Split−TCP =

max(1, ne) ·O
RTTsat

(3.31)

where ne is given in Eq. (3.27).

In Fig. 3.12 we report the relative feedback bandwidth gain as a function of the satellite channel

bit error rate. We considered the optimal PDU size and different values of α. Observe, that the gain

heavily depends on the way in which the error mask is stored into STAT PDUs (α factor, defined in



Section 3.6 – Performance Evaluation 51

0

10

20

30

40

50

60

70

1e-09 1e-08 1e-07 1e-06 1e-05 0.0001 0.001 0.01 0.1

ga
in

bit error probability

Tsat=RTTsat, α=2
Tsat=RTTsat/2, α=2
Tsat=RTTsat/4, α=2
Tsat=RTTsat/8, α=2

Tsat=RTTsat, α=8
Tsat=RTTsat/2, α=8
Tsat=RTTsat/4, α=8
Tsat=RTTsat/8, α=8

Figure 3.12: Relative bandwidth gain between STPP and NACK based algorithm (Split-TCP).

Section 3.5.5 as the average number of bits required to signal an erroneous STPP PDU in a STATUS

message). TCP split is a bandwidth consuming scheme; PETRA allows to save bandwidth; the measure

of the saving depends on the average number of bits employed to signal the status. A simple algorithm

could be implemented by transmitting a vector (the STAT mask) containing: the sequence number of the

first packet whose status is described (SNfirst, 8 bits), the sequence number of the last packet (SNlast,

8 bits) and (SNlast− SNfirst+ 1) fields of 1 bit where the symbol ”0” means correct and ”1” means

errored. In this case, if the status of 100 segments is transmitted, the average number of bits employed

(α) is 116/100 = 1.16. Alternatively, if all the sequence numbers were transmitted, 100 fields of 8 bits

each would be required (α = 8). Other schemes, including compression algorithms developed for image

processing, can be applied, so reducing the α value (also below 1). On the other hand, some redundancy

may be necessary to protect status information and, in this case, the α value would increase. A couple of

example values have been chosen for our tests: α = 2 and α = 8.

At low bit error rates the NACK based solution can outperforms the STPP one (whenRTTsat/Tstat >

1). This is due to the fact that STPP always transmits RTTsat/Tstat STAT messages in each RTTsat.

Instead, at low error rates, the number of NACKs sent in a round trip time in the Split-TCP Case is equal

to one. Moreover, observe that the relative bandwidth gain increases as Tstat increases. It is important to

observe that the solution ”PETRA Tstat = RTTstat/8”, which offers good and robust performance, can

guarantee also a relevant bandwidth gain if employed with a low α value. The value α = 2, shown in the

results, may be further reduced, as said above.
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3.6.4 Effects of Additional Errors on Terrestrial Paths

Referring to Fig. 3.2, we label as link1 and link2 the leftmost and the rightmost terrestrial links,

respectively. Moreover, we denote the packet error rate affecting the two above links as r(link1) and

r(link2).

Here, as an example we consider only the case in which errors affect the first terrestrial link, i.e.,

link1. In Fig. 3.13, we show the simulation traces of the end-to-end transmitted bytes for different

values of the link error rate r(link1). As expected, as r(link1) increases, performance decreases. As

an example, when compared to the error free case, the LTL transfer time triples when the packet error

rate is r(link1) = 3%, whereas it becomes nine times longer by considering an error rate of 5%. This

is because due to the above errors, the wired segment becomes the bottleneck and therefore, the satellite

pipe cannot be filled.

3.7 Conclusions

In this Chapter a satellite adapted transport architecture (PETRA) has been presented. This architec-

ture can be deployed to improve performance in communication scenarios involving satellite systems.

PETRA is based on the split-TCP policy. The end-to-end connection is divided into different seg-

ments, where a different transport protocols can be deployed in each network segment. Accordingly,



customized solutions can be used in the satellite segments, while traditional TCP should be applied in the

terrestrial segments. This provides fairness with respect to other TCP flows in the network, and allows

standard TCP applications to be easily ported to our architecture. In order to guarantee reliability, the

end-to-end semantic is maintained by introducing an appropriate Upper Transport Layer (UTL).

The proposed architecture has been presented in detail, and all the design parameters have been appro-

priately dimensioned. Both analysis and simulation results have been presented to assess our architecture,

which has shown very good performance. A proper tuning of the parameters guarantees satisfying results

as well as bandwidth savings, also in presence of relevant bit errors rates both over forward and feedback

channels.
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Chapter 4

Throughput Analysis of TCP/IP over

Wireless Links with Finite Round Trip

Delay

In this Chapter, an accurate analytical model for TCP over correlated channels (e.g., as induced by

multi-path fading) and a finite round trip delay is introduced. In particular, models and analysis for

studying four versions of TCP are developed. The TCP versions considered here are Old Tahoe, Tahoe,

Reno, and NewReno [97] [44] [14]. The focus is on a single wireless TCP connection, and the correlated

packet loss/error process is modeled as a Discrete Time first-order Markov Chain (DTMC) [52]. The

model presented here explicitly incorporates important aspects such as slow start, congestion avoidance,

fast retransmit and fast recovery. The main findings of this study are that (1) an increasing round trip time

may significantly affect the throughput performance of TCP, especially when an independent channel

is considered, (2) New Reno performs better than Reno and Tahoe when the channel is uncorrelated,

whereas Tahoe’s recovery strategy is the most efficient when the channel correlation is high and (3) the

maximum window size does not play a determinant role in increasing throughput performance in both

correlated and independent channels. While some of these conclusions confirm what other authors have

observed in simulation studies, our analytical approach sheds some new light on TCP’s behavior.

4.1 Introduction

The increasing popularity of wireless networks indicates that wireless links will play an important

role in the future internetworking. Transport Control Protocol (TCP) is a reliable, end-to-end, transport

protocol that is widely used to support applications like e-mail, telnet, ftp, and http. TCP was designed

primarily for wireline networks where packet losses are caused mainly by congestion. Several modifica-

tions have been proposed to the TCP loss-recovery and congestion-control mechanism to improve data

throughput, including Reno, New Reno, and Vegas.

In the recent literature, many papers have appeared on the topic of TCP performance in wireless

systems. Some of those papers have as their main goal to describe new behaviors, usually observed from

results obtained by simulation. Some others are more concerned with modeling TCP operation by means
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of analytical techniques, in order to provide more general tools and to develop more accurate descriptions

while controlling the complexity. The goal of this study is to provide an accurate analytical model for

TCP operation.

The analytical characterization of TCP has been already investigated in previous studies. In [70], for

example, the TCP throughput is obtained for large round trip delays, but this paper focuses on channel

described by means of an independent and identically distributed (iid) error process. In [8], Hellal et

al. studied the behavior of TCP Reno and Vegas considering an error-free wireline network, where a

bottleneck link is the only cause of packet losses. On the other hand, Padhye et al. [85], have derived

a useful formula for the TCP Reno throughput over wireline networks, considering the error process as

iid. In [85], the correlation among losses is tracked assuming that, considering a window of transmitted

packets, whenever a packet is lost, all the other packets in the same window are lost as well (this model

is referred here with the term quasi static channel). All these papers consider a static (or quasi static)

channel and a wired network. A correlated channel has been considered in [68] and in [106], where TCP

is studied over a wireless link and a two-state Markov model is used to describe the channel burstiness.

An instantaneous feedback is considered, i.e., the acknowledge message (ACK) is received immediately

after the completion of the packet transmission. This idealized model was adopted to limit the analytical

complexity of the approach. This simplification leads to overestimating the TCP performance as the

bandwidth-delay product increases.

In [5] a TCP mean throughput analysis over finite round trip delay channels is reported considering

both independent and correlated losses. In that paper, the delay between the instant where a packet loss

occurs and the instant in which it is detected by the TCP sender is neglected. This assumption leads to

accurate results where the round trip time is small. However, this is not true for large round trip times, e.g.,

as the ones envisioned in 3G cellular networks. In these scenarios End-to-End TCP round trip times can

grow up to RTT = 0.5 seconds and the delay between error events and error detection can be estimated

as RTT + 3µ, where µ is the TCP packet transmission time. Moreover, in [5] it is assumed that the

congestion window restarts from 1 after multiple timeout events and that, in the correlated error case and

when the timeout timer-expiry period is greater than the bad state duration, the error event is detected by

the Fast Recovery algorithm with probability one (without entering timeout). In [16] the TCP throughput

performance in correlated channels with finite round trip delay is also investigated. This analysis enables

qualitative and meaningful comparison between different schemes, but the accuracy of the model is not

addressed. The distribution of the number of consecutive packet drops in a bad state is imposed, regardless

of the time duration between the transmission of these packets. This assumption is only valid when packet

transmission is continuous. However, TCP is a bursty protocol that introduces (sometimes considerables)

intermittent idle durations during the lifetime of a connection. This assumption holds when the window

size is always equal to or greater than the bandwidth delay product of the link. This is not true in general

and the assumption above in these cases may lead to inaccurate results.

The analysis presented in the following uses a semi-Markov chain to find throughput performance.

However, it is worth noting that it has the potential to be extended to find energy consumption metrics as

well. To the best of our knowledge, this analysis is more accurate than any other analysis previously pro-

posed in the literature. All the simplifying assumptions discussed above have been removed in the model

presented here, by constructing a semi-Markov chain able to jointly track window evolution, successes,
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Figure 4.1: Discontinuous transmissions during TCP Slow-Start phase.

transmissions and underlying channel state. Moreover, the assumption made for analytical tractability by

previous works (see [106] and [5] as examples) that a timeout timer is associated with each TCP packet

has been removed. Instead, a single timeout is considered for the whole connection (as in a real TCP data

transfer).

In order to take into consideration the bursty nature of the channel, a two-state Discrete Time Markov

Channel (DTMC) is considered, as in [106]. The time is slotted, the single slot duration is equal to

the TCP packet transmission time and the channel process (DTMC) evolves slot by slot according to

its transition probabilities. Moreover, the work presented in [106] is extended here considering a non

instantaneous feedback, i.e., ACKs arrive exactly m − 1 slots after the packet transmission, where m is

the round trip time value. The introduction of this feedback delay leads to what is referred here as the

“discontinuous transmission phase” (see Fig. 4.1). In fact, after the transmission of the first packet of the

connection, the TCP sender enters an idle time waiting for the reception of an ACK message. When this

ACK arrives, the TCP window size, W , is incremented by one (Slow-Start phase), allowing the receiver

to transmit two consecutive packets. According to the protocol rules, W is incremented by one segment

for each new received ACK until W reaches the Slow-Start threshold, Wth. When W becomes larger

than Wth the sender enters the so called Congestion-Avoidance phase and W is incremented by 1/W for

each received ACK1.

During this phase, TCP transmits packets in bursts of length equal to W and enters an idle time

waiting for the ACK reception. This discontinuous phase finishes when W reaches the round trip value,

i.e., when W becomes equal to m. It is important to note that the assumption of a round trip time greater

than zero implies that the TCP sender takes more time to fill the bandwidth-delay product of the link,

since the window grows more slowly, and this may significantly affect the TCP performance.

The main findings of this study are that (1) an increasing round trip time may significantly affect the

throughput performance of TCP, especially when an independent channel is considered, (2) New Reno

performs better than Reno and Tahoe when the channel is uncorrelated, whereas the Tahoe recovery

strategy is the most efficient when the channel correlation is high and (3) the maximum window size does

not play a determinant role in increasing throughput performance in both correlated and independent

channels. While some of these conclusions confirm what other authors have observed in simulation

studies, our analytical approach sheds some new light on TCP’s behavior.

1In Fig.4.1 Wth is set to 1 segment.
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This Chapter is organized as follows: in Section 4.2 the channel and the TCP models are presented in

detail, Section 4.3 reports the analysis whereas results are shown in Section 4.4. Finally, in Section 4.5

some conclusions are given.

4.2 System Model

A TCP session involves three phases that are the connection setup phase, the data transfer phase

and the connection tear-down phase. Since the focus of this Chapter is mainly in the bulk throughput

performance of TCP, in this study only the data transfer phase is considered because it is the one that

dominates the overall performance. We consider a pair of nodes, the sender and the receiver, exchanging

data over a dedicated link, characterized by a two-state Markov packet error process, finite propagation

delay and perfect feedback. It is assumed that the transmitter always has an infinite supply of packets to

send (Heavy Traffic assumption). As usually done in studies taking an analytical approach, the focus is

on a single TCP connection between a wireless terminal and a terminal placed in the terrestrial network.

In this scenario, TCP packets experiences a round trip time (m) that is given by the sum of the contributes

due to the wireless and the terrestrial network. The wired link s considered to be error-free, while we

model the errors over the wireless channel by means of the Markov model introduced above. A detailed

description of such model will be given in Section 4.2.2.

4.2.1 TCP Algorithms Description

In this Section, we first describe the transmitter and receiver processes in TCP OldTahoe, Tahoe,

Reno and NewReno. In the following we proceed with our description of the various TCP algorithms.

The TCP receiver is common for all TCP versions, while the TCP transmitter depends on the version

considered. The receiver accepts packets out of sequence, but will only deliver them in sequence to the

user’s application. Moreover, the receiver sends back one ACK for every packet correctly received (no-

delayed ACK receiver)2. The ACKs are cumulative, that is, an ACK carrying the sequence number i

acknowledges all data packets up to, and including, the packet with sequence number i − 1. Each ACK

will identify the next expected packet sequence number, which is the first among the packets necessary

to complete the in-sequence delivery. Hence, when a packet is lost, the transmitter keeps receiving the so

called duplicate ACKs, that is, the ACK with the sequence number of the first packet lost.

The TCP transmitter operates using a sliding window based strategy as follows. At any given time

t, the TCP transmitter maintains the status variables A(t), W (t) and Wth(t). The lower window edge,

A(t), represents all data numbered up to and including A(t) − 1 that has been transmitted and acknowl-

edged. This variable is nondecreasing, and for each received acknowledge (ACK) with sequence number

n > A(t), A(t) increases up to n. The congestion window, W (t), defines the maximum number of unac-

knowledged packets the transmitter is allowed to send starting from A(t). At any time W (t) is limited by

its maximum value3 Wmax. The slow-start threshold triggers the increment of W (t) to realize the flow

2In this work we consider a no-delayed ACK receiver, even if in real TCP implementations the delayed ACK scheme [97] is
used.

3This value can be negotiated with the receiving entity during the connection, however, in this study we consider it as a
constant value.
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control imposed by the sender, i.e., to slow-down or speed-up the transmission rate of packets into the

network. In particular, if W (t) < Wth, each ACK causes W (t) to be incremented by one. This is called

the Slow Start phase. On the other hand, if W (t) ≥ Wth, W (t) is incremented by 1/W (t) every time a

new ACK is received. This phase is called Congestion Avoidance.

Each TCP connection has a timeout timer that is updated at each round trip delay. If this timeout

timer expires, i.e., no more ACKs are received, then a retransmission occurs. To maintain the analytical

tractability we assume this timer to be fixed at a constant value, To.4 Calling t the time in which this

happens,W (t+) andWth(t+) are set to 1 andW (t)/2 respectively. In this way the connection is restarted

in Slow Start phase. Note, that there exists another flow control parameter imposed by the receiver called

receiver advertised window awnd; the protocol rules impose that at any time t the transmitter is allowed

to inject into the network a number of unacknowledged packets equal to the minimum between W (t) and

awnd. By setting awnd, the receiver can slow-down the sender transmission rate when it is not able to

read data at the same speed at which the sender is transmitting.

When a loss occurs, TCP-OldTahoe [84] uses only the above explained timeout recovery mechanism.

TCP-Tahoe [58] [97] instead, implements a further recovery technique called fast retransmit. When a

packet is lost and when the transmitter gets the K-th duplicate ACK5 at time t, it behaves as if a timeout

had occurred and begins retransmission setting W (t+) and Wth(t+) as above.

In the case of TCP-Reno [97] [98] [14], the Fast Retransmit procedure is implemented as in Tahoe,

but the subsequent recovery phase is different. In more detail, with the reception of the K-th dupACK at

time t, Wth(t+) = W (t)/2 and W (t+) = Wth(t+) + K. At this point, the Reno transmitter transmits

only the first lost packet (with sequence number equal to A(t), this is the Fast Retransmit) and, as it

waits for the ACK it may get dupACK due to the outstanding packets. For each dupACK W is inflated

by one, and a packet is transmitted if allowed by A and the new value of W . This is the Fast Recovery

algorithm. Finally, in tf , when the new ACK is received the loss recovery phase finished and W (tf ) is

set to Wth(tf ) = Wth(t+). The Reno’s loss recovery does not work for multiple losses in a window of

packets [38], for example, when three packets are dropped from a window of data, the sender is forced

to wait for a timeout whenever the number of packets between the first and the second dropped packet

is less than 2 + 3W/4, where W is the congestion window just before the Fast Retransmit. Note that,

the loss recovery strategy in Reno performs better than Tahoe when single packet losses occur in the loss

window (the window in which we have the first loss).

In the New-Reno algorithm [44], whenK duplicate ACKs are received, the Fast Retransmit is applied

as in Reno, but the loss recovery procedure is different. The highest sequence number transmitted before

the loss is recorded in a variable named recover. The Fast Recovery phase differs from Reno when an

ACK acknowledging new data, arrives. In fact, this ACK could be the acknowledgment elicited by the

first retransmission, or elicited by a later retransmission. If this ACK acknowledges all the packet up

to, and including recover, then the Fast Recovery procedure is completed as for the Reno case. On the

other hand, this ACK is labeled as partial new ACK. In this case, the first unacknowledged packet is

retransmitted, W is deflated by the amount of new data acknowledged (also A is updated accordingly)

4We do not explicitly model the timeout back-off mechanism. The accuracy of this simplifying assumption has been verified
by simulation. Also, note that it is possible to let the timeout depend on the round trip time, m, with no modification to the
analysis we present here.

5K is a system parameter usually set to 3.
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Figure 4.2: Scheduling of the timeout event in the NewReno fast recovery phase.

and then is incremented by one. So, a new packet is transmitted if allowed by the new value of A and

W . The Fast Recovery is completed when the sender receives an ACK up to and including recover. The

NewReno algorithm can recover from multiple losses in some cases.

Unlike the assumption in [106], where a timer is associated to every packet transmitted, in this work

we consider only one timeout timer characterizing the connection, as in a real TCP protocol [97] [88].

This assumption allows us to correctly track the timeout whenever a partial new ACK is received, that

is, when a partial new ACK is received the timeout timer is restarted (see [88]). In [106] due to the

assumption of instantaneous feedback, the numerical results were not so different from the ones relative

to the real TCP protocol. However, when a finite round trip is considered, performance is significantly

affected, so it is important to correctly track the timeout event. Fig. 4.2 shows how the timer is rescheduled

during the NewReno fast recovery phase when both a single timer and a timer per packet is used. Note

that, when the recovery phase fails, and the second case is considered, the timeout timer expires at least

2m slots earlier.

4.2.2 Channel Model

We model the correlated packet error process using a discrete-time first-order Markov model as pro-

posed in [117]. The pattern of errors is described by the transition matrix

M =

(

pBB pBG

pGB pGG

)

(4.1)

where pBG is the transition from bad to good, i.e., the conditional probability that successful trans-

mission occurs in a slot given that a failure occurred in the previous slot, and the other entries in the

matrix are defined similarly. Note that 1/(1 − pBB) represents the average length of a burst of errors,

which is described by a geometric r.v.

Given the matrix M, the channel properties are completely characterized. In particular, it is possible
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fdT ε F (dB) pGG pBB (1 − pBB)−1

0.01 0.001 29.9978 0.999329 0.329452 1.49132
0.01 19.9782 0.997518 0.754308 4.07013
0.1 9.77322 0.991872 0.926851 13.6708

0.08 0.001 29.9978 0.999007 0.008239 1.00831
0.01 19.9782 0.990680 0.077286 1.08376
0.1 9.77322 0.940354 0.463188 1.86285

0.64 0.001 29.9978 0.999000 0.001185 1.00238
0.01 19.9782 0.990019 0.011834 1.01198
0.1 9.77322 0.90182 0.116376 1.13170

Table 4.1: Markov model parameters for different values of ε and fdT .

to find the average slot error probability6, ε = pGB/(pGB + pBG), that turns out to be dependent on

the fading margin, indicated with F , (that express the physical characterization of the channel), and

the normalized Doppler bandwidth product, fdT , where T is the packet duration [117]. By choosing

different ε and fdT values, we can establish fading channel models with different degrees of correlation

in the fading process. When fdT is small, the fading process is very correlated, on the other hand, for

higher values of fdT , successive samples of the channels are almost independent. In Table 4.1 the fading

margin F , the transition probabilities pGG and pBB and the average burst length (1−pBB)−1 are reported

for several values of fdT and ε.

A detailed analysis of the packet loss with memory is presented and the case of independent and

identically iid errors is also considered for comparison7.

4.3 Analytical Approach

The analysis is based on a Markov/renewal reward approach. The joint evolution of the window

parameters and the channel state can be tracked by a random process X(t) = (C(t− 1),Wth(t),W (t)),

where W (t) and Wth(t) are the window size and the slow start threshold in slot t, respectively, and

C(t − 1) is the channel state in slot t − 1 (bad, B, or good, G, corresponding to an erroneous or correct

transmission, respectively). Time is discrete, and the slot (packet transmission time) is the time unit.

Unfortunately, this process is not Markov, since its evolution starting from a certain state, also depends

on other quantities not accounted for in X(t) (such as the number of outstanding packets). Following the

approach proposed in [106], we sample the process at appropriate instants tk. In particular, by choosing

as sampling instants the slots immediately following those in which either a timeout timer expires or a

loss recovery phase is successfully completed, we obtain a process X(k)=X(tk) which is Markov. In

fact, immediately after a timeout event, the window size shrinks to 1 and, from the point of view of the

6This is the steady-state probability that the channel is in bad state in a time slot, and is not the same as the error probability
experienced by transmitted packets because TCP’s window adaptation tries to avoid bad channel conditions. The analytical
approach developed in the following takes this into account.

7This case is obtained from the correlated channel by imposing pBB = pGB = ε.
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window adaptation algorithm, no outstanding packets are present. Therefore, at these instants, knowledge

of (C(t − 1),Wth(t),W (t)) is all there is to know to characterize the window/channel evolution in

the future. Likewise, in the instant immediately after the slot in which the loss recovery phase was

successfully completed, by definition, all outstanding packets have been acknowledged. Again, (C(t −
1),Wth(t),W (t)) is all we need to know to characterize the future evolution of the window/channel. We

observe that, from the protocol rules, the value of W (tk) can only be equal to 1 (timeout case) or to

Wth(t) (successful loss recovery). Finally, note that unlike in [106], the channel state at time tk − 1 can

be either erroneous or correct not only in the timeout case, but also for a successful loss recovery. In fact,

even if the loss recovery phase must be ended by a successful transmission, we receive the relative ACK

after a round trip time. Therefore, the state space of the process X(k) is given by

ΩX =
{

(C,Wth, 1), C = B,G, 1 ≤Wth ≤
⌈

Wmax

2

⌉}

∪
{

(C,Wth,Wth), C = B,G, 1 ≤Wth ≤
⌈

Wmax

2

⌉}

(4.2)

where the first set correspond to timeout and second set corresponds to successful recovery phase.

Note that, the total number of states8 is in this case 4dWmax

2 e − 2.

In order to evaluate metrics of interest, such as throughput, the above information is not sufficient,

so we consider a semi-Markov process, which admits X(k) as its embedded Markov chain. We label

transitions of the chain X(k) with transition metrics, which track the events which determine time delay,

transmissions, and successes. For a given transition, let Nd be the associated number of slots, Nt the

number of transmissions, and Ns the number of successful transmissions.

4.3.1 Semi–Markov Analysis

Let us define as cycle k the time evolution of the system between two consecutive sampling instant

tk and tk+1, where tk is the k-th sampling instant determined as explained in the previous section. The

statistical behavior of a cycle only depends on the channel state at time tk−1 and on the slow start thresh-

old and window size at time tk, so the system state is given by: X(k) = (C(tk−1),Wth(tk),W (tk))

∈ ΩX , where ΩX is the set of all possible values of X(k) (state space of the sampled process). For

simplicity of notation in the following we indicate C(tk−1) as C. Also, we assume that the process is

stationary, so that all statistics are independent of k. Let n ≥ 1 be the first slot of the cycle to contain an

erroneous transmission. Because of the assumption of a not instantaneous ACK message, the TCP packet

transmission in each cycle can be discontinuous, so, to compute the distribution probability of n, we must

take in account the only slots in which transmissions actually occur. Conditioned on the channel state in

slot tk = 0, the probability to have the first transmission error in slot t = n is 0 when the sender is idle,

whereas, when a transmission is allowed, it is given by

8States (C, 1, 1), C = G, B are contained in both sets.
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Figure 4.3: Distribution probability of the first error at slot n.

αC(n) = P [first error at t = n|X(k) = (C,Wth,W )]

=







pCB n = 1

pCGpGG(n1)pGG(n2)....pGB(nl) n > 1

(4.3)

where
∑l

i=1 ni = n− 1 and pGG(ni), (or pBG(ni)), represents the probability that the transmission

in slot k is successful given that the transmission in slot k − ni was successful (unsuccessful). Note

that the probability to have the first error at time n given the channel state at time 0 (αC(n)) is a deter-

ministic quantity once C, Wth and W have been fixed. In fact, Wth and W are all we need to know to

determine the error-free protocol evolution (transmission and window processes). Hence these processes

can be easily tabulated. In order to explain the meaning of Eq. (4.3) consider the situation depicted in

Fig. 4.3, in which we have assumed a round trip time of m = 4 slots, Wth = 1 and W = 1. In this case

αC(n) = pCGpGG(n1)pGG(n2)pGG(n3)pGG(n4)pGB(n5), n = 13, where pGG(n1) is the n1-step prob-

ability (n1 = 4), that is the probability that slot 5 is successful given that slot 5− n1 was successful. The

other entries in the expression are obtained similarly. For a givenC,Wth andW , the transmission evolves

following the protocol rules up to and including time n. Therefore we can easily tabulate the transmission

mask that represents the sequence of slots in which a transmission actually occurs. Moreover, αC(n) is

directly derived from this mask as previously described.

Let Y (k) be the system state at time n in cycle k and let ΩY be the set of all possible values of Y (k).

Note that, at time n there are a number of outstanding packets (packets in flight) that depends on W (n),

Wth(n) and n. Also, by definition we know that the channel state at that time is B. To determine the

state at the beginning of cycle k + 1 the slow start threshold plays an important role. In fact, the exact

number of packets that the sender is allowed to transmit after the first error, (ntx), depends on the number

of packets in flight at time n. In particular, during the recovery phase, the TCP window size is further

incremented by the number of incoming ACKs elicited by these packets. Therefore, defining Wfin as

the final value reached by W and nacks as the number of incoming ACKs, we can simply derive ntx as

dWfine − 1, since the error at time n always consumes one window unit. Referring to slot n, nacks is
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Figure 4.4: Number of ACKs received after the first error: (A) Slow-Start case, W (1) = 1 and Wth(1) =
5. (B) Congestion-Avoidance case, W (1) = 1 and Wth(1) = 3.

obtained as follows

nacks =







min{dW (n)e − 2,m− 1} W (n) ≤Wth(n)

min{dW (n)e − 1,m− 1} W (n) > Wth(n)
(4.4)

where W (n) represents the maximum number of outstanding (unacknowledged transmitted) packets

at time n. Since the value of the round trip time is m, and the transmission before the error event is

assumed to be error-free, min(dW (n − 1)e,m) gives the number of packets transmitted in the round

preceding slot n. In Eq. (4.4) we take in the minimum m− 1 instead of m because we are evaluating the

number of ACKs received after the error. In more detail, m is the maximum number of packets sent in the

round preceding slot n and so it represents the maximum number of incoming ACKs that can be received

from slot n onward; with m− 1 we account for the ACK received in slot n. The two terms dW (n)e − 2

and dW (n)e − 1 in Eq. (4.4) are an estimate of dW (n − 1)e − 1, and are chosen according to the value

of W (n) and Wth(n). If W (n) ≤ Wth, we are in the situation depicted in Fig. 4.4, case A, where the

window size in the previous round is equal toW (n)−1 and the ACK relative to the first of the dW (n)e−1

packets is the one that determines the increment ofW at time n. In this case the number of ACKs received

after the error event is equal to W (n)− 2. The situation in which W (n) > Wth(n) is analogous (see Fig.

4.4 case B), but here at slot n, W is incremented by 1/W (n − 1), so dW (n)e usually remains equal to

dW (n−1)e. Note that this last assumption is not always true, since some values of W (n−1) could exist

such that the above condition is not verified, i.e., dW (n−1)+1/W (n−1)e 6= dW (n−1)e. In this case,

to exactly derive W (n − 1) from the knowledge of W (n), the state space ΩX would have to be further

expanded, but this would lead to such a big state space to make the problem analytically intractable. For

this reason, when W (n) > Wth(n), we approximate nacks as dW (n)e−1. However, we have verified by

simulation that our assumption has a negligible effect on the performance results for a wide range of the

system parameters, and is therefore entirely acceptable in general. Once computed nack, Wfin is derived

in a straightforward way from the knowledge of W (n) and Wth(n) by using the TCP protocol window

incrementing rules. Specifically, Wfin is computed by using the following formula

Wfin = rnacks
(4.5)
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where

r0 = W (n)

ri = ri−1 + f(ri−1) i ≥ 1 (4.6)

f(x) =







1 x < Wth

1/x x ≥Wth

(4.7)

We can observe that, in our model, Y (k) is described by (Wth(n),W (n)), where 1 ≤ Wth(n) ≤
dWmax/2e and 1 ≤W (n) ≤Wmax.

As described in [106], we can separate the system evolution in two parts. The first part, in which the

system makes a transition from state X(k) ∈ ΩX to a state Y (k) ∈ ΩY , is characterized by the transition

matrix Φ
(1)(z); whereas the second part, in which the system makes a transition from state Y (k) ∈ ΩY

to a state X(k) ∈ ΩX , is characterized by the transition matrix Φ
(2)(z). The statistic of the cycle is fully

described by the matrix

Φ(z) = Φ
(1)(z)Φ(2)(z) (4.8)

whose entries are the transition functions associated to transitions from ΩX to itself. In practice the

function Φ
(1)(z) is responsible of tracking the error-free protocol evolution until the instant in which

the first error event occurs, whereas Φ
(2)(z) is used to track the system evolution from the error to the

instant where it is resolved (either by means of timeout or retransmissions, i.e., Fast Recovery and Fast

Retransmit algorithms) and a new good channel period is entered. The variable z is a vector of transform

variables, z = (zd, zt, zs), where zd tracks the delay, zt the number of transmissions and zs the number

of successes. More precisely, we can define

Φij(zd, zt, zs) =
∑

Nd,Nt,Ns

ξ(Nd, Nt, Ns)z
Nd

d zNt
t zNs

s (4.9)

where ξ(Nd, Nt, Ns) is the probability that the system makes a transition to state j in exactly Nd slots,

and that in slots {1, 2, ..., Nd} Nt transmission attempts are performed and Ns successes are counted,

given that the system was in slot i at time 0.

In particular we can note that the transition matrix of the embedded Markov chain is given by P =

Φ(1, 1, 1) whereas, the matrix of the average delays can be found as

D =
∂Φ(zd, zt, zs)

∂zd

∣

∣

∣

∣

zd,zt,zs=1

= D1Φ
(2)(1, 1, 1) + Φ

(1)(1, 1, 1)D2 (4.10)

where

D1 =
∂Φ(1)(zd, zt, zs)

∂zd

∣

∣

∣

∣

zd,zt,zs=1

D2 =
∂Φ(2)(zd, zt, zs)

∂zd

∣

∣

∣

∣

zd,zt,zs=1

(4.11)

The average number of transmissions, T , and successes, S, can be found similarly. According to the

renewal reward theory described in [52] [93] [108], we can evaluate the average TCP throughput as
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Figure 4.5: Evolution of the window size.

throughput =

∑

i∈ΩX

πi

∑

j∈ΩX

PijSij

∑

i∈ΩX

πi

∑

j∈ΩX

PijDij

(4.12)

where πi, i ∈ ΩX , are the steady-state probabilities of the embedded Markov chain (transition matrix

P ). The average number of transmissions per slot can be similarly computed, by using Tij instead of Sij .

This last metric is related to the energy consumption of the protocol [116].

4.3.2 Computation of Φ
(1)(z)

Since the first part of a cycle consists of error-free transmissions, and since all versions of TCP con-

sidered here have the same window adaptation mechanism as long as there are no errors, the computation

of Φ
(1) applies to all versions of TCP.

Let X = X(k) = (C,Wth,W ) the starting state of cycle k. The first part of the cycle has a duration

of Nd = n slots with probability αC(n), n ≥ 1. The window size at time n is a deterministic function

w(n,m,Wth,W ) of m, Wth and W . So we can denote the window size at time n by

W (n) = w(n,m,Wth,W ) (4.13)

Therefore, this deterministic function can be easily tabulated. It can be observed that the evolution of the

window strongly depends on the round trip time value. Fig. 4.5 shows an example of window evolution,

where Wth in the first slot is equal to 1. Note that W remains equal to one segment for the first m slots,

since the first ACK message arrives exactly a round trip time later. The successive increments depend

on the value of Wth and are always triggered by incoming ACKs. In more detail, the window size at

time n increments if and only if a new ACK arrives, that is, if m slots earlier a successful transmission

occurred. Similar considerations can be made for any initial values of W and Wth, so that in general

the error-free window evolution is computed applying recursively the following expressions and taking

min(Wn,Wmax)
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Wn =



































































W n = 1, ...,m

Wn−1 + f(Wn−1) Wn−m ≥ (n− b n
mcm),

n = km+ u; k ∈ N,

u = 1, 2, ...,m− 1

Wn−1 + f(Wn−1) Wn−m ≥ m,

n = km; k ∈ N

Wn−1 elsewhere

(4.14)

where f(·) is defined in Eq. (4.7). One can note that in the discontinuous phase, the window size in-

crements more slowly than in the continuous transmission mode. So, for large m, W takes more time

to reach its maximum value. This strongly limits the throughput performance since the link is not fully

exploited. The transmission mask, TX(i), 1 ≤ i ≤ n is derived in a straightforward manner from the

knowledge of W (n)

TX(i) =







1 ∆(Wi,m) ≥ 0

0 ∆(Wi,m) < 0
(4.15)

where

∆(Wi,m) =







Wi −m i = km; k ∈ N

Wi − (i− b i
mcm) elsewhere

(4.16)

With the function ∆(Wi,m) we are checking whenever the window in position i suffices to ensure a

transmission in that slot. In more detail, by subdividing (starting from the first slot of the cycle) the time

in rounds of length m, scr = i−bi/mcm gives the number of slots covered by i in the current round. So,

remembering that the protocol, at any time, allows a maximum of Wi unacknowledged packets, a packet

in position i can be transmitted only if Wi − scr ≥ 0. Similarly, when i is an integer multiple of m, we

have a transmission only if the window size in that slot is greater or equal to m. Moreover, at time n

the delay Nd is equal to n slots, but the number of packet transmissions, Nt, is no longer equal to n like

in [106], but it is equal to η = η(n,m,Wth,W ), that is the number of packets actually transmitted. This

value is computed using the transmission mask as follows

η(n,m,Wth,W ) =
n
∑

i=1

TX(i) (4.17)

The number of successes is Ns = η − 1. Therefore, once the starting state X and the final state Y =

(Wth(n),W (n)), have been selected we can write

Φ
(1)
XY (zd, zt, zs) =

∑

n∈C(X,Y )

αC(n)zn
d z

η
t z

η−1
s (4.18)

where C(X,Y ) = {n : (Wth(n), w(n,m,Wth,W )) = Y }.
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Figure 4.6: Assumption of the first error in the first slot on a round trip.

4.3.3 Computation of Φ
(2)(z)

The second part of the cycle is characterized by a transition function, Φ
(2)(z), that depends on the

way the different TCP versions handle packet loss recovery, and therefore it must be computed separately

in the various cases.

Define the time in which the first error occurs as time 0, so that the first slot in the second part of the

cycle corresponds to time 1. Consider, also, ϕij(k, n) as the probability that there are k successes in slots

1 through n and that the channel is in state j at time n, given that the channel was in state i at time 0.

Let Y = (Wth,W ) be the starting state for the second half of the cycle. Then, referring to Eq. (4.5), the

number of packets that the transmitter is allowed to send after the error is ntx = dWfine − 1.

4.3.4 Computation of Φ
(2)(z) for OldTahoe

In the case of TCP OldTahoe, there are neither Fast Retransmit nor Fast Recovery. Note that the

second part of the cycle, initiated by the loss at time 0, has duration which is deterministically equal to

To, since every loss can only be recovered by timeout. The next cycle, then, will start in stateX(k+1) =

(C, dWfin/2e, 1) with transition function

pBC(T0 − 1)zT0−1
d zntx

t zNs
s (4.19)

where Ns is a random variable. Since the exact analysis is tedious to compute, we use here a simple

approach based on a bounding technique. In such cases, instead of considering the average of the reward

function for each transition, E[Ns], we take 0 ≤ Ns ≤ ntx, where Ns = 0 correspond to the case in

which none of the transmissions after the first error is successful, while the upper bound counts all these

transmissions as correct. This approach gives two analytical bounds for the throughput performance.

Moreover, here, a simple approximation is used, that is, we consider that the first error in the cycle

always occurs in the first slot of a round trip time, as shown in Fig. 4.6. This is equivalent to assuming

a continuous transmission after the first error and only in this case the analysis above is correct. In

correlated channels, since the error burst exactly starts from the loss at time 0, the assumption to have a

continuous transmission after the first error leads to a pessimistic case, i.e., where the burst is more likely

affecting all the packets transmitted after time 0. Another approximation is the one used to account for

the timeout value. In particular, we assume that a single timeout timer is used for the TCP connection and
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that it is re-initialized at the beginning of time 0, i.e., exactly when the first error occur. This justifies the

duration of the cycle (T0, see Eq. (4.19)). In real TCP implementations, the instants in which the timeout

timer is restarted depend on the round trip time value, m, on the transmission mask and on where errors

occur. For these reasons an exact tracking of this process, though in principle possible, turns out to be

very tedious and the assumption above is used instead. We proved by simulations that this assumption has

a negligible effect when T0 is large compared tom, that is also the case of interest. The same assumptions

will be implicitly considered in the sequel.

4.3.5 Computation of Φ
(2)(z) for Tahoe

In the case of Tahoe, there is no Fast Recovery. Once Fast Retransmit is triggered, regular transmis-

sion is resumed, starting from the first unacknowledged packet and by setting the TCP window to 1. On

the other hand, timeout is expected for.

1. ntx < K:

If ntx < K, fast retransmit can not be triggered since the number of packets that can be further

transmitted is less than K. So, K duplicate ACKs will never be received. In this case, the timeout

timer will expire and the lost packet will be retransmitted in slot tk+1 = To. Note that the value

of the window size at the timeout instant will be greater than W , since new ACKs can arrive from

the previous round trip time. Therefore, the window size advances till Wfin. Hence, after the

timeout, the algorithm will set Wth = dWfin/2e, W = 1. Then, the transition function to state

X(k + 1) = (C, dWfin/2e, 1) is

pBC(T0 − 1)zT0−1
d zntx

t zNs
s (4.20)

Ns is bounded as in the OldTahoe case, in particular, Ns = 0 gives a lower bound for the through-

put performance, while the upper bound is obtained by setting Ns = ntx.

2. ntx ≥ K:

Case 2.1 - Fast Retransmit is Not triggered: If fewer than K slots in ntx are successful, fast

retransmit will not be triggered. At this point, we rely on the approximation above that each error

occurs in the first slot of the round. Only where this condition is verified, in fact, are the ntx

packets following the erroneous one at time 0 transmitted continuously, and the following analysis

is exact. The same consideration applies to the analysis presented in the rest of the Chapter. The

destination values ofWth andW will be as in the previous case. Let A(C ′, j) be the event that there

are j successful slots in {1, 2, ..., ntx} ad that the channel in slot ntx is C ′. Then, P [A(G, j)] =

ϕBG(j, ntx) and P [A(B, j)] = ϕBB(j, ntx). The transition function from state Y to state X(k +
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1) = (C, dWfin/2e, 1) is then given by

pBC(To − ntx − 1)zTo−1
d zntx

t

K−1
∑

j=0

P [A(B, j)]zNs(B,j)
s

+pGC(To − ntx − 1)zTo−1
d zntx

t

K−1
∑

j=0

P [A(G, j)]zNs(G,j)
s

(4.21)

where 0 ≤ Ns(B, j), Ns(G, j) ≤ j and the two terms account for the two possibilities for the

channel state at time ntx. Note that the sums are limited to K − 1 instead of ntx since the number

of successes must be less than K for the considered case of fast retransmit not triggered.

Case 2.2 - Fast retransmit is triggered: If the K-th duplicate ACK is received, fast retransmit is

triggered m slots after the K-th success in {1, 2, ..., ntx}. Define as K ≤ i ≤ ntx the slot in which

the K-th successful transmission occurs. Then the next cycle starts in slot i + m, the destination

state is X(k + 1) = (C, dWfin/2e, 1), and the transition function is given by

ϕBG(K, i)
∑

C′∈{G,B}

n(i)
∑

j=0

{

PC′ [j|n(i)]pC′C(m− n(i) − 1) zi+m−1
d z

ntxeff (i)
t zNs

s

}

(4.22)

where n(i) = ntxeff (i) − i and ntxeff (i) is the number of packets transmitted between the error

at time 0 and the beginning of the recovery phase (when the K-th duplicate ACK is received)

ntxeff (i) =







ntx ntx < i+m− 1

i+m− 1 ntx ≥ i+m− 1
(4.23)

C ′ is the channel state in the slot where the ntxeff (i)-th packet is transmitted, whereas C is the

channel state in the slot just before the one in which the next cycle starts. The function PC′ [j|n(i)]

represents the probability to have j correct packets in {i+ 1, ..., ntxeff (i)}

PC′ [j = 0|n(i) = 0] =







1 C ′ = G

0 C ′ = B
(4.24)

PC′ [j|n(i) > 0] = ϕGC′(j, n(i)) (4.25)

The quantity Ns can be bounded by 0 ≤ Ns ≤ K + j, where 0 and K + j represent the lower-

bound and the upper-bound case, respectively. The lower bound accounts here for the very worst

case where all the K + j packets correctly transmitted in slot 1 through ntxeff (i) are retransmitted

during following cycles.

4.3.6 Computation of Φ
(2)(z) for Reno

Since TCP Reno differs from Tahoe only after fast retransmit is triggered, all the events considered

for TCP Tahoe and corresponding to no fast retransmit still apply in this case. Hence, in the following

we only need to consider the case in which fast retransmit is triggered (case 2.2), i.e., the case in which
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the K-th successful transmission occurs at time i in {1, 2, ..., ntx}. Let B(K) be the event that the packet

failure at time 0 is followed by K consecutive successes, and let B(i, l1), K < i ≤ ntx, 0 < l1 ≤ K be

the event that the K-th success occurs at time i and the first loss after the loss in 0 occurs at time l1 (note

that since i > K, there must be a packet loss before the K-th success). The probabilities of these events

are given as follows

P [B(K)] = pBGp
K−1
GG (4.26)

P [B(i, l1)] =































pBBϕBG(K, i− 1),

l1 = 1; i = K + 1, ..., ntx

pBGp
l1−2
GG pGBϕBG(K − l1 + 1, i− l1),

l1 = 2, ...,K; i = K + 1, ..., ntx

(4.27)

Case 2.2.a: Consider first the occurrence of the event B(K). Since at the end of slot K+m−1 the K-th

duplicate ACK is received, the retransmission is performed in slot K +m.

• If this retransmission is successful, the loss recovery phase is successfully completed and a new cy-

cle starts at timeK+2m. In this case, the destination state isX(k+1) = (C, dWfin/2e, dWfin/2e)9

and the transition function is given by

P [B(K)]pGG(m)pGC(m− 1)zK+2m−1
d z

ntxeff (K)+1
t zNs+1

s (4.28)

where we account for the probability to have the error at time 0 followed by K correct packets

(P [B(K)]) and a correct retransmission (term pGG(m), m slots after the transmission of the K-th

packet); the term pGC(m − 1) accounts for the channel state in the slot preceding the start of the

new cycle. Ns can be bounded as K ≤ Ns ≤ ntxeff (K), giving the throughput lower and upper

bound, respectively.

• If, on the other hand, the retransmission is a failure, the protocol will stop and wait for an ACK

which will never be transmitted. In this case only the timeout will eventually resolve the deadlock.

According to the TCP Reno rules, upon receiving the K-th duplicate ACK the window size will be

updated to W ′ = min{dWfin/2e +K,Wmax}, so that the new state after timeout is X(k + 1) =

(C, dW ′/2e, 1) with transition function

P [B(K)]pGB(m)pBC(To −K −m− 1)zTo−1
d z

ntxeff (K)+1
t zNs

s (4.29)

Ns is bounded as in the previous case and Nt accounts for the retransmission of the lost packet in

addition to the ntxeff (K) transmissions.

Case 2.2.b: Consider the occurrence of the event B(i, l1). In the case of multiple losses in a congestion

window, TCP Reno is able to successfully complete the Fast Recovery phase only when the congestion

window at the first error is large enough. So, in this article we consider that multiple losses event always

leads to deadlock and consequent timeout10.

9According with Reno’s rules, after the reception of the K-th duplicate ACK, Wth is set to half the window size Wfin and
never changed until the successful completion of the lost recovery phase, where the window size is set to Wth = dWfin/2e.

10This assumption is better verified as the round trip increases.



72 Chapter 4

• If the retransmission at time i+m is a failure, we can observe that the protocol behavior is similar to

the previous case, i.e., the next cycle will start in state X(k+ 1) = (C, dW ′/2e, 1), with transition

function

P [B(i, l1)]pGB(m)pBC(To − i−m− 1)zTo−1
d z

ntxeff (i)+1
t zNs

s (4.30)

where the term P [B(i, l1)]pGB(m) represents the probability that the K-th correct packet (after

the loss at time 0) is transmitted in slot i and that the retransmission of the first lost packet is

unsuccessful. In this case, a time out event must be waited for; this will happen exactly To slots

after the beginning of slot 0. Here, Ns can be bounded as l1 − 1 ≤ Ns ≤ ntxeff (i).

• On the other hand, if the retransmission at time i +m is successful the system will timeout at the

end of slot To + i+ 2m− 1. In fact, according to the protocol rules, we consider only one timeout

timer associated to the connection and this timer is reset (see [88]) at the reception of the ACK

relative to the loss at time 0 (at the end of slot i + 2m − 1). The window size will be updated to

W ′′ = min{dWfin/2e + K + 1,Wmax} (the ACK for the successful retransmission causes the

window to be further increased by one with respect to the previous case). The next cycle will restart

in state X(k + 1) = (C, dW ′′/2e, 1) with transition function

P [B(i, l1)]pGG(m)pGC(To +m− 1)zTo+i+2m−1
d z

ntxeff (i)+1
t zNs

s (4.31)

where Ns can be bounded as l1 ≤ Ns ≤ ntxeff (i) + 1. In fact, in this case, the number of successes is at

least one more than in the previous case.

4.3.7 Computation of Φ
(2)(z) for NewReno

Finally, let us consider TCP NewReno. The only case in which it is different from Reno is when there

are multiple losses within the same congestion window and the retransmission performed due to Fast

Retransmit is successful (second bullet of case 2.2.b). All other cases are the same as in Reno. Refer to

the definition of B(i, l1), K < i ≤ ntx, 0 < l1 ≤ K as the event in which theK-th success occurs at time

i and the first loss after the loss in 0 occurs at time l1. If the K-th successful transmission is performed at

time i > K, then besides the first lost packet (at time 0) there are i−K losses in slot l1 through i− 1.

Successful Loss Recovery

Let nerror be the total number of packets in error in slots {0, 1, ..., ntxeff (i)}. Conditioned on i, this

variable is given by the sum of a deterministic and a random term. The former is the number of errors up

to slot i (that is i −K + 1), while the latter, that we call nloss, 0 ≤ nloss ≤ (ntxeff (i) − i), represents

the number of errors in Q = {i+ 1, ..., ntxeff (i)}. Let also PC′ [nloss] be the probability to have exactly

nloss losses in Q and to have channel state C ′ in slot ntxeff (i). This probability is computed as

PC′ [nloss = 0|n(i) = 0] =







1 C ′ = G

0 C ′ = B
(4.32)

PC′ [nloss|n(i) > 0] = ϕGC′(n(i) − nloss, n(i)) (4.33)
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where n(i) = ntxeff (i)−i. If we have nerror consecutive successful retransmissions, loss recovery is suc-

cessfully completed, since at time i+mnerror the last lost packet is successfully retransmitted and the cor-

responding ACK (received at the end of slot i+mnerror+m−1) will acknowledge all outstanding packets.

A new cycle will then start at time i + (nerror + 1)m in state X(k + 1) = (C, dWfin/2e, dWfin/2e),
since Wth remains equal to dWfin/2e and W is set to Wth upon completion of the Loss Recovery Phase.

The transition function corresponding to this event is

P [B(i, l1)]
∑

C′∈{G,B}

n(i)
∑

nloss=0

{

PC′ [nloss|n(i)]

× pC′G(m− n(i)) pGG(m)nerror−1 pGC(m− 1)

× z
i+(nerror+1)m−1
d z

ntxeff (i)+nerror

t

}

z
ntxeff (i)+1
s (4.34)

where n(i) = ntxeff (i) − i and nerror = i −K + 1 + nloss. Note that, since the recovery phase ends

successfully, all packets in slots {0, 1, ..., ntxeff (i)} are eventually received correctly, so Ns is exactly

given by ntxeff (i) + 1. Note that C is the channel state in the slot just before the one in which the new

cycle begins, whereas C ′ represents the channel state in slot ntxeff (i). In Eq. (4.34), we consider the

case of multiple losses in a window. The total number of losses has been separated in two contributions.

The first is relative to the number of lost packets between the loss at time 0 and the transmission of the

K-th correct packet (i − K + 1 losses). The second contribution, instead, accounts for the number of

losses between the transmission of the K-th correct packet and the slot in which the fast retransmit starts

(nloss losses). As observed above, the total number of losses is given by nerror = i−K + 1 + nloss. In

Eq. (4.34) we sum over all possible values of nerror and over all possible values of the channel state in

the slot where the last of the ntxeff (i) packets is transmitted. From here, we use the term pC′G(m−n(i))

to evolve the channel state until the slot in which fast retransmit starts11. In zd we account for the total

delay, i.e., we sum to i the time needed to recover from the nerror losses after the K-th successful packet

(transmitted is slot i), in zt we count all the transmitted packets, whereas in zs we count only successes

(ntxeff (i) packets sent before the beginning of the recovery phase plus the retransmission of the loss at

time 0).

Unsuccessful Loss Recovery

Consider now the case in which the loss recovery phase does not end successfully, i.e., after the K-th

duplicate ACK there are fewer than nerror successes. Suppose that, after the successful retransmission of

the first loss at time 0, we have exactly j consecutive good retransmissions (0 ≤ j ≤ nerror −2) followed

by a failure. This event has probability pj
GG(m)pGB(m). After the j-th success the value of the window

is given by W ′′′ = min{dWfin/2e +K + 1 + j,Wmax}. The initial state of the next cycle corresponds

to the timeout relative to the (j + 2)nd loss in the window, since the first j + 1 have been successfully

11Since we are in the successful loss recovery case, we assume that the first and all following retransmissions are successful.
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Figure 4.7: nacks.

retransmitted, and is X(k + 1) = (C, dW ′′′/2e, 1). The transition function in this case is given by

P [B(i, l1)]
∑

C′∈{G,B}

n(i)
∑

nloss=0

{

PC′ [nloss|n(i)]pC′G(m− n(i))

×
nerror−2
∑

j=0

[

pGG(m)j pGB(m) pBC(To − 1)

× z
i+(j+2)m+To−1
d z

ntxeff (i)+j+2
t zj+1

s

]}

(4.35)

where n(i) = ntxeff (i) − i and nerror = i − K + 1 + nloss. In the equation above, similarly to

Eq. (4.34), we sum over all possible values of nerror and C ′. In this case, however, not all packets in

error are successfully recovered. We account for this fact by means of the sum over j. Here, a timeout

event must be waited for, and it will happen exactly To−1 slots after the first retransmission failure (term

pBC(To − 1)).

Finally, the transition function matrix Φ
(2) is computed by assigning to each entry Φ

(2)
XY the sum of

all the transition functions leading from state X to state Y , as explained in [106].

4.4 Results

In this Section the throughput performance of the various versions of TCP are analyzed.

First of all we note that, in our study, we have considered some approximations in order to keep

the model analytically feasible. In the following we point out these approximations in order to better

clarify the analysis and to permit a better understanding of the results presented in this Section. First

of all, Eq. (4.4), gives an overestimate of the number of ACKs received after the first error. This is

true especially for high error probabilities and large values of m. Under these conditions, in fact, the

number of packets in flight could be less than the window value at the time in which the error occurs (see

Fig. 4.7). This happens when the transmission in the round preceding the one where the error occurs is

discontinuous. In any case, the use of Eq. (4.4) always leads to an analytical upper bound for the window
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size reached after the first error (Wfin). For this reason, what we model is an approximated version of the

real protocol that corresponds to an analytical upper-bound for what concerns throughput performance of

the real protocol. Hence, the throughput lower and upper bounds considered in the computation of the

matrix Φ2(z) must be viewed as the upper and the lower bounds for the approximate model and not for

the real protocol. In any event, as will be clear from the results presented, the approximation considered

is very good.

In Fig. 4.8.A we report the throughput of TCP Tahoe as a function of the channel error probability

Pe by fixing fdT = 0.01 (correlated channel case). In the figure three kinds of curves are reported: the

analytical throughput upper and lower bound and the values obtained by simulation. As the round trip

time (m) increases analysis and simulation differ. In particular, the throughput obtained from the analysis

is slightly higher than the one obtained by simulation. This is justified by the way in which the quantity

nack has been computed.

In Fig. 4.8.B we compare simulation results and analysis for TCP Reno. Here, the approximation

introduced in Eq. (4.4) is less influential than in the previous case. This is justified by the fact that, after

a successful recovery phase both W and Wth are set to dWfin/2e. By doing so, the performance is less

influenced by the value of Wth with respect to the Tahoe case (where W = 1 and Wth = dWfin/2e)12.

Moreover, in this figure we note some differences between simulation and analysis when both m and

Pe are low. These differences are due to our assumption that TCP Reno always times out in the case of

multiple losses in a window. This assumption, in fact, is good only when either m or Pe has a large value,

in any other case W (n) could be sufficiently large to ensure the recovery of multiple losses. However,

the approximation above appears to be very good as m increases.

Fig. 4.8.C shows the same comparison for TCP New Reno. Here, no simplified assumptions are made

regarding the recovery process. Simulation results in this case match almost perfectly with the analysis.

In Fig. 4.9 we compare the throughput13 of New Reno and Tahoe by varying the channel memory

(fdT ). When errors are correlated (fdT = 0.01), New Reno presents a slightly lower throughput than

Tahoe. In this case, a burst (b) of erroneous packets follows the error at time n. At this point, TCP

Tahoe reacts to the reception of theK-th duplicate ACK by re-starting the connection with the Slow-Start

algorithm. From this point on, the b+ 1 lost packets are retransmitted as if a timeout event had occurred.

In the New Reno recovery phase, instead, it is possible to transmit only one packet per round trip time (m

slots). So, to recover from the b+ 1 losses and restore the normal transmission mode a total of m(b+ 1)

slots are needed. For large values of b (e.g. for fdT = 0.01) this strategy (New Reno) leads to a larger

recovery time with respect to Tahoe. This is the reason why, in this case, New Reno is affected by a lower

throughput. Note that this problem is not present when instantaneous feedback (m = 1) is considered,

while it becomes more relevant as m increases.

The situation is reversed at low channel correlation (fdT ∈ {0.08, 0.64}). Here, the best recovery

strategy is the one implemented by New Reno. This is justified by the fact that New Reno has a more

persistent recovery strategy, able to recover multiple losses without leading to a timeout event. This event,

in uncorrelated channel is more probable than in correlated environments, due to the fact that the error

event (the error burst) probability in this case is larger even if the average packet error probability is the

12Here Wth is determinant for the time needed by W to reach m, i.e., to fill the bandwidth-delay product.
13Since the curves relative to the throughput lower and upper bounds are very close to each other, in the following graphs we

report only the upper curve.
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Figure 4.8: Throughput comparison between analysis and simulation with fdT = 0.01, K = 3, Wmax =
16, To = 100. (A) Tahoe, (B) Reno, (C) New Reno.
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same.

Note also that, from the point of view of the protocol performance, a channel characterized by fdT =

0.64 is equivalent to the independent error case (iid).

The throughput as a function of m is reported in Figs. 4.10, for the cases of fdT = 0.01 (A) and

fdT = 0.64 (B). First of all, we note that uncorrelated errors have a higher impact on throughput than

correlated channels. Moreover, in the fdT = 0.01 case, TCP Reno is the one with the lower throughput,

and New Reno and Tahoe present almost the same performance. Where fdT = 0.64, instead, Tahoe

becomes the worst, New Reno the best, whereas Reno performs in the middle.

Figs. 4.11 and 4.12 show the TCP throughput as a function of the channel error probability Pe by

varying the channel correlation (fdT ) and Wmax. We note that the curves depend weakly on the Wmax

value. In particular, when the channel is correlated (fdT = 0.01) the greatest differences are in the New

Reno case, i.e., where the Fast Recovery and Fast Retransmit algorithms are used. In such cases, in fact,
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Figure 4.11: Tahoe, throughput (upper bound) versus Pe, by varyingWmax and fdT withK = 3,m = 10
and To = 100.
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Figure 4.12: NewReno, throughput (upper bound) versus Pe, by varying Wmax and fdT with K = 3,
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the success of these recovery algorithms depends on the maximum window size reached during the error-

free phase (first cycle in our analysis): the larger the value of the window, the higher the probability that,

after the first error, K packets are sent with success. This results in a higher probability of triggering the

Fast Recovery algorithm, thereby avoiding timeout and increasing the performance.

We can conclude that the maximum window size must be greater than the bandwidth-delay product

(≥ m) in order to reach the continuous transmission phase by avoiding the waste of available resources.

However, once it has been set following this rule, its size is not determinant to improve performance

regardless of the degree of correlation characterizing the packet error process.

4.5 Conclusions

In this Chapter, an analytical framework, based on Markov renewal theory, has been developed to

describe the throughput performance of a TCP protocol working over a wireless link. The main goal of

our analysis was the study of TCP performance in a link characterized by a finite round trip delay. Even

though some approximations are introduced for analytical tractability, comparison with simulation results

shows that the considered approach is very accurate and is able to predict very precisely the throughput

performance of various versions of TCP. The main findings of this study are that (1) an increasing round

trip time may significantly affect the throughput performance of TCP, especially when an independent

channel is considered, (2) New Reno performs better than Reno and Tahoe when the channel is uncorre-

lated, whereas the Tahoe recovery strategy is the most efficient when the channel correlation is high and

(3) the maximum window size does not play a determinant role in increasing throughput performance in

both correlated and independent channels.
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UMTS RLC Parameters Setting and their

Impact on Higher Layers Performance

In the previous Chapters, the performance of TCP has been investigated both analytically and by

simulation. From these studies, the effect of the losses due to the wireless channel and the implications

of the error burstiness on protocol performance have been clarified. In particular, it has been proved that

TCP performs poorly over radio channels, since it is unable of discriminating between packet losses due

to congestion (occurring in the wired part of the network) and packet corruptions due to the wireless

channel impairments. In more detail, TCP reacts to every error as if a congestion phenomenon had

occurred, by slowing down its transmission rate or even timing out (i.e., restarting the transmission at

the lowest speed and introducing long idle times). Obviously, these mechanisms are effective over wired

networks, where congestion is the primary reason for packet losses. In such networks, indeed, the idling

and retransmission is a good choice which is aimed at decreasing the flow injected into the network by

TCP, i.e., at alleviating the traffic in an already congested network. On the contrary, in wireless networks,

or in general in networks including a wireless link, a different solution has to be found for TCP to cope

with the inefficiencies mentioned above. A possible solution, which is the one of shielding TCP from

wireless errors by using link layer ARQ (Automatic Retransmission reQuest), is discussed in this chapter.

The chapter is subdivided into two parts. In the first part we present some results for TCP operating

over a standard Selective Repeat ARQ protocol. The chief aim of this preliminary study is to highlight

the benefits as well as the trade–offs involved in the usage of ARQ algorithms. In the second part of the

chapter a more complex ARQ algorithm is considered. In particular, performance evaluation is carried

out considering the Radio Link Control (RLC) level of the Universal Mobile Telecommunications Sys-

tem (UMTS). The focus, in this case, has been on the link layer parameters setting and its impact on both

forward and backward link performance. Moreover, End-to-End performance is obtained considering the

TCP flow. The main findings of the investigation reported in the next are that: i) a correct setting of RLC

parameters is pivotal to avoid deadlock events, that would lead to a dramatic performance degradation;

ii) schemes using receiver-driven retransmission requests give the best performance; iii) the EPC mecha-

nism [4] gives very good performance in terms of delay, throughput and energy; iv) anomalous behaviors,

leading to delay jitter performance degradation, are observed for some receiver-driven schemes. Again,

EPC is able to overcome these problems.

81
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PART I: TCP over a Link Layer Selective Repeat ARQ Scheme

In this first part of the chapter some results for a TCP operating over a Selective Repeat link layer

ARQ are given. In the scenario considered here, a mobile terminal is connected to the cellular network

and it is transmitting data to a fixed terminal, which is placed on the fixed Internet. A serving base station

is in charge of ensuring user connectivity and providing power control. A Wideband-CDMA cellular

system is considered, where, as assumed in previous chapters, several parameters1 can be triggered to

obtain W-CDMA channel traces. These traces are used to characterize the wireless medium, whereas

fixed delay and IP error rate are taken into account for what concerns the wired part of the connection.

The TCP protocol is responsible for the End-to-End error recovery, whereas over the wireless link, a link

layer ARQ is used to retransmit the packets corrupted over the wireless channel. The main function of

ARQ is here to shield the TCP (which is operating at higher layers) from the errors occurring over the

radio path. In the next Section results are given to understand the effectiveness of the ARQ protocol.

5.1 Results for TCP operating over a SR-ARQ

In this section some preliminary results on the performance of the TCP level running over a Selective

Repeat link layer ARQ are presented. In all the obtained graphs the presence of the ARQ level appears to

be very important to improve both throughput and energy. Here, the energy metric is labelled as Ecb and

consist in the average energy expenditure per correct information bit transmitted. This metric accounts for

retransmissions, TCP idle times, spurious retransmissions and any other form of redundancy. According

to the results reported in the next, we can affirm that ARQ is able of recovering losses in a transparent

way by considerably reducing the packet error probability PSDU on the TCP data packet flow. This PSDU

reduction leads to a decreasing number of TCP retransmissions, that in turn lead to a reduction of Ecb.

Some metrics and system parameters will be considered in the remaining of this chapter: the system load

is expressed in terms of number of users in the cellular system (Nu), the user mobility is accounted by

means of the Doppler frequency (fd), the Time Transmission Interval (TTI) is the time period over which

the physical layer interleaving is performed, L is the maximum number of retransmission allowed at the

ARQ layer, PSDU is the IP packet error probability, with S we refer to the TCP throughput and with Ecb

and Et to the mean energy per correct information bit and to the total consumed energy, respectively.

As a first results, in Fig. 5.1, the TCP throughput is plotted against the average Frame Error Rate

(FER) for a system where Nu = 120, fd = 6 Hz, TTI = 1 by varying the TCP version. Two sets of

curves are presented, in the first one the RLC operates in transparent mode, i.e., L is set to 0, while in the

second set the RLC is configured with L = 10. From the graph, the beneficial effect of ARQ with L = 10

is evident, in particular, for a FER of 0.1, with L = 0 we observe a very low throughput, whereas the

throughput approaches 0.8 in the case where L = 10. Moreover, in this last case, the effect of the TCP

protocol version vanishes.

In Fig. 5.2(a) the average TCP Window Size is reported instead of the throughput value, whereas in

1As system load, user mobility interleaving depth and physical layer coding strength.
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Figure 5.1: TCP throughput as a function of the FER.

Fig. 5.2(b) we report PSDU . For all these metrics the advantage due to an underlying link layer appears

very evident.

In Fig. 5.2(c) the total consumed energy, Et, is reported for both the L = 0 and the L = 10 cases.

From a first look to that figure, one may assert that the L = 10 case, for high FER values, is affected by

a higher energy consumption. However, for what concerns Ecb (see Fig. 5.2(d)), the situation is reverted.

In conclusion, the low Et value in the case of L = 0 is simply due to a low throughput, i.e., in such cases

the protocol is rarely transmitting and it is going in timeout repeatedly. Furthermore, after each timeout,

the last unacknowledged packet is retransmitted; this last behavior is the one responsible for the increased

Ecb.

In Fig. 5.2(e) the TCP throughput is reported by varying fd and L. From the figure, it is clear how

the influence of the physical parameter fd also vanishes by increasing L. In fact, with a transparent mode

link layer, the throughput is higher for correlated channels (i.e., low fd values) and presents a minimum

for the iid case. By setting L to 10, instead, all the curves overlaps by identifying a unique trend.

Finally, in Fig. 5.2(f) the dependence on TTI is plotted. In more detail, a greater TTI always leads to

a lower FER. However, by comparing performance between users affected by the same FER a unique

trend is observed. This means that the burstiness of the underlying channel is not determinant for the

throughput when an efficient link layer protocol is considered. As will be shown in the remaining of this

thesis, the error burstiness is instead important for what concerns delay performance.
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Figure 5.2: Impact of ARQ on TCP performance.
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In Fig. 5.3 we report the TCP throughput, S, as a function of the FER by varying L. Here, the

graph is plotted by using a linear scale in order to highlight that the TCP throughput curve as L increases2

approaches the line S = 1 − FER. This formula correspond to the theoretical throughput curve of the

Selective Repeat scheme. In the regions where this equality holds the TCP protocol is behaving as a

packet source, i.e., the TCP packet transmission time3 is simply modulated by the ARQ action and the

TCP timeout events are completely avoided.

Finally, an interesting trade-off figure is shown in Fig. 5.4. Here, the TCP throughput is plotted

against Ecb for various FER values by varying L (which is chosen in the set L ∈ {0, 5, 10, 15}). All the

curves have a strictly monotonic decreasing behavior, that is the reason why the better choice in terms of

both throughput and energy efficiency is to configure the ARQ level with a large L, i.e., it is not worth

limiting L from both a throughput and energy expenditure point of view. Moreover, for each value of the

FER we can locate a threshold value of L, say L∗, such that increasing L beyond L∗ does not leads to

any advantage. In the presented figure, this behavior can be observed for FER = 0.1 and FER = 0.25;

in these curves the points corresponding to L = 5, L = 10 and L = 15 overlap.

2Once the TCP and ARQ protocol overheads have been removed.
3It is the time that the ARQ employs to transmit all the PDUs composing the TCP packet.
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PART II: TCP over the UMTS RLC

The Universal Mobile Telecommunications System (UMTS) is a 3rd generation system based on the

W–CDMA technique, where voice, high-speed data traffic and multimedia applications can be supported.

In UMTS, the Radio Link Control (RLC) layer is placed on top of the Medium Access Control (MAC);

its function is to counteract the residual errors (after physical layer processing) by performing retransmis-

sions of lost data, thus providing a reliable data transmission channel.

In this work we are interested in the characterization of higher layer protocols performance in UMTS

and, in particular, in the effect of the RLC parameters setting. This understanding is pivotal for higher

layer flows to fulfill the desired QoS requirements. Here, this study is carried out considering the TCP

protocol as the transport layer mechanism. The TCP assumption that losses are due to network congestion

becomes problematic in wireless links, where indeed losses are often due to signal degradation. The RLC

layer can overcome this fact by transparently recovering from channel errors before the TCP timeout

expiration occurs. However, depending on the RLC configuration, this goal can be achieved with different

delay, throughput and energy consumption performance.

Several contributions on the RLC setting have been proposed so far in the literature. In [53], sim-

ulation results are reported to highlight the importance and the role of a correct setting of some RLC

parameters such as the Pool Empty TX Buffer, Pool Empty RETX Buffer, Pool Every X SDUs and SDU

Discard Timer [4]. In [71], instead, the influence of the maximum number of allowed retransmissions

(MaxDAT) is studied in detail. The effect of the RLC window size is considered in [54] and the setting of

the various RLC timers has been investigated in [103]. In this work, we go further with respect to all these
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contributions for the following reasons: following the guidelines derived in the previous research, we pro-

pose three different and complete RLC setting modes and we evaluate their delay, energy and throughput

performance. The effect of independent and correlated losses is considered. The EPC mechanism [4] and

its benefits are investigated.

The remaining of this chapter is structured as follows: in Section 5.2 the reference scenario is intro-

duced, in Section 5.3 the main RLC parameters are presented and the three different RLC setting modes

are specified. The performance of these RLC schemes is then evaluated in Sections 5.4 and 5.5, where

some important metrics are shown for the independent and correlated error case, respectively. In Sec-

tion 5.6 higher layer packet delay performance is reported, by highlighting an anomalous behavior for

some of the proposed schemes and finally, Section 5.7 concludes the chapter.

5.2 Reference Scenario

We consider a UMTS mobile Terminal Equipment (TE) that is communicating with its serving Base

station (BS) through an uplink Dedicated CHannel (DCH). The RLC level is used between ME and

RNC [1] to recover from residual errors at the output of the physical layer. Then, TE data is forwarded

to a Fixed Host (FH) placed in the Internet. Errors in the RLC forward channel (where data packets

flow) are modeled by means of a discrete-time two-state Markov Model that evolves frame by frame (the

frame duration is 10 ms). Despite its simplicity, this model allows us to derive some precise and useful

indications on the impact of error burstiness on the RLC performance. All PDUs transmitted in a bad

state are considered to be lost, whereas the ones sent during good states are always correctly received.

The Frame Error Rate (FER) is defined as the average probability to be in the bad state. Errors are

also considered for what concerns the backward RLC flow, i.e., regarding RLC acknowledgments (called

Status Reports [4]). Here, an independent error process is adopted, i.e., status messages are lost with a

fixed probability, Pstatus. The RLC layer round trip time has been considered to be constant and equal to

RLC RTT=100 ms. The simulation tool used to perform our performance evaluation is similar to the one

described in [53].

5.3 UMTS RLC Scheme: Configuration Parameters and Settings

In this section, we first give a brief description of the RLC layer mechanism and of the main param-

eters involved in its configuration, then we give some guidelines for their correct setting and finally we

propose three RLC configuration modes, namely, delay, resource and throughput optimized.

5.3.1 Basic concepts

The RLC is basically a Selective Repeat (SR) ARQ scheme where some new features have been

added to improve performance and to provide a fully programmable and flexible retransmission mecha-

nism. Packets incoming from higher layers (RLC SDUs) are segmented in RLC PDUs, that are the packet

units at the RLC. A Cyclic Redundancy Check (CRC) field is attached to each RLC PDU to perform error

detection. The receiver RLC entity based on the CRC field and on the gap detection technique4 sends
4The received PDU flow is checked for discontinuities in the sequence numbers.
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back to the transmitter Status Report messages containing a list with the PDUs requested for retransmis-

sion. The sender can force the transmission of status reports by sending special Poll packets5. At the

receiver a Poll PDU causes the immediate transmission of a new status report6. This procedure is useful

to avoid deadlock situation and, in general, to control the amount of acknowledgment messages sent by

the receiver (backward flow). In addition, many features have been included in the RLC to reduce the

retransmission delay, prevent deadlock and reduce the feedback channel overhead. Their detailed expla-

nation can be found in the standard [4] as well as in [53] [71]. The detailed explanation of the RLC

parameters is out of the scope of this chapter. The interested reader is referred to the references above.

5.3.2 RLC Schemes Proposal

Some general guidelines must be kept in mind when we are configuring the RLC layer:

• At least one mechanism to force the periodic transmission of status messages must be accounted for.

This is necessary in order to avoid deadlock at the RLC sender. For this purpose, two mechanisms

must be set: the Poll Timer and the Poll Empty TX Buffer. The Poll Empty TX buffer provides to

the transmission of a Poll PDU when the last PDU in the transmission buffer is sent. Once the Poll

has been sent, the Poll Timer forces a periodic retransmission of the Poll (when the timer expires).

This retransmission process is stopped when the requested Status PDU is finally received. These

features are set in all the schemes proposed in the next to obtain deadlock free mechanisms. Some

useful insights on these settings can be found in [53].

• Poll packets should be sent frequently to reduce the retransmission delay [53]. By this way more

status reports are sent back to the receiver that, as a consequence, can rely on promptly updated

retransmission information. However, the feedback flow (status reports) is directly related to the

backward channel energy expenditure. Clearly there is a trade-off of the polling frequency.

• Sender-Driven schemes have the advantage of controlling the sender window so as to avoid stall

situations. In pure Sender-Driven approaches, it is the sender that, based on the state of the sender

window, RLC queues and RLC flow at the transmitter, controls the transmission of status messages

by polling the receiver.

• In Receiver-Driven schemes, it is the receiver that, relying on the Check Missing PDUs [4] mech-

anism, infers lost packets and sends back status reports accordingly, i.e., the backward flow is

governed by the receiver.

We verified that Sender-Driven schemes are always inferior to Receiver-Driven mechanisms and that

the best performance is achieved in the hybrid case, i.e., when both sender and receiver features are used

together. In the following, referring to the concepts introduced above, three different RLC setting modes

are presented:

5A Poll bit is set in the normal data PDU.
6Unless the Prohibit Status Timer, whose function is explained in the following, is set.
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SCHEMES → RO DO EPC
RLC transmitter params
Poll Empty TX Buffer yes yes yes
Poll Timer 120 ms 120 ms 150 ms
Poll Every X PDUs no no no
Poll Every X SDUs no no no
Poll Empty RETX Buffer yes no no
Poll Window (%) 80 % 80 % 80 %
Periodic Poll no no 0
Prohibit Poll Timer no no no
RLC receiver params
EPC no no yes
Prohibit Status Timer 60 ms 110 ms 110 ms
Check Missing PDUs yes yes yes

Table 5.1: RLC schemes configuration parameters.

• Delay Optimized (DO): in this scheme the status reports transmission is controlled by the Check

Missing PDUs feature. To avoid deadlock at the sender, the Poll Window mechanism must be

activated, that is, the transmission of a Poll PDU is forced whenever the sender window increases

beyond a given threshold. The aim of this scheme is to aggressively and promptly retransmit

lost PDUs so as to minimize the delay. This is achieved thanks to a continuously updated (and

redundant) backward status PDU flow. In particular, the receiver Prohibit Status Timer is set to a

value lower than the RLC layer round trip time (RLC RTT). When this timer is activated, status

PDUs can be periodically sent at its expiration times. Setting the timer value is a method for

controlling the maximum number of status messages flowing back in a RLC RTT. Finally, in the

DO scheme, a Poll PDU is sent when the retransmission buffer is empty (Poll Empty RETX Buffer

feature).

• Resource Optimized (RO): this scheme is similar to the previous one except for the fact that the

Poll Empty RETX Buffer is not set and the Prohibit Status Timer is set to a value greater than RLC

RTT. In this way at most one status message can be sent in every round trip time. This scheme has

the advantage of saving bandwidth (and energy) in the feedback channel, but this comes at the cost

of a lower retransmission promptness and, as a consequence, of longer RLC SDU delays.

• EPC throughput optimized: both the EPC mechanism [4] and the Check Missing PDUs are en-

abled. The Poll Window mechanism is triggered to send a Poll PDU whenever the sender window

reaches 80 % of its maximum size.

These settings are summarized in Table 5.1.
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Kbyte file transfer.

5.4 Comparison between RLC Schemes in an Independent Channel

In the results reported here, we focus on FTP data transfer performance, i.e., we consider a continuous

data source modulated by the TCP window mechanism. Two data transfers, of 5 and 100 Kbyte are taken

into account to highlight the role of the TCP Slow-Start phase. The discontinuous transmission phase,

due to TCP, is dominant in the 5 Kbyte case, where the Slow-Start is dominant, whereas in the 100 Kbyte

case, the discontinuous transmission is less influential since here the TCP window size is large enough

to fill the transmission channel. We have performed intensive simulations to characterize the proposed

schemes. In the sequel, due to space constraints, we only report some of them to highlight the main

findings of our investigation.

In Fig. 5.5 we compare the throughput for the schemes presented in Section 5.3.2. To show the im-

portance of the window control feature, the RO and DO schemes are also reported here in their version

without window control (i.e., where the Poll Window mechanism is not activated). It appears evident how

the throughput in that case is heavily degraded at low FER. The reason for this phenomenon is that the

transmission of status PDUs is triggered by the detection, at the receiver, of missing PDUs, but when

the error probability is low this is a rare event. As a consequence, few status reports are sent back to the

transmitter and the RLC window may be saturated7. The mean SDU delay (100 Kbyte case) is reported

7The role of a status message is also to advance the transmission window by allowing the transmitter to release from the
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in Fig. 5.6(a). From that figure, it is clear how the DO scheme can effectively reduce the SDU delivery

delay. The EPC scheme for this metric is the one with the worst performance, whereas the RO performs

in the middle. The same relationship among schemes is maintained for the 5 Kbyte case (not shown here).

In Figs. 5.6(b) (100 Kbyte) and 5.6(c) (5 Kbyte) we focus on the channel efficiency defined as the ratio

between the number of transmitted data PDUs (forward flow) and the number of status PDUs flowing

over the backward channel, i.e., the average number of status messages sent back to the transmitter for

every transmitted data PDU. It is worth noting that the EPC scheme is able to save bandwidth in the feed-

back channel; in both the 100 and 5 Kbyte data transfer cases DO is the scheme with the highest feedback

channel utilization. Referring to FER = 0.1, the relative saving obtained by RO and EPC schemes is

roughly 17 % and 50 % for the 5 and the 100 Kbyte transfer case, respectively. In Fig. 5.6(d), we report

the TCP throughput for the 100 and the 5 Kbyte transfer case. From the results presented in this section

the following conclusions can be drawn:

• For what concerns the TCP throughput metric, EPC is the best scheme for the 100 Kbyte case, i.e.,

for large file transfers where the continuous transmission dominates, whereas DO performs better

for short file transfers. The reason behind this is that when the Slow-Start phase dominates, i.e.,

when the transmission is discontinuous, it is important to decrease the feedback delay in order to

permit a fast TCP window increase. When the TCP window size is large enough to fill the channel

this behavior is no longer observed. In this last case, instead, a lower delay comes with a lower

throughput as well.

• The RO scheme for all the considered metrics presents an intermediate behavior.

• The EPC scheme is the one where feedback messages are sent back with the highest efficiency, for

both short and large file transfers. This scheme presents the highest throughput in the 100 Kbyte

case, whereas its throughput is the lowest for short file transfers. The reason behind this is that

optimizing the number of status reports flowing back to the transmitter leads to slightly longer

delays in the TCP window advancement phase during the Slow-Start discontinuous phase.

5.5 Comparison between RLC Schemes in a Correlated Channel

In this section we report some results on the effect of the channel correlation on throughput and SDU

error probability performance for the schemes introduced above. We utilize a Two State Markov Channel

model to characterize the UMTS Frame error sequence, as explained in Section 5.2. An interesting

result is reported in Fig. 5.7, where the FER is fixed at a high value (FER = 0.5) and the burst

length (b) is varied in the set b ∈ [1/(1 − FER) = 2, 30]. From that figure, we can observe that the

throughput curve increases for low b values, whereas it starts decreasing as b increases. This is due to

two opposite behaviors. On the one hand, an increased b leads to a lower SDU delay. On the other hand,

an increased b always leads to an increased SDU error probability8. The shorter SDU delay leads to a

buffer those packets that have been correctly received.
8In general, especially for high FER this metric is greater than zero because the maximum number of retransmissions per

PDU (MaxDAT) is set to a finite value. In this chapter we consider MaxDAT=10. The effect of the MaxDAT parameter has been
studied in detail in [71].
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Figure 5.7: Throughput Vs burst length.

faster Slow-Start phase, and to the positive slope of the throughput curve in Fig. 5.7, for low b values.

This effect is more notable for short file transfers, where the Slow-Start phase dominates. Moreover, as

b increases the probability that a SDU is discarded increases as well. A SDU is discarded when one of

the PDUs composing it reaches the maximum number of allowed retransmissions without having been

correctly delivered. The increased SDU error probability leads to a reduction of the throughput, and this

effect dominates in the second region of the curve in Fig. 5.7, i.e., for large b values. In Fig. 5.8, we

report the SDU error probability as a function of the burst length. It is worth noting here that the EPC

scheme is almost insensitive to an increased burst length. The explanation of this fact is found in the

way this mechanism works [4]. In more detail, a timer is used to account for the time elapsed between

the transmission of a status report and the reception of the first retransmitted PDU. This timer is usually

set to an estimate of the RLC RTT. When this timer expires and no PDUs are received as a reply to the

previous status report, then a new status report is transmitted and the timer is recomputed based on a new

RTT estimate. In practice the number of status reports sent and their sending times is adaptively set based

on the number of successfully retransmitted PDUs and on the estimated time between the sending of the

status report to require their retransmission and their correct reception9. In the presence of a large burst of

errors, the EPC at each RTT adaptively increases the inter-status sending time period, so that fewer status

PDUs are sent with respect to the DO and RO schemes.

From the results presented in this section we can conclude that the EPC timer mechanism is able to

manage the status report flow in a better way. The decision on the status report sending times is based

on the detection of erroneous/lost PDUs (by means of the Check Missing PDUs feature) as well as on a

9For more details on the EPC mechanism the reader is referred to [4].
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consistent estimate of the RLC RTT10. This leads to a more efficient utilization of the feedback channel

that in turn leads to:

• Increased throughput for large file transfers.

• Higher robustness against error bursts.

• Higher stability in terms of throughput performance under correlated errors.

5.6 Jitter Performance

In this section we consider the delay jitter metric and we show how the EPC mechanism is able

to obtain superior performance also in this case. The jitter is defined here as the mean delay between

the release (at the RLC receiver entity) of SDU packets. In Fig. 5.9 we report the delay jitter standard

deviation as a function of the FER considering a status PDU error probability (feedback channel packet

error probability) of Pstatus = 0.05. In the same figure, the mean jitter delay is reported for comparison.

These results have been obtained considering the W-CDMA channel traces as in Section 5.1. The results

in Fig. 5.9 are relative to a scenario where Nu = 100 users are randomly placed in a coverage area of

25 UMTS cells (wrapped around to avoid border effects) considering a slow fading condition, i.e., every

user is characterized by a Doppler Frequency of fd = 6 Hz.

10Intended here as the time elapsed between the transmission of a status report and the reception of the first retransmission
elicited by that status report.
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Looking at Fig. 5.9 an anomalous behavior can be observed for the DO and the RO schemes. At

low FER, their standard deviation is very high and as large as the mean jitter value. This behavior can

be explained using the example situation in Fig. 5.10. In the first case (Fig. 5.10) we consider that two

PDUs in a row are lost. The status report relative to the first PDU is lost, whereas that relative to the

second packet is correctly received. Upon reception of the last status report, the two erroneous PDUs

are retransmitted and a Poll is inserted in the second PDU (thanks to the Poll on Empty RETX Buffer

feature). In the second case, only one PDU is lost and its status message is lost as well. At this point,

no mechanism exists to ensure the correct reception of the status report. Suppose that no further PDUs

are corrupted. Then, a Poll PDU is forced when the sender window reaches the Poll Window % of its

maximum value. And only this Poll can trigger a new status report to be sent. In this case, a long time

is needed to recover from the error since no mechanism is adopted to ensure the correct reception of the

first status report. This causes the sender window to advance, by transmitting new packets and without

performing the retransmissions requested in the lost status.

Once again, the EPC is able to overcome this problem. In fact, due to the EPC algorithm, reports are

automatically resent based on round trip time estimates. The receiver, in this case, does not have to wait

for the reception of a correct Poll PDU to re-schedule the status message retransmission.

5.7 Conclusions

In this chapter, the effectiveness of Selective Repeat ARQ link layer solutions in shielding the TCP

from wireless channel errors is highlighted first. Then, in the second part of the chapter, TCP perfor-
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mance is evaluated considering the UMTS Radio Link Control as the protocol at the link layer. Some

guidelines for the setting of the UMTS RLC parameters have been presented. Moreover, three different

schemes have been proposed so as to minimize the delivery delay (DO scheme), the throughput (EPC

scheme) and to achieve a trade-off between these two metrics (RO scheme). From the obtained results

it is clear how the RLC setting can highly impact the higher layer performance. Based on the delay and

throughput metrics, we suggest to use delay optimized schemes (DO) when the transmission is mainly in

the discontinuous phase. In this case, the solution that minimizes the delivery delay also minimizes the

throughput, when window based protocols (such as TCP) are considered at the transport layer. Regarding

the energy consumption, the EPC scheme always represents the best choice, whereas DO is the worst.

The RO scheme performs in the middle for all the considered metrics. Based on these observations a

new possibility opens up, that is to use delay optimizing schemes when the transmission is discontinuous

and to switch to energy optimized solutions when the channel is filled by transmitted packets. As a last

conclusion, we observe that for jitter delay sensitive applications, the EPC scheme, among the schemes

proposed in this chapter, is the only one with a stable behavior.



Chapter 6

Delay Analysis of Selective Repeat ARQ

Algorithms over Wireless Channels

In the previous Chapter 5, link layer retransmission schemes have been considered and the advantages

deriving from their usage have been discussed through simulation. Here, we go further with respect to

these results, by focusing on the analytical modeling of ARQ algorithms. In particular, our main interest

is the evaluation of ARQ delay statistics, which are directly affecting higher layers performance as well

as link layer performance and buffer dimensioning. An analytical evaluation of such statistics is, in fact,

useful to understand the behavior of such error control schemes as well as the implications of the channel

error statistics on the user perceived performance. Moreover, such knowledge can be used to dimension

several part of the system (such as the ARQ buffer) and to take run-time decisions about the actions to

be taken at the link layer, e.g., whenever a retransmission for a packet should be required or not. These

decisions often depend on the instantaneous quality experienced by the final user (running application).

At this regard, several metrics can be considered; as an example, we report here the residual packet error

probability, the video quality (which could be expressed in terms of video PSNR) or the packet dropping

probability due to out of time reception of delay sensitive packets. Adaptive algorithms, operating directly

at the link layer1, which take into account such metrics to adapt their behavior so as to fulfill application

requirements, are possible. Recently, several solutions exploiting these concepts have been or are going

to be proposed as new link layer schemes for modern wireless devices and architectures2.

Even if these algorithms are out of the scope of the research described in this Chapter, it is worth

noting here that link layer delay statistics together with a detailed knowledge of the link layer behavior,

turn out to be of practical relevance in their design. This gives us the motivation to go further with respect

to the results provided in previous Chapters by providing here a detailed study of such statistics.

The study is carried out considering different channel models. The iid packet error model is consid-

ered first. This is the simplest model for packet errors, but is still of practical interest in some modern

1In the next Chapter, several algorithms are proposed to achieve an efficient delivery of multicast video streaming flows in
3G-WCDMA cellular networks.

2The reader is referred here to some either recent or running projects such as the Italian RAMON or the European AMBIENT
NETWORKS, which both propose modifications at the link layer level to adapt the user perceived quality to fulfill application
requirements.
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wireless systems3. Beside the investigation on the independent error case, delay statistics are also ob-

tained considering a Two-State and an N-State Markov model. For each channel model, the dependencies

on the model parameters are highlighted and, where possible, approximations of the exact analysis are

given to reduce its computational complexity.

6.1 Introduction and Motivations

In this first part of the Chapter, we compute ARQ packet delay statistics considering an independent

packet error error model. As will be shown in Section 6.2 this simple model is still a reasonably good ap-

proximation for the actual errors experienced in a 3rd generation cellular system such as the UMTS. For

this reason, in the following (3G) cellular systems are discussed in some detail, by highlighting the ser-

vices envisioned over such networks, the role of link layer techniques in the provisioning of such services

and the importance of computing/estimating link layer delay statistics. The analysis in the correlated error

case will be presented in Section 6.4 and 6.5 considering the Two-State and the N-State Markov channel

model, respectively.

3G systems are intended to provide global mobility support, with wide range of services including

telephony, paging, messaging, Internet, high quality video and broadband data. To realize a certain

network Quality of Service (QoS), a Bearer Service with clearly defined characteristics and functionalities

has to be set up from the source to the destination. The characteristics of this Bearer Service depend on

the kind of traffic in which the user is interested. One of the challenges in such complex systems is

to counteract the errors due to the wireless medium (propagation phenomena) and to the interference.

With this aim at the physical layer both channel coding and interleaving are employed. In addition,

ARQ techniques may be used at the link layer to reduce the residual error probability at the output of

the physical layer. ARQ solutions use queueing and retransmission of lost packets to combat channel

errors. The effect of link layer retransmissions is twofold. On the one hand, they are able to reduce the

residual packet error probability. On the other hand, they introduce a random delay on the delivery of

link layer packets that translates into a variable delay for the application layer flow. To better understand

the importance and the implications derived from these additional delays let us refer to a video/audio

streaming data transfer. In that case, packets arriving too late at the receiver should be discarded as they

do not respect the timing constraints imposed by the streaming application running at higher layers. That

is, due to the ARQ retransmissions process, the application streaming buffer at the receiver gets empty

(buffer starvation) which results in gaps in the play-out process. This results in a sudden degradation

of the user perceived performance. Therefore, when ARQ is employed, the degree of satisfaction of the

user is directly affected by the error/delay statistics at the link layer output. In other words, the correct

understanding of the delays involved in the ARQ retransmission process and their effect on higher layers

performance is a pivotal point to provide and maintain the user desired QoS.

Our focus here is on the characterization of the delay statistics when ARQ is utilized at the link layer.

3One example for such systems is the UMTS cellular network, where as will be shown in the remaining of the Chapter, thanks
to channel coding and interleaving, the errors experienced by link layer packets in many cases can be fairly well described by
an independent model.
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The fundamental ARQ schemes can be classified into Stop-and-Wait (SW), Go-back-N (GBN) and Se-

lective Repeat (SR) ARQ [72] [82]. SR-ARQ is widely used due to its superior throughput performance.

In ARQ schemes, the transmitter sends packets (PDUs) consisting of payload and error detection codes

(a Cyclic Redundancy Check field is inserted into each packet). At the receiver side, based on the result

of the error detection procedure, acknowledgment messages are sent back to the transmitter (ACK or

NACK, according to the result of error detection). The sender schedules packet retransmissions based on

such messages.

In the presence of an ARQ protocol, we can subdivide the overall PDU delay in three contribu-

tions [64]. The first contribution is the queueing delay in the source buffer, i.e., the time between the

PDU release by higher layers and the instant of its first transmission over the channel. This term depends

on the channel behavior, the ARQ technique and the PDU arrival process. The second contribution is

commonly referred to as transmission delay, and is the time elapsed between the first transmission and

the correct reception of the PDU. This term depends on the channel behavior and on the ARQ retransmis-

sion technique. The last contribution, referred to as re-sequencing delay, is the time spent in the receiver

re-sequencing buffer. In more detail, even if the sender transmits packets in order, due to random errors

and consequent retransmissions, they can be received out of sequence. In that case, PDUs with higher

identifiers must wait in the receiver re-sequencing buffer until all the PDUs with lower identifiers have

been correctly received. By considering a tagged PDU, this last term depends on errors experienced by

all PDUs sent in the same round-trip in which the tagged one has been transmitted for the first time. The

re-sequencing delay is non zero when in-order-delivery is considered. Another possibility is to configure

the link layer in the out-of-order delivery mode. In that case PDUs are passed to higher layers without

waiting for the correct reception of out of sequence packets and the re-sequencing delay at the link layer

is equal to zero. We refer as delivery delay to the sum of transmission and re-sequencing delay.

Several studies have been performed on the delay performance of the SR-ARQ protocol over a wire-

less channel [64] [39] [65] [15] [91] [92] [110] [50] [73] [7]. In [65] Konheim derived the exact single

link layer PDU delay distribution considering a finite round-trip delay and an independent (iid) error pro-

cess. The independent channel has been considered by several other authors [15] [91] [92] [50]. Rosberg

and Shacham in [91] derive the distribution of the buffer occupancy and of the re-sequencing delay at the

receiver under a heavy traffic assumption4 to give to the network designer some guidelines on the choice

of the buffer capacity at the receiver. Rosberg and Sidi in [92] analyzed the joint distribution of transmitter

and receiver buffer occupancies. In [29] the authors investigate the effect of forward/backward channel

memory on ARQ error strategies using flow graph analysis; GBN- and SR-ARQ are compared in terms

of their throughput efficiency. In [110] Zorzi and Rao studied the adequateness of Two and Three state

Markov channel models for predicting delay of ARQ/queueing systems in correlated fading channels. In

that work, they show that a three state Markov model, in many cases, can provide very accurate delay

predictions, whereas a simple Two state model can lead to good throughput estimates, but it is inadequate

for predicting delays. In [39] Fantacci investigates the SR-ARQ performance over a time varying chan-

nel [115] [117] [109] [112] deriving the mean packet delay and the mean queue length for both the zero

and the finite round trip delay case. Some interesting results on how different error statistics affect ARQ

4A new PDU to be sent over the channel is always available at the transmitter ARQ buffer.
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performance are reported by Lu and Chang in [73]. In particular, they considered both the k-th Order

Markovian Channel Error model and the Gap Error model. In [64] Kim and Krunz account for a time

varying channel, a finite round-trip delay and a Markovian traffic source. Here, a mean analysis is de-

veloped for all the ARQ delay contributions. The delivery delay distribution in the out-of-order delivery

case has been studied in [7], where a general framework is presented to obtain Redundancy Check failure,

throughput efficiency and single PDU delivery delay performance.

The main drawback of the analytical approaches presented so far in the literature is their compu-

tational complexity that makes their usage very difficult in a Mobile terminal Equipment (ME) due to

energy, memory and time constraints. These techniques are time consuming due either to the manipula-

tion of matrices whose size quickly increases with the number of link layer PDUs sent in a full link layer

round trip time, m, or to the presence of recursive formulations that are memory and time consuming as

m increases. For instance, the complexity of the algorithm proposed in [65] increases exponentially with

the round trip time value. Hence, real-time, fast and accurate estimate of the delay statistics experienced

both by link layer PDUs and higher layer packets (seen as an aggregate of link layer PDUs) still remains

an open issue. These estimates can be useful to obtain delay-aware cost functions to be used, for example,

when delay sensitive flows are transmitted over the channel to adapt link and/or physical layer settings

to the delay requirements imposed by those flows. In real-time services, packets arriving too late are

useless; as they are passed to the application layer they are discarded and the system resources consumed

for their transmission (and possible retransmissions if a link layer is considered) are wasted. Hence, the

control of the maximum delay perceived by application layer packets (that translates in the control of the

maximum number of allowed retransmissions at the link layer) is a pivotal point in order to save system

resources while achieving a better quality (saved resources can be exploited to send new data instead of

useless retransmissions of old packets). The simplest measure for the quality perceived by the final user

is the residual packet5 error probability at the output of the link layer (Ppkt). However, when delay con-

strained flows are considered, this metric is no longer sufficient, because packets whose time deadline has

expired (even if correctly received) are discarded and are a source of error as well as corrupted packets.

The presence of a link layer is able to reduce the residual error rate Ppkt, but the delay experienced by the

packets becomes stochastic due to the random nature of the errors affecting the wireless link. In this case,

a more accurate estimate of the packet drop rate is needed. Such estimate can be obtained accounting

for the delay constraints as follows: Pdrop = Ppkt + (1 − Ppkt)Prob{delay > dmax}, i.e., a packet is

considered erroneous either if it is corrupted or if the delay that it experiences during its transmission over

the wireless link exceeds some delay constraint (dmax), where dmax is intended as the maximum delivery

delay that (for instance) an IP packet can tolerate when it is transmitted over the wireless link.

The chief aim of this work is to derive analysis to characterize the delivery delay statistics Prob{delay >

dmax} for both the in-order and the out-of-order delivery case. Moreover, from the manipulation of the

analytical results, we directly derive simple and accurate heuristics able to describe such statistics with

minimal computational effort. The merit of the analysis presented in the next is to go further into the

characterization of ARQ delivery delay statistics, investigating also the delivery delay regarding higher

layers packets (link layer SDUs), that in our analysis are considered composed of an integer number (K)

5Here with the term packet we mean the data packet unit assembled at the output of the link layer that, in general, is composed
by an aggregate of several link layer PDUs.
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of link layer packets. Simple, fast and accurate heuristics for the estimation of SDU statistics are reported

considering both in-order and out-of-order delivery of link layer SDUs. These heuristics could be effec-

tively used for example in channel adaptive algorithms as an estimate of the delay perceived by packets

belonging to the application layer data flow (delay utility functions).

6.2 On the Accuracy of an Independent Channel Model

In this section as a sample scenario, we refer to a UMTS cellular system where W–CDMA is used as

the radio interface ( [1] [69] [83]) and we evaluate by simulation how the PDU error process at the UMTS

link layer (RLC [4]) is characterized in terms of burst length (b) and average PDU error rate (p). Both

channel coding (convolutional with rate 1/2) and interleaving are considered. The simulated scenario

is composed of 9 hexagonal cells, where a base station (Node B) is placed at the center of each cell

and a given number of users are considered to be able of moving inside the coverage area (in the results

reported here we consider a population of 100 users with speed uniformly distributed in {0, 7, 49} Km/h).

The whole cell structure is wrapped around in order to avoid border effects. As an example scenario we

consider that each user is using a downlink dedicated channel, where the traffic source is continuous

as can occur when either streaming flows or FTP file transfers are considered. The cell radius is 200

m, a downlink dedicated channel (DCH) is allocated for each user where the minimum and maximum

powers are P downlink
min = −15 dBW and P downlink

max = −5 dBW, respectively. Path Loss, Shadowing and

multi-path fading phenomena are considered as well.

In Figs. 6.1 and 6.2 the average PDU error burst length (b) is reported as a function of the mean

PDU error rate (p). Vertical error bars are reported to indicate the confidence interval (95%) of mean

burst length measurements, whereas plus and cross symbols are used to plot the 80-th percentile of the

burst length b. In the first figure, we consider a link layer with a logical6 bit rate of 30 Kbps and a large

interleaving depth (80 ms), whereas in Fig. 6.2 the RLC bit rate is higher (120 Kbps) and a smaller (40

ms) Time Transmission Interval (TTI, i.e., the interleaving depth) is considered. As a first observation,

one can note that at low RLC bit rates the error process tends to be independent (the iid case is reported

for comparison as a solid bold line in both figures). Hence, the independent PDU error assumption in

this case seems to be a good approximation. Instead, as the RLC logical bit rate increases (Fig. 6.2) more

PDUs can be sent in each radio frame and the PDU error process is likely affected by longer bursts. It is

worth noting that a larger TTI has a beneficial effect on system performance. The effect of a longer TTI

is twofold: on the one side the RLC round-trip delay increases (negative effect). On the other side the

interleaving is more effective in breaking the error bursts at the bit level (positive effect). Moreover, in

the case where TTI = 80 ms, a typical value for the RLC round-trip delay is 220 ms. Hence, considering

a typical RLC PDU size of 360 bits we have that m ≈ 75 PDUs can be sent during a full RLC round-

trip delay. Referring again to Fig. 6.2, we can note that b � m ≈ 75 and in that case (see Fig. 6.3

where we report the delivery delay distribution obtained for an aggregate of K RLC PDUs (RLC SDU)

considering a Two-State Channel Error Model [115] [117] [109] [112] for a fixed PDU error rate p = 0.1)

the delivery delay statistics of a RLC SDU, after a few round-trip times, is quite close to the one achieved

for the independent case (the burst length observed in the simulations is lower than 3 for p = 0.1). In

6The available bit rate before coding, i.e., the useful data bit rate.
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Figure 6.1: DCH Spreading Factor = 128 (RLC bit rate = 30 Kbps), Code Rate = 1/2, Time Transmission
Interval (TTI) = 80 ms, RLC PDU length = 360 bits.

conclusion, the iid channel model for a UMTS system can be a good approximation for the link layer

error process. This is mainly due to the large interleaving value used at the physical layer and (at high

bit rates) to the large value of the round-trip delay (b � m). Moreover, one can note from Fig. 6.3 that

an approximation for the bursty case can be achieved by a rigid rotation of the iid curve. This rough

approximation, in many cases, should suffice as a heuristic to drive delay adaptive algorithms. For these

reasons, in this work we consider an independent link layer packet error process. This model, despite its

simplicity, in many cases gives a good approximation for the actual error process as seen at the link layer

of a UMTS system. The extension to the correlated case is being studied.

6.3 Analysis over an Independent Channel Model

In general, the link layer of a third generation cellular system (see for instance [4] for the UMTS case)

can operate either in the Unacknowledged Mode (UM) or in the Acknowledged Mode (AM). Moreover

in AM, higher layer packets (Service Data Units or SDUs) can either be released in-order or out-of-order

to upper layers. In the in-order delivery case, a given SDU, say SDU number i is released to higher levels

only after all SDUs with lower identifier have been correctly received or discarded. A SDU is said to

be discarded when one or more PDUs composing it reached the maximum number of retransmission at-

tempts without being correctly received. In this last case the SDU may be passed to the higher layer and is
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Figure 6.2: DCH Spreading Factor = 32 (RLC bit rate = 120 Kbps), Code Rate = 1/2, Time Transmission
Interval (TTI) ∈ {40, 80} ms RLC PDU length = 360 bits.

marked as erroneous. In the in-order-delivery case we refer to the PDU delivery delay as the time elapsed

between the instant where the PDU is transmitted for the first time over the channel and the instant where

it can be released in-order to upper levels, i.e., no outstanding PDUs with lower identifier are present. The

SDU delivery delay is defined as the time elapsed between the instant where the first PDU composing

the SDU is transmitted for the first time over the channel and the instant where all the PDUs composing

it have been received correctly in-order. Instead, when the RLC is configured to support the out-of-order

delivery of SDUs, a given SDU, say SDU i, may be passed to higher layers when all the PDUs composing

it have been correctly received (or discarded), regardless of the transmission status (correctly received,

delivered, in flight) of other SDUs. In this case the SDU delivery delay is equal to the SDU transmission

delay and corresponds to the time elapsed between the instant in which the first PDU composing a SDU

is transmitted for the first time over the channel and the instant where all the PDUs composing the SDU

have been correctly received. In this case the SDU can be passed to upper levels regardless of the status

of previously transmitted SDUs. Among other settings, another important parameter is the maximum

number of retransmission attempts permitted for each link layer PDU (referred to as L in this work).

In the next section, we first investigate the delivery delay statistics considering in-order-delivery of link

layer SDUs and limited retransmission attempts, whereas in Section 6.3.6 the out-of-order delivery of

link layer SDUs is considered.
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Figure 6.3: Link layer SDU Complementary cumulative delivery delay distribution as a function of the
burst length b considering m ∈ {10, 40, 75}, p = 0.1 and K = 14.

In the next the following quantities are computed

• In Section 6.3.1 we compute the single PDU delivery delay distribution in the in-order delivery

case, Pd[t].

• The transmission delay statistics regarding a link layer SDU Ptx[K, t] is derived in Section 6.3.3.

K is the (integer) number of PDUs composing a link layer SDU.

• In Section 6.3.4, the link layer SDU delivery delay statistics in the in-order delivery case Pd[K, t] is

reported. FromPd[K, t] the SDU complementary cumulative delivery delay distribution (ccdf [K, t])

is obtained.

• Based on the analysis, an accurate approximation for the complementary cumulative distribution in

the in-order delivery case ccdf [K, t] is derived in Section 6.3.5.

• Finally, in Section 6.3.6 a very accurate and simple approximation for the SDU delivery delay in

the out-of-order delivery case is reported.
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6.3.1 Single PDU Delivery Delay Statistics (Pd[t]) for In-Order Delivery of RLC SDUs

The problem to be solved is to find the delivery delay distribution of an aggregate of K link layer

PDUs7. Following the procedure discussed (and justified) later, in Section 6.3.4, this statistics can be

computed by means of a discrete-time convolution between two statistics: the single PDU delivery delay

distribution (Pd[t]) and theK PDUs transmission time distribution (Ptx[K, t]). Pd[t] gives the probability

that a given single PDU is delivered in-order in exactly t slots8, whereas Ptx[K, t] is used to track the

probability that K new PDUs are transmitted over the channel in t slots. Both Pd[t] and Ptx[K, t] depend

on L, RTT and p, i.e., the maximum number of retransmissions allowed for each PDU, the round trip

time and the PDU error probability, respectively.

In this section, we compute the delivery delay regarding a single PDU, i.e., the time needed by a PDU

transmitted at time t to be correctly delivered at the receiver side. We consider in-order delivery, i.e., the

PDU is delivered in-order only if all PDUs with lower identifier transmitted before it have been correctly

received or have been transmitted L+1 times without any success. A given PDU can be released to higher

layers only when all PDUs with lower identifier have been released. In the following analysis we say that

a PDU is resolved in the slot where it is either correctly transmitted or discarded (due to the reaching of

the maximum number of allowed transmissions, i.e., transmitted L + 1 times without any success). We

label a PDU as unresolved if it has been transmitted fewer than L+ 1 times without success.

We consider a pair of nodes that are exchanging packets through a noisy wireless link where the link

layer is configured in the AM mode. The time is slotted, and the slot time corresponds to the single PDU

transmission time. Moreover PDUs are transmitted continuously, i.e., there are no empty slots (Heavy

traffic assumption see [91] [64]). This assumption can be justified in the case where a FTP file transfer or a

video/audio streaming flow is considered. In these cases, in fact data are likely sent back-to-back without

idle times in order to respect the timing imposed by the video/audio data flow and to avoid underutilization

of the assigned resources. These are very important classes of service for which we expect such kind of

behavior. Nevertheless, in the cases where this is not true the heavy traffic assumption, at least for the

in-order-delivery-delay, is surely a worst case delay analysis. This can be explained as follows: in the

in-order-delivery case a tagged packet has to wait for the correct reception of all (and only) the other

packets sent in the same round in which it has been transmitted for the first time (see later in this section

for a justification of this fact). In the heavy traffic case, we always have that the number of packets sent

in a round is at its maximum value (i.e., the number of packets that can be transmitted in one round trip).

Hence, we also have the highest probability that at least one packet is corrupted in that round, i.e., that

the tagged packet will have to wait for out-of-order packets.

Moreover, let m be the (integer) number of PDUs transmitted in a full RLC RTT. We consider that

an acknowledgment message indicating the delivery status of a given PDU transmitted in the generic slot

t is available at the sender at the beginning of slot t + m. Now consider a tagged PDU transmitted in

slot t. Moreover, consider all PDUs transmitted in slot {t −m + 1, t −m + 2, . . . , t − 1}, i.e., the last

m−1 PDUs transmitted before the tagged one (we say that these PDUs are the packets transmitted in the

same window in which the tagged PDU has been transmitted for the first time, in the analysis we refer

to these PDUs as blocking PDUs). Then, we refer as starting window to the set of the tagged PDU plus

7Throughout this study we consider that a SDU is composed by an integer number (K) of link layer PDUs.
8The slot duration corresponds to the packet transmission time.
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these m− 1 packets. Note that these m− 1 PDUs are the only ones that the tagged PDU must eventually

wait for after its correct delivery, i.e., the only PDUs with lower identifier. In fact, a PDU sent for the first

time in window position i is re-sent in the same window position until success or until L+1 transmission

failures. In any case, only from this point on can a new PDU be transmitted over the channel using the

same window position occupied by such PDU. Given this transmission/retransmission behavior and that

PDU identifiers are incremented sequentially in increasing order, it is clear that each PDU must eventu-

ally wait for the resolution (intended either as correct reception or the (L + 1)-st transmission failure)

only of the PDUs contained in its starting window. This simple but effective model to characterize ARQ

has been widely used in the literature so far (e.g., [64] is the most recent work using it). Here, we use it to

characterize the delay performance of a 3G link layer scheme. Note that 3G retransmission schemes have

been enriched by new timers and features with respect to traditional ARQ solutions. These additional fea-

tures have been necessary to ensure a fault-tolerant, fully-programmable and deadlock free scheme that,

however, basically remains a Selective Repeat algorithm. Moreover, our idealized scheme can be seen

as a best case for the delay performance achieved using a 3G compliant link layer because in our model

packets are always acknowledged in the shortest possible time (m − 1 slots), so the time spent between

their previous transmission and the following retransmission is also minimized. As a consequence, the

delivery delay for a given link layer packet is the shortest as well. The only configuration where this is

not true is when the link layer is programmed to transmit multiple copies of the same packet in the same

round trip. However, this is an energy-, resource-inefficient and particular case designed to decrease de-

livery delay at the cost of a degraded throughput performance. Nevertheless, our results are still valid as

a best case estimate that is useful to obtain delay evaluations (that is the aim of our study). Extensions of

the model to better describe a 3G link layer behavior are being studied. However, it is worth noting that

the insights derived here are general and still hold in a more realistic scenario.

In the following we compute the delivery delay statistics for the tagged PDU. With the term PDU

delivery delay we indicate the number of slots elapsed between the instant in which the tagged packet is

transmitted for the first time over the channel and the slot in which this PDU is finally released in-order

to higher layers, i.e., the slot where both the tagged PDU and all the m − 1 blocking PDUs have been

resolved. Moreover, we compute such statistics at the sender side, i.e., we say that the tagged PDU can

be released in-order in the slot where the last unresolved PDU (comprising the tagged packet itself) is

transmitted and resolved at the sender side. Note that this statistics differs with respect to the statistics

at the receiver side by a constant term (the sum of the single path propagation delay and physical layer

processing, Ds). In order to proceed with the analysis, let us subdivide the time in rounds of m slots. In

particular, we refer to round 0 as the one including the PDUs transmitted in slots {t −m + 1, t −m +

2, . . . , t}, where t is the slot in which the tagged PDU has been transmitted for the first time over the

channel. Without loss of generality, in the following we will assume that the tagged packet is transmitted

in position m of round 0, i.e., t = m.

To perform an exact analysis of the PDU delay statistics, it is necessary to keep track of the number

of retransmission attempts performed for each PDU transmitted in the starting window and of its delivery

status (resolved or unresolved). Hence, to describe the probabilistic evolution of the tagged PDU delivery

process, we would build a chain characterized by at least (2× (L+1))m states. However, for large values
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ofm, this would lead to such a large state space to make the problem very difficult to solve. To avoid this,

in the following analysis, we limit the amount of information to be tracked. In particular, at any time, we

only track the full state (transmission attempts and delivery status) of the tagged PDU and the number of

unresolved blocking packets. The resulting analysis is not exact but will be shown to be very accurate.

Moreover, we use the probability P [error] = p to decide whether a PDU in a given slot is erroneous

or not. Note that, given that a PDU is transmitted in error in a slot, the probability that it has reached

its maximum number of transmission attempts is equal to the probability that the PDU has been already

transmitted for L times without any success before the considered slot (P [L prev. errors] = pL). So,

the probability that a PDU is discarded in a slot, i.e., the PDU has been transmitted in error for L + 1

consecutive times, is equal to P [discard] = P [error]P [L prev. errors] = pL+1. Hence, a PDU in a given

slot is transmitted successfully with probability q = 1 − p, is discarded with probability pd = pL+1,

whereas it remains unresolved without being discarded with probability 1 − q − pd = p(1 − pL).

Let u ∈ {0, 1} be a boolean variable indicating the tagged PDU resolving state, i.e., whenever the

tagged packet has been resolved or not. In particular, we use the notation u = 0 and u = 1 for resolution

and no-resolution, respectively. Using this notation, we define ψ[n, i, u] as the joint probability that, at the

end of round i, i ≥ 0 there are n unresolved PDUs among positions (i−1)m+1 through (i−1)m+m−1

and the state of the tagged PDU9 is u. In particular, the probability to have, at the end of round 0, n

blocking PDUs and the tagged packet state equal to u is given by

ψ[n, 0, u] =

(

m− 1

m− n− 1

)m−n−1
∑

k=0

[(

m− n− 1

k

)

qkpm−n−1−k
d (1 − q − pd)

npuq1−u

]

(6.1)

where n ∈ {0, 1, ...,m− 1}, u ∈ {0, 1}, q = 1− p, pd = pL+1 and p is the PDU error probability. In the

equation above, we compute the probability that n out of the m − 1 PDUs transmitted (in round 0) are

unsuccessful, but they have been transmitted less than L+ 1 times (term (1 − q − pd)
n, in this case they

must be retransmitted in the next round and in the same position), that the remaining m − 1 − n PDUs

are resolved either due to their correct transmission (term qk) or to their discard (term pm−n−1−k
d ), and

that the tagged PDU is in state u (where u = 0 means correctly transmitted).

The function ψ[n, i, u], for i > 0, is evaluated recursively in the following way

ψ[n, i, 0]=

m−1
∑

k=n

(

ψ[k, i− 1, 1]q + ψ[k, i− 1, 0]

)

ϕ(k, n)

ψ[n, i, 1]=
m−1
∑

k=n

ψ[k, i− 1, 1]p ϕ(k, n) (6.2)

where ϕ(k, n) is the probability to resolve (correctly receive or discard) k− n PDUs over k in any order,

and is computed as follows

ϕ(k, n) =
k−n
∑

r=0

(

k

n

)(

k − n

r

)

qrpk−n−r
d (1 − q − pd)

n (6.3)

Moreover, the probability to have, at the end of round i, n unresolved packets among positions (i−1)m+1

through (i − 1)m + m − 1 and the tagged PDU in state 0 (ψ[n, i, 0]) is computed as the probability to

9Following our definition of round this PDU is always transmitted in the last slot of each round, i.e., in this case in position
im.
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have k ∈ {n, . . . ,m−1} unresolved blocking PDUs (term ψ[k, i−1, 1]q+ψ[k, i−1, 0]) in the previous

round (i − 1) and that exactly k − n of these PDUs are resolved in round i (term ϕ(k, n)). The term

ψ[k, i − 1, 1] is multiplied by q to account for the case where the tagged packet is resolved at the end of

round i. A similar reasoning is made in the computation of ψ[n, i, 1]. In this case the term ψ[k, i − 1, 0]

is absent because a resolved PDU can never be marked as unresolved. In this case the term ψ[k, i− 1, 1]

is multiplied by p to reflect that the tagged packet is still unresolved at the end of round i.

The delivery delay statistics, indicated as Pd[t = ξm + u], ξ ≥ 0, u ∈ {0, 1, . . . ,m − 1}, i.e., the

probability to have a delivery delay for the single PDU equal to t slots is approximated by means of the

ψ function as follows

Pd[t = ξm+ η] =















































ψ[0, 0, 0] t = 0
m−1
∑

k=0

ψ[k, ξ − 1, 1]q C(k) η = 0, t ∈ D
η
∑

k=1

ψ[k, ξ, 0] C(k) Pη η 6= 0, t ∈ D

0 elsewhere

(6.4)

where D = {1, 2, . . . , Lm}, η ∈ {0, 1, . . . ,m− 1} and ξ ≥ 0. C(k) is the probability to resolve k PDUs

in any order and is given by

C(k) =

k
∑

i=0

(

k

i

)

qipk−i
d (6.5)

Pη is the probability that the last of the k PDUs in error is transmitted in position η of round ξ, where

η ∈ {1, 2, . . . ,m− 1}. Pη is computed as follows

Pη =

(

η−1
k−1

)

(

m−1
k

) (6.6)

In Eq. (6.4), the way Pd[t] is computed depends on the value of η. In more detail, if the tagged packet

is released in-order at a given time ξm + (η = 0), this means that it is released in the slot in which it

resolved10. Given that, all blocking packets are necessarily resolved up to and including the end of round

ξ. When η 6= 0, instead, at the time in which the tagged packet is resolved, there is at least one blocking

packet to be resolved. In this case, Pd[t] is evaluated summing over 1 ≤ k ≤ η the probability (ψ[k, ξ, 0])

that k blocking packets are unresolved at the end of round ξ and that these packets are all resolved (term

C(k)) in the current round (round ξ + 1). Moreover, given that PDU errors are described by means of

an iid process, the position of the last resolved blocking packet is distributed in a uniform manner [91].

We then evaluate the probability of resolving the last blocking PDU in position η using Eq. (6.6). Pd[t]

is reported in Fig. 6.4 and compared against the one computed by simulation for m = 40, p = 0.1 and

L = 3.

6.3.2 Statistical Properties of Pd[t]

In this section we investigate the main characteristics of the function Pd[t]. In what follows, for the

sake of simplicity, we refer to the case where L is unlimited. The obtained results hold also in the limited

10Remember that the tagged PDU is always sent at the end of each round.
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Figure 6.4: Single PDU delay statistics, Pd[t], comparison between analysis and simulation for m = 40,
p = 0.1 and L = 3.

case.

As above, let round 0 be the one where the tagged packet is transmitted for the first time. Moreover,

express the delivery delay as d = ξm+η, ξ ≥ 0, η ∈ {0, 1, . . . ,m−1}. The probability that an erroneous

PDU in round 0 is transmitted correctly in a round up to and including round r is given by Pc[r] = 1−pr.

The probability that the tagged packet is resolved in position m of round s, s > 0, i.e., at time d1 = sm

is given by

Pd[d1 = sm] =
m−1
∑

k=0

ψ[k, 0, 1]Pc[s]
kps−1(1 − p) (6.7)

where we compute the probability to have k blocking packets, that all of them are resolved before slot

d1 (term Pc[s]
k) and that the tagged packet is resolved exactly in slot d1 (term ps−1(1 − p)). Now, let

us compute the probability to resolve the tagged PDU at time d2 = sm + 1, i.e., in the first slot of the

following round

Pd[d2 = sm+ 1] =
m−1
∑

k=0

ψ[k, 0, 1]Pc[s]
kps(1 − p) (6.8)

in this case ψ[k, 0, u] must be viewed as the probability that the PDU occupying position 1 in round 0

was in error (u = 1) and that exactly k packets out of the remaining m − 1 are erroneous, Pc[s]
k is

the probability that PDU in slot {2, 3, . . . ,m} are transmitted correctly up to and including round s and

ps(1 − p) represents the probability that the PDU transmitted in the first position of round 0 is resolved
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Figure 6.5: Asymptotic behavior of Pd[t] obtained by analysis, m = 40, p = 0.1 and L = 7.

in slot d2. Observing Eqs. (6.7) and (6.8), it is clear that the following relation holds

Pd[sm+ 1] = Pd[sm]p s ≥ 0 (6.9)

This is a general result that will be very useful in order to find very fast and accurate approximations of

such statistics. Moreover, using again these equations, we can find the difference between the probability

to resolve the tagged packet in the first slot and at the end of a given round (s > 0)

Pd[(s− 1)m+ 1] − Pd[sm] =
m−1
∑

k=0

ψ[k, 0, 1]ps−1(1 − p)∆[s, k] (6.10)

where ∆[s, k] = Pc[s]
k − Pc[s− 1]k. At this point, by rewriting Pc[s]

k as (1 − ps)k =
∑k

i=0

(

k
i

)

(−ps)i

it is easy to verify that ∆[s, k] tends to 0 as s increases. In practice this convergence is very fast and,

as a consequence11, Pd[t], after a short transient phase, becomes almost constant inside each round (see

Figs. 6.4 and 6.5). These considerations allow us to assert that the asymptotic behavior of the delivery

delay statistics is described by the following equation

y[t] = p
t−t0

m (6.11)

11This is ensured by the fact that Pd[t] is non-decreasing inside each round, i.e., Pd[sm + 1] ≤ Pd[sm + 2] ≤ · · · ≤
Pd[sm + m], s ≥ 0. This can be verified from Eq. (6.4).
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In more detail, Eq. (6.9) and the fact that, after a first transient phase, all points in a round have

the same value allow us to conclude that, in the logarithmic domain, and after a transient phase, the

values of the delivery delay probability in the first (last) slot of each round are placed over a straight line.

This observation allows us to find, after a short transient phase, the exact behavior of Pd[t] simply using

Eq. (6.11). Given m and p, the only parameter that needs to be computed is the value of t0 that can be

found by solving the equation Pd[sm] = y[sm] for s sufficiently large12.

In Fig. 6.5 we report Pd[t] and the straight lines indicating the asymptotic behavior by varying p

considering m = 40 and L = 7.

6.3.3 Link Layer SDU Transmission Delay Statistics

In this section we compute the transmission delay statistics of an aggregate of K PDUs (link layer

SDU), i.e., the statistics of the time elapsed between the instant in which the first PDU composing a SDU

is transmitted over the channel and the slot in which the K-th PDU (the last composing the SDU) is

transmitted for the first time over the channel. First of all, note that a new PDU is sent over the channel in

the generic slot t if and only if a PDU had been resolved m slots earlier (in slot t−m). In fact, each PDU

at the time of its first transmission occupies a given position in its starting window. Such PDU is then

transmitted every m slots in the same window position until success or until L + 1 transmission failures

have occurred. In other words, a given window position is occupied for transmission by a single PDU up

to and including the slot where it is finally resolved. Only from this point on, can the slot be assigned to

a new PDU13. Hence, the number of PDUs resolved in a generic time interval, say [t, t + N ], is exactly

equal to the number of new PDUs transmitted in the time interval [t+m, t+m+N ]. In particular, the

new transmission process is simply the enabling process deterministically right shifted by m slots.

In the following analysis, we adopt the same assumptions made in the previous section, i.e., we do

not track the exact state of each PDU but we decide whenever a PDU is successfully transmitted, still

unresolved or discarded using the probabilities q, 1 − q − pd and pd, respectively.

In this section, we refer to the SDU transmission time as the number of slots elapsed between the time

in which the first PDU composing the SDU is transmitted for the first time and the slot where the last (the

K-th) PDU is transmitted for the first time over the channel. Hence, the probability that a full SDU is

transmitted in exactly t slots, say in the time interval [i, i + t], i ≥ 0 corresponds to the probability that

K−1 new PDUs are taken from the input queue and transmitted for the first time over the channel in slot

i+ 1 through i+ t given14 that the first PDU composing the SDU packet is transmitted for the first time

in slot i. We refer to this probability as Ptx[K, t]. Moreover, recall that a packet resolution in a given slot

implies the transmission of a new packet m slots apart, this probability is the same as that of resolving

K − 1 packets in t − 1 slots, say [i −m + 1, i + t −m], where the last packet must be resolved in the

(t− 1)-st slot (slot i+ t−m) given that we have the first resolution in slot i−m.

Hence, a good approximation of the transmission delay statistics, Ptx[K, t], can be obtained using the

12Note that for p values up to and including 0.1, s = 1 suffices to derive a very accurate approximation for t0.
13We say, in this case, that the resolution of a given PDU enables the transmission of a new PDU over the channel m slots

apart, i.e., in the same window position of the next round. In the sequel this process will be referred to as enabling process.
14Where the last (K-th) PDU must be transmitted for the first time in slot i+t, whereas the remaining K−2 PDUs (excluding

the first and the K-th) can be transmitted in any order in slots i + 1 through i + t − 1.
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following formula

Ptx[K, t] =















(

q + pd

)K−2
∑

r=0

(

t− 2

r

)(

t− 2 − r

K − 2 − r

)

pr
d q

K−2−r(1 − q − pd)
t−K K ≤ t ≤ tmax

0 elsewhere
(6.12)

where tmax = m(L+1)+K−1. In the equation above, we compute the probability to have K−2 PDU

resolutions over t − 2 slots in any order (terms pr
d and qK−2−r) and that the PDU transmitted in the last

(the t-th) slot is also resolved (term q + pd). Note that the statistics above is conditioned on having the

resolution of the first PDU (of K) in the first slot. Moreover, Ptx[K, t] is zero for t < K and t > tmax.

The first case is trivial, whereas the second case is justified as follows. In the worst case, the first PDU is

transmitted for the first time in a window where all the remaining (m− 1) PDUs are also transmitted for

the first time. Moreover, in the very worst case all these PDUs are retransmitted repeatedly for L times in

each of the following L rounds. Only from this point on, can the remaining K − 1 PDUs be transmitted

in position 1 through K − 1. Note that this reasoning is valid as long as K − 1 ≤ m, but it can easily

be extended to the more general case in which K − 1 > m. In this work we focus on the case where

K − 1 ≤ m because it is a very common situation under typical logical channel settings in UMTS. For

instance, considering a link layer logical bit rate of B = 120 Kbps, a typical PDU size of 360 bits, and

a link layer round trip time of RTT = 220 ms, we have that about 75 PDUs are transmitted in a full

round-trip (m ≈ 75). In addition, a SDU of 1 Kbyte is transmitted in 23 PDUs. Moreover, for a fixed

RTT , m increases with B. However, our analysis, with minor changes (it is sufficient to change tmax),

still holds also in the case where K − 1 > m.

In Fig. 6.6, we compare the results obtained from Eq. (6.12) with the ones achieved by simulation. By

observing this figure we can conclude that the statistics derived using Eq. (6.12) is reasonably accurate

for small L values, and it tends very quickly to the exact statistics as L increases.

In the next, we compute the asymptotic behavior of Ptx[K, t]. In particular, we are interested in the

computation of the ratio Ptx[K, t + 1]/Ptx[K, t] as a function of t. Observing that
(

i+1
j

)

= i+1
i+1−j

(

i
j

)

,

i > j, we can rewrite Ptx[K, t+ 1] as

Ptx[K, t+ 1] = (1 − q − pd)
t− 1

t+ 1 −K
Ptx[K, t] (6.13)

that holds for any t such that K ≤ t < tmax. From Eq. (6.13) it is straightforward to note that Ptx[K, t+

1]/Ptx[K, t] for large values of t tends to the constant value (1 − q − pd). In this case Ptx[K, t], can be

very well approximated by a straight line (in the logarithmic domain). These results will be used later, in

Section 6.3.5, to derive fast and accurate approximations of SDU delay statistics.

6.3.4 SDU Delivery Delay Statistics for In-Order Delivery Case

In this section we derive the delivery delay statistics of a link layer SDU, i.e., the number of slots

elapsed between the instant where the first PDU composing that SDU is transmitted for the first time over

the channel and the instant in which the full SDU is received and can be passed in-order to higher layers.

To find such statistics, we subdivide the SDU delivery time in two contributions, where the first one is

given by the time elapsed between the first transmission of the first PDU composing the SDU and the slot
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Figure 6.6: Transmission delay statistics, Ptx[K, t], comparison between analysis and simulation for
m = 40, K = 14 and p = 0.1.

where the last (K-th) PDU is transmitted over the channel. To track this delay we use the transmission

statistics computed in Eq. (6.12). From this point on, we use the single PDU delivery delay statistics in

Eq. (6.4) to track the time needed for PDU K to be delivered in-order. Note that the slot where this last

PDU can be delivered in-order to higher layers is the same slot where the whole SDU can be delivered

in-order. This is justified by the fact that the PDUs that eventually block the delivery of the K-th packet

at the instant of its first transmission are only the ones with an identifier lower than the one assigned to

that PDU. In conclusion, by using a discrete-time convolution product of these two contributions, we are

able to obtain the delay statistics Pd[K, t] of a full SDU

Pd[K, t] =







0 t < K
∑t

r=K Ptx[K, r]Pd[t− r] t ≥ K
(6.14)

In Fig. 6.7 we compare the SDU delivery delay statistics obtained by simulation against the one obtained

analytically using Eq. (6.14). Here, we note that simulation points can be estimated only until error

probabilities of the order of p ≈ 10−5. For lower values of p the statistics can not be obtained due to

the rare occurrences of the corresponding events. In Fig. 6.8, instead, we report simulation and analytical

results by varying the number of PDUs composing one SDU (K). As can be observed from these figures,

analysis and simulation points are in very good agreement. Note also that Pd[K, t] is zero for t >

(L+ 1)m+K − 1, i.e., where Ptx[K, t] is zero.
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Figure 6.7: Pd[K, t] for m = 40, K = 28, L = 3 and p = 0.1.

The most useful quantity is the complementary cumulative distribution function (ccdf ) of Pd[K, t],

i.e., the probability that the SDU delivery time exceeds a given number of slots, formally

ccdf [K, t] = 1 −
t
∑

x=0

Pd[K,x] (6.15)

Moreover, recall that our analysis is not inclusive of the single path propagation delay (Ds) regarding the

delivery of the K-th PDU (Section 6.3.1). The complementary delivery delay statistics comprehensive of

Ds is computed as follows

Prob{SDU delay > t} =







0 t < Ds

ccdf [K, t−Ds] t ≥ Ds

(6.16)

6.3.5 Accurate Approximation of the SDU Complementary Cumulative Distribution Func-
tion, ccdf [K, t]

We believe that the ccdf statistics would be very useful if available at any user terminal. It can be used,

for example to predict in advance performance metrics, or used directly in some kind of cost function.

The main drawback of the analysis presented in the previous section is that it is computationally too

complex to be effectively used in a mobile terminal, since the involved computations would be time and

energy consuming. Moreover, unless the time spent for the computation of the statistics is small with
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Figure 6.8: Pd[K, t], comparison between K = 7 and K = 28 for m = 40, L = 3 and p = 0.1.

respect to the period of time in which the channel behavior (p) remains constant, then it results to be

useless. For this reason, in addition to energy requirements we have computation delay requirements

dictated by the stationarity period characterizing the PDU error process. For these reasons, here, after

investigating the major properties of the complementary cumulative distribution, we will propose a very

low-complexity and fast heuristic able to accurately approximate such statistics.

In Fig. 6.9, the cumulative complementary distribution ccdf [K, t] is plotted by varying L for m = 40

and p = 0.1. First of all, we note that this statistics presents a cyclic behavior, where the cycle length is

equal to m. Moreover, the property expressed by Eq. (6.11) still holds, i.e., in the logarithmic scale the

points at the beginning of each round (slots K + sm+ 1, s ≥ 0) are aligned on a straight line (solid bold

line in Fig. 6.9), described again by Eq. (6.11) (appropriately setting the parameter t0). Moreover, for a

given value of L, the statistics follows the behavior of the one where L is unlimited approximately until

t = K + Lm; whereas from this point on (in the last round where the ccdf is greater than zero, i.e., in

t ∈ (K + Lm,K + (L + 1)m − 2]15) ccdf [K, t] starts decreasing very quickly. It is very interesting

to note that the slope concerning this last part appears to be the same as the one characterizing the SDU

delivery delay statistics (Pd[K, t]) and the SDU transmission delay statistics (Ptx[K, t]), both reported for

comparison in Fig. 6.9. Therefore, in this last part, the statistics follows a straight line (in the logarithmic

domain) whose behavior at time t is characterized by Eq. (6.13). To obtain a good approximation of

this last part, we can simply use Eq. (6.13) by taking the limit slope, i.e., the one reached when t grows

15Pd[K, t] is zero for t > (L + 1)m + K − 1, so ccdf is zero for t > (L + 1)m + K − 2.
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Figure 6.9: ccdf [K, t] by varying L and p for K = 14, m = 40.

to infinity. In conclusion, for t ≥ K + Lm, the complementary cumulative distribution can be well

approximated by

yf [t] = (1 − q − pd)
t−t′

0 (6.17)

Now, in order to find a heuristic able to entirely describe such statistics, we need to generate the first part,

i.e., the one observed for 0 ≤ t ≤ K + Lm. This is quite simple using Eq. (6.11) to find the ccdf values

at the beginning of each round and by noting that, in the linear domain, the points inside each round are

aligned on a straight line. In conclusion, the behavior of ccdf [K, t], for 0 ≤ t ≤ K + Lm can be well

approximated by a piecewise linear function, whereas we can use Eq. (6.17) to approximate the tail of the

distribution (K + Lm < t ≤ K + (L+ 1)m− 2).

In the next, we first report the function used to fit the ccdf statistics when L is unlimited. Let ti be

the first slot of round i, i ≥ 1, then ti = K + (i− 1)m+ 1. As discussed above, we can use the function

y[t] to find the probability corresponding to the points at the beginning of each round, ti. Moreover, we

can approximate the behavior of ccdf between these points by means of a line whose extremes are y[ti]
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Figure 6.10: ccdf [K, t], comparison between analysis and fitting for K = 14, m = 40, L unlimited.

and y[ti+1]. In practice, ccdf can be well approximated by the following function

f ′[K, t] =































1 t ∈ [0,K − 1]

1 − ψ[0, 0, 0]qK−1 t = K

y[ti] +
(y[ti+1] − y[ti])(t− ti)

m
t ∈ [ti, ti+1),

∀i s.t. i ≥ 1

(6.18)

In Fig. 6.10 we compare the cumulative distribution obtained analytically against the one derived using

Eq. (6.18). As can be observed from that figure, the approximation is very accurate for any p.

Now, we investigate how to approximate ccdf [K, t] when L is limited. For this purpose, we consider

the approximation given by Eq. (6.18) for t ∈ [0,K + Lm], whereas, to fit the tail of the ccdf (t ∈
(K + Lm,K + (L+ 1)m− 2]), we use the function yf [t]. Formally

f [K,L, t] =



















f ′[K, t] t ∈ [0,K + Lm]

yf [t] t ∈ (K + Lm,K + (L+ 1)m− 2]

0 t > K + (L+ 1)m− 2

(6.19)

the parameter t′0 in yf [t] can be computed by requiring that y[K +Lm+ 1] = yf [K +Lm+ 1], i.e., that
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Figure 6.11: Comparison between ccdf [K, t] and f [K,L, t] for K = 14, m = 40, L = 4.

the first point of yf [t] match with y[t] in the last round. Hence, t′0 is found as

t′0 = tL+1 −
log(y[tL+1])

log(1 − q − pd)
(6.20)

At this point, to obtain the complete statistics from Eq. (6.19) the only parameter that needs to be specified

is t0 (Eq. (6.11)). This parameter, for a given K, can be accurately fitted and stored in a lookup table

as a function of p. This can be achieved obtaining the analytic curves and fitting y[ti] with ccdf [K, ti]

for a sufficiently large i (in order to capture the asymptotic behavior of the statistics in the logarithmic

domain). Moreover, the number of points to be stored in such a table could be limited by exploiting some

properties of t0 as a function of p, i.e., observing that the behavior of t0 as a function of p is linear for

p ≥ 0.004 and that, for p ≤ 0.001, it is linear in the log p domain. Fig. 6.10 has been obtained using this

first method.

Another very effective way to estimate t0 is to consider the probability ccdf [K,K] = 1−ψ[0, 0, 0]qK−1,

i.e., the probability to deliver the SDU in more than K slots. Now, supposing that ccdf [K, t1 = K + 1]

is well approximated by16 y[t1] and taking ccdf [K,K] as an estimate of this quantity, we can find t0 as

follows

t0 = K + 1 −m× log(1 − ψ[0, 0, 0]qK−1)

log p
(6.21)

16Note that Eq. (6.11), after a transient phase, gives the exact value of ccdf [K, ti], i ≥ 1. Moreover, the length of this phase
for small p values tends to 0 and the following approximation holds: ccdf [K, t1] ≈ y[t1].
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In Fig. 6.11 we compare the distribution obtained analytically against the one derived from Eq. (6.19),

and using this last method to evaluate t0. At low p values, t0 is approximated very well and the statis-

tics is fitted accurately. However, as p increases (p = 0.1 in that figure), the assumptions made in the

computation of t0 are less accurate (the fitting, in this case is less accurate too).

The heuristic expressions given in Eqs. (6.17)–(6.21) make it possible to accurately approximate the

delay statistics of aggregates of K link layer packets by means of a piecewise linear function. The pa-

rameters needed for this computation are the round trip time (expressed in number of packets transmitted,

i.e., normalized and rounded up to the packet transmission time), and an estimate of the link layer packet

error probability, p. From these values, it is easy to compute ψ[0, 0, 0] (q(q+pd)
m−1) and to find f ′[K, t]

and f [K,L, t]. These functions are then used to estimate the delay ccdf from Eqs. (6.11) and (6.17) based

on the estimate of the parameter t0 as given in Eq. (6.21). As the number of parameters to be estimated

and stored is small and the approximate analytical expressions are simple, this approximate technique can

be easily implemented on terminals with constrained resources, so that delay-driven algorithms can be

implemented on handsets.

In the next section we find the statistics of such an aggregate ofK link layer PDUs in the out-of-order

delivery case.

6.3.6 SDU Delivery Delay Statistics in the Out-of-Order Delivery Case

In the out-of-order delivery case, each link layer SDU can be passed to higher layers when all the

PDUs composing it have been correctly received regardless of the delivery status of other SDUs.

In the following we compute the delivery delay distribution regarding a single SDU. As in previous

sections, we proceed starting from the slot where the first PDU composing that SDU is transmitted for

the first time over the channel. Without loss of generality, we assume that such PDU is transmitted in

position 1 in its transmission round (referred to as round 1). We refer as slot t = 1 to the slot where this

transmission occurs. Note that, for the reasons discussed in previous sections, we are sure that in slot

1 − m a successful transmission occurred. Hence, the whole statistics is conditioned on the fact that a

correct transmission occurred in slot 1−m. Once again, we assume K to be the (integer) number of link

layer PDUs composing one SDU.

In the next, we present an approximate approach that is able to fit very accurately the SDU delivery

statistics when K � m or K ≤ m and p � 1. This analysis is valid as long as K ≤ m. However, note

that in UMTS, due to the large link layer round trip time (up to 220 ms), this condition is likely verified.

In the computation of the out-of-order delivery delay statistics we relax the hypothesis of having a finite

L, i.e., we assume an infinite number of retransmission attempts.

Our analysis is based on the consideration that, when K � m and/or p� 1, with almost probability

1, all the K PDUs composing the tagged SDU are transmitted for the first time in round 1. Where

this hypothesis holds, the delay statistics, i.e., the probability that a tagged SDU is released in slot η,

η ∈ {1, 2, . . . ,m} of round ξ, ξ ≥ 0 given that the first PDU composing it is transmitted for the first time
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in slot 1 can be found with great accuracy using the following set of equations

Pd[ξm+ η] =















































0 ξm+ η < K

f1(η,K)qK ξ = 0, η ≥ K
m
∑

i=K

η
∑

k1=1

[

f1(i− η + 1,K − k1 + 1) f2(η, k1)P(K, k1, ξ)

]

ξ > 0, η < K

K
∑

k1=1

f1(η, k1)P(K, k1, ξ) ξ > 0, η ≥ K

(6.22)

where ξ ≥ 0, η ∈ {1, 2, . . . ,m}. The functions f1, f2 and P are reported below

f1(x, y) =

(

x− 2

y − 2

)

px−yqy−1 (6.23)

f2(x, y) =







1 x = 1

f1(x, y) x > 1
(6.24)

P(K, k1, ξ) = (1 − pξ)K−k1(1 − pξ+1)k1−1pξq (6.25)

In particular, in Eq. (6.22), for ξm + η ∈ {K, . . . ,m}, i.e., ξ = 0 and η ∈ {1, 2, . . . ,m}, we compute

the probability that, in round 0, there are K successes17 in slot 1 through η and that the last (the K-th)

success is in position η (term f1(η,K)), i.e., all the SDU is transmitted during the first round and the

last PDU composing it (the K-th) is transmitted in position η. Then, we multiply this probability by the

probability that all these K PDUs are transmitted successfully in round 1 (term qK).

For ξm + η > m, we subdivide the case where η < K from the case where η ≥ K. In the first

case, we compute the probability (term f2(η, k1)) of transmitting k1 PDUs in round 1 (or equivalently

of having k1 successes in round 0) in slot 1 through η, where the last successful PDU (the k1-th) is

transmitted in slot η. Moreover, with the term f1(i − η + 1,K − k1 + 1) we account for the remaining

K − k1 transmissions (of the PDUs composing the tagged SDU) to be placed in slots η+ 1 through m of

the first round (where i is the number of slots needed to transmit the K PDUs, i.e., the position where the

K-th PDU is transmitted). After that, we use the P function to compute the probability that the k1 − 1

PDUs transmitted in slot j1, j1 < η, are correctly received up to round ξ + 1 (term (1 − pξ+1)k1−1), that

the PDU in position η is transmitted correctly in slot ξm + η (term pξq) and that the K − k1 PDUs in

positions j2, j2 > η are successfully transmitted up to and including slot ξm (term (1 − pξ)K−k1).

When η ≥ K, instead, we first compute the probability that k1 PDUs are transmitted in positions

{1, 2, . . . , η} (in the first round) and that the last (the k1-th) of these PDUs is transmitted exactly in po-

sition η (term f1(η, k1)). Then, using the function P we account for the probability that the PDUs in

slots {1, 2, . . . , η − 1} are correctly transmitted up to and including round ξ + 1, that the k1-th PDU is

transmitted correctly in position η of round ξ + 1 and that all the remaining PDUs (K − k1, that are

transmitted in position j ∈ {η + 1, . . . ,m}) are successfully transmitted up to and including round ξ.

In Fig. 6.12 we report the comparison of the cumulative complementary delay distribution (ccdf ) be-

tween the in-order and out-of-order delivery cases. As expected, the out-of-order case is characterized

17As noted above these successes will enable K new PDU transmissions in the following round.



Section 6.4 – Analysis over a Two-State Markov Channel Model 121

0.0001

0.001

0.01

0.1

1

0 20 40 60 80 100 120 140 160

cc
df

[K
,t]

t

io, simulation
io, analysis

ooo, simulation
ooo, analysis

Figure 6.12: ccdf [K, t]: comparison between in-order (io) and out-of-order (ooo) delivery cases consid-
ering K = 14, p = 0.1 and m = 40.

by the lowest delivery delay; for some values of t, in this case, the cumulative delivery delay probability

is reduced by a factor of 3 with respect to the in-order delivery case. This could be very useful in the

presence of delay constrained flows. It is worth noting that also in this case the delivery delay statistics

are characterized by a cyclic behavior that can be captured using Eq. (6.11) by appropriately tuning the

t0 parameter. In this case, the statistics can be accurately fitted noting that the first part of each round

is characterized by a constant value, whereas after this phase the distribution starts decreasing until the

beginning of the following round. Hence, by using twice Eq. (6.11), i.e., to track the starting point of

each round and the ending point of the corresponding constant phase, and using again straight lines to

approximate the decreasing behavior after constant periods, it is straightforward to obtain accurate and

fast heuristics also for the out-of-order delivery case. These heuristics are not shown here due to space

constraints but can be obtained based on what explained in previous sections.

6.4 Analysis over a Two-State Markov Channel Model

In the remaining of the Chapter, the focus will be put on more complicated channel models. In the

following sections, the delay statistics at the link layer will be achieved considering a Two-State Markov

Channel model (which is introduced in Section 6.4.1). In Section 6.4.2, the analytical framework to ob-
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tain delay statistics in such a case is presented. In Section 6.4.3, an approximated approach is given in

order to reduce the statistics computation complexity. Moreover, in Section 6.4.4 a methodology to ob-

tain such delay statistics for aggregate of link layer packets will be provided. This is an extension of the

analysis presented in Sections 6.4.2 and 6.4.3 which enables the computation of application layer packets

statistics. Some results for the Two-State Markov Model are reported in Section 6.4.5.

In the last sections of the Chapter (Section 6.5 through 6.5.4) delay statistics will be derived under a

generic N-State Markov Model, which, by means of an opportune tuning of its transition probabilities, is

able to provide a fairly good approximation for the underlying fading process in a wide range of scenarios.

6.4.1 Two-State Markov Model

We assume here that the wireless channel is characterized by means of a two-state Discrete Time

Markov Chain (DTMC) [52] [93], whose states are named 0 and 1. The related transition probability

matrix P and the corresponding i-step transition probability matrix P(i) are defined as follows

P =

(

p00 p01

p10 p11

)

(6.26)

P(i) = P
i =

(

p00(i) p01(i)

p10(i) p11(i)

)

(6.27)

The steady-state channel error probability is ε = p01

p10+p01
, while the average error burst length is given

by b = 1/p10. We model the errors in the channel with the hypothesis that transmissions occurring

during state 1 are always erroneous, whereas state 0 is error free. This is a reasonable assumption in

many cases [117] [115]. From a theoretical point-of-view, even such a simple model is able to give

the necessary insight for the analysis. ARQ system model and assumptions are the same considered in

Section 6.3.1.

6.4.2 Exact Analysis

Let us compute the delivery delay statistics of Selective Repeat ARQ for a single PDU. As in Sec-

tion 6.3.1, we mark a PDU of interest, called in the following tagged PDU, and to track its successful

delivery. Note that this implies a joint tracking of the transmissions of the tagged PDU, as well as all

previous PDUs.

Some remarks about the notation used for the rest of the Chapter are presented here. The slot in

which the tagged PDU is transmitted for the first time will be indicated as slot t = m. The m-sized

window from slot 1 to slot m will be called fundamental window, due to the important role it plays in

the analysis. We will finally consider the delivery of the tagged PDU as complete when all PDUs with

smaller id number have been correctly received. This is not completely appropriate, since the release

time is evaluated at the receiver. However, the delay between these two instants is a constant Ds (known

a priori and approximately equal to m/2), that is the sum of the path delay and the processing delay.

Since this term does not affect the analysis, we will ignore it for simplicity. Thus, in the following we

will study the statistics of Pd[k], defined as the probability that the delivery delay equals k slots plus the
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constant term Ds. For example, Pd[0] is the probability that the tagged PDU is released at the instant of

its reception, i.e., the first transmission attempt is successful and the re-sequencing delay is zero.

To evaluate the release of the tagged PDU requires checking whether each PDU with lower id has

been correctly received or not. At first glance, this seems to require a large amount of memory, as the

delivery of the tagged PDU can be blocked by a PDU with an arbitrary low id. However, it would not be

hard to analytically prove that the memory required to study the delivery of the tagged PDU equals the

status of exactly m PDUs. A formal proof of this statement can be found in [94]. In particular, the tagged

PDU is released upon correct reception of all PDUs transmitted in the fundamental window. Given the

above notation, this means that the PDUs that block its release are necessarily transmitted in one of the

slots between 1 and m − 1. Intuitively speaking, this fact can be justified from the SR ARQ behavior

previously explained: m slots after its transmission, each PDU is either identified as correctly received or

retransmitted. Thus, each PDU with lower id than the tagged one is either correctly received before time 1

(hence, even at the instant of first transmission of the tagged PDU) or transmitted during the fundamental

window.

At the same time it can be easily proven that the transmission at time 0 must be correct (otherwise the

transmission at time m could not be the first transmission of the tagged PDU, rather it would have been

a retransmission), and also that each transmission of a new PDU occurring at time t > m can not affect

the delivery of the tagged PDU, as the new PDU must have an id larger than the tagged one. Hence, our

study ignores all PDU arrivals after time m. The problem to be solved is therefore to find the time it takes

for all PDUs transmitted in slots 1 through m to be eventually received correctly, given that a successful

transmission occurred in slot 0.

To evaluate the resolution of the entire fundamental window we formulate this algorithm, in which

the slots in position t ≥ 1 are marked as follows

1. Every slot t ≥ 1 begins unmarked. Let t = 1.

2. If every slot from t on is marked, the procedure ends. If slot t is marked but there are unmarked

slots left, increase t until an unmarked slot is encountered.

3. If in t the transmission is successful, mark with the label resolved every slot in position κm + t,

with κ integer, κ ≥ 0. Increase t by 1 and go to step 2.

4. Else, in t an erroneous transmission occurs. In this case, mark only slot t with the label unresolved,

increase t by 1 and go to step 2.

For example, let m = 3 and suppose that a good channel state at t = 1 is followed by a burst

of four erroneous slots and then the channel is again good for three more slots. The algorithm gives:

1=resolved, 2=unresolved, 3=unresolved, 4=resolved (despite the channel error, as it was previously

marked), 5=unresolved, 6=resolved, 7=resolved, 8=resolved. After slot 8, the algorithm ends, because

every slot in a higher position is marked as resolved.

It is straightforward to prove that this is always true, i.e., after a slot with a sufficiently high position

every other slot is marked as resolved. This is equivalent to saying that there is somewhere a sequence of

m consecutive resolved slots, after which every further slot is also resolved.
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This algorithm has an intuitive justification as follows: if slot 1 ≤ t ≤ m contained an erroneous

transmission, the tagged PDU could not be released, as at least one PDU in the fundamental window has

not been correctly transmitted. By marking slot t as unresolved, we imply that a retransmission will be

scheduled in slot m + t. If this retransmission is successful, then slot m + t will be marked as resolved,

otherwise it will be marked as unresolved again (with the effect of a further retransmission in slot 2m+ t

and so on until success). On the other hand, if a slot t contains a successful transmission, i.e., is marked as

resolved, we can neglect each transmission in slot κm+ t, with κ positive integer. In fact, once a packet

is successfully transmitted at time t, each slot κm+ t with κ > 0 contains a transmission of a PDU with

larger id than the tagged one. By recalling that for our purposes future arrivals are ignored, we can mark

not only slot t but also each slot κm+ t as resolved, that implies that it does not affect the delivery of the

tagged PDU.

In general, slotm+t (with t ≥ 1) will be marked as resolved if slot twas itself resolved or the channel

state in slot m + t is good, and will remain unresolved otherwise. Since the delivery of the tagged PDU

corresponds to the resolution of the entire fundamental window, we can check when the first sequence of

m resolved slots occurs. Incidentally, note that after this sequence every slot is resolved. Thus, a suitable

model to track the relevant events is one in which memory is kept about the resolved/unresolved status of

the m− 1 most recent past slots.

In other words, at any given time t, we need to know the status of slots t−m+1, t−m+2, . . . , t−1.

A binary variable is therefore assigned to each slot to carry this information. Considering t as the current

slot, bk = 1 if slot t−m+ 1 + k is still unresolved, and bk = 0 otherwise, for k = 0, 1, . . . ,m− 2. We

obtain in this way a string of bits denoted by b that keeps memory of which slots are yet to be resolved.

An equivalent representation for the bitmap b, used in the following to simplify the notation, is the integer

i =
∑m−2

k=0 bk2
k.

We also need to specify the status of the current slot, i.e., slot t. In this case a binary variable is no

longer sufficient, since we also need to track the channel state, which is necessary to determine the future

evolution of successful transmissions. Notice that the Markovian nature of the channel evolution makes

it possible to ignore the channel state in slots t−m+ 1, t−m+ 2, . . . , t− 1 once the channel state in t

is known. The only channel state required for the analysis is thus that of the current slot. Three situations

are possible: the channel is good, which implies that the slot is resolved (if it was not resolved already,

the good channel state makes it resolved now); the channel is bad and the slot is resolved, in a previous

transmission; the channel is bad and the slot is still unresolved. These three possibilities will be denoted

by 0, 1 and 2, respectively, and the associated variable will be denoted by ω.

Consider now the random process X(t) = (i(t), ω(t)) which jointly tracks slot-by-slot the Markov

channel evolution and the status of the m latest slots. This process is a Markov chain. In order to deter-

mine the possible transitions X(t) → X(t+ 1) = (i′, ω′) and the corresponding transition probabilities,

suppose at time t the bitmap b is (b0, b1, . . . , bm−2), where the most significant bit bm−2 denotes the sta-

tus of the most recent among the past slots. At time t+1 this bitmap is clocked one position into the past,

i.e., b′ = (b′0, b
′
1, . . . , b

′
m−3, b

′
m−2) = (b1, b2, . . . , bm−2, f(ω)), where f(ω) = 1 if ω = 2 (current slot at

time t was still unresolved), and f(ω) = 0 if ω = 0, 1. (More compactly, in this case f(ω) = bω/2c.)

Regarding the value of ω′ = ω(t+ 1), note the following. If at time t b0 = 0, the corresponding slot

has already been resolved, and therefore ω′ = 0 or 1 according to the channel state at time t+ 1. On the



Section 6.4 – Analysis over a Two-State Markov Channel Model 125

other hand, if b0 = 1, the slot is still unresolved at time t, hence we have ω ′ = 0, if the channel at time

t + 1 is good (slot is resolved at this time), and ω′ = 2 otherwise (slot remains unresolved). There are

only two possible destinations for X(t+1), given X(t), since the shift of the bitmap is deterministic and

the only random variable is the channel state which can assume two values. More precisely, the transition

probabilities are given as follows

• if i is even (i.e., b0 = 0), then

P [X(t+ 1) = (i′, ω′)|X(t) = (i, ω)] =



















pxy if i′ = b i
2c + bω

2 c2m−2,

x = dω
2 e, ω′ = y, y = 0, 1

0 otherwise

(6.28)

• if i is odd (i.e., b0 = 1), then

P [X(t+ 1) = (i′, ω′)|X(t) = (i, ω)] =



















pxy if i′ = b i
2c + bω

2 c2m−2,

x = dω
2 e, ω′ = 2y, y = 0, 1

0 otherwise

(6.29)

where the use of ω′ = 2y in the latter case means that a good channel y = 0 leads to ω ′ = 0 whereas

a bad channel y = 1 leads to ω′ = 2, i.e., the situation of bad channel and unresolved slot. According to

the above rule, the transition probability matrix can be built, with two non-zero entries per row.

In order to find the delay statistics, we proceed as follows. Let π = [π0 π1 · · · πK ] be a 1 × K

vector whose K = 3 · 2m−1 entries represent the probabilities that the system starts in a given state. π is

computed as follows

if ω is even (0, 2): π(i,ω) = p0b0

[m−2
∏

j=1

pbj−1bj

]

pbm−2
ω
2

(6.30)

if ω is odd (1): π(i,ω) = 0 (6.31)

Let e0 be a column vector of all zeros except for the entries corresponding to states (0, 0) and (0, 1), that

are equal to 1. If T is the transition matrix of the Markov chain X(t), we determine

Pc[k] = πT ke0, k ≥ 0 . (6.32)

The distribution Pc[k] is the probability that the delivery delay is less than or equal to k. Finally, Pd[k] is

determined as

Pd[0] = Pc[0], Pd[k] = Pc[k] − Pc[k − 1] ∀k > 0 . (6.33)

Another interesting distribution is the cumulative complementary distribution of the delivery delay statis-

tics, ccdf [x], defined as:

ccdf [x] = Prob{delay > Ds + x} = 1 − Pc[x]. (6.34)

This value, which can be directly derived in our model, represents the probability that the delivery delay

exceeds x slots. Henceforth, it has great importance in estimating whether delay constraints are met for

real-time applications.
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6.4.3 Approximated Analysis

Even though the above analysis is exact, it has the main drawback of having a complexity which is

exponential in m. In more detail, the number of states that is needed to track the ARQ window evolution

is growing as 2m. Hence, for large values of the round trip delay, the computation of the exact statistics

becomes both memory and time expensive making it impossible to compute such statistics directly at

the link layer. In this Section, we propose a simple approximate approach that allows to reduce the

computational complexity enabling the computation of the statistics for large m. In more detail, instead

of tracking the exact position of each unresolved slot, we propose to analyze the resolving process simply

by tracking the number of remaining slots to be resolved.

To do that, we consider rounds of m slots and build a Markov chain in which the state is represented

by X(r) = (ne(r), C(r)), r ≥ 1, where ne(r) and C(r) are the number of unresolved slots in round r

and the channel state in the last slot of round r, respectively. This Markov chain evolves round by round,

i.e., m slot at a time. Round 1 is the one comprising slots 1 through m. Note that, in this Markov chain,

the knowledge about the position of unresolved slots is completely ignored. Moreover, in order to keep

track of errors and corrections, we arbitrarily assume that all unresolved slots are deterministically placed

at the end of each round. This simple approximation rule allows us to neglect the exact position of each

unresolved slot and to achieve a complexity linear in m.

Let φij(k, n), i, j ∈ {0, 1} be the probability that k slots in {1, 2, . . . , n} are successful and the

channel state is j at time n, given that the channel state was i at time 0. This is a well-known function

that can be derived either in recursive [52] or close [112] form.

Now, let Ψ0j(e, r) be the probability of having e (1 ≤ e ≤ m) unresolved slots in round r and that

the channel in the last slot of round r is j given that the channel in slot 0 was correct. This function can

be computed recursively as follows

Ψ0j(e, r) =















φ0j(m− e,m) r = 1
m
∑

k=e

∑

i∈{0,1}

Ψ0i(k, r − 1)Rij(k − e, k) r > 1
(6.35)

where,

Rij(q, k) =











φij(q, k) k = m
∑

c∈{0,1}

pic(m− k)φcj(q, k) k < m . (6.36)

The function Rij(q, k) is used to compute the probability that q slots are resolved over k in round

r, and that the channel state in the last slot of round r is j given that the channel state in the last slot of

the previous round (r − 1) was i, and that all unresolved slots are deterministically grouped at the end of

each round. Note that the recursive expression (Eq. (6.35)) is initialized (round r = 1) by exploiting the

knowledge of the channel at time 0 and computing the mean probability to have e erroneous transmissions

in any order in that round. Moreover, the probability to have e unresolved slots, 1 ≤ e ≤ m, at the end

of round r, r > 1 (Ψ0j(e, r)) is obtained by considering the probability to have k (Ψ0i(k, r − 1), e ≤
k ≤ m) unresolved slots after r − 1 rounds and that exactly k − e of these slots are resolved in round r

(Rij(k − e, k)). Finally, these probabilities are summed over e ≤ k ≤ m and over i ∈ {0, 1} to account

for all the admitted values of unresolved slots and channel states at the end of round r − 1. Observe
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that the probability to be in state X(r) = (ne(r), C(r)), 1 ≤ ne ≤ m, C ∈ {0, 1}, r ≥ 1 is given by

Ψ0C(ne, r).

Now, let us write the time index t as t = ξm+ η, where ξ ≥ 0 and 1 ≤ η ≤ m are the number of full

rounds and the number of slots in the current round covered by t, respectively. With this decomposition,

time t belongs to round ξ + 1, whereas ξ is the previous round.

In the following, we discuss an approximate approach for the evaluation of the probability Pd[k]. As

a first step, using the function Ψ0j(e, ξ), we evaluate the probability that the last PDU is resolved in round

ξ + 1. Note that this is the probability of having e > 0 outstanding errors in round ξ and zero in round

ξ + 1. This evaluation assumes that the e outstanding errors correspond to consecutive slots within a

round. Conditioned on the last PDU being resolved in round ξ + 1, we can approximate the probability

distribution of the specific slot in round ξ + 1 in which this resolution takes place by just assuming that

all positions of the error burst within the round are equally likely.

More specifically, we adopt two slightly different approaches. In the first approach, called Burst at

the End (BE), we first compute the probability that 1 ≤ e ≤ m erroneous packets (Ψ0j(e, ξ)) are inherited

from the previous round ξ and we evaluate the probability to resolve these PDUs by grouping them in

a single burst at the end of round ξ + 1, i.e., in position m − e + 1 through m of that round. Note that

following this procedure the exact position of the erroneous PDUs is not tracked and what we obtain is

the approximate probability for the release of the tagged PDU in round ξ + 1. However, what we need

is not just the probability to release the tagged PDU in a given round, but the probability that the tagged

packet is released in slot k of that round, 1 ≤ k ≤ m. To derive an approximation for this probability, we

assume that the slot in which the last of the e PDUs is resolved is uniformly distributed between position

e and m of round ξ + 1. The resulting distribution is a simplified version of the actual one that is indeed

more complicated, even though the agreement is good also for large values of m.

In the second approach, named in the sequel Shifted Burst (SB), we evaluate the probability of resolv-

ing the burst of consecutive erroneous slots inherited from the previous round (ξ) in a uniformly chosen

position of the final round. Unlike in the previous approach, where the burst could not end in slot k < e,

in this case we allow any value for k (between 1 and m). If k is smaller than the size of the burst, we

admit that the burst is cyclically shifted. E.g., if the last position of a burst of length 3 is the second slot,

we split the shifted burst in two sub-burst sequences such as the erroneous slots will be the first two and

the last one. Note that the burst can be in any position with equal probability.

In both strategies we assume that the real instant of resolution in the final round ξ + 1 (which is

neglected, as the analysis is carried out round–by–round) is one of the slots between ξm+1 and (ξ+1)m

with equal probability. The difference is in the order between the evaluation of the resolution probability

and the uniform distribution assumption among the slots in round ξ+1. BE first evaluates the probability

of resolving the errors concentrated in a burst at the end of round ξ + 1; after that, this probability is

uniformly distributed among the possible slots in that round. SB, instead, considers directly that the burst

ends in position ξm+ 1 ≤ k ≤ (ξ + 1)m (with probability 1/m); in this case the contributions of all the

m-cyclically shifted bursts where the last erroneous packet occupies position k are summed together to

give the resolution probability in that slot.

Let us define the function ρ as the probability that the channel in the last slot of round ξ is j and that

exactly e (1 ≤ e ≤ m) slots are yet to be resolved at the end of round ξ and that these e slots are all
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resolved in round ξ + 1 (final round) given that the last unresolved slot is in position p, e ≤ p ≤ m.

Formally

ρ(j, e, ξ|p) = Ψ0j(e, ξ)pj0(p− e+ 1)pe−1
00 (6.37)

This function is the probability of resolving a burst accounting for its length (e), the position occupied by

its last element (p) and the channel state (j) at the end of round ξ. In the following we report the detailed

description of the two approaches.

Burst at the End (BE) Approach

The delivery delay statistics is computed in the following way

Pd[k] =























1

m

∑

j∈{0,1}

m
∑

e=1

ρ(j, e, ξ|m)u[η − e] η 6= m

1

m

∑

j∈{0,1}

m
∑

e=1

ρ(j, e, ξ|m)e η = m

(6.38)

where k = ξm + η, with ξ ≥ 0 and 1 ≤ η ≤ m. The function u[·] is the discrete time unit step, i.e.,

u[n] = 1 for n ≥ 0, whereas u[n] = 0 for n < 0, n integer.

The probability of the first passage through states (0, C) in round ξ+1, i.e., for k ∈ {ξm+1, . . . , ξm+

m} is computed by considering all the unresolved slots inherited from round ξ to be placed at the end of

round ξ+1. Moreover, this probability is subdivided among slots ξm+η, ∀ η ∈ {1, . . . ,m} by assuming

that the final unresolved slot is distributed by means of the function PE(η|e) that is the approximate

probability that the burst ends in position η given that it consists of e slots. PE(η|e) is defined a priori as

follows

PE(η|e) =



















0 η < e

1/m e ≤ η < m

e/m η = m

(6.39)

To sum up, in this approach we first resolve all the unresolved slots inherited from the previous round ξ by

deterministically grouping it at the end of the round. Thus, the last unresolved slot is always in position

m of each round. What we obtain in this way is the probability of release of the tagged packet in round

ξ + 1. After that, we subdivide such probability among all slots ξm+ η, with 1 ≤ η ≤ m by considering

the distribution PE(η|e).

Shifted Burst (SB) Approach

In this approach, we also consider that the unresolved slots inherited from round ξ are grouped in a

single burst, but unlike in BE, we evaluate the resolution of such a burst assuming that its last element

can be cyclically shifted (with probability 1/m) between position 1 through m of round ξ + 1. With this

assumption the delivery delay statistics can be written as

Pd[k] =























1

m

∑

j∈{0,1}

m
∑

e=1

ρ(j, e, ξ|η)u[η − e] η 6= m

1

m

∑

j∈{0,1}

m
∑

e=1

[

ρ(j, e, ξ|m) +
∑

y<e

ρ′(j, e, ξ|y)
]

η = m

(6.40)
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where:

ρ′(j, e, ξ|p) = Ψ0j(e, ξ)pj0p
p−1
00 p00(m− e+ 1)pe−p−1

00 . (6.41)

With Eq. (6.40), we compute, for each η ∈ {1, . . . ,m} in round ξ+1, the probability to resolve the burst

given that its last slot is in position η, where η ≥ e. Thus, when η ≥ e, we guarantee that the first slot of

the burst is in position f with f ≥ 1. For the correction of the burst of unresolved slots, see the function

ρ(j, e, ξ|p) with18 p = η.

When η = m, the contributions of m-cyclically shifted versions of the burst are also considered. In

more detail, we split the e-sized (where e are the residual errors from the previous round ξ) burst in two

parts where the first part is composed by the y slots in position {1, . . . , y}, whereas the second part is

composed by the e− y slots in position {m− e+ y+1, . . . ,m}.19 These contributions are then resolved

by means of the function ρ′(j, e, ξ|y). ρ′ is used to evaluate the probability that the channel in the last slot

of round ξ is j and that exactly e (1 ≤ e ≤ m) slots are to be resolved at the end of round ξ and that these

e erroneous packets are all resolved in round ξ+1 given that they are subdivided in two bursts, where the

first one occupies positions {1, . . . , y} and the second occupies positions {m− e+ y + 1, . . . ,m}.

6.4.4 Computation of the Delivery Delay Statistics of an Aggregate of ARQ PDUs

In this Section we use the delivery delay statistics Pd[t] previously derived20 in order to obtain the

delivery delay statistics of an aggregate of K ≥ 1 ARQ PDUs: as will be shown in the following K is

not a limiting factor for the model complexity. Even if the procedure for finding such aggregate statistics

is illustrated here for a Two-State Markov Channel error model, the principles behind the procedure

are general and, through some standard techniques presented in [52], it can be easily translated into its

generalized version, i.e., accounting for an N-State Markov Chain.

In any event, our task here is to find out the delivery delay statistics of such an aggregate ofK packets.

With the term delivery delay statistics, we mean the number of slots elapsed between the time in which

the first of the K PDUs is transmitted for the first time over the channel and the slot where all the K

packets are correctly received and none of them is waiting for in-order delivery, i.e., all the K PDUs can

be passed in order to higher levels.

As previously noted for the tagged PDU, the transmission of the first PDU (of K) in a given window

position implies that a correct transmission occurred m slots earlier (in the same window position, see

Fig. 6.13). Moreover, when a PDU is lost in a given slot, that PDU will surely be retransmitted m

slots later in the same window position. So, each PDU is transmitted/retransmitted in the same window

position until success, and only from this point on, the window position occupied by that PDU can be

used to transmit a new packet. The key point is the following: each correct transmission in a given round

enables a new transmission in the same window position in the following round21, so counting the number

of slots in which the channel is error-free in a given time interval, say [i, i+N ], is equivalent to counting

how many new packets are transmitted over the channel in the interval22 [i+m, i+N +m]. In practice,

18The same function has been used in the BE approach, but with p = m.
19Note that, for these bursts, the m-th slot of round ξ is always erroneous. That is the reason why they are assigned to the

case where the resolution occurs in position η = m.
20The single PDU delivery delay statistics.
21Hereinafter, we refer to this process as new transmissions enabling process.
22Because each error-free slot enables the transmission of a new packet m slots apart.
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(K−1,i−1)
00

φ dP [s]

m=6 slots

1 0 11 1

1st transmission
of PDU 1 (of K)

00 1 1 1 .....

of PDU 2 (of K)
1st transmission

m=6 slots

of PDU K (of K)
1st transmission

0 .....

K−th good slot1st good slot

m=6 slots

starting window (K−th PDU)

Figure 6.13: Transmission of K ARQ PDUs over the channel.

the process given by new transmissions is simply the enabling process deterministically shifted forward

in time by m slots (see Fig. 6.13). Hence, the probability distribution regarding the transmission of K

packets is the same characterizing the enabling of K new packet transmissions. This last distribution,

i.e., the probability distribution of the time i elapsed between the slot in which the first transmission of

the first PDU (of K) is enabled and the instant in which the transmission of the K-th packet is enabled

is given by φ00(K − 1, i− 1).23 In the sequel we refer to this probability as Pen[K, i]. Pen[K, i] can be

computed as follows

Pen[K, i] =







0 i < K

φ00(K − 1, i− 1) i ≥ K
(6.42)

Note that here, PDU K plays the role of the tagged PDU in the previous Section, so the slots in which

PDU K is enabled and transmitted can be viewed as slot 0 and m, respectively. Furthermore, all the

out-of-order packets that PDUK has to eventually wait for after its correct transmission are only the ones

transmitted between slot 1 and slot m (Fig. 6.13), i.e., the memory needed to account for the in-order

delivery of all the K PDUs does not depend on K, but only on the value of the round trip delay (m).

In conclusion, we can subdivide the delivery delay of the K PDUs in two parts: in the first part we

account for the time between the enabling of the first transmission of PDU 1 and the slot in which the

transmission of PDU K is enabled (φ00(K − 1, i − 1)). In the second part, we track the delivery delay

regarding the last (K-th) PDU, starting from the slot where the transmission of such PDU is enabled.

Moreover, remember that enabling process and new transmission process are the same process determin-

istically shifted in time by m slots, and that the delivery delay regarding PDU K is characterized by the

function Pd[s] that starts to track the channel m slots before the first transmission of that packet, i.e., in

the last slot tracked by Pen[K, i]. Thus, the distribution characterizing the delay between the instant of

the first transmission of PDU 1 and the instant in which all K PDUs can be correctly delivered in-order

23φrs(x, y) is defined here as the probability to have x good slots out of slots {1, 2, . . . , y} and to have the last slot y in state
s, given that slot 0 is in state r. φ00(K − 1, i − 1) is then the probability of having K good slots over i, i ≥ 0. See [52]
and [112] for its derivation in recursive and close form, respectively.
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can be found as

Pd[K, s] =







0 s < K
∑s

i=0 Pen[K, i]Pd[s− i] otherwise
(6.43)

Also in the aggregate case, we can easily derive the complementary delivery delay distribution; as above

ccdf [K,x] = 1 −
x
∑

s=0

Pd[K, s] (6.44)

This function is very important because it is directly related to the delivery time of higher level pack-

ets. In the TCP/IP case, for example, it could be used to compute the timeout event probability, i.e., the

probability that a given higher level packet experiences a delay larger than the value of the TCP timeout.

Performance of the TCP protocol are directly related to this probability; thus, the QoS perceived by the

final user is directly related to this metric as well. Another interesting case is the UDP, where the cumu-

lative distribution could be useful to decide whenever the delay perceived by higher level packets fulfills

application requirements. For example, in the case of voice traffic we have some delay constraints due by

the maximum tolerable interactive delay. Hence, this statistics can be easily translated into performance

metrics for any kind of transport protocol/application operating at higher levels.

6.4.5 Results for the Two-State Markov Channel Error Model

The delivery delay statistics Pd[k] has been computed according to the above analysis, for various

values of the channel error probability ε and the channel burstiness b. To test the accuracy, we used a

simulator in which we implemented the simple transmission of packets with a SR ARQ scheme applied

to the same scenario; thus, we empirically measured the delivery delay statistics, in addition to deriving

them from the exact analysis.

In Fig. 6.14, we evaluate Pd[k] and compare the case of independent (iid) channel with different

values of the correlation b. In any case, the shape of the delivery delay statistics presents a step-wise

behavior with a logarithmic-constant gap after every positions κm, κ integer. Moreover, both in the iid

and the correlated error case, the resolving probability presents an increasing behavior with the maximum

placed at the end of each round. In the iid case, this effect is due to the larger number of combinatorial

events leading to the resolution of an m-sized window in the last slot. This behavior vanishes after a

few rounds, where Pd[k] becomes almost constant within a given m-sized window. In addition to this,

over bursty channels another effect is present. In fact, when the channel correlation is large, an erroneous

tagged PDU transmission at time m likely comes with the erroneous transmission of the m−1 packets in

position 1 through m − 1. In this case, all packets are likely released in the subsequent error free period

and this leads to a larger probability of resolving the window at the end of a round.

An interesting value is Pd[0]. When the delivery delay is 0, the tagged packet is released at the

end of the slot in which it is received, i.e., both the tagged packet transmission and the m − 1 previous

transmissions are correct. In this case the transmission delay is equal to half the round trip delay and the

re-sequencing delay is zero. It can be observed that Pd[0] in the bursty case is higher, due to the higher

probability to have a whole window of correct slots when errors occur in burst. This phenomenon has

a larger impact if the error probability is high (see Fig. 6.14(b)). As a matter of fact, the probability of

delivering the tagged PDU within a delay equal to m can be heavily underestimated by considering the
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errors in a bursty channel as independent. The value of Pd[0] has a great impact on the throughput. Thus,

we can say that Fig. 6.14 confirms the results presented in [73], where the throughput performance of

ARQ on a correlated channel is shown to be better than in the case of static channel. On the other hand,

the slope of each curve decreases with increasing b, that is, the larger the bursts, the higher the probability

of having large delays. In fact, on average, the channel recovers from an error, i.e., is restored into the

good state, after a number of slots equal to b. Thus, for high k we see an increase of the probability of

large delivery delays due to the channel burstiness.

In Fig. 6.15(a) Pd[k] is plotted in the iid case for various values of ε. When ε is low, the maximum

value of Pd[k] is in k = 0. As ε increases, the maximum of Pd[k] shifts to the right. The same behavior

can be observed when the channel is correlated (see Fig. 6.15(b)). Note the difference in shape for each

round between the two cases.

The different behavior when the channel is correlated can also be observed by looking at Fig. 6.16(a),

where the mean delivery delay is reported as a function of ε by varying b. In this graph, simulation

points are also plotted to test the correctness of the analysis. In Fig. 6.16(b) the mean delivery delay

is reported against the error burstiness b by varying ε. The first value of b on the leftmost part of the

graph corresponds to the iid case (b = 1/(1 − ε)). For each ε, the mean delivery delay is monotonically

decreasing as a function of b. In other words, the iid case is the one characterized by the highest mean

delivery delay under all channel conditions.

Fig. 6.17 reports the delivery delay standard deviation, simulation points are reported for comparison.

Unlike for the mean delivery time, this metric in the iid case can not be interpreted as a bound. In fact,

its role with respect to the correlated case depends on both b and ε. Moreover, its behavior is clearly

different from that of the other curves. However, this again shows that considering the channel as iid can

be a misleading assumption when the channel is correlated.

In Fig. 6.18 we report the complementary distribution ccdf [x] by varying b, and plotting the same

graph in linear (Fig. 6.18(a)) and in logarithmic scale (Fig. 6.18(b)). Again, from Fig. 6.18(a) it is clear

that the iid case is not a suitable model when errors are correlated. In particular, we emphasize the higher

probability of a rapid delivery (i.e., for low x) in the correlated case, also when the correlation is low, e.g.,

b = 3. Even after a full round (x = m) there is a gap in the curves: for instance, ccdf [x = m = 10] in

the iid case is almost twice that in the correlated case with b = 15. Other differences, for higher values

of x can be observed from Fig. 6.18(b).

In the next, we focus on the comparison between the exact analysis and the approximate approaches

presented in Section 6.4.3. This comparison is reported in Figs. 6.19(a) and 6.19(b) for an iid and a

correlated channel (b = 7), respectively. In these figures, the round trip time has been considered to

be large (m = 30). In general, the approximate approaches are in excellent agreement with the exact

statistics. The only region where the approximations fail is for uncorrelated channel and at low delays.

In an iid channel, in fact, errors do not occur in bursts, and so the approximation made in Section 6.4.3

that unresolved slots are disposed in a bursty way in this case does not hold. However, the effect of this

approximation vanishes very quickly as the delay increases and the approximation becomes very close

to the exact curve. In the iid case, both BE and SB approaches give the same results. When the channel

is correlated (Fig. 6.19(b)), instead, the statistics obtained from BE and SB are in good agreement with

the exact curve for any value of the delay. The BE approach overestimates the delivery delay statistics
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at the beginning of each round. The SB approach, instead, appears to underestimate the exact statistics

for any value of the delay. Moreover, the estimate obtained from BE degrades as the delay k increases

until, for a very large k, all points in the round are aligned over a straight line. SB, instead, gives a good

approximation also for large values of k. The points derived using SB are the closest to the exact curve,

except for k = im, i ≥ 1, where the best estimate is given by BE. For what concerns the cumulative

delay distribution (Fig. 6.20), BE gives the best estimate for any value of b. Moreover, in the independent

case, the burst assumption only results in a small discrepancy regarding the first round. For any other

value of k, exact statistics and approximation match almost perfectly. In the correlated case (b = 7), the

BE approach gives the best complementary cumulative delay distribution estimate. From the obtained

results, we can conclude that the estimate of the delivery delay statistics is reasonably accurate for any

b, so approximate methods could effectively be used in real systems enabling a fast and less memory

expensive computation of the cumulative delay distribution also for large values of m.

In Fig. 6.21(a) we report the delivery delay distribution of an aggregate of K PDUs by varying

K. Simulation points are reported to show the correctness of the analysis24. In Fig. 6.21(b) we report

Pd[K, s] with K = 14 by varying the channel correlation. The complementary delivery delay distribu-

tion ccdf [K,x] is reported in Fig. 6.22 for K = 14, m = 10, ε = 0.1 by varying the channel burstiness

b. Finally, observe that both shape and behavior of Pd[K, s] are similar to the one characterizing Pd[s];

the only differences are: Pd[K, s] is right-shifted by K − 1 slots with respect to Pd[s] and it presents a

smoother behavior than the one characterizing Pd[s]. The shift is due to the minimum time needed to

transmit all the K PDUs over the channel (K slots), whereas the smoothness is a property of the discrete

convolution product (Eq. (6.43)).

24Simulation fails at low (Pd[s] ≤ 10−5) probabilities due to the rare occurrence of the corresponding events and to the finite
simulation time.
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Figure 6.15: Pd[k] as a function of ε by considering m = 10.
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Figure 6.18: Cumulative complementary delivery delay distribution, ccdf [x] (ε = 0.1, m = 10).
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Figure 6.21: Aggregate delivery delay statistics: comparison between analysis and simulation.
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6.5 Analysis over an N-State Markov Channel Model

In the remaining of the Chapter, the analysis presented in Section 6.4.2 is generalized in order to

account for a generic N-State Markov Error Model. In the next Section 6.5.1, the N-State Markov Chain

is introduced first. Subsequently, in Section 6.5.2, some procedures to derive the Markov chain transition

probabilities are presented. These techniques account for physical channel characteristics such as user

mobility (i.e., Doppler frequency). In Section 6.5.3 the analysis to derive link layer delay statistics is

presented in detail. Some preliminary results are reported in Section 6.5.4. Later on, in Section 6.5.5,

further results are presented to evaluate the accuracy of the statistics obtained from the Markov modeling

approach. Finally, Section 6.6 concludes the Chapter.

6.5.1 N-State Channel Model

Consider an N-State Discrete Time Markov Model, where the slot duration corresponds to the ARQ

packet transmission time. We account here for a general Markov model where states 0, 1, . . . , ν − 1

correspond to an error–free transmission of the packets, whereas the remaining states ν, ν+1, . . . , N − 1

mean erroneous transmission. Formally, each state n ∈ {0, 1, . . . , N − 1} is associated with a packet

error probability Pe[n] = u[n− ν], where u[·] is the unit step, i.e., u[n] = 1 if n is greater than or equal

to 0, and u[n] = 0 otherwise. The model is fully described by the N × N transition probability matrix

P = {p}ij , where pij is the probability that the state in the next slot is j given that the state in the current

one is i.

The above model comprises, as a particular case, the widely used [48, 102] K-state model where

S = {0, 1, ...,K − 1} is the set of the states, tij is the transition probability from state i to state j and

every state in S is characterized by a PDU error rate εk ∈ [0, 1], i.e., a PDU transmitted when the channel

is in state k is erroneous with probability εk. This last Markov Chain is completely specified by the pair

(T, E), where T is the transition probability matrix and E is the state error probability vector. The model

is equivalent to considering N = 2K states (with ν = K) in S ′ = {0, 1, . . . , ν − 1 = K − 1, ν =

K, . . . , N − 1}, where the transition probabilities pij , 0 ≤ i, j ≤ N − 1 are derived as follows:

pij =







txy(1 − εy) j ∈ {0, 1, . . . ,K − 1}
txyεy j ∈ {K,K + 1, . . . , N − 1}

(6.45)

where x = i−Ku[i−K], y = j −Ku[j −K], 0 ≤ x, y ≤ K − 1. Moreover, note that in the extended

model states {0, 1, . . . ,K − 1} are error free, i.e., a PDU is always transmitted correctly in these states,

whereas in states K through N − 1 PDUs are always transmitted erroneously. In the sequel, we extend

this Markov model of the underlying channel to a further Markov chain tracking the ARQ layer queue.

Moreover, we show how it is possible to derive a Markov representation of a Rayleigh fading channel. The

combination of these techniques allow us to analytically derive higher layer statistics from the physical

layer error process.

6.5.2 Derivation of the N-State Markov Model

In this section we report the procedures that we have considered to derive an N-State Markov model

of a Rayleigh fading channel (see Fig. 6.23). Several techniques to deal with this problem have been
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presented in previous research (see [99, 102, 104], among others). Here, the simple method in [102] is

considered first. Later on, and in order to gain some understanding on the impact of the selected method,

we propose a new approach which keeps into account the shape of the packet error probability function.

This is done with the aim of using a given number of Markov channel states (N ) in the most efficient

way, i.e., in order to better describe the packet error behavior at the ARQ layer. Since the scope of the

following analysis is mainly to propose and validate a framework to obtain link layer delay statistics,

we limit here our investigation to these two techniques. In spite of their simplicity, these methods are

effective and lead to an accurate description of the ARQ delay statistics.

Let Γ denote the received signal to noise ratio (SNR). The pdf of Γ is exponential as follows [102]:

pΓ(γ) =
1

γ0
e−γ/γ0 , γ ≥ 0 (6.46)

where γ0 = E[Γ]. Let 0 = Γ0 < Γ1 < · · · < ΓK−1 < ΓK = +∞ be K + 1 thresholds for the SNR.

The Rayleigh channel is said to be in state k = 0, 1, . . . ,K − 1 if the received SNR is in the interval

[Γk,Γk+1). Moreover, associated with each state there is an error probability εk that is the PDU error

rate experienced in state k. We define F(γ) as the function mapping the instantaneous SNR level γ into

the conditional PDU error probability. Once the threshold levels are chosen for every state, the PDU

error rate in the generic state k is found as εk = (
∫ Γk+1

Γk
F(γ)pΓ(γ)dγ)/θk, where θk is the steady state

probability to be in state k. In this work we assume a π/4-DQPSK modulation scheme [104], i.e., the bit

error probability can be approximated as ε(γ) ≈ (4/3)erfc(
√
γ). F(γ) is then derived as 1−(1−ε(γ))L,
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where L is the ARQ packet length expressed in bits.25 The steady state probability θk is computed as:

θk =

∫ Γk+1

Γk

pΓ(γ)dγ = eΓk/γ0 − eΓk+1/γ0 (6.47)

The simplest approach for choosing the SNR thresholds [102] is to consider θk = 1/K, ∀ k = 0, . . . ,K−
1. In this case, the threshold levels can be easily estimated by recursively applying Eq. (6.47), given that

Γ0 is known. However, this procedure leads to a rough estimation of the underlying fading process [104]

[99]. For this reason, we consider here an improved threshold selection criterion. We first choose two

numbers, l1 and lK−1 so that l1 is close to zero and lK−1 is close to 1. Then we choose the first (Γ1)

and the last (ΓK−1) unknown thresholds such that Γ1 = F−1(l1) and ΓK−1 = F−1(lK−1). Once Γ1

and ΓK−1 are known, θ0 and θK−1 can be evaluated by Eq. (6.47). In this procedure we assign first the

states 0 and K − 1 to the SNR levels corresponding to a PDU error rate that is smaller than l1 and larger

than lK−1, respectively. At this point, we use the remaining K− 2 states to characterize the SNR interval

between Γ1 and ΓK−1, i.e., where the PDU error rate is in the range [l1, lK−1]. The remaining K − 2

thresholds are chosen to satisfy θk = (1 − θ0 − θK−1)/(K − 2) = eΓk/γ0 − eΓk+1/γ0 . In practice, the

aim of our method is to assign the remaining states 1, 2, . . . ,K − 2 to the region containing the transition

of the function F(γ). A graphical representation of this procedure is reported in Fig. 6.24. Once the

25More complicated expressions could be used to account for the use of error correction codes.
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thresholds have been computed, the transition probabilities are derived as in [99] according to:

tij=

∫ ζi+1

ζi

∫ ζj+1

ζj
fR1R2

(r1, r2, ρ)dr1dr2

θi

fR1R2
(r1, r2, ρ)=

4r1r2
λ

e−(r2
1
+r2

2
)/λI0(2ρr1r2/λ)

(6.48)

where ζi =
√

Γi/γ0, fR1R2
(r1, r2, ρ) is the bivariate Rayleigh joint pdf [99], ρ = J0(2πfdTp) is the

correlation of two samples of the underlying Gaussian process that are spaced by Tp seconds, fd is the

Doppler frequency, Tp is the ARQ PDU transmission duration, J0(·) and I0(·) are the Bessel function

and the modified Bessel function of the first kind and order zero. The Markov Chain (T, E) derived with

this method is then transformed into the N × N transition matrix P following the procedure presented

in Section 6.5.1. The matrix P is finally used in the analysis presented in the following Section 6.5.3 to

derive the ARQ delay statistics.

6.5.3 Computation of the Delivery Delay Statistics in an N-State Markov Channel

Our goal here is the computation of the delay statistics for a single PDU transmitted using Selective

Repeat ARQ. In order to do so, we develop a model which tracks the successful delivery of the PDU

of interest (called tagged PDU), as well as all previous PDUs. First of all, suppose the tagged PDU

is transmitted for the first time in slot t = m. This implies that all previous PDUs (i.e., those whose

identifier is smaller than the tagged PDU) excluding them−1 PDUs transmitted in slots 1 throughm−1

have been successfully received, and that in slot 0 a successful transmission occurred (otherwise in slot

m we would have a retransmission). Therefore, the tagged PDU is finally released upon correct reception

of all PDUs transmitted in slots 1 through m. On the other hand, all PDUs which are transmitted for the

first time during slots t > m must have a larger id than the tagged PDU, and therefore do not affect the

delivery of the tagged PDU. We can then ignore all future PDU arrivals in our study.

The problem to be solved is therefore to find the time it takes for all PDUs transmitted in slots 1

through m to be eventually received correctly, given that a successful transmission occurred in slot 0.

Consider the evolution of the system after slot m. If slot 1 contained an erroneous transmission, a re-

transmission will be scheduled in slot m+ 1. If this retransmission is successful, then slot m+ 1 will be

marked as resolved, otherwise it will be marked as unresolved (with the effect of a further retransmission

in slot 2m+ 1 and so on until success). On the other hand, if slot 1 contained a successful transmission,

then slot m + 1 corresponds to a slot which was already resolved, and will be itself resolved (recall that

for our purposes future arrivals are ignored, and therefore once a packet is successfully delivered the

corresponding slot remains empty). In general, slot m + k (with k > 0) will be marked as resolved if

either slot k was itself resolved or the channel state in slot m + k is good, and will remain unresolved

otherwise. Since in case of transmission failure in an unresolved slot a packet is rescheduled for transmis-

sion m slots later, a suitable model to track the relevant events is one in which memory is kept about the

resolved/unresolved status of the m− 1 most recent past slots, i.e., at any given time t, we need to know

the status (resolved/unresolved) of slots t −m + 1, t −m + 2, . . . , t − 1. A binary variable is therefore

assigned to each slot to carry this information.
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Considering t as the current slot, bk = 1 if slot t−m+1+k is still unresolved, and bk = 0 otherwise,

for k = 0, 1, . . . ,m− 2. This string of bits keeps memory of which slots are yet to be resolved, and can

also be represented by the integer i =
∑m−2

k=0 bk2
k. In addition, we need to specify the status of the

current slot, i.e., slot t. In this case a binary variable is no longer sufficient, since we also need to track

the channel state, which is necessary to determine the future evolution of successful transmissions. (Note

that the Markovian nature of the channel evolution makes it possible to ignore the channel state in slots

t−m+1, t−m+2, . . . , t−1 once the channel state in t is known.) For the current slot, many situations

are possible, in particular there are three main cases: the channel is in a good state, which implies that

the slot is resolved (if it was not resolved already, the good channel state makes it resolved now); the

channel is in a bad state and the slot is resolved (in a previous transmission); the channel state is bad and

the slot is still unresolved. These three possibilities comprise ν, N − ν and N − ν states of the channel,

respectively, where ν is the number of good states (with a packet error probability equal to zero) in the

Markov chain.

Thus, these 2N − ν states for the last PDU condition will be denoted in numerical order, i.e., by

{0, 1, . . . , ν − 1}, {ν, ν + 1, . . . , N − 1}, {N,N + 1, . . . , 2N − ν − 1} , respectively. The associated

variable will be denoted by ω. Consider now the random process X(t) = (i(t), ω(t)) which jointly

tracks slot-by-slot the Markov channel evolution and the status of the m latest slots. According to the

above definitions and discussion, this process is a Markov chain. In order to determine the possible

transitions and the corresponding transition probabilities, suppose at time t the bitmap which describes

the slot status is b = (b0, b1, . . . , bm−2), where the most significant bit bm−2 denotes the status of the

most recent among the past slots. At time t + 1 this bitmap is clocked one position into the past, i.e.,

b′ = (b′0, b
′
1, . . . , b

′
m−3, b

′
m−2) = (b1, b2, . . . , bm−2, f(ω)), where f(ω) = 1 if ω ≥ N (current slot at

time t was still unresolved), and f(ω) = 0 if ω < N . More compactly, in this case f(ω) = u[ω − N ],

where u[·] is the unit step. Regarding the value of ω′ = ω(t+ 1), note the following. If, at time t, b0 = 0,

the corresponding slot has already been resolved, and therefore 0 ≤ ω ′ ≤ N −1 according to the channel

state y at time t + 1, so that ω′ = y. On the other hand, if b0 = 1, the slot is still unresolved at time t,

and therefore we have 0 ≤ ω′ ≤ ν − 1 if the channel at time t + 1 is good (slot is resolved at this time)

and N ≤ ω′ ≤ 2N − ν − 1 otherwise (slot remains unresolved). In the former case, it is again ω ′ = y,

whereas in the latter ω′ = y + N − ν. Note that given X(t) there are only N possible destinations for

X(t+ 1), since the shift of the bitmap is deterministic and the only random variable is the channel state

which can assume N values. More precisely, the transition probabilities are given as follows:

• if i is even (i.e., b0 = 0), then:

P [X(t+ 1) = (i′, ω′)|X(t) = (i, ω)] =























pxy if i′ = b i
2c + u[ω −N ]2m−2,

x = ω − (N − ν)u[ω −N ],

ω′ = y, y = 0, 1, . . . , N − 1

0 otherwise

(6.49)



148 Chapter 6

• if i is odd (i.e., b0 = 1), then:

P [X(t+ 1) = (i′, ω′)|X(t) = (i, ω)] =































pxy if i′ = b i
2c + u[ω −N ]2m−2,

x = ω − (N − ν)u[ω −N ],

ω′ = y + (N − ν)u[y − ν],

y = 0, 1, . . . , N − 1

0 otherwise

(6.50)

where the use of ω′ = y + (N − ν)u[ω −N ] in the latter case means that a good channel 0 ≤ y ≤ ν − 1

leads to ω′ = y whereas a bad channel ν ≤ y ≤ N − 1 leads to ω′ = y+N − ν, N ≤ ω′ ≤ 2N − ν − 1,

i.e., a situation of bad channel and unresolved slot. According to the above rules, the transition probability

matrix can be built, which will have only N non-zero entries per row.

In order to find the delay statistics, we proceed as follows. First of all, let us define an appropriate

function τ :

τ : Im−1
N →{0, 1}m−1

τ(β) = τ (β0, β1, . . . , βm−2)= (d0, d1, . . . , dm−2)

s.t. dj =u[βj − ν] ∀j = 0, 1 . . . ,m− 2 (6.51)

where IN = {0, 1, 2, . . . , N − 1}. The meaning of τ(·) is to transform vectors (β) of base-N digits

into binary digits so that the output digit is 0 if the input digit is less than ν, and 1 otherwise. That is,

if β = (β0, β1, . . . , βm−2) contains the Markov channel states (βj ∈ {0, 1, 2, . . . , N − 1}) in m − 1

consecutive slots, each element of d = (d0, d1, . . . , dm−2) is a binary digit equal to 0 for a slot were

a successful transmission has occurred (good channel), whereas di = 1 corresponds to an erroneous

transmission in slot i (bad channel state).

Let Π = [Π0 Π1 · · · ΠM]T be a column vector whose M = (2N−ν) ·2m−1 scalar entries represent

the probabilities that the system starts in a given state. This starting state is defined as the system state at

time t = m, when the tagged packet is assumed to be transmitted.

It is easy to see that the value of i(m) (i.e., the resolved/unresolved status for all the slots in slots 1

through m − 1) only depends on the channel evolution. In this case, the correspondence between PDU

status and channel state is one to one, i.e., the τ(·) function can be used to compute the starting state for

the fundamental window. On the contrary, as t > m, i(t) is used to track the system memory and the

PDUs status depend both on the channel evolution and on the transmission history in previous rounds.

For example, the status of a resolved PDU will remain unvaried in the following slots, regardless on the

channel evolution. In this case the system is evolved according to Eqs. (6.49) and (6.50).

Let us consider the binary-wise representation of i(t), which we have already named b. If β is a

sequence of values in {0, 1, . . . , N−1} representing the evolution of the channel from slot 1 to slotm−1,

we recognize that b = τ(β). That is, the τ(·) function is used here to translate the information regarding

the channel state in slots 1 throughm−1 (N possible values) into the corresponding resolved/unresolved

status (two possible values).

To evaluate the value of ω(m) instead, we have to keep in mind that the channel in slot 0 is bound to

be error-free. Hence, Π is computed as follows:
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• if ω ∈ {0, 1, . . . , ν − 1} ∪ {N,N + 1, . . . , 2N − ν − 1}:

Π(i,ω) =
ν−1
∑

z=0

πz

Sπ

∑

β∈Gb

pzβ0

[m−2
∏

j=0

pβj−1βj

]

pβm−2g (6.52)

• if ω ∈ {ν, ν + 1, . . . , N − 1}:

Π(i,ω) = 0 (6.53)

where Sπ =
∑ν−1

j=0 πj , g = ω − (N − ν)u[ω − N ] and Gb = {β ∈ Im−1
N : τ(β) = b} and πz ,

z ∈ {0, 1, . . . , N − 1} is the Markov Channel steady state probability of state z.

Let e0 = [(i0, ω0) (i1, ω1) · · · (iM, ωM)]T be a column M-sized vector of all zeros except for the

entries corresponding to states (i, ω) ∈ {(0, 0), (0, 1), . . . , (0, N − 1)}, that are equal to 1. If Φ is the

transition matrix of the Markov chain X(t), we determine:

Pc[k] = ΠΦ
ke0, k ≥ 0 . (6.54)

Pc[k] is the probability that the delivery delay is less than or equal to k slots. Finally, the delivery delay

statistics Pd[k] is determined as:

Pd[0] = Pc[0] , Pd[k] = Pc[k] − Pc[k − 1] ∀k > 0 . (6.55)

Note that Pd[t] is determined by neglecting the propagation delay (that can be approximated as tprop =

m/2). In fact, what we are obtaining here is the statistics at the transmitter, whereas the actual delay

process is evaluated at the receiver. However, since tprop is constant these two distributions are simply

the same distribution shifted by this constant factor. For this reason, without loss of generality, tprop will

not be considered in the sequel.

6.5.4 Results for the Delay Statistics over an N-State Markov Channel

In this section, we report some examples for the delivery delay statistics and we discuss the goodness

of a Markov channel model in the approximation of the ARQ packet delay statistics in a Rayleigh fading

channel. In the following Section 6.5.4, some examples for the link layer delivery delay statistics over

a fading channel are reported first. Later on, in Section 6.5.5, the accuracy of the Markov modeling

approach will be quantitatively discussed considering the effect of the Doppler frequency fd and of the

number of Markov channel states N .

As a first result, in Figs. 6.25 and 6.26, we report the delivery delay statistics considering fd = 10 Hz

and fd = 80 Hz, respectively. In both graphs, the statistics obtained by simulation is compared against

the two threshold selection methods, i.e., the equal probability method (θk = 1/K) and the refined

procedure presented in the previous section. For both fd = 10 Hz and fd = 80 Hz the equal probability

criterion leads to a rough estimation of the underlying fading process and to a poor approximation of

the delay distributions as well. As a second observation, one can note that a Markov approximation

of the actual channel error process is not able to perfectly match the real statistics. Even though the

two distributions are in good agreement, the one derived using the Markov model can not reproduce

the behavior characterizing the actual distribution. This is, indeed, a limitation of the Markov model that,
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even when a large number of states is considered, does not perfectly fit the actual fading process statistics.

However, it is worth noting that the fading is a complex process that we are trying to approximate using

a relatively simple model. In this sense, the obtained statistics is reasonably close to the real ones. In

general, the match is good for the first three retransmission rounds, then the two distributions differ and

the Markov model approach fails to reproduce the behavior of the actual distribution. It is also worth

noting that the substantial differences observed in the autocorrelation function between the Markov and

the fading model [99] are not observed for the delay performance of the ARQ protocol, where indeed the

analytical performance is quite close to simulations.

In Figs. 6.27 and 6.28 we report some curves to qualitatively discuss26 the dependence on the number

of states of the Markov model (N ). In general, the fit between simulation and analysis improves as N

increases; this is particularly true when the Doppler frequency is low (i.e., fd = 10 Hz). However, as the

number of states increases (N = 30 in the presented graphs) the resulting statistics remains unchanged

and no further improvements are observed. Moreover, taking as an example the fd = 10 Hz case,

an increase in N leads to a better approximation for the first part of the statistics, whereas the match

is degraded elsewhere. In order to obtain better results it would be interesting to investigate how the

statistics improves considering a different approach to derive the Markov chain. For instance, in [20] the

authors considered the fading derivative as an additional dimension for this purpose. In that paper, they

proved that this method can somehow reproduce the oscillatory behavior of the autocorrelation function.

In [19] some results are reported concerning the mean throughput value of the SR ARQ protocol. Further

investigations on how these techniques can improve the ARQ delivery statistics are left for future research.

6.5.5 Evaluation of the Accuracy of the Link Layer Delay Statistics

In this Section, we present some results on the accuracy of the delay statistics derived in Section 6.5.2.

We refer here to P an
d [t] as the statistics derived analytically, i.e., to the distribution derived by means of

the Markov modeling approach, whereas we refer to P sim
d [t] as the delay distribution which has been

directly measured by simulating the Selective Repeat ARQ algorithm over a Rayleigh fading channel (a

Jakes simulator has been used at this point to reproduce the Rayleigh fading behavior [61]).

In order to weight the difference between these two statistics, we consider here the well known Kull-

back Leibler distance (see [31], p.18). The Kullback distance D(p ‖ q) between the two generic dis-

tributions p(x) and q(x) is a measure of the inefficiency of assuming that the exact distribution is q(x)

when the true distribution is p(x). For example, if we knew the real distribution of the random variable

(p(x)), then we could construct a code with average length H(p) (where H is the entropy associated to

the distribution p). If, instead, we used the code to describe the approximate distribution q(x), we would

need H(p) +D(p ‖ q) bits on average to describe the random variable. The Kullback distance arises as

an expected logarithm of the likelihood ratio of the two distributions:

D(p ‖ q) =
∑

x∈X

p(x) log
p(x)

q(x)
(6.56)

where X is the (common) dominium of the distribution functions.

26A quantitative comparison is reported later on in Section 6.5.5.
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In Figs. 6.29 and 6.30 we report the distance between the two distributions P an
d [t] and P sim

d [t] as

a function of the Doppler frequency (fd) and of the number of states used to build the Markov chain

approximating the underlying Rayleigh channel. In Fig. 6.29, the distance is plotted as a function of the

number of states N that are used to build the Markov chain. A set of curves is drawn here by varying the

Doppler frequency fd. It is interesting to observe that the distance metric has a minimum, i.e., an optimal

number of states for the construction of the Markov chain exists. Moreover, in all cases we considered this

optimal number of states is upper bounded by 10. Hence, more than 10 states are useless to increase the

accuracy of the estimated delay statistics27. In the figure, the independent (iid) error case (where a single

state is used to describe the error process) is also reported for comparison. It is clear that the independent

error assumption provides poor results, even at high Doppler frequencies. We can also observe that the

Gilbert Elliot model (four state Markov chain), for fd ≥ 30 Hz can provide fairly good approximations.

It however fails to approximate the delay statistics over correlated channels (fd = 10 Hz). Over such

channels, in fact, the accuracy of the Gilbert model (four states) is one order of magnitude worse than the

precision achievable with N = 6.

As a last result, in Fig. 6.30, the distance metric is plotted as a function of fd reporting both the SNR

partitioning methods considered in this paper. The independent error case is also reported for comparison.

Again, we can observe how the independent error assumption28 fails to accurately model the underlying

channel. From that figure, it is also evident that the equal probability method (θk = 1/K) provides

a rough approximation for the delivery delay statistics. The problem, in such case, is that the state

partitioning is not designed taking into consideration PDU error probability function aspects (Fig. 6.24).

Finally, we observe that all the curves obtained from the proposed partitioning method converge to a

unique point as fd increases. For such fd values (fd ≥ 100Hz) a large N does not seem to affect the

precision of the obtained statistics.

6.6 Conclusions

In this Chapter, a complete analytical framework for the link layer delay statistics evaluation has

been presented. Both independent and correlated error models have been considered. For every chan-

nel model, exact approaches have been presented first. Subsequently, and where possible, approximated

analyses have been devised to decrease the computational complexity so as to allow the delay statistics

computation directly at battery operated and, therefore, energy limited mobile terminals. In the last part

of the Chapter, delay statistics are obtained for the generic N-State Markov Channel Model, which, in

most cases can give an accurate and simple characterization for the underlying physical fading channel

process. This last set of results has provided useful insights on the accuracy of the channel characteri-

zation by means of such Markov models. In particular, it has been found that the Markov approach is

sufficiently accurate to track delay statistics at higher layers.

The research presented in the Chapter has been motivated by the need for a deeper understanding of

the impact of link layer solutions on higher layer applications and by the need for delay estimates to be

27Note that these conclusions hold with the specific SNR partition method adopted here. It is not excluded that other partition
methods can lead to a continuously increasing accuracy as a function of the number of states N .

28A single state is used to model the Rayleigh fading channel.
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used to empower link layer algorithms. Such estimates, in fact, can be incorporated into runtime algo-

rithms at the link layer in order to adapt the protocol behavior to the time–varying user requirements as

well as to channel/network time–varying QoS conditions.
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Figure 6.25: Delivery delay statistics: comparison between Markov Channel analysis and Rayleigh chan-
nel simulation with L = 360 bits, bit rate 1024 Kbps, fd = 10 Hz, fdTp = 0.00343, m = 5, N = 10.
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Figure 6.26: Delivery delay statistics: comparison between Markov Channel analysis and Rayleigh chan-
nel simulation with L = 360 bits, bit rate 1024 Kbps, fd = 80 Hz, fdTp = 0.0274, m = 5, N = 10.
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Figure 6.27: Delivery delay statistics: comparison between Markov Channel analysis and Rayleigh chan-
nel simulation as a function of N with L = 360 bits, bit rate 1024 Kbps, fd = 10 Hz, m = 3.
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Figure 6.28: Delivery delay statistics: comparison between Markov Channel analysis and Rayleigh chan-
nel simulation as a function of N with L = 360 bits, bit rate 1024 Kbps, fd = 100 Hz, fdTp = 0.0343,
m = 3.
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Chapter 7

Error Control Techniques for Efficient

Multicast Data Delivery in 3G Cellular

Systems

In this Chapter we go further with respect to the previously illustrated research, by focusing on ARQ

error control algorithms for the transmission of a multicast flow over a common channel in a 3G cellular

system. In this case, for efficiency reasons the multicast flow is sent through a common downlink channel

to all interested users. Subsequently, every user asks for the retransmission of lost data to the base station

controller (by means of NACK messages and through, for instance, a dedicated uplink channel1). In such

a scenario, ARQ algorithms have to deal with possibly multiple retransmission requests. This fact, in

general implies a substantial degradation of both channel efficiency and delay, since the single forward

channel has to be used to satisfy multiple retransmission requests. As will be highlighted in this Chapter,

plain ARQ algorithms are ineffective in such a case and new solutions have to be found to improve the

error correction capability in the multi–user scenario. The main focus of the research presented in this

Chapter is to propose and validate such new solutions.

We focus on a single 3G cell, where some mobile terminals are interested in the reception of the same

data stream. For efficiency reasons, the multicast paradigm is used to carry such flow to these users. The

problem to be solved here is how to achieve an efficient (in the sense of bandwidth usage) local recovery

of the errors occurring in the transmission to the interested users.

The chief aim of the research that will be presented throughout this Chapter is to investigate how

ARQ and FEC techniques can be used and possibly combined together (hybrid ARQ schemes, HARQ)

to combat wireless channel errors and achieve good forward channel utilization performance. Particular

attention will be paid to the characterization of the achievable quality in the video streaming multicast

case, by also giving useful insights regarding the dimensioning of the application play–out buffer.

1In order to improve the feedback channel efficiency, an uplink shared channel can also be used. However, feedback con-
siderations are not explicitly addressed here, since in this study we are mainly interested in the evaluation and optimization of
forward channel metrics. The feedback channel optimization is taken into account indirectly throughout the study. A deeper
investigation is left for future research.
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7.1 Introduction

In this Chapter, we deal with the Multicast delivery problem in 3G Cellular Systems. Let us assume

that a multicast flow, which has been transmitted by a server placed somewhere in the Internet or in the 3G

wired network, has to be delivered to a set of interested multicast users2 in a 3G cell, where a serving base

station is responsible for the delivery of that flow to all the interested multicast users in its coverage area.

Since our main focus here is on the delivery that is taking place in this last part of the connection, i.e., in

the wireless link between serving base station (BS) and interested users, we disregard the possible error

occurring over the wired part of the connection. We also disregard additional delays and out-of-ordering.

Instead, at the BS, we consider an error-free and timely-delivered multicast flow. Now, the problem to

be solved is to deliver such a flow over the last wireless link (BS → users) in the most efficient way, i.e.,

keeping into account both channel efficiency and delay requirements.

In the remaining part of this document, several possible solutions to cope with this problem are in-

vestigated in detail. In particular, after presenting the system model in Section 7.2, in Section 7.3 we will

introduce a few error control algorithms, that, thanks to some forward error correction capabilities, are

able to outperform standard ARQ (Automatic Retransmission reQuest) solutions. The performance of

these schemes is investigated later on in Section 7.5, whereas, in Section 7.6 some additional results will

be reported for the video streaming case. Finally, Section 7.7 concludes the Chapter.

Throughout this Chapter, important aspects such as channel efficiency (throughput), delivery delay,

play–out buffer dimensioning and achievable video quality will be explicitly and quantitatively addressed,

by leading to important guidelines regarding the practical implementation of multicast delivery solutions.

Particular attention will be devoted to the multicast video streaming case, which is expected to be one of

the most important services to be supported in fore coming 3G networks.

7.2 System Model

We consider here a 3G cellular system, where W–CDMA is used as the radio interface (see, for in-

stance, UMTS as a possible system using such technology [1] [69] [83]). The service area is composed

by 9 hexagonal cells, where a base station is placed at the center of each cell and a given number of users

is considered to be able of moving inside the coverage area. Propagation phenomena are modeled through

standard techniques, by considering log-normal slow fading, fast fading3 and path loss4. A simple power

control algorithm has been implemented following the basic algorithm which can also be found in [83].

In practice, a SIR target (SIRth) is assigned to each user in the system. Such a value has been cho-

sen according to quality requirements depending on channel coding and modulation. In more detail, the

downlink transmission power is dynamically varied by a constant multiplicative increase/decrease factor.

Considering a specific user, its downlink transmission power is increased when the instantaneous SIR

2That, for this purpose, are joining the specific multicast group to which the flow is addressed.
3Which has been simulated here by means of the well known Jakes fading simulator [61].
4The simple Hata model is considered here. In this model the attenuation A as a function of the distance r is modeled as

A(r) = Krβ , where K and β are constants.
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(Signal to Interference Ratio) is below SIRth, and it is increased elsewhere. Minimum and maximum

transmission powers are P downlink
min = −15 dBW and P downlink

max = −5 dBW, whereas the power factor

used in the following results is ∆ = 0.5 dB. For what concerns channel coding and interleaving, we

consider here a convolutional half rate Viterbi decoder5 operating over an interleaving interval TTI of

80ms.

A first set of users NDCH = 200 is communicating through a Dedicated CHannel (DCH) whose bit

rate is 30 Kbps (corresponding to a physical Spreading Factor of SF = 128). These users are placed

randomly at the beginning of the simulation and are moving following a pseudo-linear mobility model6.

The speeds for such users has been uniformly chosen in the set {0, 7, 49} Km/h. For these users, a simple

handover algorithm is run, where the best base station7 is always assigned as the serving one. The power

control procedure is dynamically executed for each user as explained above.

A second set of users NCCH , is receiving the multicast flow through a Common downlink CHannel

(CCH) whose bit-rate is indicated here as Br.8 These users can also be on the move, but their serving

base stations remain unchanged. Let us better clarify this point. CCH users are randomly placed at the

beginning of the simulation, shadowing and path loss are chosen according to the log-normal and the

exponential model, respectively, and are kept constant for the whole simulation time. Subsequently, in

order to emulate some degree of mobility, their Doppler frequency fd is selected, but without changing

their spatial coordinates. By this way, we are able to control their fast fading as they were on the move

but without reflecting it into a change of their spatial positions. Therefore, it is possible to investigate

multicast delivery algorithms (which is, in fact, the main focus here) disregarding the multicast handover

management that, by itself, constitutes a problem to be properly handled. The common channel power

has been fixed to a constant value PCCH = P downlink
max throughout the whole simulation.

For illustration purpose, in Figs. 7.1 and 7.2, we report some statistics on the link layer packet error

model for the common channel (multicast) users. The following parameters have been considered for

the CCH users: Br = 120 Kbps, fd ∈ {2, 40} Hz, link layer packet length PDUl = 360 bits9. In

Fig. 7.1, we report the mean burst length (b) as a function of the packet error probability ε, whereas in

Fig. 7.2 its cumulative distribution is plotted by varying the Doppler frequency (fd). The independent

error case (b = 1/(1 − ε)) is also reported for comparison. Due to the limited burstiness values in both

scenarios, some performance improvements appear to be possible at the link layer through an adequate

design of packet–based FEC coding schemes. Some algorithms which are exploiting such concepts will

be presented in the following Sections.

5A software implementation of the Viterbi algorithm has been used here to derive bit error traces from physical SIR traces.
Encoder and decoder have been configured according to the specification which can be found in [1].

6The trajectories are obtained from a composition of linear movements, during which the users are moving along straight
lines.

7The one heard with the strongest signal.
8Here, we refer to the useful bit rate at the link layer level, i.e., after physical layer and MAC processing (such as coding and

rate matching).
9Inclusive of header, payload and CRC checksum.
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7.3 Link Layer Algorithms for Multicast Streaming

When the multicast flow is transmitted by means of a common channel, different users are in general

characterized by independent channel error processes. This is very important since it can make traditional

link layer (LL) retransmission approaches inefficient as the multicast group size (Nu) increases10.

For illustration purpose, a fully reliable multicast service is considered at this point. In that case, a

packet needs to be retransmitted if at least one user has not correctly received it. Moreover, an erroneous

packet needs to be retransmitted until all the users in the multicast group have received it correctly.

The problem is that, as Nu increases, the probability that at least one user needs a retransmission at a

given time increases as well and, as a consequence, the forward link throughput is heavily degraded by

retransmissions, while the available bandwidth for new transmissions becomes very low.

As Nu increases simple ARQ may not be sufficient to cope with this problem, because it simply

retransmits the lost packets whenever a retransmission request (Not Acknowledgment, NACK message)

arrives at the base station, but it does not account for the possibly different error processes that, at every

receiver, are affecting the transmitted packet. To cope with this problem, we propose to exploit packet-

based FEC techniques directly at the link layer level. A rich literature can be found on the topic [56] [81]

[79] [80].

By this approach, some error recovery is performed directly at the receiver side. This is realized

by pro-actively adding some redundancy into the multicast flow. This redundancy can be independently

exploited, at each receiver, to recover from losses. If local recovery succeeds, no retransmissions are

required and the forward bandwidth can be utilized to allocate new packet transmissions. In more de-

tail, the multicast flow at the link layer of the sending base station is divided in transmission groups

(TG) of K packets each. Then, each group is passed to a packet–based encoder where H redundancy

packets are generated for every TG. Finally, the whole FEC block composed by K + H packets is sent

over the channel. At the receiver side, every user can exploit the redundancy packets by recovering up

to H erroneous or lost packets, in any order. Different coding schemes can be used for this purpose,

Reed–Solomon and Tornado deserve a particular attention [24, 90]. However, in this work we are mainly

interested in discussing the effectiveness of these coding strategies without going into code implemen-

tation details. Moreover, in the following, we assume that, in the first encoding phase, it is possible to

generate a large (but finite) number of redundancy packets for each FEC block. These packets will be

transmitted on-demand as incremental redundancy during the error recovery algorithm. The main benefits

of this approach are:

• Improved transmission efficiency: A single parity packet can be used to repair the loss of any

packet in the TG. This means that a single parity packet can repair the loss of different data packets

at different receivers. This fact is extremely useful since different receivers are in general affected

by independent error processes.

• Improved scalability in terms of group size: In ARQ schemes the sender needs to know the se-

10It is worth observing here that NCCH is the total number of CCH users in the system, while Nu is the number of CCH
users in a single cell (≈ NCCH/9). Performance in the following Sections will be reported referring to this second quantity.
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quence number of each lost packet. Instead, using parity packets for loss repair, the sender only

needs to know the maximum number of lost packets by any receiver but not their sequence number.

So, the feedback is reduced from per–packet feedback to per–TG feedback. In fact, depending on

the number of lost packets, a given number of new redundancy packets, obtained from the original

K packets, can be transmitted over the channel (incremental redundancy) so that the original data

is recovered if at least K packets are correctly received among all the received packets for the TG

(N FEC block packets plus incremental redundancy packets).

• Improved feedback channel performance: Thanks to the pro-actively added redundancy, some

error recovery is possible at the user terminals, without the need for retransmissions. As a con-

sequence, the number of acknowledgment messages that the users are sending back to the base

station is considerably decreased. This FEC beneficial effect has been largely investigated in previ-

ous work (see [74] as an example), where techniques to limit the ACK collision problem have been

considered. These results and algorithms still apply in our scenario as well. Results on ACK colli-

sion avoidance will not be explicitly considered in our contribution where the emphasis is mainly

put on the proposal and the presentation of schemes for the multicast delivery in 3G networks.

Performance investigation is then given, in some detail, considering forward channel metrics. This

has been done to prove the effectiveness of such a FEC based transmission scheme even over

Wideband-CDMA channel traces.

Now, we describe three hybrid ARQ (HARQ) algorithms that can be used at the LL level to improve

both efficiency and delay performance with respect to a plain Selective Repeat ARQ. The hybrid schemes

are described in the following [41]:

HARQ1: The sender collects groups ofK packets and then feeds them into the packet–based encoder

obtaining H redundancy PDUs so that a total number of N = K +H PDUs is available for each TG, as

discussed above. The entire TG (N PDUs) is sent to all receivers over the CCH channel. Note that at the

sender side some amount of redundancy (H PDUs) is pro–actively added to the forward multicast flow.

As said above, this redundancy can be independently exploited by each multicast receiver to recover the

original K packets when the number of lost PDUs a TG is less than or equal to H . When a multicast

receiver can not decode a TG (less than K PDUs are correctly received out of the K + H transmitted),

it sends back to the transmitter a NACK message for that TG including the TG identifier. At the sender

side, all NACKs for the same TG are collected and the entire TG (N PDUs) is retransmitted if at least one

multicast user required its retransmission. As will be shown in the next section this solution gives good

performance in terms of delay, but it is not very efficient in terms of throughput. At least one drawback

is present in that scheme. In fact, a priori retransmitting all the PDUs in a TG may not be a good choice,

since a large amount of redundancy is always retransmitted without checking for the real needs of the

users. In some cases, this will impair the channel efficiency without leading to any improvement.

HARQ2: As in the previous scheme, at the sender side TGs of N PDUs each (K data packets plus H
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redundancy PDUs) are sent first. Then, each receiver checks for errors in each TG and replies accordingly.

If a receiver detects less than K correct PDUs for a TG it sends back to the sender a NACK including the

TG identifier. The sender collects incoming NACKs and, if the number of collected NACKs for a given

TG is greater than zero the following procedure is activated:

• The K original PDUs included in the erroneously received TG are fed again to the packet–based

encoder to obtain ξ ≥ 1 redundancy packets, i.e., ξ redundancy packets for that TG that are however

different from all redundancy packets previously transmitted.

• The ξ new redundancy PDUs (incremental redundancy) are sent over the CCH channel.

In practice, we have that the number of retransmitted redundancy packets for each received NACK is al-

ways equal to ξ. In this scheme, each receiver collects all the received packets for a TG, i.e., the N PDUs

sent in the first TG transmission plus the, say R, redundancy PDUs sent in the following retransmissions

(triggered by NACKs). The original K PDUs in a TG can be recovered if the number of correct PDUs,

Nok, over the N + R PDUs is greater than or equal to K. This scheme, when ξ is set to one, tries to

maximize the channel efficiency. In fact, at each retransmission request the minimum amount of redun-

dancy (one packet) is retransmitted to all users (only one PDU), thereby limiting as much as possible the

probability to retransmit useless redundancy packets. However, if at least one user needs more than one

new PDU to obtain the K original data packets he will require a further retransmission. For this reason

this scheme is also characterized by the largest delay for the correct delivery of a TG.

HARQ3: At the sender side the TG of N PDUs (K data packets plus H redundancy PDUs) is sent

first. Each receiver checks for errors in each TG and replies accordingly. In this scheme incremental

redundancy is also used. To better explain how the algorithm works suppose that, in addition to the N

PDUs in the first transmission, R redundancy PDUs have already been sent over the channel for a given

TG. In this case, each receiver checks for the number of correctly received PDUs (Nok) among theN+R

PDUs sent. Let us refer to a given user i ∈ N , where N is the set of multicast users in the cell. If

Nok(i) ≥ K the original K PDUs can be obtained and the TG is correctly received by user i. Otherwise,

if Nok(i) < K, user i sends back a NACK including the TG identifier and ri = K − Nok(i), i.e., the

minimum number of new redundancy PDUs needed for the correct decoding of the K data PDUs at that

terminal. The sender collects incoming NACKs and computes Rmax = maxi∈N (ri). Then, R = Rmax

new redundancy PDUs are encoded for that TG and are transmitted over the CCH channel. This procedure

is repeated until all users in N are able to correctly decode the K data PDUs, i.e., when Nok(i) ≥ K

∀i ∈ N . This last scheme tries to achieve a trade–off between channel efficiency and delay. In fact, for

each retransmission request, the minimum number (channel efficiency ↑) of PDUs needed to ensure that

all multicast receivers will be able to recover the originalK packets is sent (delay ↓). Note thatRmax new

PDUs guarantee the successful decoding of a TG by all receivers only if no channel errors occur, or if

channel errors are such that each receiver is able to decode at least ri PDUs out of the Rmax transmitted.
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7.4 Performance of Error Recovery Algorithms over an Independent Chan-

nel

In this Section, we report some preliminary results to test and compare the algorithms introduced

above. A simple independent channel model will be used in this Section, due to the possibility to obtain

analytical expressions from which useful insights can be derived. Accurate channel traces, obtained from

the simulation tool explained in Section 7.2, will be considered later on in Section 7.5 and 7.6.

The performance metrics that we are looking at in this Section are: the channel efficiency (or CCH

channel throughput) and the higher layer packet delivery delay. The higher layer packet is the LL SDU

unit, that is the packet passed to the LL level to be processed and sent over the channel by higher protocol

levels. With the term SDU delay we refer to the time elapsed between the transmission of the first LL

PDU composing one SDU to the instant in which the full SDU has been correctly received by every user

in the cell11.

In the results discussed in the following Sections, we consider a LL logical bit rate ofBr = 120 Kbps

(Spreading Factor equal to SF = 16) a LL round trip time (RTT) of 220 ms (this the maximum value for

the LL RTT in a 3G network and it is due to the large interleaving depth of 80 ms) and a LL PDU length

of 360 bits. With these values, we have that about 77 PDUs are transmitted in a LL RTT. Moreover, we

consider a fixed LL SDU packet length of 500 bytes which is a typical value for the mean frame length

of video streaming flows [43].

As a first result, in Figure 7.3 we report the SDU complementary cumulative delivery delay distri-

bution (ccdf) for the HARQ1 and a standard ARQ algorithms. The number of multicast users is set to

{10, 100} and the PDU error probability is considered to be equal to p = 0.1 for every user. From this

figure we can observe that as the group size increases (Nu), hybrid ARQ largely limits the SDU delays.

In particular, the SDU delivery statistics, after a certain point (in d ≤ 800 ms), starts decreasing very

suddenly. The statistics regarding the simple ARQ, instead, is shifted to the right without any shape

change. This means that hybrid ARQ techniques are more robust with respect to an increasing number of

multicast users in the system.

In Figure 7.4, we report the mean SDU delivery delay, defined as the mean time needed to correctly

transmit a full SDU to all users in the multicast group as a function of the multicast group size, Nu, con-

sidering that all users are characterized by an independent channel with the same PDU error probability

p = 0.1. From this figure it can be observed that in the simple ARQ case, the behavior of the mean

SDU transmission time is logarithmic in Nu (approximately equal to 420 + 90 ln(Nu)). In other words,

the SDU delivery delay tends to infinity as Nu increases. Also in the hybrid ARQ case the SDU delivery

delay tends to infinity asNu → ∞, but here the delay increases very slowly withNu. This is an important

fact since it considerably improves the system scalability in terms of multicast group size. As expected,

the HARQ1 scheme is the one with the lowest delay, HARQ2 is the one with the longest and HARQ3 is

11In order delivery is considered here, i.e., a correctly received SDU at the receiver side can be passed to higher layers only
when all the SDUs with lower identifier have been successfully transferred.
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a compromise between HARQ1 and HARQ2.

As the last result in this section, we focus on the channel efficiency η, which is defined as the number

of PDUs correctly transmitted over the common channel divided by the total number of transmitted PDUs:

η = lim
t→+∞

Nok(t)

Ntot(t)
(7.1)

where Nok(t) and Ntot(t) are the number of correctly received and the total number of transmitted PDUs

in the interval [0, t], respectively. In Nok(t), each packet is counted only once, even if multiple copies

could have been sent during retransmissions. Redundancy packets are not accounted for in Nok, whereas

they are counted in Ntot. In the following, we present a simple way to analytically derive the channel

efficiency under the independent channel error assumption. We label as i ≥ 0 the transmission round

for a FEC block, where i = 0 correspond to the first transmission, whereas i ≥ 1 is used to track the

following retransmission rounds. Moreover, we consider that, at every retransmission, a constant number

ξ of redundancy PDUs is encoded for the TG and sent over the channel. Note that, the efficiency of the

HARQ3 algorithm is equal to the efficiency of HARQ2 when ξ = 1 since, in both schemes, the minimum

amount of redundancy is sent to accomplish error recovery. The only difference among these two algo-

rithms is that retransmissions are distributed differently. However, since the channel is independent, the

retransmitted PDU’s position is irrelevant, while their number is the only quantity affecting η. We have

verified by simulation that the HARQ1 performance can be well approximated by HARQ2 with ξ = N .

Now, we introduce some quantities that will be used in the analysis: Nu is the number of multicast users,

i.e., the number of users served by the common channel and pi is the PDU error probability for user

i ∈ {1, 2, . . . , Nu}. The probability that a TG is correctly received by every user in a transmission round

up to and including round j ≥ 0 can being computed as:

P [≤ j] =























Nu
∏

i=1

(1 − pj+1
i ) ARQ

Nu
∏

i=1

(1 − f [pi, j]) HARQ

(7.2)

where:

f [p, j] =

N+ξj
∑

e=N+ξj−K+1

(

N + ξj

e

)

pe(1 − p)N+ξj−e (7.3)

where the function f [·, ·] is used to compute the probability that less than K PDUs have been correctly

received among the N + ξj PDUs transmitted for the TG up to and including round j. This quantity

corresponds to the probability that additional redundancy PDUs are still needed to correctly decode the

TG after j transmission rounds, i.e., that at least a further retransmission round is needed. The average

number of retransmissions is given by:

E[retx] = ξ
+∞
∑

j=0

(1 − P [≤ j]) (7.4)
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where ξ = 1 for the ARQ scheme, whereas ξ ≥ 1 for HARQ. Finally, the channel efficiency can be

derived as:

η =











1

1 + E[retx]
ARQ

K

N + E[retx]
HARQ

(7.5)

Figure 7.5 gives the channel efficiency as a function ofNu considering pi = 0.1, ∀i ∈ {1, 2, . . . , Nu}.

In the figure, we report the approximated throughput for the HARQ1 scheme proposed above (ξ = N ) to-

gether with other results obtained by diminishing the number of packets sent during every retransmission

(ξ = 7 and ξ = K). As observed above, the HARQ2 scheme is characterized by the highest through-

put, whereas HARQ1 is characterized by the worst performance, i.e., the optimization of the delay in the

HARQ1 scheme comes at the cost of sending a large amount of incremental–redundancy packets. This

increases the probability of recovering a TG in a short time, but at the same time decreases the through-

put, since more unnecessary packets are sent at each retransmission request. All the hybrid algorithms

outperform simple ARQ as Nu becomes greater than three. On the other side, as the multicast group is

smaller than Nu = 3, the pro–actively added redundancy in HARQ1, HARQ2 and HARQ3 (a priori data

protection) is more channel consuming than performing retransmissions only (simple ARQ). However,

it is worth noting that hybrid ARQ schemes lead to a higher throughput as Nu increases and that, for

large Nu values, they still achieve an acceptably high channel efficiency, whereas simple ARQ in such a

case has very poor throughput performance. Another interesting result is that the performance of scheme

HARQ3 lies on the throughput upper bound (that, as observed above, is given by scheme HARQ2). This

scheme may be a good candidate to be effectively used for multicast data delivery since it is characterized

by a good channel efficiency and also its delay performance is not too much worse with respect to the

HARQ1 algorithm.

7.5 Results concerning Buffer Requirements and Channel Efficiency

In this Section, the performance of the algorithms proposed above will be addressed in detail focus-

ing on accurate 3G W–CDMA channel traces. In this case, channel errors tend to be correlated and, as a

consequence, the proposed FEC solutions may become less effective. In order to cope with this problem

or, at least, to limit its impact on the overall performance, we introduce a further interleaving directly at

the link layer (Section 7.5.1). Essentially, we try to break the error bursts, by spreading them over several

different FEC blocks. This will improve the coding efficiency at the cost of some additional complex-

ity. The interleaving procedure is illustrated in the next Section, whereas the performance evaluation is

reported later on in Section 7.5.2.

7.5.1 Link Layer Packet Level Interleaving

At the LL of each serving Base Station (BS), the following packet-based FEC coding algorithm is

applied. The PDU flow is grouped in Transmission Groups (TG) of K packets, then each TG is fed

to a FEC encoder to obtain H LL parity packets. Finally, both the K and the H packets are put to-

gether to form a N packets FEC Block (FB) [56]. These H pro-actively added redundancy packets can

be exploited by each user to locally recover from up to H erroneous packet in every FB, in any order.
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As highlighted in previous research [81], packet-based FEC techniques are very effective to offer low

residual PDU error rates to multiple users receiving the same data from a common transmission chan-

nel. However, the effectiveness of such techniques decreases as the link layer error burstiness increases.

When error bursts are too long, the added redundancy is likely lost and is useless in recovering from

errors. In this case, the redundancy only wastes the available channel resources. To overcome to this fact,

we apply a matrix interleaving on the FB flow prior to its transmission over the channel. Let us refer to

the interleaving buffer size (expressed here in number of LL PDUs) at the LL as B. Then, as reported

in Fig. 7.6, PDUs are first disposed in a I × N matrix12, where I = B/N is the interleaving depth.

Thereafter, link layer PDUs are sent reading the matrix by columns, i.e., the transmitted sequence will

be: {1, N + 1, 2N + 1, . . . , (I − 1)N + 1, 2, 2N + 2, (I − 1)N + 2, . . . , N, 2N, . . . , IN}. Note that all

PDUs belonging to the same block are transmitted over the channel spaced by I − 1 packets.

As an example, in Fig. 7.7, the LL packet residual error rate is reported for the 80-th and the 90-th

percentile of the CCH users as a function of the interleaving buffer size. The graph has been obtained

considering a first set of DCH users (NDCH = 200) that are on the move as explained above, while CCH

(NCCH = 1000) users are static13. It is worth noting that, if the interleaving buffer is large enough, the

FEC can completely avoid losses in 80% (B = 10 Kbyte) and 90% (B ≈ 30 Kbyte) of the cases.

7.5.2 Throughput and Delay Performance

To obtain the results presented in this Section, the 3G system simulator has been configured according

to what explained in Section 7.2. By its execution, a set of CCH channel traces have been obtained for

every user in the system. Further, these traces have been used (off-line, i.e., in a subsequent simulation

phase) as the input for a HARQ simulator, from which performance measures have been finally obtained

(see Fig. 7.8). A common logical channel14 bitrate of Br = 120 Kbps will be considered in the results

reported in the sequel.

As a first set of results, we focus on the channel efficiency (η). In Fig. 7.9, η is plotted considering

Nu = 20 as a function of the number of redundancy PDUs which are inserted in every FEC block (H)

and maintaining the ratio K/N at a constant value. The CCH users Doppler frequency considered to

obtain this graph is fd = 40 Hz (to reflect a moderate mobility scenario). A first set of curves (bold ones)

are obtained considering K/N = 0.9, whereas the second set is achieved with K/N = 0.8. The simple

ARQ case is reported for comparison. As an example, focusing on the case H = 8 and considering the

case ”HARQ I = 2”, the usage of HARQ leads to the throughput gains reported in Table 7.1.

The motivation behind the choice of the case ”HARQ I = 2, H = 8” is illustrated in Figs. 7.10 and

7.11, where the mean LL packet delivery delay and its complementary cumulative statistics (ccdf) are

reported, respectively. From these figures it is clear that, in addition to the good achievable throughput

performance, the selected case is also a good compromise for the delay, which is still of the same order

of magnitude of the one introduced by Selective Repeat ARQ. Note that as I increases, the delivery delay
12Matrix indexes are expressed in units of PDUs.
13A Doppler frequency of fd = 2 Hz has been considered in such a case. Due to the low fd value, long LL bursts are

experienced by CCH users.
14The useful link layer bitrate, i.e., not inclusive of physical channel coding, rate matching and MAC overheads.
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SCHEMES → ARQ HARQ K/N=0.8 HARQ K/N=0.9
Throughput 0.667 0.69 0.73

Throughput Gain (ARQ Vs HARQ) [Kbps] 0 2.8 Kbps 7.6Kbps

Table 7.1: HARQ throughput gains considering I = 2 and H = 8 and fd = 40 Hz.

also increases since, due to the interleaving process, a longer time has to be waited for to send new FEC

blocks. This long delay also impacts the outstanding retransmissions since the packets contained in the

matrix are always sent in a row.

In Figs. 7.12 and 7.13, η is plotted for Nu = 50 and Nu = 100, respectively. The others system pa-

rameters are maintained unchanged. The results, in these cases, are presented in the following Table 7.2.

The advantage of HARQ solutions becomes clear as Nu increases.

SCHEMES → ARQ HARQ (K/N=0.8) HARQ (K/N=0.9)
Nu = 50 ↓
Throughput 0.5 0.6 0.64

Throughput Gain (ARQ Vs HARQ) [Kbps] 0 12 Kbps 16.8 Kbps
Nu = 100 ↓
Throughput 0.374 0.5 0.54

Throughput Gain (ARQ Vs HARQ) [Kbps] 0 15.2 Kbps 19.92 Kbps

Table 7.2: HARQ throughput gains considering I = 2 and H = 8 and fd = 40 Hz.

In the sequel we look at the play–out buffer requirements when a video streaming flow is being

transmitted over the CCH channel. The trade-off between buffer requirements and channel efficiency is

reported in Fig. 7.14. What is referred here as maximum buffer size (Bsize) is the buffer dimension which

is needed to avoid that buffer starvation occurs at the application play–out buffer (Fig. 7.15). To track the

play–out buffer occupancy during the simulation, we consider a variable input flow λ that corresponds to

the link layer outgoing flow15, whereas we account for a constant output flow µ which is set at the value

µ = Br × η.16 As can be clearly seen in Fig. 7.14, by tuning the coding redundancy H , it is possible to

trade channel efficiency for buffer requirements (Bsize). The curves in Fig. 7.14 have a first part where

the slope S = dBsize/dη is still limited, and a second part, in which S suddenly increases. Obviously,

this second part should be avoided, since only marginal throughput advantages can be achieved at the ex-

pense of a substantial increase of Bsize. Moreover, for illustration purpose, two points have been marked

in this figure (N = 40, H = 8 and N = 40, H = 4) to highlight how the same choice for the FEC block

parameters translates in terms of Bsize and η for different Nu values.

In order to gain some insights in the low mobility scenario (fd = 2 Hz), in Fig. 7.16 we plot the

15Considering in-order delivery of link layer packets.
16The evaluation of the required buffer size Bsize is therefore executed off-line, after the evaluation of η.
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FEC error correction probability by varying H , fd and I . The FEC error correction probability is defined

here as the probability that the pro–actively added redundancy PDUs can successfully correct the errors

occurring during the first transmission of a FEC block. In such a case we do not need further packets to be

retransmitted. From the figure it is clear that the added redundancy is effective and that its convenience is

higher over heavily correlated channels (fd = 2 Hz). Over such channels, also the interleaving depth has

a positive impact. The throughput/buffer relationships, in such a case, are very similar to what reported

in Fig.7.14.

In the following, we give some insights on the impact of the system load, i.e., on the effect of an

increased number of unicast users (background traffic) on the channel efficiency of the proposed HARQ

algorithms. For this purpose, let us consider a number of CCH users in the system equal toNCCH = 300,

i.e., we add 100 DCH users, characterized by the same mobility model and system parameters presented

above. In this case, the system interference is increased and, as a consequence, the packet error proba-

bility (PEP) experienced by the multicast users is increased as well. The increased PEP is then reflected

on the channel efficiency which is considerably reduced. As an example, in the case where Nu = 50,

K = 32, H = 8 and I = 2, η approaches 0.32, i.e., it has almost halved with respect to the previous

case (NCCH = 200). The reason behind this is that a small portion of the multicast users, in such a case

are characterized by a very high error probability. These users experience a very unfavorable channel and

frequently ask for retransmissions. As a consequence, they are heavily impacting the forward channel

throughput, since in the proposed schemes every retransmission request is satisfied. In some cases this

behavior should be avoided. Consider for example the transmission of a video streaming flow. In that case

some residual errors can be tolerated, but the flow has to be transmitted in a timely manner and respecting

the constraints imposed by the users play–out buffers (to avoid the buffer starvation phenomenon). In such

a scenario, it is unacceptable to have such a small portion of the users congesting the forward channel

transmission, since they will waste the system resources leading to a poor video quality for the remaining

users in the system. Instead, it would be better to keep the transmitted flow to a reasonable throughput

value, by accepting some degree of degradation especially at the users experiencing a bad channel state.

In such a situation the best policy is no more to retransmit the lost packets for every user, instead, it would

be better to control the number of retransmissions to maintain the forward channel throughput to an ac-

ceptable value (i.e., to avoid, for example the buffer starvation phenomenon) by limiting, for example, the

number of retransmissions for the bad channel users.

As a first solution to this problem, one could use the simple but effective strategy presented in the

following. A limit on the number of satisfied retransmission requests is imposed. In particular, after

the first reception of a FEC block, every user communicates its reception status to the base station, by

sending a NACK message when the FEC block is undecodable. At the sender side, the incoming NACKs

are collected and the retransmission process for the corresponding block is initiated only if the number

of retransmission requests is large enough, i.e., if the number of received NACKs for that block exceeds

a given threshold τ (that can be expressed as a percentage of the number of multicast users in the cell

(Nu)). However, even if this mechanism is very simple, it presents the following major drawbacks:

• It does not limit the number of NACKs flowing on the backward channel. In this case, in fact, the
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sender still needs to acquire the NACK messages from every multicast user in the cell in order to

evaluate the percentage (τ ) of requests. For this reason, even if the algorithm is able to improve the

forward channel efficiency, by possibly denying the retransmission process for a block, the NACKs

are still generated and sent over the uplink channels by every user unable to decode that block. As a

consequence, error prone channels will lead to a highly loaded uplink channel which in turn causes

non trivial problems such as collisions and the need for uplink management procedures.

• The retransmission process can be denied for those users with good channel condition. Such users

rarely ask for retransmissions, but their requests could be dropped if τ is large enough. In these

cases, the system is unfair, since a good user, which is rarely asking for the channel resource is pe-

nalized in the same manner as the bad users that are continuously triggering new retransmissions.

In order to solve the drawbacks discussed above, we present here a second solution that is based on

a probabilistic approach rather than on the selection of the hard threshold τ . The task of the base station

controller is to keep the forward channel efficiency to a reasonable level η∗. In order to maintain such

level, some retransmission requests have to be denied, as above. Let us define an overall retransmission

acceptance probability P as the probability that the retransmission process is initiated for a given FEC

block. This probability comes from the superposition of the acceptance probabilities at every user. Let

us better explain this point. The generic user i fails to decode a FEC block with probability pei and

subsequently decides whether or not a retransmission for that block should be initiated with probability

pri. Then, user i sends a NACK for the generic FEC block with probability pi = pei×pri. In some sense,

we are adding a probabilistic filter after the decoding process in order to decide whether the retransmission

for an undecodable block has to be requested. It is important to observe that the mechanism is operating

directly at the user terminal, by denying (in a probabilistic manner) the transmission of NACK messages.

This is very useful in order to obtain a simple and distributed algorithm and to limit the number of NACKs

flowing over the backward channel. At the sender side, the retransmission for a block is initiated if at

least one NACK is received for that block, i.e., using the standard algorithm presented in the previous

sections. The modifications are performed at the receiver side only adding the probabilistic decision in

the NACKs sending process. Hence, the overall retransmission probability can be obtained as:

P = 1 −
Nu
∏

i=1

(1 − pi) (7.6)

where pi is the block retransmission request probability for user i. Let us pose the following constraint:

pi = p∗ ∀i ∈ {1, 2, . . . , Nu}, which means that every user has the same probability to send a NACK over

the backward channel, i.e., the same resource request capability is assigned to every user. Thanks to this

assumption pri can be found as:

pri = min

(

1,
p∗

pei

)

(7.7)

where:

p∗ = 1 − (1 − P )1/Nu (7.8)

To run the algorithm the sending base station only needs to communicate P and Nu to every multicast

user in the cell. The users will then independently estimate pei and obtain pri according to Eq. (7.7). The
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target channel efficiency η∗ can then be selected by appropriately setting the P parameters. The algorithm

has the following advantages:

• It can be simply implemented at every multicast user (in a distributed manner).

• Only two global parameters (P and Nu) are needed, at every user, to run the algorithm. These

parameters can be disseminated through an initial setup phase and subsequently updated by the

base station controller according to various needs such as a change in Nu and/or in η∗.

• Since NACKs are inhibited directly at their generation point, i.e., at the users’ terminals, the mech-

anism can highly reduce the backward channel utilization.

In the following graphs, we report some performance metrics to prove the effectiveness of these new

solutions. In Fig. 7.17, we report the channel efficiency η as a function of the global parameter P con-

sidering Nu = 100 and by varying fd. In Fig. 7.18, instead, we plot the relationship between pei and pri

by varying P . Clearly, pri is inversely proportional to the block error probability pei. The algorithm is

introducing a soft-degradation of the users’ performance, by limiting the retransmissions for those users

in bad channel states and, at the same time, avoiding the resource wastage deriving from the fulfillment

of their continuous retransmission requests.

In Fig. 7.19, we report the cumulative distribution concerning the number of users with residual packet

error probability less than or equal to the value reported in the abscissa comparing the two methods (fixed

threshold and probabilistic) discussed above and considering the same target efficiency η∗ = 0.6 for both

schemes. It is clear how the probabilistic approach can achieve better performance, by resulting in a lower

error probability for those users with a medium/low channel error rate. The performance regarding the

users experiencing bad channel conditions is unchanged. For the same throughput value, the probabilistic

approach allows a fair redistribution of the retransmissions resources among users. The algorithm is

referred to as fair since every user has the same retransmission request capability. Obviously, it can be

seen as unfair since the users in a bad channel condition are disadvantaged. However, this is necessary in

order to limit the system resource wastage.

Finally, in Fig. 7.20, we report the percentage of users with residual error probability lower than ε

as a function of the useful downlink bandwidth (reported in abscissa). The useful downlink bandwidth

is defined here as the percentage of Br that is used, on average, to carry new data packets, without

accounting for retransmissions and coding overhead. The curves in the graph are obtained by varying the

aggregate probability P . Obviously, there is a trade–off of the P parameter: at low P the retransmission

probability is negligible and the forward channel throughput is high, but at the expense of a larger number

of unsatisfied users. On the other hand, as P increases the retransmission probability increases and more

users are able to correct their data. The P parameter can be chosen to cut the right trade–off between

channel efficiency and users’ satisfaction. In the graph, the points labelled as ’Phy FEC only’ are used

to mark the case where only physical layer processing (FEC and interleaving) is considered. As can be

seen comparing these points with the ones achieved using HARQ, the advantage of the retransmission

algorithm is considerable, even at small P values (i.e., at large useful bandwidth values).
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7.6 Video Streaming Results

In this Section, we report some results on the effectiveness of the proposed algorithms when a H.263

video stream is transmitted over the forward channel. The results will be expressed here using the well-

known video PSNR metric [43] as the performance indicator for the received video quality. A PSNR of

100 dB is used to represent the perfect quality case, i.e., when the original and the corrupted (transmitted)

streams do not differ. The focus will be mainly on the advantages of the proposed HARQ solutions with

respect to classical ARQ algorithms. The following system parameters will be considered in our analysis:

number of DCH users in the system NDCH = 200, number of multicast (CCH) users per cell Nu = 50,

High mobility scenario (multicast users Doppler frequency fd = 40 Hz). The video sequences consid-

ered in this work to carry out the PSNR performance evaluation are the Highway and the NEWS QCIF

sequences that can be found on–line (among other standard video traces) in [40]. The H.263 encoder and

decoder used here have been derived from the well known H.263 Telenor encoder/decoder suite version

2.0, written in standard C language and publicly available [96].

As a first set of results, in Fig. 7.21 we report the PSNR and the useful bandwidth as a function of the

maximum number of allowed retransmission rounds in the error control algorithm, whereas in Fig. 7.22

performance metrics are plotted for different K/N values. With the term useful bandwidth, we mean the

fraction of the downlink channel that, on average, can be exploited for the transmission of new data. The

useful bandwidth has been normalized here to the channel bandwidth Br. Moreover, we plot the video

PSNR which has been obtained by weighing the differences between the original transmitted frames and

the received corrupted frames [42]. In Fig. 7.23, we report the methodology which has been used to

obtain the PSNR performance [42, 43]. First of all, the original YUV video sequence has been encoded

in the H.263 format. Then the residual bit error traces, obtained at the output of the HARQ simulator,

have been used to corrupt the H.263 video sequence. Finally, the corrupted video sequence has been

decoded again into the YUV format and compared with the original one. A video-meter tool [42] has

been used to compute the differences between the two videos and to translate them into PSNR values.

This procedure has been repeated for every multicast user in the system. From Figs. 7.21 and 7.22, the

following observation can be made:

• The PSNR performance quickly saturates, i.e., two retransmission rounds seem to be enough to

achieve satisfactory PSNR values (≥ 60 dB).

• The inter-block interleaving is also effective, especially after the second retransmission round. Even

if not reported here, also the interleaving has a negative effect on the delay performance (and play–

out buffer dimensioning).

• In accordance with the PSNR saturation, also the useful bandwidth becomes flat after the third

retransmission round. This indicates that further retransmissions are rarely required and that, for

this reason, are leading to a small performance increase.

• An increase of the K/N ratio is beneficial for the useful bandwidth (a gain of almost 10 Kbps is

observed), but is highly impacts the delay performance (and the play–out buffer occupancy, not
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reported here).

Further, in Figs. 7.24, 7.25, 7.26 and 7.27, we report the mean, the standard deviation and the max-

imum PSNR for the 20-th, 30-th, 50-th and the 70-th percentile of the multicast users in the cell, re-

spectively. In these graphs, histograms have been used to report the mean PSNR value on top of every

histogram bar, vertical lines have been used to report the standard deviation. In addition, horizontal lines

are also drawn to indicate the maximum PSNR value measured for every percentile. From these graphs,

it is evident how the mean PSNR in the HARQ case is consistently higher than the one in the ARQ. Often

(observe Figs. 7.24, 7.25 and 7.26), the mean PSNR value for HARQ dominates the maximum PSNR

values in the ARQ case. In general, with HARQ solutions two retransmissions are enough to obtain an

acceptable video quality PSNR ≥ 60 dB even for low percentiles (i.e., 20-th percentile), whereas such

performance is possible only after three or four retransmission with ARQ. This implies that the number

of retransmission rounds can be decreased when HARQ is being used, by conserving a satisfying perfor-

mance level and, at the same time, by decreasing the link layer delays (i.e., decreasing the requirements

for the receiver play–out buffer). As an example, observe that one retransmission is enough, in the HARQ

case, to achieve a perfect quality (PSNR=100 dB) for 50 % of the multicast users in the system, but four

retransmissions are needed by the ARQ scheme. One retransmission is not enough to achieve a perfect

quality even for 70 % of the users (Fig. 7.27) for ARQ.

Similar results have been obtained for different video traces, as an example, in Fig. 7.28, we report

the PSNR cumulative distribution for the NEWS standard video sequence [40] considering HARQ and

ARQ. HARQ performance is plotted using bold lines and a PSNR of zero dB means that the H.263

decoder has failed the decoding process due to errors in H.263 headers. An anomalous deadlock event

(with subsequent termination of the decoding process) can occur when the residual errors affecting the

H.263 video sequence are hitting important parts of the H.263 headers. In such a cases, the entire video

reproduction is compromised with an anomalous termination of the play–out process. These cases do not

depend on our evaluation approach, but are rather strictly related to the decoding process that has therefore

to be improved, or at least additional mechanisms should be implemented to provide extra-protection for

H.263 headers. Fig. 7.28 has been obtained after a long measurement process where the video sequence

has been run for every user for more than 400 times, by randomly changing the offset used to read the

channel traces. Also from this figure, the superiority of HARQ solutions is clear. Moreover, it is worth

noticing that, even using HARQ, and even after four retransmission rounds the deadlock probability is not

zero. As an example, considering two retransmission rounds and the HARQ algorithm, one user in 100

will experience, on average, a deadlock event. This definitely calls for some improvements to be added

in the decoding phase in order to cope with corrupted H.263 headers.

7.7 Conclusions

In this Chapter the multicast delivery in 3G Cellular Networks has been investigated in detail. Some

error control algorithms have been proposed to provide throughput efficient and delay limited solutions.

Their performance has been investigated over an independent channel first. Later on, accurate W–CDMA
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channel traces have been considered. Particular attention has been paid to the understanding of the impact

of the system parameters (such as mobility and system load) on system requirements (such as play–out

buffer size) and to the investigation of the effectiveness of the proposed schemes for the transmission of

video streaming flows. The solutions proposed here are promising since they allow for a performance

improvement over standard ARQ techniques over a wide set of channel error statistics and system param-

eters.
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