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Abstract—According to the Internet of Things (IoT) vision,
everyday objects such as domestic appliances, actuators and
embedded systems of any kind in the near future will be
connected with each other and with the Internet. These will
form a distributed network with sensing capabilities that will al-
low unprecedented market opportunities, spurring new services,
including energy monitoring and control of homes, buildings,
industrial processes and so forth.

In this paper, we concentrate on the actual implementation
of the communication technology, adopting the Representational
State Transfer (REST) approach. REST only relies on the HTTP
methods such as GET and POST. Embedded communication
devices are addressed using Universal Resource Indicators (URI)
and data is exchanged through standard XML.

We present our TinyOS design and implementation of two
components that will play a fundamental role in the commu-
nication stack of REST-based devices. First, we focus on the
Constrained Application Protocol (CoAP), which allows REST–
based communications among applications residing in distributed
and networked embedded systems. Second, we present our
lightweight implementation of a EXI library: an efficient binary
compressor for XML data files. Experimental results are provided
in terms of compression, decoding (EXI) and access time (CoAP)
performance.

I. INTRODUCTION AND RELATED WORKS

Starting from the eighties, worldwide communications pop-

ularity has always been increasing. The Internet paradigm has

become a common denominator for networking applications.

Nowadays, many information and communications services

rely on IP technology: web-shopping, online-databases, social

networks being three notable examples.

The actual trend for the ICT community revolves around

two main scenarios: Smart Grids (SM) [1], [2] and Internet

of Things (IoT) [3]. Even though these have been born from

different needs, they have quite a few aspects in common

and are characterized by similar challenges. Key objectives

for both scenarios are: seamless integration with IP, system

scalability and interoperability.

Both scenarios comprise millions of heterogeneous embed-

ded devices featuring different technologies, each having been

developed to satisfy a particular need. Just to name a few,

wireless sensor and actuator networks (WS&ANs) [4] adopt

low–power radios and simple CPUs, Radio Frequency Identi-

fiers (RFIDs) [5] and Near Field Communication (NFC) [6]

rely on little computational power and very short range radios,

whereas wired embedded devices are equipped with Power

Line Communication (PLC) [7] and ARM CPUs. The seamless

and scalable interworking of such diverse technologies is

crucial to the success of SM and IoT.

The Internet world is now in its mature age: the Internet

Protocol (IP) is the most used network protocol along with

the Hyper–Text Transmission Protocol (HTTP). However, only

recently standardization bodies started to play a decisive role

in interconnecting constrained devices with the Internet.

Recent research efforts explore the performance and the

practical feasibility of a REST-based approach [8] on top of a

6LoWPAN stack [9] in WSNs. Other recent papers [10], [11],

[12] have already highlighted the benefits of lightweight Web-

based protocols accessing sensors resource data through Uni-

form Resource Identifiers (URI) and request methods (GET,

PUT, POST, DELETE) [13], [8], [4]. However, Web Service-

enabled WSNs still need a complete protocol stack definition

for their direct integration in the Internet, proving that a Web-

based system cam smoothly bridge information, objects and

new services through WSNs.

XML has been acknowledged as the de–facto standard

for data representation and exchange but his great flexibility

comes at the prize of being very redundant; to alleviate this,

many solutions (see [14] for a thorough review of XML com-

pression techniques) are available: blind compressors, such

as gzip, bzip2, DTDPPM [15] treat XML as plain text files;

a second group of compressors (e.g., enhanced XMill [16],

XMLPPM [17]) takes the XML document structure into ac-

count to achieve higher compression ratios. To the best of our

knowledge, XBC and EXI have been the first working groups

focusing on optimizing XML for constrained devices and the

W3C [18] selected EXI as its standard.

In this paper, we illustrate some of the strengths of the

Internet Engineering Task Force (IETF) approach. To this

end, we detail the realization of simple, but powerful Web

Services for IoT applications that use the Constrained Appli-

cation Protocol (CoAP) [19], which is being defined in the

Constrained RESTful Environment (CoRE) charter [20], and

the eXtensible Markup Language (XML), which is combined

with the Efficient XML Interchange (EXI) format [21], [22].

II. CONSTRAINED COMMUNICATION

WS&AN has been a hot research topic for nearly 10 years

now and can be considered mature. This is testified, e.g., by



Fig. 1. Internet of Things in domestic environments: appliances and utilities
can be monitored and controlled in near-realtime using smart embedded
systems with IP connectivity.

the huge number of ZigBee devices being shipped, which has

been doubling every year, hitting 20 millions in 2009 [23]. The

main characteristics of the sensor devices in a WS&AN are:

low–power radio, providing wireless communication capa-

bilities, but very little bandwidth, low–power CPU, enabling

substantial energy savings in the face of little computational

capabilities, and small footprint, allowing easy installation,

but posing design constraints.

These features enabled the development of very economic

devices, easy to install and showing long lifetime on batteries,

thus making WS&AN one of the principal actors in the

IoT world. Fig. 1 shows how a home environment can be

instrumented with fully–connected sensor nodes for smart

metering and control of appliances.

While this figure shows a domestic environment, this con-

cept can be extended to a larger number of scenarios, such

as hospitals, offices, shopping malls, factories and even cities;

adding the Internet dimension to these smart–environment will

enable a whole set of new services and applications. The true

IoT will be achieved when every interconnected device will

be able to communicate using the same language(s).

Ideally, in the IoT each device will be represented as a

resource providing its own description in terms of hardware

capabilities and software interfaces as well as a description

of the services that it provides. For instance, the refrigerator

will provide information about its description, such as its

main physical function, its retailer, its operating status, but

will also provide access to smart–services such as “best

before”–notifiers when products in it are passing that date

or an “out-of-stock”–notifier, informing the user about which

products are needed. The user, will thus be able to interact

with the refrigerator in same way as with any website, by

just connecting to the appropriate (IP) address and modifying

parameters or activating services.

We stress that, this can only be achieved through a thorough

standardization process and we think that the best candidate to

drive this activity is the IETF, which is running many charters

focused on constrained devices. The remainder of this paper

is dedicated to the description of our implementations and

performance evaluation of CoAP and EXI.

III. CONSTRAINED APPLICATION PROTOCOL

CoAP [19] is currently being defined within the CoRE [20]

working group of the IETF, which aims at providing a REST–

based framework for resource–oriented applications optimized

for constrained IP networks and devices, by designing a

protocol set able to cope with limited packet sizes, low-energy

devices and unreliable channels.

CoAP is based on the REST architectural style sharing

the objectives and the intrinsic limitation listed above. It

is designed for easy stateless mapping with HTTP, and for

providing M2M interaction. HTTP compatibility is obtained

by maintaining the same interaction model, using a subset of

the HTTP methods.

Nodes supporting CoAP provide flexible services over any

IP network using UDP, and they also provide a solid commu-

nication framework to connect sensor nodes to the Internet.

Any HTTP client or server can interoperate with CoAP–Ready

endpoints by simply installing a translation proxy between

the two devices. This will not be a burden for the proxy,

since these translation operations have been designed not to

be time and computationally demanding. Also, CoAP features

a transaction layer between the application protocol and UDP

to provide basic reliability and session matching support1.

We designed and developed a TinyOS CoAP implemen-

tation using the 6LoWPAN header-compression (HC) library

from Harvan and Schoenwaelder (6lowpan [24]) which

implements the first version of the HC (RFC 4944) [25].

CoAPP is a monolithic component providing client and server

functionalities; it handles session data regardless of its type

(either client or server), thus optimizing its memory usage.

The actual implementation of this component can handle up to

COAP MAX TRANSACTIONS transactions simultaneously,

a value that can be chosen arbitrarily at build time by trading

between memory occupation and flexibility.

The CoAPClient interface provides the CoAPP module

with a TinyOS command to send any arbitrary request to a

CoAP endpoint, and a TinyOS event to manage the response

it gets back. Next, we show the TinyOS code of the interface:

interface CoAPClient {

command coap_tid_t request (

coap_absuri_t* absuri,

coap_method_t method,

coap_content_t* content,

bool acked );

event void response (

coap_tid_t tid,

coap_status_t status,

coap_content_t* content ); }

The interface defines different custom data types to provide

better readability and high-level operations. When a request

command is issued the user must provide i) absuri describ-

ing endpoint host, port and URI of the requested resource,

1These functionalities are provided by the transport layer in the ISO/OSI
stack.



ii) method specifying which method is used to access the

requested resource, iii) content providing a pointer to the

content to be attached to the request, if present, iv) acked to

request a response message; the request command provides

the user with the coap_tid_t internally assigned to the

transaction. A response event is triggered when the related

reply is received. This response contains i) a tid field

identifying the transaction, ii) a status field containing the

status code resulted after processing the request and iii) a

pointer to the content piggybacked in the response.

The CoAPServer interface provides the CoAPP mod-

ule with server capabilities: external components can use

this interface to serve resources using a CoAP server. The

CoAPServer and the the CoAPClient are complementary

in the sense that commands issued using one interface trigger

events managed by the other interface and viceversa.

interface CoAPServer {

event void request (

coap_rid_t rid,

coap_absuri_t* uri,

coap_method_t method,

coap_content_t* content,

bool toack );

command error_t response (

coap_rid_t rid,

coap_status_t status,

coap_content_t* content ); }

In order for a request to be properly processed, the

following data is needed: i) a rid value internally assigned

to univocally identify the request, ii) the uri of the requested

resource, iii) method describing the access method, iv) a

pointer to the content, if present, and v) a toack flag

to signal if the client requested an ACK. The response

command can be used by the serving module together with the

following parameters, i) a rid to match the related request,

ii) status value resulted from the processing of the request

and iii) content pointer to data to be sent in the response.

The CoAPServer interface is characterized within the

CoAPP module by a port parameter identifying on which

UDP port the CoAP service has to be activated in the node.

The client/server architecture of the CoAPP module allows

the implementation of lightweight Web services on constrained

WS&AN nodes. Moreover, it makes it possible to implement

M2M interactions, such as publish/subscribe, and to create

multiple Web servers and services without burdening a con-

strained node system. As it will become evident in Section V

from our experimental campaign, our design choices do not

need heavy computational power, on the contrary the resulting

CoAPP software proved to be fast and reliable in managing

requests and responses.

IV. EXI COMPRESSOR

The Efficient XML Interchange (EXI) format is a com-

pact XML representation, currently being standardized by the

World Wide Web Consortium (W3C) [18]. It is designed

to support high-performance XML applications for resource

Fig. 2. Usage diagram for the EXI processor and pre-processor.

constrained environments, significantly reducing bandwidth

requirements and improving encoding/decoding performance.

EXI compression exploits information about the document

structure to internally generate small tags based upon the

current XML schema, the current processing stage and the

context. Also, tags data representation is optimized to be as

compact as possible.

Although an efficient compression can be achieved from the

XML schema, the standard defines other operating modes to

produce a more-compact representation of the XML file using

only partial or no XML schema information.

The encoded XML document results in an EXI stream,

which represents the document in binary format where every

data tag of the document is encoded using an event code.

Event codes are binary tags that preserve their value only in

their assigned position within the EXI stream.

Thus EXI implements event-based encoding: for efficient

encoding, at any given point of an XML stream a set of

grammars are used to understand which event is most likely

to occur next. A set of grammars, representing the XML

document structure, has to be produced before the actual EXI

processing. The sequence of events describes the sequence of

finite-state machines defined using each different grammar as

transition function.

In an EXI stream every XML element is represented using

a specific grammar; each grammar consists of a set of produc-

tions, defining the set of possible events in a specific state. EXI

assigns an event–code (EC) to each production. The sequence

of XML elements codified to ECs forms an EXI stream. When

a new element of the EXI stream is parsed, a new grammar

associated with the element is stacked upon the preceding one

and the control is passed to a new automaton which is in

charge of handling the new grammar, until the new element

is completed and the control returns to the preceding routine.

We designed and implemented libEXI, an implementation

of the EXI processor that has been specifically targeted for

resource constrained MCUs (e.g., Texas Instrument MSP430).

The design required to limit the number of features imple-

mented. libEXI is a byte-aligned and schema-informed EXI



TABLE I
ROM/RAM UTILIZATION OF TINYOS COMPONENTS

Component ROM RAM

TinyOS core 1396 4

802.15.4 and ActiveMessage 9258 327

UDP/6LoWPAN 5804 1983

CoAP 2668 1801

RAI/RPI 1752 548

libEXI 7134 1016

Subscription 1580 522

Resources 12402 526

HW drivers 7338 160

CoAP web-services 3632 208

EXI handling 1432 158

processor, which encodes EXI streams using a preprocessed

grammar-set (defining the XML schema in use) and a pre-

processed C data structure set (representing a document com-

pliant to the XML schema).

Hence, libEXI can translate EXI streams into a structured

memory representation which can be stored and process by

CPU-constrained devices. Bit-aligned encoding, even if very

efficient, showed to be too complex to match our requirements.

As shown in Figure 2, our EXI library uses the results of

a preprocessing phase: a Ruby pre-processor has to run on

the XML schemas before libEXI can process EXI streams.

This preprocessor extracts from any XML schema the set

of grammars required to encode and decode EXI streams;

in addition, it builds a set of C structures representing the

XML document layers. The libEXI memory representation

built by the pre-processor is an optimized translation of the

XML document contents, needed for constrained devices to

properly manage EXI streams.

The libEXI processor uses a grammar stack to en-

code/decode EXI streams. Grammars contain the list of events

as well as the information of which grammar has to be

stacked to handle the next part of the EXI stream, and which

production will be the current grammar into when the control

returns to it. Any new grammar piled in the grammar stack

corresponds to a new execution of the encode/decode function

call: in this way, there is a one-to-one mapping between the

processor internal stack and the current grammars stack.

V. RESULTS

In this section we show some experimental results of

the CoAP/EXI components that we implemented on telosb

sensor nodes. In the evaluation campaign of these components,

we have used our SENSEI [26] node implementation (see

Section V of [8]) adding the new CoAP/EXI implementation

to the SENSEI’s protocol stack. Table I shows the RAM/ROM

memory occupation of the various software components.

A. CoAP

As shown in Table I, the implementation of the CoAP

component is smaller of that of our previous BinaryWS [8]

implementation. Our previous implementation led to a higher
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memory (ROM) consumption as it accounted for a separate

implementation of the interface toward each component on the

nodes (resources such as leds, on-board sensors and actuators,

etc.), also considering the specific requirements of their XML

schemas and the hardware drivers needed for their physical

access. The current component instead leverages uniform

interfaces which are reused for all components, leading to a

lightweight implementation of Web servers on sensor devices.

As a first set of results, in order to prove that CoAP/EXI

components do not negatively impact the performance of the

nodes, we set up an experiment with up to 20 CoAP servers

running on a single telosb node (serving node). A second

telosb node (client node) was used to send requests to these

servers at a rate that was kept constant during each experiment

and varied across them so as to highlight the dependence on

this parameters. The outcomes of this test are shown in Fig. 3

where we plot the CoAP request success probability (intended

as the percentage of occurrences for which a request is

successfully handled by the serving node) as a function of the

request rate by the client node. The experiment has been run

considering 5, 10 and 20 CoAP servers. Due to our efficient

implementation of CoAP, the success probability only slightly

depends on the number of servers running on the nodes. As

expected, a very high (i.e., higher than 60 requests/second)

request rate severely impacts the access performance but

this is due to the inherent limitations of the currently used

6LoWPAN library [24]. Given that, we can conclude that our

CoAP implementation scales well with the number of server

instances without causing a major and noticeable decrease in

the access performance.

B. EXI

In Table II we show the compression efficiency for EXI,

also showing that of other compression schemes, i.e., Gzip,

enhanced Xmill (Xwrt) [16] and XMLPPM [17]. The size

of the Uncompressed XML document, which is taken as

the reference document for the experiment, is expressed in

bytes. For the compression schemes we show the size of the



TABLE II
XML COMPRESSION PERFORMANCE: SIZE OF THE COMPRESSED STREAM (BYTES) AND COMPRESSION RATIO (BETWEEN PARENTHESES)

Format Schema-1 Schema-2 Schema-3

Uncompressed XML 591 bytes 242 bytes 229 bytes

Gzip 302 bytes (0.51) 206 bytes (0.85) 175 bytes (0.76)

enhanced Xmill (Xwrt) [16] 784 bytes (1.33) 431 bytes (1.78) 453 bytes (1.97)

XMLPPM [17] 262 bytes (0.44) 164 bytes (0.68) 128 bytes (0.55)

EXI w/o schema byte-aligned 298 bytes (0.50) 104 bytes (0.43) 99 bytes (0.43)

EXI w/o schema bit-aligned 237 bytes (0.40) 96 bytes (0.40) 83 bytes (0.36)

EXI w/ schema byte-aligned 58 bytes (0.10) 10 bytes (0.04) 41 bytes (0.17)

EXI w/ schema bit-aligned 27 bytes (0.05) 4 bytes (0.02) 26 bytes (0.11)

compressed documents (also in bytes) and their compression

ratio (within parentheses in the table), defined as the ratio

between the sizes of the compressed stream and that of

the uncompressed XML. The XML document we picked

for our experiments is described by simple schemas that

are suitable for, e.g., environmental monitoring and binary

actuation (i.e., the operations that we expect from a sensor

node). As demonstrated by the experimental results in Table II,

EXI compression is extremely efficient especially for schema-

informed XML compression, leading to compressed files that

are as small as just 4 bytes, thus achieving a compression

efficiency of 50 times (the inverse of the compression ratio).

We remark that this is particularly important for resource

constrained sensor nodes as EXI dramatically reduces the

amount of data that has to be transferred (most likely via radio

transmission) through the network.

As a last remark, we note that the bit-aligned mode is

the most convenient choice, however, its implementation is

more complex on MCUs working in byte-aligned mode. Thus,

implementors may want to use the byte-aligned mode even

though it provides inferior results.

As a third set of experiments, our EXI implementation has

been extensively tested on a regular desktop PC and compared

against EXIficient [27], a well-known and freely available Java

implementation of EXI. The design criteria of EXIficient are

very different from those of libEXI: Java was chosen due to its

portability and all EXI features were implemented. However,

the resulting implementation is not optimized for energy

constrained devices and, as we show shortly, its performance

is not consistent across repeated applications to the same

document.

The steady-state XML throughput (number of processed

XML elements per second) has been measured for libEXI and

EXIficient. The latter can output an EXI stream at the maxi-

mum rate of about 0.9 millions of XML elements per second,

whereas libEXI outputs about 6 millions XML elements per

second.

Next, we look at the XML processing time, which is the

time taken to compress an input XML file (and is inversely

proportional to the XML throughput). Notably, the processing

time of EXIficient decreases across repeated applications to

the same XML file, showing a (non-negligible) transient phase

at the beginning of which its performance is much worse
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(up to 50 times) than that in steady-state. This is shown in

Fig. 4, where we plot the average processing time for libEXI

and EXIficient for a reference document containing 50 XML

elements. As can be seen from the same figure, the processing

time of libEXI is nearly constant across repeated compressions

of the same XML file.

Finally, in Fig. 5 we shown the average libEXI processing



time for XML documents containing a single XML element.

These small-sized documents are relevant to the IoT as they

can represent queries to, e.g., acquire the readings of specific

sensor nodes. Obtaining the compressed EXI stream of these

documents is very fast (less than 10 micro-seconds), which

is desirable for, e.g., a proxy connecting devices within the

Internet domain with the IoT. In fact, one of the main functions

of this proxy will be that of performing conversions between

EXI and XML. EXI will be the preferred format for the

constrained devices residing within the IoT, whereas XML

will be used by the more powerful computers located within

the Internet.

VI. CONCLUSIONS

This paper described and evaluated the performance of a

Web service architecture for constrained devices. The original

contributions of this work are: i) the use of standard (or under

standardization) protocols to connect the constrained world

of WS&ANs to the Internet, ii) a TinyOS implementation of

this framework which is both small in terms of memory oc-

cupation and computationally lightweight, iii) an experimental

performance evaluation campaign proving the feasibility of the

framework and the efficiency of our implementation of it.

To these authors, the future of the Internet of Things relies

much on the use of standard solutions for extending the

Internet and the Web paradigms into the world of resource

constrained sensing and actuating devices. Efficient implemen-

tations of CoAP as well as of the EXI compression scheme are

just two of the blocks needed for the realization of this vision.

We are currently working to build a complete communication

stack realized using IETF standards, such as 6LoWPAN and

RPL (Routing for Low Power and Lossy Networks) [28].

Further steps will be those of porting this architecture to other

constrained devices, such as, e.g., RFID and PLC networks.
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