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Abstract— In this paper we consider the transmission of TCP
flows over networks including geostationary satellite links. In this
environment, due to the large delays and to the possibly high er-
ror rates introduced by the wireless channel, special protocols and
architectures are required to obtain good performance. Our main
goal in such a context is to efficiently manage the buffers that are
usually placed between the cabled and the wireless part of the net-
work [1] in order to harmonize the different bit rates that may be
available over these different links. Many approaches based on
proxies [2] [3], in fact, buffer TCP flows immediately before the
wireless channel access and use dedicated transport protocols to
optimize the transmission over the wireless links. However, while
many contributions focus on the overall system performance and
on the problem of maintaining the end-to-end semantic when TCP
is terminated at proxy nodes, very few of them deeply investigate
how buffers are to be managed in order to avoid congestion/losses
while still be able to achieve good performance. This contribution
is therefore aimed at filling this gap, by presenting buffer manage-
ment techniques and evaluating them against previous solutions [4].

I. INTRODUCTION

In this paper, we study the problem of providing good
throughput and delay performance to TCP flows transmitted over
geostationary satellite links. TCP assumes that the transmission
over the channel is unreliable; various features such as timeout
timers, packet reordering and retransmissions are used in TCP
with the objective of providing a reliable channel to higher layer
applications. However, these features have been designed to be
effective over wired networks, where the main cause of packet
error is due to network congestion. It is well known [5] that TCP
is unable to properly react to wireless channel errors, where its
throughput is strongly degraded. These scenarios include the
case of heterogeneous networks including satellite links, where
special countermeasures have to be taken to correct the ineffi-
ciencies of the TCP protocol. In this paper, as a possible remedy
to the low performance of TCP over error-prone wireless links,
we consider a TCP-split approach [3] [4]. The TCP-split archi-
tecture, that will also be considered here as a reference model to
present the problem and state our solution, is presented in Fig. 1.
The two communicating endpoints are fixed hosts exchanging
packets over a path composed by wired and geostationary satel-
lite links. A first host (leftmost side of the figure) transmits its
data flow exploiting a TCP–like (LTL, see [4]) protocol to a first
relay node, where such a flow is buffered and the TCP flow is
terminated through a classical TCP-split approach. From this
relay buffer, the flow is transmitted over the wireless satellite
channel through a dedicated protocol (STL) which is aimed at
increasing transmission and error recovery efficiency over the
wireless link. Finally, the flow is gathered by a second relay
node and transmitted to the final user (rightmost side of the fig-
ure) exploiting again a TCP–like flow control algorithm. The ra-
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Fig. 1. End-to-end PETRA architecture.

tionale behind this approach is to separate the different portions
of the network, by optimizing the end-to-end transmission of the
data flow thanks to the selection of the most suitable error con-
trol mechanism for each network segment. In particular, TCP is
used as the transport protocol responsible for error recovery over
wired links, whereas a dedicated SR–ARQ like protocol is used
over the wireless satellite channel. The goal of this paper is to
achieve the buffer control at the relay nodes [1] [4], i.e., to devise
efficient techniques for the relay buffer occupancy management.
In particular, we want to avoid the buffer overflow problem at
the relay buffer while still providing good performance. In or-
der to illustrate the problem, let consider the leftmost relay in
Fig. 1. Further, assume that the bandwidth available over the
wireless link (Bsat) is much lower than the one available over
the wired connections (Bwired). In this case, it is clear that the
buffer at relay 1 (Fig. 1) eventually saturates. This will lead to
buffer overflow problems and subsequent packet losses. More-
over, it is noticeable that such packet losses are not being recov-
ered as they are not in the TCP scope, which is instead acknowl-
edged right before the insertion of the packets into the buffer [4].
These packet losses would therefore lead to considerable perfor-
mance degradations since the only way in which they can be
recovered is by invoking the intervention of the Upper Transport
Layer (UTL) [4], which is a further protocol, placed on top of
TCP and responsible for the correctness of the end-to-end trans-
mission. The error recovery pursued by the UTL is however
expensive in terms of time, due to the large delays characteriz-
ing the geostationary satellite links [3] [4] and to the inherent
latencies associated to the UTL error control mechanism. These
overflow problems are therefore to be avoided, by possibly pro-
viding ways to estimate the increased buffer occupancy and take
actions such as stopping the incoming TCP flow in advance, i.e.,
before that a buffer overflow event will actually occur.

The remainder of this paper is organized as follows. In Sec-
tion II, we report the channel models that we considered to
carry out the performance evaluation. In Section III, we re-
view the buffer control algorithm proposed in [4], whereas two



novel mechanisms for buffer control are proposed in Sections IV
and V. The performance evaluation is presented in Section VI,
where the three buffer control algorithms are compared with
each other. Finally, in Section VII we report the conclusions
of our work.

II. CHANNEL MODELS

For what concerns the terrestrial (wired) links, we consider
an independent packet error probability. That is, TCP/IP pack-
ets are marked as erroneous with probability Pe(IP ). For the
wireless channel, we considered the time slotted, where the slot
duration corresponds to the transmission time of a single satellite
link layer packet (LL PDU). To track the LL PDU error process,
we used a discrete-time two-state Markov chain [6] with average
error rate and burst length equal to ε and b, respectively. We cal-
culated the PDU error probability ε from the bit error probability
εb considering i.i.d. errors. εb and b were given as input to the
simulator. As our goal is to avoid buffer overflow at the relay
nodes, in the paper we will consider a very low IP packet error
probability Pe(IP ) = 10−9. This is, in fact, the worst case for
the relay buffer occupancy (refer to the leftmost buffer in Fig.1).

III. REVIEW OF THE PETRA SATELLITE BUFFER CONTROL
SCHEME

A possible solution to this problem was proposed in [4]. In
this approach the authors use a suitable buffer threshold Bth and
stop the backward TCP acknowledgment (ACK) flow over the
first (leftmost) wired channel as the buffer occupancy grows be-
yond Bth. As a reaction to that, the TCP running over the first
wired link is forced to stop its outgoing flow as, due to the lack of
acknowledgments, it window eventually results to be exhausted.
The key idea is therefore to indirectly stop the TCP flow on the
forward direction by stopping backward acknowledgments. The
flow is then restored as the buffer occupancy decreases below
Bth. In [4], the authors give an expression for Bth in order to
minimize the probability of having TCP timeout events, while
still achieving good performance

Bth ≥
⌈

BsatRTTwired

PKTlen

⌉
(1)

where Bsat is the available bandwidth over the satellite channel,
RTTwired is the round trip time over the wired link and PKTlen

is the number of bits needed to transmit an entire TCP segment
over the wireless channel. Note that, with this approach we also
have to carefully select the dimension of the buffer size Bsize

in order to avoid overflow events due to the inherent latency
associated to the TCP reaction to the ACK stopping. In fact,
at least RTTwired/2 seconds are needed for the stopped ACK
flow to have effect on the TCP transmission at the sender side.
During these RTT/2 seconds, the relay node may receive addi-
tional packets that are in flight over the channel at the time the
ACK flow is stopped. The buffer should be therefore overdimen-
sioned to the worst case in order to accommodate such packets
and therefore avoid overflow events.

We outline that the PETRA scheme is not free of the time-
out problem at the TCP sender. In fact, when the ACK flow is
stopped for too a long period (due to, e.g., bad channel condi-
tions on the satellite link), the TCP sender reacts by invoking the
timeout and retransmitting. This, in turn, causes a substantial
performance degradation. The buffer management schemes that
we propose in the following aim at solving this problem.
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Fig. 2. Illustration of the mechanism implemented by the ACKRES scheme.

IV. ACKRES SATELLITE BUFFER CONTROL SCHEME

In this paper, we go further with respect to previous work
by presenting two different approaches to manage the TCP flow
and buffer occupancy. The goals of the present contribution are
to provide solutions where the knowledge of system parameters
such as round trip time (RTTwired) or satellite bandwidth (Bsat)
do not have to be known. Moreover, these schemes should still
be able to avoid buffer overflow problems and possibly improve
the buffer utilization factor.

The first scheme that we present to accomplish to these goals
is called ACK REServation (ACKRES). ACKRES still make use
of the threshold Bth and it is aimed at further limiting timeout
events of the TCP operating over the wired link. In order to
explain how the scheme works consider Fig. 2. Assume that
at time t1 the relay1 buffer (Fig. 1) occupancy grows beyond
the threshold value Bth. As a consequence, the buffer manage-
ment scheme immediately stops the backward TCP ACK flow
and starts tracking incoming TCP packets. These packets, as in-
troduced above, are the in flight TCP segments at time t1. In
the example depicted in Fig. 2, we have that y = 3 TCP seg-
ments arrive after the stopping time t1. Assume also that the
last TCP ACK sent by ACKRES before time t1 carries the ac-
knowledgment number x. ACKRES keeps an estimate of the
timeout expiration time at the TCP sender. As this expiration
time approaches, ACKRES sends back a single new ACK (ACK
x + 1), which is relative to the first (unacknowledged) packet
received after the ACK stopping event and whose function is to
refresh the timeout timer at the sending TCP, thereby avoiding
its expiration. In particular, in order for this mechanism to be ef-
fective, the relay node has to send this acknowledgement at least
RTTwired/2 seconds before the timeout expiration time at the
sender. The same mechanism applies for every further timeout
event until the rely buffer occupancy decreases below Bth and
the ACK flow can be completely restored, as for the scheme in
Section III.

We stress the fact that obtaining an accurate estimate of the
timeout at the sending entity may be difficult. In fact, the actual
timeout at the sender depends on both the error events encoun-



tered by TCP and by the type of estimator adopted by the partic-
ular version of TCP in use. The relay buffer should therefore run
a timeout estimator which is based on the incoming TCP traf-
fic. Again, setting up this estimation may not be a trivial task
as the timeout is not updated at regular intervals [7]. As will
be discussed in the sequel, this algorithm presents some serious
drawbacks. In this paper, we will present performance results for
the case where the timeout estimate is perfect (∆T0 = 0) and we
will discuss the behavior that we found for the case where it is
biased by a constant quantity ∆T0 �= 0.

V. RWND-BASED SATELLITE BUFFER CONTROL SCHEME

In this section we present a third algorithm to control the in-
coming TCP flow and avoid buffer overflows. We control the
buffer occupancy by measuring, each time a new TCP ACK is
sent, the remaining space in the buffer Bfree and delivering such
an information to the TCP sender through TCP ACKs. To this
end, we utilize the receiver advertised window (rwnd) field in
the TCP ACK headers. Hence, we synchronize the TCP ACK
flow rwnd field with the remaining space in the buffer. In the
limiting case, Bfree = 0 and a TCP ACK including a rwnd = 0
is sent back to the transmitter. The sender, after receiving this
ACK, freezes its status, by therefore stopping the downcounting
of the timeout timer. By this way, we prevent the TCP sender to
timeout by forcing it to decrease its transmission rate according
to the still available space in the relay buffer and, in the limiting
case, by putting it into the freeze mode.

Moreover, in order to prevent the TCP sender to remain into
the freeze situation indefinitely, we implemented an anti–freeze
mechanism working as follows. As soon as the relay node sends
an ACK with a zero rwnd field, it enters the so called freeze
state, where it is forced to periodically check the buffer state
and, in the case where Bfree > 0, to send a (forced duplicate)
ACK with rwnd = Bfree. In the case where Bfree = 0, noth-
ing is transmitted and the buffer check is rescheduled. The relay
node remains into the freeze state until a new TCP data packet
is eventually received. In this case, the state is switched back to
normal, the forced periodic buffer check is stopped and Bfree is
mapped again into the ACKs rwnd field. We stress that this un-
freeze algorithm is necessary and at the same time very effective
to restore the TCP flow.

In the next we prove that this strategy always avoids overflow
events to occur at the relay node. TCP packets are transmitted in
rounds. Consider the generic round n ∈ N

+ and, in particular,
the last incoming ACK relative to the TCP packets transmitted
by the sender in round n−1. Assume that this ACK arrives at the
transmitter at time tn, and refer to the acknowledgement number
contained in this ACK as ACK(tn). Moreover, let rwnd(tn)
and LBSN(tn) be the receiver window advertized by the ACK
at time tn and the next octet to be transmitted over the satellite
channel by the relay node at time tn, respectively. Further, let
us indicate with HTSN(tn) = H(tn) + 1, where H(tn) is the
sequence number associated with the highest octet that can be
transmitted by the sender at time tn. Now, if we assume that a
buffer overflow occurs at time t > tn, i.e., due to the packets
transmitted in the n-th round, we must have that:

HTSN(tn) − LBSN(t) > Bsize (2)

where Bsize is the relay1 buffer size. Furthermore, as LBSN(·)
is by definition non-decreasing as a function of the time t, we

 0

 20

 40

 60

 80

 100

 0  5  10  15  20

b
u
f
f
e
r
 
o
c
c
u
p
a
n
c
y
 
[
K
b
y
t
e
s
]

time [seconds]

PETRA
ACKRES
RWND

Buf. size

Fig. 3. Buffer occupancy as a function of time, εb = 10−5, i.i.d. channel.
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Fig. 4. Buffer occupancy as a function of time for εb = 10−3, i.i.d. channel.

have that ∀ t > tn, LBSN(t) ≥ LBSN(tn) and therefore
Eq. (2) implies:

HTSN(tn) − LBSN(tn) > Bsize (3)

But according to the way in which rwnd is computed at the relay
node we have that:

Bsize = rwnd(tn) + {ACK(tn) − LBSN(tn)} (4)

Hence, from Eqs. (3) and (4) above we can write:

HTSN(tn) > ACK(tn) + rwnd(tn) (5)

But we reach an absurd as by definition HTSN(tn) =
ACK(tn)+min(cwnd(tn), rwnd(tn)), where cwnd(tn) is the
congestion window at the TCP sender at time tn.

VI. PERFORMANCE EVALUATION

In this section, we present some performance measures to as-
sess the effectiveness of the proposed solutions for buffer and
flow control. In the first two figures 3 and 4, we report the
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buffer occupancy as a function of time considering an indepen-
dent error satellite channel for two different values of the bit er-
ror probability εb ∈ {10−3, 10−5} over the wireless link. From
these figures the advantages offered by the RWND scheme are
clear: the timeout event is always avoided, while the buffer size
is used very efficiently, by almost covering its maximum capabil-
ity. Bsize in these simulations has been set to 82 TCP segments,
the TCP packet size is 1 Kbyte, the bandwidth over the satellite
(Bsat) and the terrestrial links (Bwired) are equal to 512 Kbps
and 2 Mbps, respectively. The round trip delays over wired and
wireless links are RTTwired = 100 ms and RTTsat = 0.5 s, re-
spectively. These settings will be used for all the measurements
reported in the paper.

From these figures it can also be observed that the oscilla-
tory behavior on the buffer occupancy, which is present for both
the PETRA and the ACKRES schemes, is largely reduced for
RWND. This algorithm is very robust also at high error rates
(εb = 10−3). In Fig. 5, we plot the frequency of timeout events
as a function of the wireless channel burst length by considering
εb = 10−3 and using the two–state Markov model described in
Section II to simulate the wireless link error behavior. As can
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be observed from the figure, using RWND timeout events are
successfully avoided for any considered duration of the channel
error burstiness (b).

It shall be observed that ACKRES can also effectively reduce
the timeout event probability (Fig. 5). However, we verified that
the correct estimate of the timeout expiration time is pivotal for
the algorithm to be effective. In particular, when this estimate
is affected by errors its performance scheme strongly degrades
and, in such cases, this scheme performs even worse than PE-
TRA. On the one hand, as the timeout bias ∆T0 > 0, ACKRES
tends to perform as PETRA. In the limiting case (∆T0 = +∞)
the timeout refreshing algorithm is never invoked and ACKRES
and PETRA coincides. On the other hand, when ∆T0 < 0, TCP
ACKs are sent in advance and if ∆T0 decreases below a given
threshold, the whole TCP/buffer system becomes unstable. That
is, our ACKRES algorithm behaves as a self-clocking mecha-
nism which ends up in continuously triggering new ACKs. In
this case, the relay buffer is continuously filled by leading to nu-
merous timeout events. These arguments explain why it is not
recommended to implement this type of algorithm. In fact, not
only the TCP timeout may be hard to be estimated, but estima-
tion errors could also lead to unstable behaviors.
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In the sequel, we proceed with our performance evaluation by
discussing the following two tests:

1) In the first performance test, we consider the case where
the wireless channel sharply transits between two very dif-
ferent error rates. In particular, we consider a simulation
of 100 seconds, where from time 0 to time 60 s ε1

b = 10−3,
whereas after time t∗ = 60 s, the bit error probability sud-
denly drops to ε2

b = 10−12. This may describe the situ-
ation of a mobile satellite connection, where the Line of
Sight (LoS) component of the signal is subject to sharp
variations due to obstacles.

2) In the second test, we consider a constant bit error rate
εb = 10−3, whereas we introduce some variability
on the round trip time RTTwired concerning the left-
most terrestrial connection (Fig. 1). In Fig. 7 we re-
port the RTT trace used to carry out this second test.
This trace has been obtained by ping measurement per-
formed from an ADSL home Internet connection to the
site http://www.google.it.

In Fig. 6 we report the TCP window (cwnd) trace as a func-
tion of time by comparing the three buffer control algorithms and
focusing on the first test. Noticeably, before t∗ = 60 seconds,

the TCP sender is strongly impacted by the high error rate ε1
b .

In both PETRA and ACKRES, the backward ACK flow is often
stopped thereby leading to frequent timeouts at the sender side.
This reduces both the TCP congestion window and the window
threshold, by therefore limiting the promptness of TCP in the
subsequent phase (t > t∗, i.e., when the channel error rate drops
to 10−12). The RWND based scheme is instead very robust as,
thanks to the freeze mechanism, TCP state variables are not de-
graded.

In Figs. 8,9 and 10 we focus on the second test. Again, the
combination of high error rates (εb = 10−3) with the high
variability of RTTwired causes frequent timeouts for both PE-
TRA and ACKRES. However, even in such a harsh environment
RWND performs well, by avoiding spurious timeouts (Fig. 9).
The effect of the higher RWND performance on the end-to-end
data transfer can be seen from Fig. 8, where we report the num-
ber of end-to-end delivered TCP/IP segments as a function of
time. In this scenario, RWND leads to time savings of about 20
seconds for a 5 Mbytes file transfer. By comparing Fig. 10 with
Fig. 5, we also observe that a highly variable round trip delay
also impacts the buffer occupancy behavior, which is affected
by a larger variability. Nevertheless, RWND succeeds in staying
close to the maximum buffer size, thereby efficiently exploiting
the available resources. In fact, a larger buffer occupancy means
an immediate availability of fresh data to be transmitted over the
wireless channel when its error rate suddenly decreases. This
also corresponds to a reduced probability to leave the wireless
channel underutilized.

VII. CONCLUSIONS

In this work we focused on buffer control management
strategies to enhance the performance of TCP operating over
TCP-split architectures, for its transmission over geostationary
satellite links. In the paper, we first reviewed recently pro-
posed buffer control solutions and then we proposed two novel
schemes, where the first one (ACKRES) tries to minimize spu-
rious timeouts at the transmitter by pro-actively refreshing the
timeout timer at the sender. The second algorithm, instead, real-
izes the buffer control by properly tuning the receiver advertized
window fields in the backward TCP ACKs. ACKRES presents
some serious drawbacks, in particular, when the timeout at the
TCP sender can not be perfectly estimated it leads to unexpected
behaviors and the system performance is strongly impacted. In-
stead, we found the second algorithm (RWND) to be very effec-
tive under any setting.
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