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Abstract

The Feasibility Pump (fp) is probably the best known primal heuristic
for mixed integer programming. The original work by Fischetti, Glover,
and Lodi [25], which introduced the heuristic for 0-1 mixed-integer linear
programs, has been succeeded by more than twenty follow-up publications
which improve the performance of the fp and extend it to other problem
classes. Year 2015 was the tenth anniversary of the first fp publication.
The present paper provides an overview of the diverse Feasibility Pump
literature that has been presented over the last decade.

1 Introduction

The fundamental idea of all Feasibility Pump1 algorithms is to construct
two sequences of points which hopefully converge to a feasible solution of
a given optimization problem. One sequence consists of points which are
feasible for a continuous relaxation (e.g., the linear programming relax-
ation of a mixed-integer linear programming problem, MIP in short), but
possibly integer infeasible. The other sequence consists of points which
are integral, but might violate some of the constraints. The next point of
one sequence is always generated by minimizing the distance to the last
point of the other sequence, by possibly using different distance measures
in either cases (e.g., the `1- or the `2-norm).

The Feasibility Pump has originally been introduced for 0-1 mixed-
integer linear programs [25] and soon been extended to general MIPs [6].
The standard way to define MIPs is in matrix and vector notion:

Definition 1.1 (mixed-integer program) Let m,n ∈ Z>0. Given a
matrix A ∈ Rm×n, a right-hand-side vector b ∈ Rm, an objective function
vector c ∈ Rn, a lower and an upper bound vector l ∈ (R ∪ {−∞})n,
u ∈ (R ∪ {+∞})n and a subset I ⊆ N = {1, . . . , n}, the corresponding
mixed-integer program is given by

min cTx

s.t. Ax 6 b

lj 6 xj 6 uj for all j ∈ N
xj ∈ R for all j ∈ N \ I
xj ∈ Z for all j ∈ I.

(1)
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Note that the format given in Definition 1.1 is very general. First,
maximization problems can be transformed to minimization problems by
multiplying all objective function coefficients by −1. Similarly, “>” con-
straints can be multiplied by −1 to obtain “6” constraints. Equations can
be replaced by two opposite inequalities. If I = ∅, problem (1) is called a
linear program (LP). Linear programming problems assume a particular
importance in the MIP technology that is based on the solution of a (pos-
sibly long) sequence of LP relaxations, i.e., the LP obtained by replacing
constraints xj ∈ Z, ∀j ∈ I with xj ∈ R, ∀j ∈ I in (1). The feasible region
of such a relaxation is often denoted by P .

Section 6 of this paper is dedicated to nonlinear extensions of the
Feasibility Pump. Mixed-integer nonlinear programming (MINLP) is an
extension of MIP that allows the objective and the constraints to be non-
linear:

Definition 1.2 (MINLP) A mixed-integer nonlinear program (MINLP)
is an optimization problem of the form

min f(x)

s.t. gi(x) 6 0 for all i ∈M
lj 6 xj 6 uj for all j ∈ N
xj ∈ Z for all j ∈ I,

(2)

where I ⊆ N := {1, . . . , n}, f : Rn → R, gi : Rn → R for i ∈ M :=
{1, . . . ,m}, and l ∈ (R ∪ {−∞})n, u ∈ (R ∪ {+∞})n.
For practical applications, the gi are typically assumed to be twice con-
tinuously differentiable. If the objective function f and all constraint
functions gi, i ∈ M are convex on [l, u], we call (2) a convex MINLP
to refer to the fact that its continuous relaxation is indeed convex. For
disambiguity, general MINLPs are sometimes equally referred to as non-
convex MINLPs. Note that (2) is a MIP if and only if f and all gi are
affine functions.

The outline of the paper is as follows. In Section 2 we will present the
overall method for the mixed-integer linear case. Improvements to the
different main ingredients of fp are then described in Sections 3 and 4.
Theoretical aspects of the method, which are tightly connected to the
perturbation mechanisms, are addressed in Section 5. Section 6 covers
the many extensions of the fp scheme to the mixed-integer nonlinear
case. Finally, conclusions and directions for future research are presented
in Section 7.

2 Feasibility Pumps for MIP

The Feasibility Pump algorithm was originally introduced by Fischetti,
Glover, and Lodi in 2005 [25] for 0-1 mixed-integer linear programs, i.e.,
for the special case of MIPs in which lj = 0 and uj = 1 for all j ∈ I. The
main idea is as follows. First, the LP relaxation of a MIP is solved. The
LP optimum x̄ is then rounded to the closest integral point

x̃ =

{
[x̄j ] if j ∈ I
x̄j if j /∈ I, (3)

where [·] represents scalar rounding to the nearest integer. This part of the
fp algorithm is called the rounding step. If x̃ is not feasible for the linear
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Figure 1: Feasibility Pump for MIP, sequences of constraint-feasible points (red)
and integer feasible points (green), original objective (dotted red) and distance
functions (solid red).

constraints, the objective function of the LP is changed to the `1-norm
distance function

∆(x, x̃) :=
∑
j∈I

|xj − x̃j | =
∑

j∈I : x̃j=0

xj +
∑

j∈I : x̃j=1

(1− xj) (4)

on the set I of binary variables, and a new LP point x̄ is obtained by
minimizing ∆(x, x̃) over the linear constraints of the MIP. The process is
iterated until x̃ = x̄, which implies feasibility (w.r.t. the MIP). The oper-
ation of obtaining a new x̄ from x̃ is known as the projection step, as it
consists of projecting x̃ to the feasible set of a continuous relaxation of the
MIP along the direction ∆(x, x̃). Two iterations of the algorithm are il-
lustrated for a simple example in Figure 2, while a pseudocode description
of the method is given in Figure 2.

input : MIP ≡ min{cTx : Ax ≤ b, l ≤ x ≤ u, xj integer ∀j ∈ I}
output: a feasible MIP solution x̄ (if found)

1 x̄ = arg min{cTx : Ax ≤ b, l ≤ x ≤ u} ;
2 while not termination condition do
3 if x̄ is integer then return x̄;
4 x̃ = Round (x̄) ;
5 if cycle detected then Perturb (x̃);
6 x̄ = LinearProj (x̃) ;

7 end

Figure 2: Feasibility Pump—the basic scheme

The algorithm thus produces two sequences {x̄k}Kk=1 and {x̃k}Kk=1 for
a finite K, which is either the iteration at which a feasible solution for
(1) is found or some limit set to guarantee termination. All points of the
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Figure 3: Two very different FP behaviors (integrality distance vs. iterations)

sequence x̄k, with k denoting the iteration count of the fp, are feasible
for the LP relaxation, all points x̃k are integral, i.e., x̃kj ∈ Z for all j ∈ I.
Thus, x̃k = x̄k implies integrality and constraint-feasibility, which means
that the corresponding point is feasible for the MIP.

The main obstacle for the original Feasibility Pump algorithm (and
many of its successors) is cycling : after some iterations, it may happen

that x̃k = x̃k
′

with 1 6 k′ < k. In this case, the procedure would enter
a loop, re-visiting the sequence x̃k

′
. . . x̃k−1 (and x̄k

′
. . . x̄k−1) over and

over again. Since the central idea of fp is to bring the sequences closely
together, the risk of cycling is “naturally encoded” in the procedure and
occurs very frequently in computational experiments. In the original Fea-
sibility Pump, this issue is handled via a simple random perturbation:
some of the variables in x̃k are flipped to the other bound before contin-
uing the procedure. If the issue persists, a more aggressive perturbation
akin to a restart is performed.

Figure 3 shows the different behavior of FP on two sample instances:
while in Figure 3(a) the distance between x̄ and x̃ is rapidly brought
to zero without the need of any perturbation/restart, in Figure 3(b) fp
exhibits a much less satisfactory behavior, with frequent restarts and per-
turbations that yield large oscillations of the distance function and hence
reduce the probability of success of the method. It is a crucial compo-
nent of many fp extensions that cycling is addressed directly, made more
unlikely, or avoided completely, see more details in Section 5.

Fischetti, Glover, and Lodi demonstrated in [25] that the Feasibility
Pump is very effective in finding feasible solutions, but these often are of
low quality – not surprising when regarding the fact that the original ob-
jective is only considered in the initialization phase. The authors suggest
to use subsequent runs of the Feasibility Pump to get better solutions. Af-
ter each successful run, a primal bound constraint cTx 6 βcTx̄+(1−β)cTx̃
is added to the MIP, with β ∈ (0, 1), x̄ being an optimal solution of the
original LP relaxation, and x̃ being the solution from the previous fp
run. The results of this variant, as reported in [25], are mildly positive,
although no comparison is given with respect to other general-purpose
local search heuristics, e.g., Local Branching [26].

Bertacco et al. [6] introduced an fp variant for mixed-integer programs
with general integer variables. The authors use an auxiliary variable dj
and two auxiliary constraints for each general integer variable xj to rep-
resent the two linear pieces of the absolute values |xj − x̃j | whenever a
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variable xj is not sitting at one of its bounds in x̃j . Then, the objec-
tive function for the projection step is a modified version of function (4),
namely

∆(x, x̃) :=
∑

j∈I : x̃j=lj

(xj − lj) +
∑

j : x̃j=uj

(uj − xj) +
∑

j∈I : lj<x̃j<uj

dj

with dj > xj − x̃j and dj > x̃j − xj for all j ∈ I with lj < x̃j < uj .
As such, the problem size increases because of the auxiliary variables and
constraints. Note that this reformulation adds at most n variables, 2n
constraints and 4n nonzeros to the original MIP formulation.

Further, the authors suggest to split the fp procedure into different
stages. In stage I, the `1-norm objective function is defined only on the
binary variables, if any. The auxiliary variables and constraints are only
used in stage II, which also considers distances on general integers. Fi-
nally, stage III is an enumeration phase consisting of a truncated MIP
search. For this, the objective function of the original MIP is replaced by
the distance w.r.t. the point x̃k from the previous stages that was closest
to the LP relaxation.2

The main idea of the Feasibility Pump is to decompose the original
problem into two problems, retaining linear and integrality constraints.
Many of the extensions described below aim at solving each of the decom-
posed problems with an eye on the constraints of the other problem, in
an attempt to accelerate convergence.

Besides enhancements of the fp for MIP itself, a natural direction of
investigation is the extension of the fp idea to other contexts and/or to
broader problem classes. In [1, 2], Achterberg and Gu suggest to use a
fp-like algorithm, called PumpReduce, to generate alternative LP optima
which can be used for improved cut generation and filtering. According
to Perregaard [38], Xpress has a similar algorithm too. In [7], Berthold
and Salvagnin use a similar algorithm as a basis for a branching scheme
that is based on a set of relaxation optima. Cloud Branching applies
a Feasibility Pump-like objective to the optimal face of a MIP’s LP re-
laxation to compute multiple alternative optima, typically with reduced
fractionality. These alternative optima are then used to filter potential
candidate variables for which traditional branching rules such as strong
branching shall be performed. A recent extension by Pal and Charkhgard
[37] deals with bi-objective Pure Integer Linear Programming, where fp
and local search heuristics are designed to approximately generate the
so-called nondominated frontier.

Applications of fp-like algorithms to specific problems can be found
in [32, 39, 13, 40, 15].

3 Improving the rounding step

Fischetti and Salvagnin [29] observed that rounding a variable can be in-
terpreted as a temporary fixing. They suggest to propagate the minimum
and maximum activities of linear constraints using these fixings as local

2A similar definition of the objective function was later used by Fischetti and Monaci [28]
in the Proximity Search algorithm. This heuristic uses the described objective function to
drive the search towards solutions in the neighborhood of a feasible one, while adding an
objective cutoff constraint on the incumbent value in the attempt of improving it. In other
words, Proximity Search effectively combines ingredients of Local Branching and fp.
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bounds. The propagation is done via the well-known bound strengthening
techniques described in [14]. By this, variables might be fixed to a value
that is not the closest integer (compared to x̄k), in order to avoid a linear
constraint becoming infeasible w.r.t. the current temporary fixings. Thus,
the rounded solution might be further away from the last LP optimum
than for the original fp, but it might be closer (in terms of the Euclidean
distance) to a feasible solution. In their computational experiments, the
authors demonstrate that the so-called Feasibility Pump 2.0 needs fewer
iterations and, as a by-product, produces slightly better solutions.

Baena and Castro [4] and Boland et al. [8] introduced variants of the
Feasibility Pump that use integral reference points x̃ which are closer to
the interior of the LP polyhedron. Therefore, both publications suggest
to connect the LP optimum x̄ with the analytic center [44] of the LP and
search for integer points that are roundings of points on that line segment.
The analytic center xac of a bounded polyhedron given in equality form
(Ax = b, x > 0) is defined as

xac = argmin{−
∑
j∈N

lnxj | x > 0, Ax = b}.

Baena and Castro sample points on the line segment x̄− xac. Each of
those sampled points is rounded and tested for feasibility. If none of the
rounded points is feasible, a new integral reference point x̃ is chosen as the
rounded point that minimizes the `∞-distance to the line segment point it
has been rounded from. Boland et al. [8] extend this procedure by several
innovative ideas. First, they observe that the set of all integral points
which are roundings of some point of the line segment can be computed
very efficiently. This improves the sampling step. The main overhead of
the procedure in [4] lies in the computation of the analytic center in order
to get a direction pointing from the LP optimum towards the interior of
the polyhedron. Boland et al. suggest to use a conic combination of the
normal vectors of all constraints violated by x̃ as a cheap heuristic ap-
proximation for a ray pointing towards the center. To the other extreme,
Naoum-Sawaya [36] recently proposed a version of the Feasibility Pump
with analytic centers that additionally applies a recursive central round-
ing procedure, which iteratively fixes some of the integer variables and
recomputes the analytic center.

4 Improving the projection step

The main direction of modification for the projection part of the fp
was the use of different objective functions for the LP. Achterberg and
Berthold [3] showed a simple trick to overcome a main weakness of the
fp: despite success on many instances, the produced solutions are often
of poor quality. This seems natural, since the original objective of the
MIP is only considered when computing the first LP solution x̄1. Apart
from that, solution quality does not play a role, neither for the rounding
nor for the projection step. The authors of [3] therefore suggest to replace
function (4) by a convex combination of (4) and the original objective
cTx, namely

∆α(x, x̃) := (1− α)∆(x, x̃) + α

√
|I|
‖c‖ c

Tx

with α ∈ [0, 1]. Here, ‖ · ‖ is the Euclidean norm of a vector. The convex
combination factor α, and hence the influence of cTx, is reduced in every
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iteration. As a nice side effect, this often enables the algorithm, called
Objective Feasibility Pump, to avoid cycling since the objective function
∆α(x, x̃) depends on the iteration count and will be different even when
the same point x̃ is visited more than once. As a result, the Objective
Feasibility Pump finds solutions of better quality on average. However,
this comes at a price of a slightly reduced success rate and increased
number of iterations/running time.

Eckstein and Nediak [24] interpreted the Feasibility Pump as an im-
plementation of a Frank-Wolfe algorithm [30], taking the `1-distance as
the non-smooth concave merit function∑

j∈I

min{xj , 1− xj}.

Based on this, De Santis et al. [20, 19] interpreted and suggested the use
of other concave penalty functions for non-integrality. Therefore, they
weighted the different terms of the distance function with coefficients that
depend on the fractionality of the corresponding variable in the last LP
solution.

Boland et al. [9] use a similar penalty system, but also introduce the
idea of performing several rounds of cutting plane generation to prevent
the fp from cycling. This leads to fewer restarts and better and more
solutions being found, but at the price of a significant increase in the
complexity of the LPs (which are amended with cutting planes) being
solved repeatedly, and hence in the total running time. Note that in the
original Feasibility Pump, each projection step consisted of solving one LP,
which is now replaced by a series of LPs. When changing the objective
(distance) function in the projection phase, one can use a warm-started
primal simplex algorithm to solve the LP. When amending the projection
step by cutting plane generation, the additional LPs should typically be
solved by a warm-started dual simplex algorithm.

Hanafi et al. [33] introduced an fp variant in which they apply a MIP
search when the Feasibility Pump is about to cycle. Their variable neigh-
borhood pump can be interpreted as applying a stage III of the Feasibility
Pump variant [6] that is based on Local Branching [26]. The use of Local
Branching to drive to feasibility partially-feasible solutions obtained by
fp was already proposed in [27].

5 The perturbation step and theoretical
aspects

The perturbation methods devised to avoid cycling are key ingredients
of the fp method, which can greatly affect its behavior and success rate,
both from the practical and theoretical point of view.

The original perturbation mechanism proposed in [25] works as fol-
lows. Whenever a cycle of length one is detected, i.e., the integer point
x̃ obtained at the current iteration is the same as the previous one, a
(small) random number, say T , of binary variables is flipped to the op-
posite bound, so as to minimize the increase in distance between the two
sequences. This is implemented by sorting the variables by non-increasing
fractionality in x̄, and flipping the first T variables in x̃. The perturbation
mechanism is designed to interfere as little as possible with the minimiza-
tion of distance between the two sequences of points, basically exploiting
the degeneracy in the distance function to pick a different integer point
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not too far away from x̃ (e.g., if all flipped variables had fractionality equal
to 0.5, there would be no increase in distance at all).

If a longer cycle is detected, a different perturbation method, akin to
a restart, is used, in which all binaries are possibly flipped according to
some probability that depends on their fractionality.

The picture gets more complicated when general integer variables are
present in the model. A careful analysis of the original source code in [6]
reveals a quite elaborated restart scheme to decide how much a single
variable has to be perturbed, and how many variables have to be changed.
In particular, a single variable xj is perturbed by taking into account the
size of its domain: if uj − lj < M with a suitable large coefficient M ,
then the new value is picked randomly within the domain. Otherwise, the
new value is picked uniformly in a large neighborhood around the lower or
upper bound (if the old value is sufficiently close to one of them), or around
the old value. The number of variables to be perturbed, say RP , is also
very important and is changed dynamically according to the frequency
of restarts, decreasing geometrically at every iteration in which restarts
are not performed, and increasing linearly. Finally, RP is bounded by a
small percentage (10%) of the number of general integer variables, and
the variables to be changed are picked at random at every restart.

In addition, [6] also introduced a subtle random component in the
rounding function. Instead of computing x̃j as bx̄j + 0.5c, it is computed
as bx̄j + τc, where τ is obtained as

τ(ω) =

{
2ω(1− ω) if ω ≤ 1

2

1− 2ω(1− ω) if ω > 1
2

where ω is a uniform random variable in [0, 1).
It is worth noting that the various extensions described in the previous

sections can have an influence on the need of a perturbation mechanism.
In particular:

• in the objective feasibility pump there is no need to perturb the
current integer point if we are in a phase in which α can still change;

• the different penalty functions described in [20, 19, 9], as well as
the addition of cutting planes, can reduce the need of an explicit
perturbation step;

• the rounding step based on constraint propagation described in [29]
uses itself some randomization, when ranking the fractional vari-
ables.

Convergence results of the method also heavily depend on the interplay
between the projection, rounding and perturbation steps. The theoret-
ical analysis in [22] shows that the method, when applied to mixed 0-1
programs, can fail to converge if the perturbation step is limited to flip
only variables that are currently fractional. At the same time, flipping
variables that are currently integer in a näıve way can also lead to non-
convergence, and poor results. On the other hand, a perturbation method
based on WalkSAT [41] is shown to yield a convergent method.

Without any perturbation, the method will still converge to a local
minimizer of the distance between the two sequences (see, e.g., [9, 19, 31]),
which however is not necessarily a feasible solution of the original model
as the distance is usually strictly positive. The analysis in [9, 19, 31]
is based on the interpretation of an idealized fp version, i.e., without
perturbation, in terms of classical algorithms from the literature. Namely,
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Boland et al. [9] interpret the idealized fp as a discrete version of the
proximal point algorithm, Eckstein and Nediak [24], D’Ambrosio [16] and
De Santis, Lucidi, and Rinaldi [19] as a Frank-Wolfe algorithm applied
to a suitable chosen concave and nonsmooth merit function and, finally,
Geißler et al. [31] as an alternating direction method. In case of [31],
such an interpretation allows the authors to replace the perturbation by
a penalty framework, thus preserving some form of convergence that is
proper of alternating direction methods.

6 Feasibility Pumps for MINLP

When designing a Feasibility Pump for MINLP, the main task is to adapt
the two fp steps to nonlinearity. The two natural questions are: (i) what
kind of relaxation should be solved in the projection step, and (ii) is there a
different way to perform the rounding step? Nonconvex MINLPs represent
an extra burden: even the continuous relaxation might be disconnected
and is nonconvex; hence optimization over it is NP-hard.

The first two MINLP versions of the Feasibility Pump were presented
by Bonami et al. [11] and Bonami and Gonçalves [12]. Both teams of
authors considered convex MINLPs and implemented their ideas in Bon-
min [10].

The paper [12] is probably the closest to the original fp. It keeps the
rounding step as in [25] and replaces solving an LP in the projection phase
by solving a convex NLP, using the original distance function (4) as an
objective. The perturbation scheme is less aggressive than the one of [25],
flipping only a single variable.

In [11], the authors suggest using an `2-norm for the projection step.
Further, their implementation of the rounding step differs significantly
from all previous fp variants. Instead of performing an instant rounding
to the nearest integer, they solve a MIP relaxation which is based on an
outer approximation [23] of the underlying MINLP:

x̃ = argmin{∆(x, x̄) | g(x̄) + Jg(x̄)(x− x̄) 6 0, x ∈ [l, u], xj ∈ Z ∀j ∈ I}
(5)

where Jg(x̄) denotes the Jacobian of the constraint functions (summarized
to a single function g : Rn 7→ Rm) evaluated at the NLP optimum x̄.
Solving a MIP relaxation, despite of being an NP-hard problem itself,
is often computationally much cheaper than solving the original MINLP,
see, e.g., [35]. Interestingly, the two norms have switched roles in this fp
version: Where in [25] and [12], the `1-norm was used for the projection
step, and the `2-norm was used for rounding, the opposite holds for [11].
An illustration of the algorithm is given in Figure 6. Note that for this
fp, both steps use a distance function ∆. We denote the Manhattan
distance used for the rounding step by ∆1 and the Euclidean distance of
the projection step by ∆2, using superscripts for the iteration count.

Solving (5) instead of performing a simple rounding x̃ = [x̄] of course
gives rise to better integral points (since feasibility is explicitly addressed
in the rounding step), and has an important effect w.r.t. the main weak-
ness of Feasibility Pump algorithms: cycling. For convex MINLPs, it is
always possible to derive a cut

(x̄− x̃)T(x− x̄) ≥ 0

and add it to the MIP (5). By this, cycling is avoided. However, in the
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Figure 4: Feasibility Pump for MINLP: The truncated blue ellipsis shows the
feasible region of the NLP relaxation, the light blue trapezoid depicts the MIP
relaxation for the second iteration, the very light blue rectangle (which include
the trapezoid) is the MIP relaxation after the first iteration. The sequence
of NLP-optima is shown as red points, the sequence of MIP-optima as green
points. Each red and green point also indicates for which function it is optimal:
the original objective (f(x), light red), a `2-distance function (∆1

2, dark red and
bent), and `1-distance functions (∆1

1 and ∆2
1, green).

computational results presented in [11], the fp did not cycle even without
these cuts.

To improve the solution quality of Feasibility Pumps for convex MINLP,
Sharma et al. [42, 43] adapt the idea of the Objective Feasibility Pump [3]
and use a combination of the original objective and an `1 distance func-
tion to extend the algorithm of Bonami and Gonçalves [12]. They also
experimented with using a local linearization of the original objective at
the point computed in the previous fp iteration. Li and Liu [34] mod-
ify the algorithm of Bonami et al. [11] by using approximate solutions to
convex NLPs.

Similar to the interpretation of the linear Feasibility Pump as a Frank-
Wolfe algorithm [20, 19], D’Ambrosio et al. [18] gave an interpretation of
a nonlinear fp as a successive projection method. The particular difficulty
addressed in [17, 18] is that of handling the nonconvex NLP relaxation
if adapting the algorithm of [11] to the nonconvex case. The authors
suggest using a stochastic multistart approach, feeding the NLP solver
with different randomly generated starting points, and solving the NLP
to local optimality as if it was a convex problem. In the event that this
does not lead to a feasible solution, a final NLP is solved in which the
integer variables are fixed and the original objective is re-installed on
the continuous variables, similar to the sub-NLP heuristic described, e.g.,
in [45].

Further, D’Ambrosio et al. considered solving a convex MINLP or a

10



convex MIQP instead of an MIP in the rounding step, but gave com-
putational evidence that this is not beneficial. To avoid cycling, their
algorithm provides the MIP solver with a tabu list of previously used so-
lutions. Linear constraints for the MIP problem are only generated from
convex MINLP constraints. Finally, they showed that using an `∞-norm
distance function instead of `1 as a MIP objective is competitive.

Berthold and Belotti [5] suggest three enhancements for a Feasibility
Pump for nonconvex MINLP. They consider an automated selection of
varying procedures for the rounding step, they use the Hessian of the
Lagrangian as part of the distance function to take into account second
order information while solving the rounding MIPs, and they dynamically
generate linearization cuts for nonconvex constraints during the course of
the fp algorithm.

7 Conclusion

The work that followed the original fp version [25] and that has been (most
likely only partially and temporarily) surveyed here gives one possible
measure of the importance of fp as a research direction. According to
Dey [21], it would be fair to say that a whole sub-area of work in primal
heuristics is motivated by [25] and its extensions [6, 11, 18].

However, in addition to the sheer amount of follow-up publications,
there is another indicator that underlines the impact of the Feasibility
Pump on computational mathematical programming. There are (at least)
ten MIP solvers that implement a feasibility pump as primal heuristic
(CBC, CPLEX, GLPK, Gurobi, MIPCL, Mosek, SAS, SCIP, Sulum, Sym-
phony) and (at least) four MINLP solvers (Bonmin, Couenne, Minotaur,
SCIP).

What we find extremely interesting and (relatively) unexpected, is
that around ten years later its first appearance, the paper has started
to attract a serious bulk of theoretical work [9, 31, 22, 19]. This seems
to be the sign of the fp being in a quite good shape and we hope this
trend, together with extensions (the latest one to bi-objective MIP [37]),
practical implementations and applications to specific problems (the latest
one to aircraft deconfliction [15]), will continue in the next ten years to
come.
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[13] A. Bosco, D. Laganà, R. Musmanno, and F. Vocaturo. Modeling and
solving the mixed capacitated general routing problem. Optimization
Letters, 7(7):1451–1469, 2013.

[14] A. Brearley, G. Mitra, and H. Williams. Analysis of mathemati-
cal programming problems prior to applying the simplex algorithm.
Mathematical Programming, 8:54–83, 1975.

[15] S. Cafieri and C. D’Ambrosio. Feasibility pump for aircraft decon-
fliction with speed regulation. Journal of Global Optimization, pages
1–15, 2017.

[16] C. D’Ambrosio. Application-oriented Mixed Integer Non-Linear Pro-
gramming. PhD thesis, University of Bologna, 2009.

[17] C. D’Ambrosio, A. Frangioni, L. Liberti, and A. Lodi. Experiments
with a feasibility pump approach for nonconvex MINLPs. In P. Festa,
editor, Experimental Algorithms, volume 6049 of Lecture Notes in
Computer Science, pages 350–360. Springer Berlin Heidelberg, 2010.

[18] C. D’Ambrosio, A. Frangioni, L. Liberti, and A. Lodi. A storm of fea-
sibility pumps for nonconvex MINLP. Mathematical Programming,
136:375–402, 2012.

12



[19] M. De Santis, S. Lucidi, and F. Rinaldi. A new class of functions
for measuring solution integrality in the feasibility pump approach.
SIAM Journal on Optimization, 23(3):1575–1606, 2013.

[20] M. De Santis, S. Lucidi, and F. Rinaldi. Feasibility pump-like
heuristics for mixed integer problems. Discrete Applied Mathematics,
165:152–167, 2014.

[21] S. Dey. Personal Communication, 2017.

[22] S. Dey, A. Iroume, M. Molinaro, and D. Salvagnin. Exploiting spar-
sity of MILPs by improving the randomization step in feasibility
pump. SIAM Journal on Optimization, (to appear).

[23] M. A. Duran and I. E. Grossmann. An outer-approximation algo-
rithm for a class of mixed-integer nonlinear programs. Mathematical
Programming, 36(3):307–339, 1986.

[24] J. Eckstein and M. Nediak. Pivot, cut, and dive: a heuristic for 0-1
mixed integer programming. Journal of Heuristics, 13(5):471–503,
2007.

[25] M. Fischetti, F. Glover, and A. Lodi. The feasibility pump. Mathe-
matical Programming, 104(1):91–104, 2005.

[26] M. Fischetti and A. Lodi. Local branching. Mathematical Program-
ming, 98(1-3):23–47, 2003.

[27] M. Fischetti and A. Lodi. Repairing MIP infeasibility through lo-
cal branching. Computers & Operations Research, 35(5):1436–1445,
2008.

[28] M. Fischetti and M. Monaci. Proximity search for 0-1 mixed-integer
convex programming. Journal of Heuristics, 20(6):709–731, 2014.

[29] M. Fischetti and D. Salvagnin. Feasibility pump 2.0. Mathematical
Programming Computation, 1:201–222, 2009.

[30] M. Frank and P. Wolfe. An algorithm for quadratic programming.
Naval research logistics quarterly, 3(1-2):95–110, 1956.

[31] B. Geißler, A. Morsi, L. Schewe, and M. Schmidt. Penalty alternating
direction methods for mixed-integer optimization: A new view on
feasibility pumps. SIAM Journal on Optimization, 27:1611–1636,
2017.

[32] O. Guyon, P. Lemaire, E. Pinson, and D. Rivreau. Near optimal and
optimal solutions for an integrated employee timetabling and pro-
duction scheduling problem. IFAC Proceedings Volumes, 42(4):1523
– 1528, 2009.
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