
Implementing Automatic Benders
Decomposition in a Modern MIP Solver

Pierre Bonami1, Domenico Salvagnin2, and Andrea Tramontani3

1 CPLEX Optimization, IBM, Madrid, Spain
2 DEI, Via Gradenigo, 6/B, 35131 Padova, Italy

3 CPLEX Optimization, IBM, Bologna, Italy

Abstract. We describe the automatic Benders decomposition imple-
mented in the commercial solver IBM CPLEX. We propose several im-
provements to the state-of-the-art along two lines: making a numerically
robust method able to deal with the general case and improving the ef-
ficiency of the method on models amenable to decomposition. For the
former, we deal with: unboundedness, failures in generating cuts and
scaling of the artificial variable representing the objective. For the lat-
ter, we propose a new technique to handle so-called generalized bound
constraints and we use different types of normalization conditions in the
Cut Generating LPs. We present computational experiments aimed at
assessing the importance of the various enhancements. In particular, on
our test bed of models amenable to a decomposition, our implementation
is approximately 5 times faster than CPLEX default branch-and-cut. A
remarkable result is that, on the same test bed, default branch-and-cut
is faster than a Benders decomposition that doesn’t implement our im-
provements.



2 Pierre Bonami, Domenico Salvagnin, and Andrea Tramontani

1 Introduction

Benders decomposition was originally proposed in [5] to solve Mixed Integer
Programs (MIP). The decomposition consists in splitting the original problem
between a master problem, that consists of the integer variables of the original
problem and possibly some additional continuous variables, and a Cut Generat-
ing Linear Program (CGLP) formulated in the space of the remaining variables.
As originally stated, Benders method is iterative. At each step, the master is
first solved to optimality. The CGLP is then constructed using the solution of
master and solved: from its solution cuts for the master are derived (Benders
cuts herein). This process is repeated until no cuts are found by the CGLP. The
theorem of Benders guarantees that at this point the original problem is solved
to optimality.

Benders decomposition is more often applied to MIPs where the CGLP con-
straint matrix has a block diagonal structure and can be further decomposed
into smaller problems. Among the numerous applications the most notable are
Facility Location [10,11], Network Design [14] and Stochastic Optimization [6].

In the last decades, a vast body of research has examined every step of Ben-
ders decomposition. A recent and comprehensive survey can be found in [23].
Here, we overview the literature most relevant to our work. First, a feasible so-
lution of the master problem is not needed to generate a Benders cut. An initial
good set of cuts can usually be found by solving the initial LP relaxation of
the problem by Benders decomposition [20]. More generally, in branch-and-cut,
Benders cuts can be separated at any node of the search tree. Second, sev-
eral computational studies (e.g., [4,10]) have shown that a simple stabilization
mechanism for the cutting plane loop allows to significantly improve the effec-
tiveness of the method. Finally, most of the research has been devoted to sep-
arating non-dominated or even facet defining Benders cuts. For the case where
the CGLP is feasible and bounded, [19] proposes to solve two LPs to guar-
antee non-domination. In [22], this approach was improved and it was shown
that non-domination can be obtained with a single LP. For the infeasible case,
in [13] a normalization was proposed based on the concept of minimal infeasible
subsystem.

For the applications mentioned above, Benders decomposition is often the
only method able to solve problems of realistic size. Most implementations in the
scientific literature or in the industry are ad-hoc implementations for a specific
class of problems. In this paper, we report on the automatic Benders decom-
position solver implemented in CPLEX [16]. Our goal is to have a numerically
robust implementation that can be used as a black-box on any MIP, and that is
competitive on the classes of problems where Benders decomposition has been
reported to be useful in practice.

To achieve this goal our main contributions are: applying a generic stabiliza-
tion procedure to solve the initial Benders cut loop efficiently, dealing with cases
of unboundedness, dealing with numerical stability of Benders cuts and artifi-
cial variables, handling of linking constraints with special structure to simplify
the CGLP, and applying normalizations to find “good” Benders cuts when the



Implementing Automatic Benders Decomposition in a Modern MIP Solver 3

CGLP is infeasible. For this last item in particular, we implement for the first
time, to the best of our knowledge, a new normalization proposed in [7]. Our
computational results show that the resulting algorithm is considerably faster
than default branch-and-cut on models amenable to decomposition, and that
the algorithmic enhancements we propose have a dramatic effect.

The outline of the paper is as follows: in Section 2, we outline the overall
Benders decomposition algorithm, setting up the required notation. In Section 3,
we detail enhancements to the construction of the master problem and overall
numerical stability of the procedure. In Section 4, we describe the improvements
to solving the CGLP mentioned above. Finally, in Section 5 we computationally
evaluate our algorithm and we analyze the effect of the different algorithmic
ideas we propose.

2 Benders Decomposition

In this section we briefly outline the Benders decomposition algorithm. Most
textbooks use the so-called dual space of the CGLP, which has the advantage
of directly expressing coefficients for the Benders cuts. However, as noted in the
original paper [5], it is often computationally more convenient to work in the
primal space, i.e., the space in which the problem is originally formulated. The
implementation in CPLEX is entirely done in the primal space, and we believe
it is also a simpler way to view the method. We will use this point of view in
the remainder. We consider a MIP of the form:

min cx+ dy (1)

Ax ≥ b, (2)

Tx+Qy ≥ r, (3)

x, y ≥ 0 and x ∈ Zn, (4)

where c ∈ Qn, d ∈ Qp, A ∈ Qm1×n, T ∈ Qm2×n, and Q ∈ Qm2×p. The
decomposition starts by creating the master problem. It involves the x variables
and an additional variable η representing the contribution to the objective of
the y variables:

min cx+ η (5)

Ax ≥ b, (6)

< Benders cuts >, (7)

x ∈ Zn
+, η free. (8)

Some of the x variables could be continuous without significantly changing the
method. Note that the set of Benders cuts (7) is initially empty. Also, at any
point we can assume that (5)–(8) is feasible, otherwise the original problem is
proven infeasible and the method is stopped.

Given a solution (x∗, η∗) to the master problem, the CGLP tries to find a
feasible y satisfying the linking constraints (3) for fixed x = x∗. The following



4 Pierre Bonami, Domenico Salvagnin, and Andrea Tramontani

lemma details how the CGLP is defined and how it is used to either derive a
Benders cut, or conclude optimality.

Lemma 1 (Benders Theorem [5]). Let (x∗, η∗) be an optimal solution of
(5)–(8) and define the CGLP:

min dy (9)

Tx∗ +Qy ≥ r (10)

y ≥ 0. (11)

(i) If (9)–(11) is infeasible, then there exists π ∈ Qm2
+ such that

πTx ≥ πr (12)

is valid and πTx∗ < πr.

(ii) If (9)–(11) has a finite optimum y∗, then: Either dy∗ ≤ η∗ and (x∗, y∗) is
optimal for (1)–(4). Otherwise, there exists π ∈ Qm2

+ such that

η + πTx ≥ πr (13)

is valid and cuts off (x∗, η∗).

Although the result is well known, we give a short proof in the appendix.

The two cuts (12) and (13) defined in Lemma 1 are the so-called Benders
cuts. The former is the feasibility cut and the latter the optimality cut. After
the CGLP is solved, if a cut has been derived, it can be added to the master
problem, and the method is iterated. Otherwise, (1)–(4) is solved. Note that we
have neglected the particular case where the master problem is unbounded. We
will deal with it in Section 3.

Before proceeding to our implementation of this procedure, two remarks are
in order. First, as noted in the introduction, the CGLP is often itself decom-
posable (Q is block diagonal). In this case, introducing an η variable for each
block, the CGLP can be split into smaller problems and each one may give a
cut. Second, the procedure outlined doesn’t require solving (5)–(8) to optimality
before solving the CGLP. Instead, in a branch-and-cut algorithm, the CGLP
can be solved every time an integer feasible solution for (5)–(8) is encountered.
Either this solution is cut and the search can proceed or it is not cut and it is
indeed also feasible for (1)–(4).

3 The Master Problem

The overall Benders decomposition algorithm implemented in CPLEX follows
the algorithm described in the previous section. In this section, we detail in
particular how the master problem is constructed. Here is the main workflow of
the method:



Implementing Automatic Benders Decomposition in a Modern MIP Solver 5

1. A decomposition of the complete model (1)–(4) is detected. If the user pro-
vided a decomposition (via annotations [16]), then CPLEX will decompose
the model according to it. Otherwise, it performs an automatic split, in which
integer variables are assigned to the master, while continuous variables are
assigned to the CGLP. The latter is eventually split into several indepen-
dent CGLPs if a block decomposition can be detected. This detection is very
efficient, as it is linear in the number of nonzeros of the CGLP matrix.

2. The complete model (1)–(4) is presolved using CPLEX regular MIP presolve
(only reductions that may invalidate the decomposition previously identified
are disabled). This step is applied before actually decomposing the problem
because more reductions are typically found on the complete model and
presolve is usually cheap enough that it can be done on the full model.

3. The presolved model is decomposed according to the decomposition identi-
fied at Step 1.

4. An initial stabilized Benders cut loop is executed on the LP relaxation of the
problem. The rationale is to warm start the Benders search with a tighter ap-
proximation of the projection of the complete model, so that the subsequent
search can benefit from it. We detail the stabilization procedure below.

5. Once the initial Benders cut loop is over, a regular branch-and-cut is started
from the current master. This is pretty much a regular MIP solve, but in
which Benders cuts are separated on the fly as lazy constraints.

To deal with all challenges in maintaining a numerically stable master problem,
several additional ingredients are needed. We detail them in the next paragraphs.

Stabilization of Initial Cut Loop Stabilization is obtained using an in-out
strategy [4,10]. Briefly, this consists in not trying to separate the optimal solution
of the LP relaxation (x∗, η∗) of (5)–(8), but using instead a suitable convex
combination of (x∗, η∗) and a point (x0, η0) that is in the relative interior of
the projection of the feasible region of (1)–(4) onto the variables (x, η). The
point (x0, η0) is called the core point. The in-out strategy performs a binary
search on the line segment joining (x0, η0) and (x∗, η∗), until a violated cut is
found. In applications, the corepoint is usually obtained by exploiting the specific
structure of the problem. In our generic framework, we compute it by solving
the LP relaxation of the complete model without the objective and using the
barrier algorithm without crossover. This is to attempt to get a point close to
the analytic center of the LP relaxation of (1)–(4).

Cut Violation A key decision for the soundness (and numerical stability) of
the overall decomposition is the strategy used to decide when a master solution
(x∗, η∗) is violated or not by a Benders cut. As CPLEX is based on floating point
arithmetic, tolerances are needed. For optimality cuts, the violation of a cut
has a natural interpretation: it is the amount by which the artificial variable η∗

underestimates the contribution of the CGLP variables to the objective function.
As such, for optimality cuts we use the regular optimality tolerance used by the



6 Pierre Bonami, Domenico Salvagnin, and Andrea Tramontani

solver. For feasibility cuts, there is no such natural interpretation, and any scaling
of feasibility cuts is arbitrary. Therefore, we consider a master solution (x∗, η∗)
to be violated if and only if the corresponding CGLP is infeasible (according to
the regular feasibility tolerances) regardless of whether we are actually able to
derive a sufficiently violated feasibility cut out of it. This is also consistent with
what a regular B&C algorithm would have done on the complete model.

Another key aspect is what to do if we fail to derive a cut. When the issue is
on the CGLP side, sometimes it can pay off to resolve the CGLP from scratch
(possibly forcing a different LP algorithm), and reconstruct the cut. However, in
some cases the cut is inherently bad, e.g., when the cut returned by the CGLP is
violated but its dynamism is such that it cannot be added to master. In this case,
the current master solution is still flagged as invalid, and we act as follows. If the
master solution comes from a heuristic, we just discard the solution. If it comes
from a node, we have no choice but to branch on a non-fractional variable, unless
we already reached a leaf of the enumeration tree. If we are at a leaf of the tree,
and there are no continuous variables (except the artificial η) in master, we can
still prune the node. However, this would not be correct if there are structural
continuous variables in master, so in this latter case we have no choice but to
abort with a numerical failure.

Scaling of the Variable η in Optimality Cuts Another aspect where the
method may fail for numerical reasons is the scaling of η in optimality cuts.
Note that in (13) the coefficient of η is 1 by construction. Depending on the
contribution of the y variables to the objective this can pose severe problems in
the numerical behavior of the method. If the coefficients πT for the variables x in
the cuts are very large or very small, an LP solver using floating point arithmetic
might not be able to handle them correctly. In such a case it is possible to scale
η to get more numerically stable cuts. In particular, we can define η so that
instead of being equal to dy, it is a fraction of it, i.e., αη = dy. The derivation of
a cut is the same as before, except that in the aggregation used to construct the
optimality cut we now use the inequality dy ≤ αη leading to the cut αη+πTx ≥
πr. Of course all optimality cuts must share the same scaling for η while the
coefficients for x may be vastly different among them. Therefore choosing an
appropriate value for α is not trivial. In our implementation, we define α to
be equal to the largest coefficient for an x variable in the first optimality cut
derived. Note that α could be dynamically rescaled in the procedure but our
simple attempt did not find any advantage to it.

Cutting a Ray Finally, a case that we left out in Section 2 is the separation
of cuts when master is unbounded. In most of the literature this is excluded
by construction, but CPLEX has to deal with the general case. Denote with P
and R the continuous relaxations of (1)–(4) and (5)–(8), respectively. When R
is unbounded, the next lemma shows that a variant of the CGLP can be used
to conclude that P is unbounded as well (and hence (1)–(4) is either infeasible
or unbounded), or to separate a cut to truncate an unbounded ray of R.



Implementing Automatic Benders Decomposition in a Modern MIP Solver 7

Lemma 2. Let (u∗, u∗0) be an unbounded ray of R and consider the modified
CGLP

min ds (14)

Tu∗ +Qs ≥ 0 (15)

s ≥ 0. (16)

(i) If (14)–(16) is unbounded, then P is unbounded.
(ii) If (14)–(16) is infeasible, then there exists π ∈ Qm2

+ such that πTx ≥ πr is
valid and πTu∗ < 0.

(iii) If (14)–(16) has a finite optimum s∗, then: If ds∗ ≤ u∗0, P is unbounded.
Otherwise, ∃π ∈ Qm2

+ such that η + πTx ≥ πr is valid and u∗0 + πTu∗ < 0.

The proof is in the appendix. Note that the only differences w.r.t. the case in
which we cut a point are (i) fix the master variables to the values in the ray
(rather than a point), and (ii) zero out the right hand side of the constraints4.

4 CGLP Improvements

In this section we describe several improvements to the CGLP: exploiting linking
constraints with special structure in Section 4.1, and normalization conditions
to separate “good” feasibility cuts in Section 4.2.

4.1 Generalized Bound Constraints

Benders decomposition can be effective when the problem structurally simplifies
after fixing variables x. The most common case is when Q is block diagonal.
However, the simplification can be significant in other cases as well. A relevant
case arises when many linking constraints (3) involve only one y variable. We
denote those constraints as Generalized Bound Constraints (GBCs) since in the
CGLP, with the x variables fixed, they boil down to simple bound constraints on
the y variables. A prime example of GBCs is the one of variable bound constraints
like, e.g., constraints of the form yj ≤ xi that are prevalent in facility location
problems. However, other and more complex GBCs, involving several x variables
at a time, can also arise in practice, as, for instance, in the case of partial set
covering location problems [8].

Translating GBCs to simple bound constraints is key to solving the CGLP
faster. However, fully exploiting the presence of GBCs requires some dedicated
machinery. Blindly fixing the x variable in the CGLP and having LP presolve do
the necessary simplifications potentially destroys the warm-starting capabilities
of the simplex method. On the other hand, disabling presolve is of course not an
option either as in this case GBCs would not be turned into simple bounds
anymore, negating all the benefits of the method. For this reason, we treat
GBCs explicitly when we set up the CGLP: we don’t add them to the CGLP

4 This also applies to bounds: bounded y variables turn into directions s fixed to zero.



8 Pierre Bonami, Domenico Salvagnin, and Andrea Tramontani

formulation, but rather compute on the fly the corresponding simple bounds
and directly change those. Note that we need to keep track of which GBC (if
any) is active for each CGLP variable yj , as we need to multiply it with the
corresponding dual multiplier when computing the cut coefficients.

4.2 CGLP Normalization

It was noted in [13] that the textbook implementation of the Benders CGLP
gives little control on which feasibility cut is returned. Actually, any dual feasible
solution is optimal and any arbitrary unbounded dual ray will be returned by
an LP solver. To select “good” feasibility cuts, we need to add a normalization
condition that truncates the dual cone: clearly, the choice of the normalization
is critical. In the following, we will describe two such normalizations. Note that,
by adding the objective as a constraint, we can always reduce ourselves to the
case where the CGLP is infeasible, and treat feasibility and optimality cuts in
a unified way. However, this has several drawbacks: the objective is often dense,
numerically shaky and badly scaled w.r.t. the other constraints in the model. A
preliminary implementation of this unified approach indicated it is not effective.
For this reason, we adopt a two-stage approach. We first solve (9)–(11): if it
is feasible, an optimality cut is derived. Otherwise, we temporarily remove the
objective and add a normalization. Once the cut is obtained, the normalization is
removed and the objective restored5. It is important to note that the addition of
the normalization can be done in both cases without hindering the warm-start
capabilities of the simplex method. Finally, we note that GBCs (see Section
4.1) do not simplify to simple bounds if they are used in the normalization.
Therefore, we do not apply the normalization to those constraints. As a result
cuts are potentially weaker, but separation would be orders of magnitude slower
on some models classes otherwise.

L1 Normalization Assume that (9)–(11) is infeasible. A normalization is sim-
ply introduced by adding a penalty variable z0 as follows:

min z0 (17)

Tx∗ +Qy + z0 ≥ r (18)

y, z0 ≥ 0 (19)

Note that the addition of z0 acts as normalization condition in the dual space,
specifically the L1-norm of the dual multipliers is constrained to be 1. This
normalization is the one used in [13] but expressed in the primal space. It was
originally proposed in the context of lift-and-project cuts in [2] and, as shown
in [12], it has nice numerical properties as it favors the separation of cuts with
a sparse support.

5 There is a notable exception to this strategy: if the CGLP has no objective (i.e.
d = 0) we never remove the normalization, as any violated Benders cut will be a
feasibility one by construction.



Implementing Automatic Benders Decomposition in a Modern MIP Solver 9

As we assumed that (9)–(11) is infeasible, the optimal solution of (17)–(19)
has z∗0 > 0. Using the vector π of optimal dual multipliers we can obtain (12).
By strong duality it holds that z∗0 = π(r−Tx∗), hence the cut is violated by x∗.

CW Normalization The L1 normalization is known to have nice numerical
properties, but it does not give any theoretical guarantee on the strength of
the feasibility cuts. A better approach in this sense is described by Conforti
and Wolsey in [7]. Let x0 be the core point defined in Section 3. The geometric
idea is to find the point on the line segment (x0, x∗) which is feasible for (9)–
(11) and further away from x0. It is shown in [7] that this approach separates
facet defining inequalities with probability 1. Defining the convex combination
as x∗ + λ(x0 − x∗), after introducing the variable λ, we can write the CGLP as:

minλ

Tx∗ +Qy + λ[T (x0 − x∗)] ≥ r
y ≥ 0

0 ≤ λ ≤ 1 (20)

Note that the dual constraint associated with λ reads πT (x0 − x∗) = 1, which
is the well known Balas–Perregaard normalization on the polar space [3]. Given
the optimal dual multipliers π, a feasibility cut is derived as previously.

Although the CW normalization is theoretically stronger than the L1 nor-
malization, (20) is typically harder to solve than (17)–(19). Therefore, CPLEX
chooses at runtime which normalization to apply, with the rationale of trying to
use the CW normalization when feasibility cuts appear to be important w.r.t.
optimality cuts.

5 Computational Results

In this section we report on some computational experiments aimed at assessing
the importance of the algorithmic components previously described. In particu-
lar, we focus on i) in-out techniques to stabilize and accelerate the convergence of
the initial Benders cut loop, ii) CW normalization to separate stronger feasibility
cuts, and iii) special handling of GBCs in the CGLP.

To this end, we considered a benchmark test bed of instances that are suitable
for Benders decomposition. Specifically, we collected 209 two-stage stochastic
models from various applications (capacitated facility location [18,6], network
interdiction [21,6], fixed charge multi-commodity network design [9], chance-
constrained programs [17], and others from CPLEX internal library) and 166
non-stochastic models also coming from different applications (capacitated and
uncapacitated facility location [24,11,15,10], network expansion [1], partial set
covering location [8], and others from CPLEX internal library), for a total of
375 benchmark instances on which Benders decomposition is expected to be
effective. All tests were conducted by running CPLEX 12.10 [16] on a cluster



10 Pierre Bonami, Domenico Salvagnin, and Andrea Tramontani

of identical 12 core Intel Xeon CPU E5430 machines running at 2.66 GHz and
equipped with 24GB of RAM. A time limit of 10,000 seconds was enforced on
each run.

Table 1 compares the default CPLEX branch-and-cut (“B&C”) to two ver-
sions of CPLEX automatic Benders search: the default method (“Benders de-
fault”) and the much weaker variant where we disabled in-out, CW normaliza-
tion6, and the special handling of GBCs (“Benders no all”). The table reports
aggregated results on all 375 instances which are grouped in each row based on
the hardness of the models. First, the set “all” consists of all the models for which
no method had a failure and all methods gave consistent objective values. Then,
the set “all” is subdivided in classes “[n, 10k]” (n ∈ {0, 1, 10, 100}), containing
the models for which at least one of the methods took at least n seconds and
that were solved to optimality within the time limit by at least one. For each
set, we report: the number of models (“#models”), the number of time limit hit
by each method (“#tilim”), then for the two methods “Benders default” and
“Benders no all”, the ratio of the shifted geometric means with respect to the
reference “B&C” for solution times (“time”) and number of nodes to optimality
(“nodes”)7 (a value t < 1 indicates that the specific method is faster than the
reference one by a factor of 1/t).

Table 1. Comparison between regular B&C and Benders decomposition.

B&C Benders default Benders no all
class #models #tilim #tilim time nodes #tilim time nodes

all 361 165 72 0.23 58.6 179 1.44 149.
[0,10k] 313 117 24 0.19 44.8 131 1.53 162.
[1,10k] 310 117 24 0.18 45.0 131 1.53 166.
[10,10k] 304 117 24 0.18 47.8 131 1.51 160.
[100,10k] 285 117 24 0.16 55.5 131 1.55 192.

The results reported in Table 1 clearly show that, on a test bed of instances
amenable to Benders decomposition, the default variant of CPLEX Benders
significantly outperforms regular branch-and-cut. In particular, considering the
instances in the class [0,10k], the number of timeouts is reduced from 117 to 24
and the Benders solver is around 5.26 times faster. However, the table also shows
that advanced algorithmic components are crucial to achieve good performance.
Indeed, by disabling in-out techniques, the CW normalization and the special
handling of GBCs, performance dramatically deteriorates. In particular, still
considering the instances in [0,10k], the number of timeouts increases to 131 and
the Benders solver becomes 1.53 times slower than regular branch-and-cut.

6 Note that, when the CW normalization is disabled, the L1 normalization is used
instead, and thus feasibility cuts are still separated using some normalization.

7 The shift applied is of 1 second for “time” and 10 nodes for “nodes”.



Implementing Automatic Benders Decomposition in a Modern MIP Solver 11

In order to better assess the performance impact of the individual algorithmic
components highlighted in Table 1, we conducted a set of experiments in which
we disabled each of them individually. The outcome of these experiments is
summarized in Table 2. Each row compares a variant of the CPLEX Benders
solver, obtained by disabling one or more features, against the default Benders
solver. For each comparison we report only the results for the instances in the
class [0,10k]. We remark that each row is independent of the others and the
number of models varies a little. The structure of the table is similar to Table 1.
We add three columns under the header “affected” to report results only on the
models on which the specific solver in the comparison is at least 10% slower or
faster than the reference solver (i.e., default Benders decomposition).

Table 2. Impact of the individual features in the Benders solver on the [0,10k] bracket.

default all models affected
feature #models #tilim #tilim time nodes #models time nodes

No InOut 298 1 41 1.31 0.99 243 1.40 0.96
No CW-norm 301 0 0 1.14 1.40 71 1.83 4.36
No InOut and CW-norm 297 0 76 3.35 3.52 266 3.85 4.06
No GBCs 305 3 20 2.31 0.83 214 3.29 0.79
No all 300 6 113 9.03 3.87 275 11.00 4.45

The results reported in Table 2 lead to the following observations:

1. In-out appears to be the most important feature, as it affects 82% of the
models and disabling it leads to 40 additional timeouts.

2. The CW normalization seems to be less important than in-out, as it affects
only 24% of the models and no timeouts are introduced by disabling it.
However, by comparing “No InOut” and “No InOut and CW-norm”, we
can clearly see that CW normalization becomes fundamental if in-out is
disabled. Intuitively, the two techniques are related as they both use the
segment joining x∗ to x0 to separate deeper cuts. In this sense, the CW
normalization is theoretically superior, but our experiments show that in-
out is also essential.

3. Handling of GBCs affects 70% of the models and allows to solve 17 additional
instances. Also, it appears to be the most important single feature in terms
of overall improvement of computing time.

Acknowledgements

We thank Daniel Junglas and Roland Wunderling for many discussions and
helping out with the implementation of some of the ideas. We also thank Michele
Conforti for the many discussions on normalizations in Benders CGLPs.



12 Pierre Bonami, Domenico Salvagnin, and Andrea Tramontani

References

1. Atamtürk, A., , Nemhauser, G.L., Savelsbergh, M.W.P.: Valid inequalities for prob-
lems with additive variable upper bounds. Mathematical Programming 91, 145–162
(2001)

2. Balas, E.: A modified lift-and-project procedure. Mathematical Programming 79,
19–31 (1997)

3. Balas, E., Perregaard, M.: Lift-and-project for mixed 0–1 programming: recent
progress. Discrete Applied Mathematics 123, 129–154 (2002)

4. Ben-Ameur, W., Neto, J.: Acceleration of cutting-plane and column generation
algorithms: Applications to network design. Networks 49(1), 3–17 (2007)

5. Benders, J.F.: Partitioning procedures for solving mixed-variables programming
problems. Numerische Mathematik 4, 238–252 (1962)

6. Bodur, M., Dash, S., Günlük, O., Luedtke, J.: Strengthened benders cuts for
stochastic integer programs with continuous recourse. INFORMS Journal on Com-
puting 29(1), 77–91 (2017)

7. Conforti, M., Wolsey, L.A.: Facet separation with one linear program. Mathemat-
ical Programming 178(1–2), 361–380 (2019)

8. Cordeau, J.F., Furini, F., Ljubić, I.: Benders decomposition for very large scale
partial set covering and maximal covering location problems. European Journal of
Operational Research 275(3), 882–896 (2019)

9. Crainic, T.G., Hewitt, M., Rei, W.: Partial decomposition strategies for two-stage
stochastic integer programs. Tech. Rep. 13, CIRRELT (2014)

10. Fischetti, M., Ljubic, I., Sinnl, M.: Benders decomposition without separability: A
computational study for capacitated facility location problems. European Journal
of Operational Research 253(3), 557–569 (2016)

11. Fischetti, M., Ljubić, I., Sinnl, M.: Redesigning benders decomposition for large-
scale facility location. Management Science 63(7), 2146–2162 (2017)

12. Fischetti, M., Lodi, A., Tramontani, A.: On the separation of disjunctive cuts.
Mathematical Programming 128, 205–230 (2011)

13. Fischetti, M., Salvagnin, D., Zanette, A.: A note on the selection of Benders’ cuts.
Mathematical Programming B 124, 175–182 (2010)

14. Geoffrion, A.M., Graves, G.W.: Multicommodity distribution system design by
benders decomposition. Management Science 20(5), 822–844 (1974)

15. Görtz, S., Klose, A.: A simple but usually fast branch-and-bound algorithm for
the capacitated facility location problem. INFORMS Journal on Computing 24(4),
597–610 (2012)

16. IBM CPLEX Optimizer: CPLEX User’s Manual (2019), https://www.ibm.com/
analytics/cplex-optimizer

17. Liu, X., Küçükyavuz, S., Luedtke, J.: Decomposition algorithms for two-stage
chance-constrained programs. Mathematical Programming 157(1), 219–243 (2016)

18. Louveaux, F.V.: Discrete stochastic location models. Annals of Operations Re-
search 6(2), 21–34 (1986)

19. Magnanti, T., Wong, R.: Accelerating Benders decomposition: algorithmic en-
hancement and model selection criteria. Operations Research 29, 464–484 (1981)

20. McDaniel, D., Devine, M.: A modified Benders’ partitioning algorithm for Mixed
Integer Programming. Management Science 4, 312–319 (1977)

21. Pan, F., Morton, D.P.: Minimizing a stochastic maximum-reliability path. Net-
works 52(3), 111–119 (2008)

https://www.ibm.com/analytics/cplex-optimizer
https://www.ibm.com/analytics/cplex-optimizer


Implementing Automatic Benders Decomposition in a Modern MIP Solver 13

22. Papadakos, N.: Practical enhancements to the Magnanti-Wong method. Opera-
tions Research Letters 36(4), 444–449 (2008)

23. Rahmaniani, R., Crainic, T.G., Gendreau, M., Rei, W.: The benders decomposition
algorithm: A literature review. European Journal of Operational Research 259(3),
801–817 (2017)

24. UflLib: Uncapacitated facility location library, http://resources.mpi-inf.mpg.de/
departments/d1/projects/benchmarks/UflLib/packages.html

http://resources.mpi-inf.mpg.de/departments/d1/projects/benchmarks/UflLib/packages.html
http://resources.mpi-inf.mpg.de/departments/d1/projects/benchmarks/UflLib/packages.html


14 Pierre Bonami, Domenico Salvagnin, and Andrea Tramontani

A Appendix

A.1 Proof of Lemma 1

(i) Assume that (9)–(11) is infeasible. Then, Farkas lemma implies that there
exists a ray π ≥ 0 such that πQ ≤ 0 and π(r−Tx∗) > 0. Multiplying (3) by
π, and eliminating the y variables from the resulting constraint using πQ ≤ 0
and y ≥ 0, we get the inequality (12). This inequality is violated by x∗ by
definition of π.

(ii) Suppose now that (9)–(11) has a finite optimal value and let y∗ be an optimal
solution. If dy∗ ≤ η∗ we claim that (x∗, y∗) is optimal for (1)–(4). Indeed, it is
feasible, and since (5)–(8) is a relaxation of (1)–(4) and cx∗+dy∗ ≤ cx∗+η∗,
(x∗, y∗) is optimal. Otherwise, let’s consider the optimal dual vector π. It
satisfies the conditions πQ ≤ d, π(r − Tx∗) = dy∗ and π ≥ 0. Multiplying
again (3) by π and using πQ ≤ d, y ≥ 0 and dy ≤ η, we can eliminate the
y variables from the resulting constraint and we obtain the inequality (13).
This inequality is violated by the point (x∗, η∗) by strong duality.

A.2 Proof of Lemma 2

By definition, (u, u0) is an unbounded ray of R if

u ≥ 0, Au ≥ 0, cu+ u0 < 0,

and (u, s) is an unbounded ray of P if

u ≥ 0, Au ≥ 0, s ≥ 0, Tu+Qs ≥ 0, cu+ ds < 0. (21)

Given an unbounded ray (u∗, u∗0) of R, we want to check whether it can be
turned into an unbounded ray (u∗, s∗) of P , meaning that P itself is unbounded,
or find a cut that truncates R along (u∗, u∗0).

(i) Assume (14)–(16) is unbounded, and consider an unbounded ray s∗. By
definition, s∗ ≥ 0, Qs∗ ≥ 0 and ds∗ < 0. Thus, there exists a scalar λ > 0
such that (u∗, λs∗) satisfies (21). This proves that P is unbounded.

(ii) Assume that (14)–(16) is infeasible. Then by Farkas lemma ∃π ≥ 0 such that
πQ ≤ 0 and πTu∗ < 0. Multiplying (3) by π, and eliminating the y variables
from the resulting constraint using πQ ≤ 0 and y ≥ 0, we get the inequality
(12). By definition of π we have πTu∗ < 0 and thus the inequality truncates
R along (u∗, u∗0).

(iii) Finally, suppose that (14)–(16) is feasible and bounded and let s∗ be an
optimal solution. If ds∗ ≤ u∗0, then (u∗, s∗) satisfies (21) and P is unbounded.
Now suppose ds∗ > u∗0, and consider the optimal dual vector π ≥ 0 which
satisfies the conditions πQ ≤ d and πTu∗ = −ds∗. Multiplying again (3) by π
and using πQ ≤ d, y ≥ 0 and dy ≤ η, we can eliminate the y variables from
the resulting constraint and we obtain the inequality (13). From πTu∗ =
−ds∗ and ds∗ > u∗0 we get πTu∗ + u∗0 < 0 and thus the inequality truncates
R along (u∗, u∗0).


	Implementing Automatic Benders Decomposition in a Modern MIP Solver
	Introduction
	Benders Decomposition
	The Master Problem
	CGLP Improvements
	Generalized Bound Constraints
	CGLP Normalization

	Computational Results
	Appendix
	Proof of Lemma 1
	Proof of Lemma 2



