
Detecting and exploiting
permutation structures in MIPs

Domenico Salvagnin

DEI, University of Padova, salvagni@dei.unipd.it

Abstract. Many combinatorial optimization problems can be formu-
lated as the search for the best possible permutation of a given set of
objects, according to a given objective function. The corresponding MIP
formulation is thus typically made of an assignment substructure, plus
additional constraints and variables (as needed) to express the objec-
tive function. Unfortunately, the permutation structure is generally lost
when the model is flattened as a mixed integer program, and state-of-
the-art MIP solvers do not take full advantage of it. In the present paper
we propose a heuristic procedure to detect permutation problems from
their MIP formulation, and show how we can take advantage of this
knowledge to speed up the solution process. Computational results on
quadratic assignment and single machine scheduling problems show that
the technique, when embedded in a state-of-the-art MIP solver, can in-
deed improve performance.

1 Introduction

Many combinatorial optimization problems can be formulated as the search for
the best possible permutation of a given set of objects, according to a given
objective function. Without loss of generality, in this paper we will consider
problems of the form:

min f(π) (1)

π ∈ Πn (2)

where Πn is the set of all permutations π of the ground set N = {1, . . . , n}.
A natural way to formulate this class of problems within a mixed-integer linear
programming (MIP) paradigm is to encode the permutation π by introducing n2

binary variables xij and 2n linear constraints, obtaining the so-called assignment
polytope. Finally, additional artificial variables y, together with the correspond-
ing linking constraints, are usually introduced in the model in order to properly
formulate the objective function f . Note that if the objective function is linear
in x, we have the so-called linear assignment polytope, which is polynomially

solvable. The problem is thus reformulated as

min g(x, y) (3)
n∑

i=1

xij = 1 ∀j ∈ N (4)

n∑
j=1

xij = 1 ∀i ∈ N (5)

Ax+By ≥ b (6)

xij ∈ {0, 1} ∀(i, j) ∈ N2 (7)

y ≥ 0 (8)

It is important to note that, being a permutation problem, the structure of the
formulation above is such that if all variables x are fixed, then it is always possible
to compute in closed form the values of the artificial variables y, and thus to
obtain a complete solution. In other words, once the permutation is known, there
is no need to solve an optimization problem to compute its objective value. In
particular, if it always possible to express y as a function Γ of x, such that
f(x) = g(x, Γ (x)).

Many combinatorial optimization problems, as for example the quadratic
assignment problem (QAP), the traveling salesman problem (TSP), and single
machine scheduling, belong to the above class, although not all are always mod-
eled in this way. For example, while the TSP is clearly a permutation problem, it
is usually not formulated as such, so there is no explicit assignment substructure
in the model.

Unfortunately, the permutation structure is generally lost when the model
is flattened as a mixed integer program, and state-of-the-art MIP solvers do
not take full advantage of it. For example, while it is always trivial to compute
a feasible solution of a permutation problem, state-of-the-art MIP solvers oc-
casionally find it very challenging to find one, even with their rich arsenal of
primal heuristics. Even worse, while it is well-known that permutation problems
are usually well-suited for local-search based metaheuristics, that are capable of
finding near-optimal solutions with very modest computing times, MIP solvers
have a very hard time in improving their first poor-quality solutions.

The main issue here is that current state-of-the-art MIP technology lacks a
powerful modeling language based on global constraints, a tool which has long
been standard in constraint programming [1]. As such, it is almost impossible for
the modeler to pass high-level information to the solver, such as, for example,
combinatorial substructures. Given the current state of things, it has become
standard practice in MIP implementations to devise algorithms that basically
try to reverse-engineer combinatorial substructures from a flat list of linear in-
equalities. For example, in [2] a procedure for detecting network structures was
presented; such structure, when present, is then used to improve cutting plane
separation. Unfortunately, while these procedures are usually cheap and effective,
they are still heuristic in nature and can be fooled by the many transformations

that are applied to a given MIP formulation in the preprocessing phase. Extend-
ing them to be completely preprocessing-invariant is often not done in practice
for performance reasons (the resulting algorithms would be too slow), with the
consequence that on some instances the substructure is not detected even if it
is present.

While we cannot but share the lament for the current state of things, and
encourage MIP vendors to invest into more powerful modeling interfaces to the
solvers, as (partially) done, e.g., in the open solver SCIP [3], in the meantime
we can still try to improve the situation for specific substructures, as is done for
permutation problems in the present paper. Note that while permutation prob-
lems are usually solved with specialized codes, some challenging instances have
indeed been solved with MIP technology, as for example in [17], so improving
the performance of MIP solvers on this class of problems is of practical interest
and can broaden the applicability of the MIP paradigm.

The outline of the paper is as follows. In Section 2 we describe a heuristic pro-
cedure to automatically detected permutation problems, while in Section 3 we
show how to exploit the permutation structure to implement an efficient and gen-
eral purpose primal heuristic based on local search. Two classes of permutation
problems, that we used as benchmark, as described in Section 4. Computational
results are given in Section 5, showing that the technique, when embedded in
a of state-of-the-art MIP solver, can indeed improve performance, according to
several performance measures. Conclusions and future directions of research are
finally addressed in Section 6.

2 Detecting permutation structures

Detection of permutation problems is done in two steps:

1. in the first step we look for assignment polytopes, thus identifying the binary
variables x that encode the permutation, and the corresponding assignment
constraints;

2. in the second step we check that, once the variables x are fixed, the remaining
variables y can indeed be computed in a straightforward way. In particular,
this implies finding a topological order among variables y, such that we can
compute them in one pass from left to right.

The first step is organized as a clustering algorithm. First, all constraints
involving at least one non binary variable, that are not equalities and whose
right-hand-size is different from 1 are removed, as they cannot be part of the as-
signment structure. The remaining constraints are then partitioned into clusters:
each cluster can contain only constraints with the same number of variables and
with pairwise disjoint support. Constraints are assigned to the first compatible
cluster in a first-fit fashion; if no cluster is compatible, a new cluster is created
with the current constraint in it. After the set of clusters Q has been initialized,
we look for pairs (q1, q2) of matching clusters. Two clusters are matching if they

Fig. 1. Assignment structure.

cover exactly the same set of variables and each constraint in cluster q1 inter-
sects each constraint in cluster q2 in exactly one variable. Intuitively, variables
x are naturally double-index variables and can be arranged into a matrix, and
the constraints in a pair of matching clusters (q1, q2) corresponds to the rows
and columns, respectively, of this matrix, see Figure 1. Once a matching pair
of cluster is found, it is removed from Q and the process continues until all
pairs have been considered. Details are depicted in Algorithm 1. Note that the
described detection algorithm is slightly more general than needed, since it can
detect more than one assignment substructures.

The second step constructs a weighted dependency graph G = (V,E,w)
between the variables of the formulation, along with a topological order O on
the nodes of G, and is based on row counts. At the beginning, all assignment
variables x are added (in arbitrary order) as nodes toG, and to the ordered listO.
All assignment constraints are removed from the model. Each constraint ci left in
the model, is assigned a count ri, which counts all the variables in the constraint
not yet in O. If some constraint ends up having a row count of zero at this step,
then it means that this is not a pure permutation problem, but a constrained
one, i.e., not all permutations are feasible since there are additional constraints
on the assignment variables x: in this case we just abort the procedure. Then an
iterative procedure begins, that loops over all constraints looking for those with
ri = 1. As soon as one is found, say ci, the following steps are executed:

– let yj be the variable left in ci. All constraints involving yj are considered
and the singleton ones are collected in a set Y . Note that Y includes ci.

– If |Y | = 1, then yj can be computed directly from constraint ci (plus its
own bounds): yj is added as a new node in G and to list O. In addition,
edges are added to G, connecting yj to all the other variables in ci. Edges
are weighted with the coefficients of the constraint, so that it is possible to

Algorithm 1: Assignment subproblems detection.

Input: a list of constraints C = {c1, . . . , cm}
Output: a list of assignment substructures A = {A1, . . . , Ak}
/* clustering */

1 Q = ∅;
2 foreach c ∈ C do
3 foreach q ∈ Q do
4 if c is compatible with c then
5 q = q ∪ {c};

6 if c still not in a cluster then
7 Q = Q ∪ {{c}};

/* matching clusters */

8 A = ∅;
9 for q1 ∈ Q do

10 for q2 ∈ Q do
11 if q1 and q2 are matching then
12 A = A ∪ {(q1, q2)};
13 Q = Q \ {q1, q2};

14 return A

compute the correct value of yj given the values of the variables on which it
depends. Node yj is marked as being of type LINEAR.

– If |Y | > 1, then yj depends on more than one affine expression involving other
variables. If those expressions are all consistent, then yj can be computed
as either a min or a max of them (plus its own bounds). If this is the case,
dummy nodes are added to G and to list O, together with the corresponding
edges, in order to encode those affine expressions, similarly to the previous
case. Then a new node yj is added to G and O, with edges connecting it to
the dummy nodes. Node yj is marked as being of type MIN or MAX, depending
on the direction of the inequalities. If the constraints are not consistent, then
it is not possible to trivially compute yj from the preceding variables in the
topological order, meaning that this is not a permutation problem. In this
case we abort the procedure.

– Variable yj is marked as done and all row counts of constraints in which yj
appears are decreased by 1. Constraints in Y , which by definition have now
a row count of 0, are removed from the model.

At each iteration at least one constraint is removed from the model, so this
phase terminates in O(m) iterations, where m is the number of constraints in the
formulation. The procedure can be implemented quite efficiently if the constraint
matrix is stored both row and column-wise.

Note that if cutting planes are added to the original formulation by the mod-
eler, then those will end up in the dependency graph and propagate; however,
since they are not needed to get a correct model, they are redundant in the

graph and contribute only as a slowdown factor. For these reason, it is conve-
nient to exploit the facilities provided by the underlying solver, if any, to mark
a subset of constraints as cuts, so that they can be ignored by the graph con-
struction algorithm (for example, the MPS and LP file formats used by CPLEX
allow this extension). A similar reasoning applies to indicator constraints: if ex-
plicitly marked as such, they can be handled more efficiently by the algorithm.
For example, the linear expression need not be updated if the indicator variable
is false.

Example 1. Let us consider the following artificial tiny permutation problem

min t

x11 + x12 = 1

x21 + x22 = 1

x11 + x21 = 1

x12 + x22 = 1

y1 ≥ 4x11 + 5x12

y2 ≥ 3x21 + 2x22 + y1

t ≥ y1 + 2y2

t ≥ 3y1 + y2

x ∈ {0, 1}4

y, w ≥ 0

The corresponding dependency graph is depicted in Figure 2, and the ordered
list is

O = [x11, x12, x21, x22, y1, y2, z1, z2, t]

ut

3 Exploiting permutation structures

Once the permutation structure, if any, is identified, we can exploit its knowl-
edge to improve the performance of the underlying MIP solver. A natural op-
tion, pursued in this paper, is to use the permutation structure to implement
a general purpose primal heuristic, based on local-search. Alternative options,
such as using the permutation structure for preprocessing and cut strengthen-
ing/separation, are possible as well, and left as future work.

The basic idea is to implement a local-search based metaheuristic, namely
iterated local search (ILS) [4], using the dependency graph to explore neighbor-
hoods and evaluate solutions. Given a permutation π, the neighborhood N (π)
is defined as all permutations that can be obtained by swapping two elements
of the permutation. Clearly, the neighborhood has polynomial size, containing
exactly n(n − 1)/2 permutations for each center π. The idea behind ILS is to
perturb the current locally optimal solution s∗ to get a new center t and call

4 5
3 2

1

y1

y2

x11 x12 x21 x22

1

2

3

1

z1 z2

t
max

lin lin

lin

lin

Fig. 2. Dependency graph of example problem.

again the local search procedure from there, obtaining a new local optimum t∗.
If the new solution t meets an acceptance criterion, then t is chosen as the next
starting point, otherwise it is rejected and the procedure is repeated from s∗.
Intuitively, ILS implements a heuristic random walk on the set of locally optimal
solutions of a given optimization problem. A high level pseudocode for ILS is
given in Algorithm 2.

Algorithm 2: Basic ILS procedure

1 s0 = GenerateRandomSolution ();
2 s∗ = LocalSearch (s0);
3 repeat
4 s′ = Perturb (s∗, history);
5 t = LocalSearch (s′);
6 s∗ = AcceptanceCriterion (s∗, t, history);

7 until termination condition;

Note that the perturbation mechanism and the acceptance criterion are in
general dependent on the history of the system: this allows for more effective and
elaborate strategies. The simplest, yet very common, acceptance criterion is to

accept the new solution t if and only if its objective value is better than that of s.
Other strategies include a pure random walk option, in which the new solution t
is always accepted, regardless of its cost, and a simulated annealing [5,6] like ac-
ceptance criterion based on temperature, in which t is always accepted if it is an
improving solution, but is also accepted with a given probability even if its ob-
jective value is worse (the probability is usually dependent on the “temperature”
T of the system and on the difference between the two objective values, with
slightly worsening steps being more likely). The first two strategies do not make
use of the history of the system, while the third does. In our implementation,
we chose the annealing criterion. As far as the perturbation step is concerned,
a perturbed permutation π′ is obtain from π by performing k swaps, where k is
adjusted dynamically during the execution of the algorithm, and is always con-
tained in the interval {k1, . . . , k2}. Finally, as far as local search is concerned,
we implemented a first-improving pivoting rule. The choice of ILS as a general
purpose metaheuristic is motivated by the fact that it is relatively easy to im-
plement and proved to be quite successful in many permutation problems, such
as TSP [7], QAP [8], and scheduling problems [9].

Implementing local search on top of the dependency graph is quite straight-
forward. A first solution is evaluated by assigning a value to all variables x,
and then computing the values of the variables y (and the intermediate expres-
sions needed to evaluate max and min, if any) following the order in O. Then,
whenever a swap is performed, the change in value of the 4 affected variables is
propagated following the graph (much like in constraint propagation systems),
thus achieving incremental evaluation.

4 Testbed

We considered two classes of problem that exhibit a permutation structure,
namely quadratic assignment and single machine scheduling problems, as de-
scribed in the next subsections.

4.1 Quadratic Assignment Problems

The NP-hard (and notoriously very difficult in practice) Quadratic Assignment
Problem (QAP), in its Koopmans and Beckmann form [10], can be sketched
as follows; see, e.g., [11] for details. We are given a complete directed graph
G = (V,A) with n nodes n2 arcs, and a set of n facilities to be assigned to its
nodes. In what follows, indices i, j correspond to nodes, indices u, v to facilities,
bij ≥ 0 is a given (directed) distance from node i to node j, and auv ≥ 0 is a
given required flow from facility u to facility v. By using binary variables xiu = 1
iff facility u is assigned to node i, QAP can be stated as the following quadratic
binary problem:

min
∑n

i=1

∑n
u=1

∑n
j=1

∑n
v=1 auv bij xiuxjv (9)∑n

i=1 xiu = 1 ∀u ∈ N (10)∑n
u=1 xiu = 1 ∀i ∈ N (11)

xiu ∈ {0, 1} ∀(i, u) ∈ N2 (12)

Most MIP models for QAP work with additional 0-1 variables yiujv = xiuxjv
that are used to linearize the quadratic objective function—the Adams-Johnson
model [12] being perhaps the best-known such formulation. These kinds of mod-
els require Θ(n4) variables and Θ(n3) constraints, so they become huge even for
medium-size instances, with unacceptable slowdowns in solving the LP relax-
ations during the branch-and-cut tree.

A different approach is to look for MILP models requiring justO(n2) variables
and constraints. An obvious model is the MILP one credited to Kaufman and
Broeckx [13] that requires the introduction of just n2 additional (continuous)
variables

wiu =

 n∑
j=1

n∑
v=1

auvbijxjv

xiu (13)

which can be easily linearized with big-M coefficients. The corresponding MIP
model reads

min

n∑
i=1

n∑
u=1

wiu (14)

n∑
i=1

xiu = 1 ∀u ∈ N (15)

n∑
u=1

xiu = 1 ∀i ∈ N (16)

wiu ≥
n∑

j=1

n∑
v=1

auvbijxjv −M(1− xiu) ∀(i, u) ∈ N2 (17)

xiu ∈ {0, 1} ∀(i, u) ∈ N2 (18)

wiu ≥ 0 (19)

This model is known to be of little use in practice as is because of the big-M
constraints (17). In particular, it can be proved [14] that the root-node bound is
always zero. However, a much stronger formulation can be obtained by adding
to (14)−(19) the (polynomial) family of cutting planes

wiu ≥ Liuxiu (20)

where each Liu is defined as the optimal value of the linear (and polynomially
solvable) assignment problem:

min

n∑
j=1

n∑
v=1

auvbijxjv (21)

n∑
j=1

xjv = 1 ∀v ∈ N (22)

n∑
v=1

xjv = 1 ∀j ∈ N (23)

xiu = 1 (24)

xjv ∈ {0, 1} ∀(j, v) ∈ N2 (25)

It can be shown that adding constraints (20) to the model, the resulting root
relaxation bound is at least as strong as the so-called Gilmore-Lawler [15,16]
bound. This lightweight model, together with the family of cutting planes (20),
was used recently in [17] to solve highly symmetric QAP instances, proving to
be a reasonable tradeoff between bound strength and enumeration speed.

In this paper, we considered all the instances in the standard QAPLIB [18]
testbed with n < 20, and excluding the instances of the esc class, which are
well-known to be massively symmetric. Overall, we are left with 31 instances.

As far as the structure of the problem is concerned, the quadratic assignment
problem is clearly a permutation problem. Once all variables xiu are assigned a
value, then the value of variables wiu is automatically derived by our algorithm
as

wiu = max


n∑

j=1

n∑
v=1

auvbijxjv −M(1− xiu), Liuxiu, 0

 (26)

As far as our ILS metaheuristic is concerned, evaluating a neighboring solution
has cost O(n2), assuming that the constraints defining wiu are dense (as is
usually the case). While linear in the size of the model, this is suboptimal with
respect to an ad-hoc and QAP-specific implementation, where a neighboring
solution can be evaluated O(n) arithmetic operations: this is the price to pay
for a general purpose (and relatively simple) implementation, directly based on
a linear formulation of the model. Note that in this particular case the issue
could be solved by expressing constraints (17) as indicator constraints, as hinted
at the end of Section 2. Indeed, whenever a variable xiu flips value, we do not
need to update O(n2) expressions, but only O(n), since only n wiu variables
are nonzero in any solution, thus implementing a form of partial incremental
propagation. When a non up-to-date variable wiu needs to be evaluated, it is
computed from scratch, which again can be done in O(n) because only n xiu
variables are nonzero in any solution. Unfortunately, properly handling these
cases complicates the implementation significantly, so we do not support it yet.
Finally, we can obtain a small performance improvement by marking (20) as
cuts, so that they are ignored by the algorithm.

4.2 (Weighted) Total Tardiness Minimization in Single Machine
Scheduling

In single machine scheduling problems [19], we are given a set of n jobs, to be
processed on a single machine, without preemption. Each job j is characterized
by its processing time pj , a due date dj , and a nonnegative weight wj . Different
objective functions are of interest when solving single machine scheduling prob-
lems. In the present paper we will restrict to (weighted) total tardiness of the
schedule.

Given a job j, its tardiness Tj is defined as

Tj = max{Cj − dj , 0} (27)

where Cj is the completion time of job j. In the scheduling notation of [20], the
variants considered in this paper are denoted as 1||

∑
Tj and 1||

∑
wjTj , for the

simple and weighted total tardiness, respectively.

For the unweighted case [19], a simple MIP model reads

min

n∑
k=1

Tk (28)

n∑
j=1

xjk = 1 ∀k ∈ N (29)

n∑
k=1

xjk = 1 ∀j ∈ N (30)

Tk ≥
n∑

j=1

pj

(
k∑

u=1

xju

)
−

n∑
j=1

djxjk ∀k ∈ N (31)

xjk ∈ {0, 1} ∀(j, k) ∈ N2 (32)

Tj ≥ 0 ∀j ∈ N (33)

where variable xjk = 1 iff job j is assigned position k in the processing, while Tk
is the tardiness of the job in position k. In constraints (31), the first term is the
cumulative processing time of the first k jobs in the sequence, while the second
term is the due date of the job in position k. Note that in the model we do not
explicitly keep track of the tardiness of each job by index, but only by position.

A MIP formulation for the weighted case is considerably more involved, be-
cause, differently from the unweighted case, we need to know the tardiness of
each job by its index j and not just by its position k. Indeed, at least four
formulations can be implemented, as surveyed in [21], with different tradeoffs
between size and strength. In the present paper, we considered the one based on
the assignment polytope, much in the spirit of the unweighted case. The MIP

model reads

min

n∑
j=1

wjTj (34)

n∑
j=1

xjk = 1 ∀k ∈ N (35)

n∑
k=1

xjk = 1 ∀j ∈ N (36)

γ1 ≥
n∑

j=1

pjxj1 (37)

γk ≥ γk−1
n∑

j=1

pjxjk ∀k ∈ N \ {1} (38)

Cj ≥ γk −M(1− xjk) ∀(j, k) ∈ N2 (39)

Tj ≥ Cj − dj ∀j ∈ N (40)

xjk ∈ {0, 1} ∀(j, k) ∈ N2 (41)

γk ≥ 0 ∀k ∈ N (42)

Cj , Tj ≥ 0 ∀j ∈ N (43)

As in the previous model, variable xjk = 1 iff job j is assigned position k in
the processing. In addition, γk is the completion time of the job in position
k, Cj is the completion time of job j, and Tj is the tardiness of job j. As in
the QAP case, the presence of big-M coefficients in constraints (39) makes the
formulation quite weak in practice. However, by sorting the jobs by processing
time before generating the model, it is possible to strengthen the model by adding
a polynomial family of inequalities, which can be easily computed, see [21] for
the details: we implemented this strengthened variant.

In this paper, we considered all the instances in the standard ORLIB [22]
testbed with n = 40. Overall, there are 125 instances, and we consider both the
unweighted and weighted variants (in the first case, by just ignoring the weights).

As far as the structure of the problem is concerned, with the chosen formu-
lations the single machine scheduling problem is clearly a permutation problem.
Once all variables xjk are assigned a value, then we can automatically compute
the value of variables Tk in the unweighted case, and of variables γk, Cj and Tj
(in this order) in the weighted case.

As far as our ILS metaheuristic is concerned, evaluating a neighboring so-
lution has cost O(n) in the unweighted case, and O(n2) in the weighted case.
Again, while linear in the size of the model, this is suboptimal in the weighted
case, where an ad-hoc implementation can evaluate a neighboring solution in
O(n) arithmetic operations.

It is important to note that this slowdown is caused not by inefficiencies in
the algorithm, but rather by the MIP formulation itself, because O(n2) linear

constraints are needed to link variables γk and Cj . For example, if we were
allowed to use nonlinear expressions, only O(n) constraints of the form

Cj =

n∑
k=1

γkxjk

would suffice. Note that the above constraints are essentially element [23] global
constraints, so in the ideal case we should be able to formulate the problem using
those, exploiting their presence to obtain a more efficient ILS implementation,
and then let the solver automatically linearize them in order to get a standard
MIP model. Thus, this is yet one more argument for implementing global con-
straint technology within MIP solvers.

5 Computational Experiments

We implemented our codes in C++, using IBM ILOG CPLEX 12.5.1 [24] as
black box MIP solver. All tests have been performed on a cluster of identical
PC, each with an Intel Xeon E3-1220 V2 CPU running at 3.10GHz and 16GB
of RAM (only one CPU was used by each process). Each method was given a
time limit of 10,000 seconds per instance.

We compare two variants of our state-of-the-art MIP solver on the instances
described in the previous section. We denote with detect the full version of
our code, which detects the permutation structure of the problems and applies
the ILS heuristic throughout the branch-and-cut tree (implemented through the
callback mechanism of CPLEX), and with cpx the same code with our detection
algorithm disabled, in order to have a fair comparison between the two. As far as
the parameters of detect are concerned, the detection algorithm is triggered at
the end of the root node processing, and only if the integrality gap left is greater
than 2%, in order to avoid wasting time in case of very easy instances. The default
parameters of the ILS metaheuristic are iterLim = 1000 and noImprovLim =
100, while the perturbation interval [k1, k2] is set to [3, 7]. If the integrality gap
is less than 10%, then the ILS metaheuristic is run with stricter limits, namely
iterLim = 100 and noImprovLim = 20. Finally, the heuristic is called every
10, 000 nodes and, if not effective for 5 times in a row, it is completely switched
off for the rest of the search.

We use 4 performance measures to compare cpx and detect:

– #solved: number of instances solved within the time limit.

– time: shifted geometric mean, with a shift of 1 second, of the running time
on the subset of instances solved by both methods.

– pint: shifted geometric mean, with a shift of 0.01, of the primal integral on
the subset of instances solved by both methods (the lower the better). The
primal integral [25] measures the overall behavior of the solver as far as the
primal bound is concerned, and overcomes many shortcomings of traditional

figures when measuring the effect of primal heuristics. Given the primal gap
function γ(x) of a feasible solution x, defined as

γ(x) =


0 if cx = z = 0

1 if cx · z < 0
|cx−z|

max(|cx|,|z|) otherwise.

where z is the value of the optimal (or best known) solution, we define the
primal gap pgap as a function of the running time t as

pgap(t) =

{
1 if no feasible solution is known at time t

γ(x̃) if x̃ is the incumbent at time t.

Note that γ(x), and thus also pgap(t), is always between 0 and 1. The primal
integral is defined as the integral over t of pgap(t).

– gap: average final integrality gap on the subset of instances unsolved by at
least one method. The integrality gap is computed as

gap(z, z) =


0 if z = z = 0

1 if z · z < 0
|z−z|

max(|z|,|z|) otherwise.

where z is the value of the global primal bound and z is the value of the global
dual bound. This is the integrality gap as reported by many commercial
solvers, and has the advantage of always being a number between 0 and 1.

Table 1. Comparison of the two methods.

testbed method #solved time (s) pint gap

QAP cpx 19 60.5 0.569 8.8%
detect 20 55.5 0.113 8.3%

1||
∑

Tj cpx 90 6.4 0.198 18.0%
detect 88 5.3 0.128 17.6%

1||
∑

wjTj cpx 40 12.8 2.140 31.8%
detect 41 8.0 0.857 29.7%

Aggregated results of the comparison between the two methods are reported
in Table 1. According to the table, the two methods are approximately equiva-
lent as far as the number of solved instances is concerned: this is not surprising,
as it is well-known that in general our ability in solving MIPs is largely dom-
inated by the dual bound, which is not affected by our method. According to
many computational studies [26,27], the effect of primal heuristics on the overall

solution process is approximately in the order of 10-15% on average. Still, in
our testbeds, where finding good quality solutions is challenging for CPLEX,
the effect of our method is a significant reduction of the overall running time,
up to almost 40% on the weighted total tardiness testbed. In addition, the pri-
mal integral is also significantly reduced, dropping by a factor of 4 in the QAP
testbed and by a factor of approximately 2 on the single scheduling instances.
Finally, on the unsolved instances, the final integrality gap was also consistently
reduced—although by a little amount.

6 Conclusions

We described a heuristic procedure to automatically detected permutation prob-
lems, and exploited the permutation structure to implement an efficient and
general purpose primal heuristic based on local search. Computational experi-
ments on two classes of permutation problems, namely QAP and single machine
scheduling, showed that the technique, when embedded in a of state-of-the-art
MIP solver, can indeed significantly improve performance.

Future research includes efficiently implementing the extensions needed to
support indicator constraints, as well as devising heuristic procedures to de-
tect other common substructures, such as, for example, linear encodings of the
element global constraint. This would bring the general purpose ILS procedure
inline with the problem specific implementations. Extensions to more general
classes of permutation problem, such as rectangular or higher-dimensional as-
signments, could also broaden the applicability of the method.

References

1. Gent, I.P., Petrie, K.E., Puget, J.F.: Symmetry in constraint programming. In
Rossi, F., van Beek, P., Walsh, T., eds.: Handbook of Constraint Programming.
Elsevier (2006) 329–376

2. Achterberg, T., Raack, C.: The MCF-separator: detecting and exploiting multi-
commodity flow structures in MIPs. Mathematical Programming Computation
2(2) (2010) 125–165

3. Achterberg, T.: SCIP: solving constraint integer programs. Mathematical Pro-
gramming Computation 1(1) (2009) 1–41

4. Lourenço, H.R., Martin, O.C., Stützle, T.: Iterated local search: Framework and
applications. In Glover, F., Kochenberger, G., eds.: Handbook of Metaheuristics.
Volume 57. Kluwer Academic Publishers (2002) 321–353

5. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing.
Science 220 (1983) 671–680

6. Černý, V.: Thermodynamical approach to the traveling salesman problem: An
efficient simulation algorithm. Journal of Optimization Theory and Applications
45(1) (1985) 41–51

7. Johnson, D.S., McGeoch, L.A.: Experimental analysis of heuristics for the STSP.
In Gutin, G., Punnen, A., eds.: The Traveling Salesman Problem and its Variations.
(2002) 369–443

8. Stützle, T.: Iterated local search for the quadratic assignment problem. European
Journal of Operational Research 174(3) (2006) 1519–1539

9. Congram, R.K., Potts, C.N., van de Velde, S.L.: An iterated dynasearch algorithm
for the single-machine total weighted tardiness scheduling problem. INFORMS
Journal on Computing 14(1) (2002) 52–67

10. Koopmans, T., Beckmann, M.: Assignment problems and the location of economic
activities. Econometrica 25 (1957) 53–76

11. Burkard, R., Dell’Amico, M., Martello, S.: Assignment Problems. SIAM (2009)
12. Adams, W., Johnson, T.: Improved linear programming-based lower bounds for

the quadratic assignment problem. In: Proceedings of the DIMACS Workshop
on Quadratic Assignment Problems. Volume 16 of DIMACS Series in Discrete
Mathematics and Theoretical Computer Science., American Mathematical Society
(1994) 43–75

13. Kaufman, L., Broeckx, F.: An algorithm for the quadratic assignment problem
using Benders’ decomposition. European Journal of Operational Research 2 (1978)
204–211

14. Xia, Y., Yuan, Y.: A new linearization method for quadratic assignment problem.
Optimization Methods and Software 21 (2006) 803–816

15. Gilmore, P.: Optimal and suboptimal algorithms for the quadratic assignment
problem. SIAM Journal on Applied Mathematics 14 (1962) 305–313

16. Lawler, E.: The quadratic assignment problem. Management Science 9 (1963)
586–599

17. Fischetti, M., Monaci, M., Salvagnin, D.: Three ideas for the quadratic assignment
problem. Operations Research 60(4) (2012) 954–964

18. Burkard, R., Karisch, S., Rendl, F.: QAPLIB – A quadratic assignment problem
library. European Journal of Operational Research 55 (1991) 115–119

19. Baker, K.R., Trietsch, D.: Principles of Sequencing and Scheduling. Wiley (2009)
20. Graham, R., Lawler, E., Lenstra, J., Kan, A.R.: Optimization and approximation in

deterministic sequencing and scheduling: A survey. Annals of Discrete Mathematics
5 (1979) 287–326

21. Keha, A.B., Khowala, K., Fowler, J.W.: Mixed integer programming formulations
for single machine scheduling problems. Computers & Industrial Engineering 56(1)
(2009) 357–367

22. Beasley, J.E.: OR-library: distributing test problems by electronic mail (1990)
23. Hentenryck, P.V., Carillon, J.P.: Generality versus specificity: an experience with

AI and OR techniques. In: AAAI-88. (1988)
24. IBM ILOG: CPLEX 12.5.1 User’s Manual. (2013)
25. Berthold, T.: Measuring the impact of primal heuristics. Operations Research

Letters 41 (2013) 611–614
26. Achterberg, T.: Constraint Integer Programming. PhD thesis, Technische Univer-

sität Berlin (2007)
27. Achterberg, T., Wunderling, R.: Mixed integer programming: Analyzing 12 years

of progress. In: Facets of Combinatorial Optimization. (2013) 449–481

	Detecting and exploiting permutation structures in MIPs
	Introduction
	Detecting permutation structures
	Exploiting permutation structures
	Testbed
	Quadratic Assignment Problems
	(Weighted) Total Tardiness Minimization in Single Machine Scheduling

	Computational Experiments
	Conclusions

