A fix-propagate-repair heuristic for Mixed
Integer Programming

Domenico Salvagnin, Roberto Roberti, and Matteo Fischetti

Department of Information Engineering (DEI), University of Padova
{domenico.salvagnin,roberto.roberti,matteo.fischetti}@unipd.it

Abstract. We describe a diving heuristic framework based on constraint
propagation for mixed integer linear programs. The proposed approach
is an extension of the common fix-and-propagate scheme, with the addi-
tion of solution repairing after each step. The repair logic is loosely based
on the WalkSAT strategy for boolean satisfiability. Different strategies
for variable ranking and value selection, as well as other options, yield
different diving heuristics. The overall method is relatively inexpensive,
as it is basically LP-free: the full linear programming relaxation is solved
only at the beginning, and only for the ranking strategies that make use
of it, while additional (typically much smaller) LPs are only used to com-
pute values for the continuous variables (if any), once at the bottom of
a dive. While individual strategies are not very robust in finding feasible
solutions on a heterogenous testbed, a portfolio approach proved quite
effective. In particular, it could consistently find feasible solutions in 189
out of 240 instances from the public MIPLIB 2017 benchmark testbed,
in a matter of a few seconds of runtime.

1 Introduction

In this paper, we consider mixed integer linear programming (MIP) problems of
the form:

min cx

Ax <b

[<zx<u

x; €LVNjeJ

where J C I and I is the set of variable indices. Note that we assume all bounds
to be finite and, without loss of generality, all linear constraints in < form.
Being MIP an NP-hard problem, there is a long and established literature on
designing general-purpose primal heuristics [2,1], to either help exact methods
like branch-and-cut, or to be run as standalone methods.

In this paper, we consider so-called constructive heuristics, i.e., primal heuris-
tics whose purpose is to find an initial feasible solution for a given MIP. In
addition, we do not assume to always have a linear programming (LP) solution
available, and we do not allow for the solution of subMIPs, no matter how small.

Our starting point is the well-known fix-and-propagate diving heuristic. The
idea behind fix-and-propagate is to iteratively fiz variables according to some
ranking of the variables, and propagate the linear constraints of the problem after
each such fixing before picking the next variable to fix. In general, some very
limited form of backtracking (e.g., 1-level backtracking) is also allowed to prevent
the dive to be aborted too quickly. Of course, the actual heuristic depends on
the strategy used to select the next variable to fix and to which value to fix it.

A weakness of fix-and-propagate is its inability to recover from past mistakes:
1-level backtracking only catches the most recent wrong turn but is unable to
fix older mistakes. In addition, the success of the method greatly depends on the
variable and value selection strategies. An alternative approach to constructive
heuristics is the so-called solution repair approach. The idea is to start with a
complete, yet infeasible, solution to the problem, and then to iteratively change
(shift) the value of a single variable in the hope of reducing the total amount of
infeasibility, until a feasible solution is eventually found. Examples of these ap-
proaches are the shift-and-propagate heuristic [3] and, in the context of boolean
satisfiability, the WalkSAT algorithm [14]. The WalkSAT algorithm, in particu-
lar, has been extensively studied by the SAT community, both theoretically [12]
and computationally [13,9]. While we found that applying the WalkSAT ap-
proach to MIP is in general not very effective, some of its key ideas are used in
our proposed framework as well.

The outline of the paper is as follows. In Section 2, we describe our fix-
propagate-repair framework. In Section 3, we describe the different variable/value
strategies we tried, while in Section 4 we describe our solution repair approach.
Extensive computational results on the MIPLIB 2017 benchmark set are given
in Section 5. Future developments are discussed in Section 6.

The heuristic described in this paper is an extended version of the fix-
propagate-repair heuristic that ranked second in the MIP 2022 Computational
Competition.

2 Fix-propagate-repair framework

The main idea behind our fix-propagate-repair framework is to augment the
fix-and-propagate scheme with a repair step, whose purpose is to recover the
feasibility of the current partial assignment without backtracking. In particu-
lar, we allow for changes not just to the most recent variable fixed, as 1-level
backtracking would do, but also to previous ones. In preliminary computational
experiments, this incremental repair proved to be more effective than a pure
WalkSAT approach of trying to repair a complete solution. In practice, our
framework can be seen (and is implemented) as a limited depth-first search
strategy, where at each node we can decide whether to do constraint propaga-
tion, whether to allow for solution repair, and whether to backtrack in case the
infeasibility is not resolved. A generic pseudocode for the proposed framework
is given in Figure 1.

input : A MIP instance P, limits and parameters propagate, repair,
backtrackOnlInfeas
output : A feasible solution if found, None otherwise

1Q={0} // push root node to queue

2 while Q not empty and limits not reached:

3 fixing = Pop (Q) // pop a fixing from queue

4 infeas = Apply (fixing, P) // apply fixing to current problem

// Node processing

5 if not infeas and propagate:

6 infeas = PropagateConstraints (P, fixing)

7 if infeas and repair:

8 infeas = RepairWalk (P)

9 if infeas and backtrackOnlInfeas:
10 Backtrack
11 branches = Branch (P) // branch according to strategy
12 if branches is empty:

13 if infeas:

14 Backtrack

15 else:

16 return current domain // feasible solution found
17 else:

18 Q = Q Ubranches // added branches to queue

19 return None

Fig. 1: Fix-propagate-repair scheme

The algorithm starts at line 1 by pushing an empty fixing to the queue, to
serve as root node. Then we perform a standard DFS search where, at each
iteration, we pop a node (represented by a variable fixing) from the queue, we
process it and, if needed, branch by creating new nodes. At each node, depending
on the parametrization, we can perform constraint propagation, try a repair step,
and backtrack on an infeasible node. Different values for the parameters can yield
quite different algorithms. For example, a regular fix-and-propagate search can
be obtained by enabling propagation and backtrack, and disabling repair. On
the other hand, a simple incremental repair strategy can be obtained by enabling
repair and disabling propagation and backtrack. Note that because of its DFS
nature, the algorithm itself is complete, in the sense that it will return a feasible
solution if there is one, if limits are set large enough. Of course, in practice the
algorithm is called with very strict limits: in our runs, the node limit was set to
be equal to the number of variables in the problem to be solved plus one, and
the search stops when the very first feasible solution is found.

As far as parametrization is concerned, we used the following presets:

dfs: propagation enabled, repair disabled, and backtrack on infeasibility; this is
a regular fix-and-propagate scheme.

dfsrep: same as dfs, but with repair enabled; notice that, in this case, the
algorithm might perform redundant work, as the subtrees in search are no
longer necessarily disjoint.

dive: propagation disabled, repair enabled, and no backtrack on infeasibility;
this is an incremental repair strategy that constructs a complete solution in
a single big dive.

diveprop: same as dive, but with propagation enabled.

In the following section, we describe the variable/value strategies that we
designed and tested. Details about the repair process itself are deferred to Sec-
tion 4.

3 Strategies

Once a parametrization has ben set, we still need to specify a variable/value
strategy in order to obtain a fully specified method. Clearly, there are many dif-
ferent possibilities. Strategies can be either static, i.e., computed upfront “once
and for all” before running the heuristic, or dynamic, where the ranking is up-
dated at each node taking the current domain into account. Clearly, a static
strategy is simpler to implement and faster to run, as no update is necessary
after each fixing/propagation, but it could require more nodes than a more
sophisticated dynamic approach. In addition, we can use different criteria de-
pending on the main target of the heuristic: for example, if the emphasis is on
feasibility, we might discard objective-based information (such as, e.g., reduced
costs) and stick to feasibility-based measures, such as variable locks, i.e., the
number of constraints that become more infeasible if a variable is rounded up or
down. Finally, we can distinguish between LP-free and LP-dependent strategies:
for example, a strategy ranking variables by their fractionality in an LP solution
is LP-dependent, while one just looking at the objective coefficients is LP-free.

In our computational study, we implemented both static and dynamic strate-
gies, and tried both LP-free and LP-dependent criteria. On the other hand, we
did not experiment with sophisticated objective-based methods (such as reduced
costs), as the emphasis of the present work is on finding a first feasible solution.
We argue that solution quality is better obtained by other means, in particular by
subMIP-based local searches [8], like for example RINS [5] or local-branching [6].

The variable strategies we tested are listed in Table 1, with a brief description.

While some of those strategies are quite trivial and well known (like type
and random), others are less obvious and, to the best of our knowledge, novel.
In particular, three strategies (typecl, cliques and cliques?2) are based on
the concept of a cliqgue cover, which we now describe in detail. Formally, a clique
cover C' is a partition of the (binary) variables of a problem into disjoint subsets,
each of which is covered by a clique constraint, i.e., at most one variable in each
subset can be set to one in a feasible solution. Notice that a clique cover always
exists, as in the worst case any binary variable can be considered as part of a
(trivial) clique of size one. In practice, due to the large use of binary variables
in MIP modeling, clique constraints are very common in MIP instances, so a

name description

LR left-to-right as they appear in the formulation

type grouped by type (binaries, integer, continuous)

typecl as type, but use clique cover to sort binaries

random random shuffle within each type

locks decreasing variable locks within each type

cliques based on clique cover and relaxation solution

cliques2 alternative based on clique cover and relaxation solution

Table 1: Variable strategies tested in our implementation.

non-trivial clique cover involving a significant portion of the binary variables
exists in most cases.

In general, for a given instance, there exist many different clique covers: since
constructing one that optimizes a given criterion (for example, minimizing the
number of subsets in the partition) is too expensive, we resort to simple greedy
heuristics, that we now describe. First of all, all the clique constraints in the
model are extracted and put into a dedicated data structure (the so-called clique
table), so that we can efficiently iterate over the cliques and query which cliques a
given variable appears in. We allow complemented variables in a clique; in other
words, a clique is not a set of variables but rather a set of literals (variables or
their complementation). This extraction phase is, in our current implementation,
very simple: we just scan the linear constraints in the problem and identify those
that are pure clique constraints (again, allowing complemented variables), i.e.,
are of the form:

ij—l—z:—xj < 1—|N|

jEP jEN
where P (resp., N) denotes the set of positive (resp., negative) literals in the
clique. A more advanced implementation could extract cliques from other con-
straints (for example, from knapsack constraints), or obtain additional cliques
via probing [11]. Once the clique table is set up, we can start a greedy algo-
rithm to construct a clique cover. We first process equality cliques (i.e., clique
constraints where exactly one literal must be set to one): this is obtained by just
iterating once over the equality cliques, in the order as they appear in model,
and add a clique if and only if it is disjoint w.r.t. to all the ones that have already
been added, so that we can keep track of the equality status. Then, we try to
cover the remaining binaries by:

— counting how many binaries are covered by each clique;

— assigning each binary to the largest clique covering it;

counting how many binaries are covered by each of the selected cliques;
doing some local adjustments (e.g., switch a variable to a larger selected
clique);

— finally sorting the selected cliques by size.

Notice that this method is LP-free, in the sense that the clique partition does
not depend on a LP solution. This clique cover is used in strategy typecl, where
variables within each clique are simply ordered as they appear in the formulation.
The same clique cover is also used in strategy cliques, where however we exploit
a reference LP solution in order to sort variables within each clique in the cover.
In details, we weigh the literals in a clique using their value in a zero-objective
interior point LP solution (obtained by running the barrier algorithm without
crossover on the model without objective) and then use those weights to sample
from a weighted discrete random distribution. The intuition is that we interpret
the values in the reference LP solutions as probabilities as we want to have a
randomized sort based on those. Finally, in strategy cliques2, we construct a
clique cover dynamically using both the clique table and a reference LP solution,
in this case, a zero-objective vertex. The method is quite simple: we just loop
over the cliques in the problem, skipping fixed variables and non-tight cliques
(w.r.t. to the reference LP solution), pick the most positive literal in the clique
and then the remaining uncovered binaries (again, in the order they appear in
the clique).

As far as value strategies are concerned, we also have several options. Those
we implemented are listed in Table 2, again with a brief description.

name description

up always prefer the upper bound

random randomly between lower and upper bound
goodobj fix toward the objective

badobj fix against the objective

loosedyn compute dynamic locks based on current activities

use fractional part of LP value as probability to pick

LP-based upper bound

Table 2: Value strategies tested in our implementation.

Let us give a few more details about the value strategies. As for value selec-
tion, by against objective (resp., toward objective) we mean picking the bound
that makes the objective worse (resp., better): if the variable does not appear
in the objective, we always pick the lower bound. In loosedyn, we prefer the
direction over which the variable has fewer locks, but we compute those locks
dynamically, using the current domain to compute updated minimum and max-
imum activities for each constraint. Thus, constraints that have already become
redundant do not contribute to the lock counters. Finally, in LP-based strategies,
we take a reference LP solution and use the fractional part of the LP value of a
variable as a probability to pick the current upper bound as preferred value: no-

tice that this is correct not only for binary variables but also for general integer
ones. Since we have two independent choices depending on which LP solution
to use as reference (namely: whether to use the zero or original objective and
whether to use a corepoint or a vertex solution), in the end we have four different
LP-based value strategies, that we call zerocore, zerolp, core and 1p, with the
obvious meaning.

Combining all variable/value strategies would give a total of 63 different
combinations: however, after some preliminary tests, we decided to select only
14 combinations for further testing. Those strategies are listed in Table 3.

name variable value
random typecl random
random?2 random random
badobj type badobj
badobjcl typecl badobj
goodobj type goodobj
goodobjcl typecl goodobj
locks LR loosedyn
locks2 locks loosedyn
cliques cliques up
cliques2 cliques2 up
zerocore typecl Zerocore
zerolp typecl zerolp
core typecl core

Ip typecl Ip

Table 3: Overall variable/value strategies.

4 Solution Repair

Our repair strategy is based on the classical WalkSAT [14] approach for a boolean
satisfiability problems. The algorithm starts with a complete random assignment
to the boolean variables. Then, until a satisfiable assignment is found or compu-
tational limits are hit, a boolean variable is flipped according to a very specific
logic, which can be interpreted as a careful mix of greedy and random walk
behaviour:

— pick an unsatisfied clause C' uniformly at random;

— if some boolean variables in C' can be flipped without breaking any currently
satisfied clause, pick one randomly;

— otherwise, pick a random variable in C' with probability p, and a variable in
C which breaks the minimal number of clauses with probability 1 — p, where
p is the so-called noise parameter.

Interestingly, only the damage done by a flip is taken into account when
computing its score, while the number of clauses that becomes satisfied by the
flip is ignored.

In order to apply WalkSAT to the MIP case, even in the most straightforward
sense, we need to generalize its logic to non-binary variables and to general
linear constraints (as opposed to plain clauses). For non-binary variables, the
natural extension of a flip is that of shift: we are allowed to shift the value of a
fixed variable (binary or not) within its original domain. Of course, this is less
straightforward in general: in the binary case, once a variable is chosen, there
is only one possibility, while in the general integer case we might have a very
large domain (and the situation is even worse for continuous variables). As for
linear constraints, computing a violation measure is still doable, but we now
have a choice on which one to use: while for clauses cumulative violation and
violation count coincide, as a violated clause always has a violation of exactly
one, for linear constraints the two measures are different. We also note that while
flipping a binary in a violated clause is guaranteed to make that clause feasible,
the same does not hold for a linear contraint: for example, shifting the value of
a non-binary variable might increase violation in any direction if the constraint
is an equality.

In our implementation, we use violation count as a measure, we skip the
variables in a constraint that do not reduce violation by shifting, and compute
the shifted value (in the non-binary case) as the minimal shift that makes the
constraint feasible. If the constraint cannot be made feasible, we still shift the
variable (within its domain) so as to reduce the violation as much as possible.

In preliminary experiments, we tested a version of WalkSAT generalized to
work on MIPs. While its behaviour was in line with public-domain implementa-
tions when run on MIP models encoding SAT problems, the results were quite
poor on more general MIPs, as for example the instances from the MIP 2022
Computational Competition. What we noticed is that the method could quickly
reduce the infeasibility of the initial random solution down to a medium level
of violation, but it had then troubles in actually bringing the violation to zero.
This is what prompted our strategy of applying solution repair not on complete
assignments, but as a repair procedure within the fix-and-propagate search.

In order to apply WalkSAT within a search scheme, we need to extend its
logic further, from complete assignments to partial assignments. The partial
assignment at the current node in the DFS is encoded by the current domain,
i.e., the current values for lower and upper bounds on all variables. From this
domain we compute, for each constraint a?z < b;, the so-called minimum (m;)
and maximum (M;) activities, i.e., the minimum and maximum values the left
hand side alz of the constraint can achieve by only considering the bounds
on the variables. Note that the very same quantities are needed for constraint
propagation as well, a fact that is exploited by our implementation: activities
are incrementally kept up-to-date by both propagation and repair steps. By
comparing the activity range [m;, M;] with the constraint right hand side b;, we
can detect whether a constraint is currently violated and by how much. Thus,

the violation of a given constraint is the distance between the interval [m;, M;]
and bi~

As far as repair moves are concerned, we notice that we might need to shift
not only fixed variables, but potentially any variable that had its domain re-
duced; in other words, in general we do not shift just values, but intervals. The
reason for this need is easily explained: if a non-binary variable has its domain
reduced (but not fixed) as implication of constraint propagation of, say, fixing
a binary variable, the repair process needs to be able to undo this tightening
if the implying binary is flipped. Given that we do not want to allow domain
enlargement as a repair move (as it would lead to trivial repair actions where
fixings are just undone), we must allow for shifts on non-fixed variables.

With those details sorted out, the basic WalkSAT-inspired repair step is
described as follows. At each step:

— We pick a violated linear constraint uniformly at random.

— We build a list of candidate variables that can reduce the violation of the
current constraint if shifted. The list also includes non-binary variables, al-
though the logic is a bit different: while for binaries we just check whether
a flip would reduce violation by using a sign argument, for non-binary vari-
ables we compute the minimal shift that would make the constraint satisfied,
round it if the variable is general integer, and then clip it so that the variable
is still within its global bounds. If the resulting shift is nonzero, then the
variable is added to the list of candidates.

— For each candidate, we compute the damage of the shift, i.e., we sum up
the increases in violation over all constraints for which violation actually
increases (as in the original WalkSAT, we ignore improvements in violation).

— Finally, we apply the usual WalkSAT logic: if there are variables that can be
shifted with zero damage, we pick one at random among those; otherwise,
we pick a random variable (among the candidates) with probability p, and
choose among the candidates with minimal damage with probability 1 — p.

The noise parameter is set to p = 0.75 in our implementation. As we call the
repair function very frequently, we use a small iteration limit of 200 for each call.
Finally, we extended this basic logic with two simple tricks: we maintain a short
tabu list of the last 3 shifts in order to avoid short cycles (whose probability
is quite large when there are very few violated constraints), and we soft restart
from the best state every 10 shifts (this is to avoid the repair process to diverge
to states from which it is very time consuming to recover).

4.1 Repair search

The repair scheme described so far works rather well in practice, but it is unsat-
isfactory from several reasons. First of all, the repair process does not make use
of constraint propagation: this is quite obvious, as it is not possible to do con-
straint propagation from an infeasible state, but it would be nice to at least take
into account the implications of a given repair move. Also, because the repair

moves are simple shifts without propagation, we might need multiple moves in
order to implement simple changes like, for examples, swapping two binaries in
a clique constraint: because of the random walk nature of the process, it is not
even guaranteed that we would easily find the correct sequence of simple flips
equivalent to such a “complex” move. Finally, the method is easily trapped into
cycles: again, the random walk nature guarantees that we will eventually escape
them, but that might take too much time, in particular taking into account
that the repair routine is potentially called over and over at different nodes of
the DFS search, and thus has strict limits. Adding the short tabu list and soft
restarts helped in reducing those shortcomings, but their effect is limited.

In order to overcome the issues above, we propose to organize the repair
process itself as a search scheme, instead of a random walk. The idea is to
have an auxiliary DFS search, not in the space of partial assignments, but in
the space of move sequences. Whenever a shift is chosen as a repair move, we
turn it into a repair disjunction, so that we can undo it on backtrack and try the
opposite move in an systematic manner. Then, we can do constraint propagation
on this auxiliary tree and obtain the implications of the repair moves done on
the path to the current repair node. We are still not allowed to do constraint
propagation on the current (still infeasible) partial assignment, but at least we
get the implications of our moves. Notice that if we detect infeasibility, we can
backtrack in the repair space and avoid wasting time in a hopeless subtree.

This approach has several advantages (and some disadvantages). On the pos-
itive side, we no longer need tabu lists: systematic search takes care of avoiding
cycles. Also, we can exploit constraint propagation and have a higher chance of
doing “complex” moves, like a swap of binaries: if we flip a binary to one in a
clique constraint, constraint propagation will take care of fixing the other ones
to zero, thus automatically flipping the old variable to one (if any). On the neg-
ative side, we now have all the shortcomings of regular DFS, like the inability to
escape a wrong subtree without exploring it all. We (partially) sidestep this issue
by allowing for jumps in the tree: if we detect that we are not making enough
progress in the current subtree, we backtrack directly to the most promising
open node, at the cost of giving up on completeness (this is not a concern in
practice, as we always run this repair search with very strict limits anyway).
Finally, organizing the repair process as a tree search further complicates the
algorithm: we now need to figure out how to turn a repair move into a repair
disjunction, and we need to describe how to synchronize the domain of partial
solution we are trying to repair with the current domain in the repair tree. In
the rest of the section, we will provide details about those steps.

Let us start with synchronization. At the beginning of the repair process,
the root node of the repair tree is initialized with the global domain. Then, as
we apply repair moves and their implications, the domain gets tightened: clearly
those changes need to be applied in some way to the domain describing the
current (infeasible) node in the main tree. Therefore, we need to apply changes
from the repair domain, say D, to the current infeasible domain D. As usual,
the logic is much simpler for binary variables than for non-binaries. In the binary

10

case, a variable z; can only be fixed to a given value: if z; is still unfixed in the
current node (this can happen if z; is implied by a repair move but not by the
original partial assignment), then we just fix it to the same value. Otherwise,
we either leave it as is (the two domains already agree on z;) or we flip it. For
non-binary variables, in general we need to compare two intervals. Two cases
can arise:

1. the two intervals have a non-empty intersection: in this case we can tighten
the bounds in D so that the new interval is the intersection;

2. the two intervals are disjoint: in this case we shift the interval of D until it
touches the interval in D,., and then fix the variable to the common endpoint.

A simple numerical example can clarify the logic. Let us say that a non-binary
variable ; has domain [1,4] in D and [2, 5] in D,: then its new domain in D will
be [2,4] (its domain in D, being unchanged). Suppose instead that the intervals
are [1,3] and [4,5], again in D and D, respectively: then z; will be fixed to 3
in D. Notice that we always apply changes from D, to D, never the other way
around, and that the rationale is to do the minimal amount of changes to achieve
the condition D C D,..

Finally, let us describe the logic to turn a repair move into a repair disjunc-
tion. Again, this is trivial for binary variables: a repair move fixes x; = b; on the
preferred branch, and the other side of the disjunction is simply z; =1 —b;. In
the non-binary case, a repair move is always a shift s and the shifted interval [a, b]
in D is always contained in the interval [c, d] in D,., by construction. We compute
the gaps to the left and to the right w.r.t. to [¢,d], i.e.,] =a—cand r =d — b,
and the disjunction is then as follows: if [< r, we impose z; < bV z; > b,
otherwise z; < aVz; > a.

5 Computational results

We implemented our framework in C++ and used IBM ILOG CPLEX 12.10 [10]
as LP solver and MIP presolver. All codes were run on a cluster of 24 identical
machines, each equipped with an Intel Xeon CPU E3-1220 V2 CPU running at
3.10 GHz, and 16 GB of RAM, and take full advantage of multi-threading. Each
method was run on the 240 instances from the MIPLIB 2017 [7] benchmark set,
using different random seeds to limit the effect of performance variability [4].
Each method was run on each instance-seed combination with a time limit of 10
minutes, as in the MIP 2022 Computational Competition.
As far as implementation details are concerned, we mention that:

— The same MIP presolve is applied at the beginning of each run, in order
to get a smaller model and tighter bounds on all variables. In addition,
if after presolve some variables still have some infinite bound, we impose
an artificial bounding box of [—100000,4+100000]: this is in general not a
valid constraint, but it is acceptable for heuristic purposes, and allows the
constraint propagation routines to always assume finite bounds.

11

— Constraint propagation and solution repair work on the same data structures
and perform incremental activity updates whenever possible.

— The overall effort spent in constraint propagation (and solution repair) is
subject to a deterministic work limit: in particular, we allow a number of
matrix accesses of at most 100 times the number of nonzeros in the presolved
model. This is to avoid time consuming runs where constraint propagation
is too expensive.

— Whenever a feasible solution is found, before adding it to the solution pool,
we apply a simple greedy 1-opt step to try to improve its objective. This is
important, e.g., for set covering models, where the trivial solution where all
variables are set to 1 is often found first.

A first preliminary experiment consisted in running each variable/value strat-
egy in the regular fiz-and-propagate scheme without any form of solution repair,
i.e., the df s parametrization. The purpose of this experiment is to evaluate the
effectiveness of the known approach and provide some insight on which vari-
able/value strategies are most promising. For these preliminary tests, we tried 3
different random seeds for each instance (for a total of 720 instance-seed pairs)
and let each method perform at most 100 trial dives, in each case stopping at
the first solution found. Cumulative results are reported in Table 4, where we
report the number of solutions found (out of 720), the average primal gap w.r.t.
the optimal solution, and the shifted geometric mean [1] of runtime (with a shift
of 1 second).

strategy #found primal gap time (s)
random 409 0.75 2.78
random?2 362 0.79 3.34
badobj 387 0.79 2.62
badobjcl 393 0.78 2.64
goodobj 334 0.79 3.03
goodobjcl 370 0.77 2.74
cliques 393 0.79 3.49
cliques2 408 0.80 2.88
locks 378 0.78 2.70
locks2 381 0.79 2.81
Zerocore 432 0.79 3.07
zerolp 481 0.76 2.58
core 409 0.73 3.55

Ip 422 0.72 3.66

Table 4: Preliminary strategy study on dfs.

According to the table, there is a relatively large variability in success rate
between the different strategies: the worst method (goodobj) can find a feasible

12

solution only in 334 runs, while the best strategy (zerolp) in 481. Similarly, the
average runtime can also vary a lot between strategies, with the best method
being again (zerolp) with 2.58s, and the slowest being 1p with 3.66s. As ex-
pected, there is far less variability on the average solution quality, which is quite
poor regardless of the method. It is also worth noting that while a pure random
approach (random2) is among the worst methods (allowing us to argue that we
are not just looking at noise), still a mildly randomized approach like random
(where variables are ranked according to the type and greedy clique cover, and
the fixing value is picked at random) is one of the best methods. Looking at
the detailed results®, we can also notice that, while there is a subset of 103 easy
models where a solution is found by pretty much any strategy, and a subset of 58
hard models where no strategy ever finds a solution: for the remaining models the
is no clear dominance among strategies. In particular, on some models only few
strategies are able to consistently find a feasible solution: for example, locks2
is the only strategy able to find feasible solutions for instance railO1, while
cliques, though not being very effective on average, is the only strategy able to
find solutions for instances peg-solitaire-a3 and unitcal_7. Similarly, while
the average runtime is in the same order of magnitude for all strategies, on a
single model the difference can be huge: for example, on instance tbfp-network
the fastest strategy finds a feasible solution in 0.5s, while the slowest does not
find one in 400s. Finally, we note that the wirtual best among those strategies
would be able to find a feasible solution on 547 instance-seed pairs, again an
indication of the different behaviour (and lack of dominance) among strategies.

We now evaluate the effect of solution repair and report in Table 5 the results,
on the same models, of all four different parametrizations. For readability, we
dropped the three strategies random2, goodobj and goodobjcl, which clearly
ranked worst in the previous experiment. A graphical representation of the same
data is available in Figure 2.

According to the table, solution repair significantly improves the success rate
of the different strategies: repdfs consistently finds more solutions than dfs,
with an improved average primal gap, and with a similar runtime. Interestingly,
dive, that only applies solution repair without any constraint propagation, is
competitive with the original dfs as far as success rate and primal gap are
concerned, albeit at the cost of being more expensive to run. diveprop is again
superior to dive, and pretty much on par with repdfs. We conclude from those
experiments that solution repair is a beneficial addition to fix-and-propagate,
and that the most successful methods, repdfs and diveprop, actually use both
constraint propagation and repair. In addition, it seems that the combination
of constraint propagation and solution repair reduces the variability between
different strategies, at least as far as success rate is concerned. Despite those
improvements, that reduce from 58 to 36 the number of models where we cannot
find any feasible solution, it is still true that no single strategy dominates any
other, and again some solutions are only found by very specific combinations.

1 All the data is available from the authors upon request.

13

type strategy #found primal gap time (s)
random 409 0.75 2.78

badobj 387 0.79 2.62

badobjcl 393 0.78 2.64

cliques 393 0.79 3.49

cliques2 408 0.80 2.88

dfs locks 378 0.78 2.70
locks2 381 0.79 2.81

zerocore 432 0.79 3.07

zerolp 481 0.76 2.58

core 409 0.73 3.55

Ip 422 0.72 3.66

random 503 0.71 2.64

badobj 520 0.73 2.44

badobjcl 512 0.72 2.56

cliques 499 0.74 3.30

cliques2 523 0.73 2.73

dfsrep locks 521 0.70 2.29
locks2 515 0.71 2.53

zerocore 527 0.74 2.86

zerolp 536 0.73 2.68

core 505 0.68 3.46

Ip 519 0.66 3.67

random 372 0.78 3.77

badobj 435 0.78 3.11

badobjcl 386 0.79 3.70

cliques 370 0.79 4.84

cliques2 438 0.77 3.23

dive locks 450 0.75 2.70
locks2 454 0.74 2.65

zerocore 433 0.78 3.67

zerolp 461 0.77 3.10

core 436 0.71 3.94

Ip 444 0.69 4.07

random 504 0.70 2.65

badobj 524 0.72 2.30

badobjcl 496 0.72 2.65

cliques 490 0.74 3.44

cliques2 519 0.73 2.71

diveprop locks 523 0.69 2.27
locks2 503 0.71 2.49

zerocore 525 0.74 2.86

zerolp 542 0.73 2.63

core 513 0.68 3.34

Ip 524 0.66 3.55

14

Table 5: Preliminary strategy study.

random
badobj
badobjcl
cliques
cliques2
locks
locks2
zerocore
zerolp
core

Ip

500
400
E
2 300
RS
B
200
100
0

dfsrep dive diveprop

110

dfsrep dive diveprop

Wil

dfsrep dive diveprop

0.8 random

badobj
badobjcl

cliques

I
>

cliques2
locks
locks2
ZErocore

primal gap
o
=~

0. zerolp

[\]

core
Ip

0.

o

random
badobj
badobjcl
cliques

cliques2
locks
locks2
Zerocore

time (s)

zerolp
core

Ip

Fig. 2: Comparison between different strategies and parametrizations.

This is confirmed by the success rate of the virtual best solver which, at 606, is
still significantly higher than any method.

5.1 Portfolio approach

The results of the preliminary experiments, plus the observation that all meth-
ods are inherently sequential, motivate a portfolio approach, in which different
parametrizations/strategies are run in parallel until one finds a feasible solution
and the whole process stops. The benefits are two-fold: first of all, we can exploit
parallel hardware, which is standard nowadays; second, given the difference in
performance of the different methods on a given instance, we can obtain super-
linear speedups with respect to a process that runs each method sequentially.

The portfolio approach we implemented is quite simple: we partitioned the
different methods in three different classes, depending on whether they are LP-
free, depend on a zero-objective LP solution, or an optimal LP solution. Then
we run the methods (in parallel) in a given class and move to the next only if we
still have not found a feasible solution. It is important to note that, in general,
there are many more potential methods in a class than there are CPU cores
available, so we cannot just naively run all methods in a class. This would be
quite inefficient for at least two reasons:

1. we risk wasting time running all the methods in a class, potentially not
effective on the given model, when maybe a method from a subsequent class
could easily find a solution;

2. although no dominance exists between different strategies, running a few is
in general sufficient to cover all the instances for which a solution can be
found with the method in a class.

In our implementation, we used the detailed results of the preliminary experi-
ments to manually select a subset of methods to run in each class. Our manual
selection can probably be improved by using a more principled approach?, but
we are quite satisfied with its current performance and we did find it worth to
invest additional effort on it. The final detailed logic is described below:

— As already mentioned, we first run the instance through the MIP presolve
of CPLEX. Then we perform a first round of constraint propagation, until
a fixpoint is reached. After that, we fix all trivially-roundable variables (if
any) to the corresponding bound.

— Then, we run the following LP-free strategies: df s-badobjcl, dfs-locks2,
dive-locks2, dfsref-locks, df srep-badobjcl and diveprop-random. If
we have a feasible solution at this point, we stop.

— We temporarily remove the objective function from the problem and com-
pute a zero-objective corepoint using the barrier algorithm without crossover.
This LP solve is also done with some strict deterministic limits, in order to
avoid overly expensive LPs.

2 Selecting the “best” subset of methods to be run, given the data on a testset, can
be casted itself as an optimization problem.

16

— At this point, we can run some of the methods that rely on a zero-objective
corepoint solution: df s-zerocore, dive-zerocore, diveprop-zerocore and,
if we detect a predominant clique structure, dfs-cliques. Again, if we have
a feasible solution at this point, we stop.

— We compute with the simplex method a zero-objective vertex solution and
try strategies df s-zerolp, diveprop-zerolp and diveprop-cliques2.

— If still without a solution, we solve the LP relaxation of the problem with
the original objective and the concurrent LP solver of CPLEX. Finally, we
run the strategies dfs-1p, dive-1p and diveprop-1lp.

Note that, in the scheme above, and differently from the preliminary experi-
ments, only a single trial dive is performed by each method.

The aggregated results of our portfolio approach are reported in Table 6, this
time over 5 different random seeds. The line corresponding to method default
gives average figures for the portfolio approach described above. Its success rate
is slightly above 80%(969/240 - 5), up from the 75%(542/240 - 3) of the best
method from the preliminary experiments, with a primal gap matching the best
(0.66) and with a significantly smaller runtime (1.24s). The virtual best solver
in this case would have found a feasible solution in 1010 cases, which is quite
close to the portfolio score.

method #found pgap time (s)
Ipfree 898 0.69 0.72
zerocore 945 0.67 0.98
zerolp 964 0.66 1.14
default 969 0.66 1.24

Table 6: Aggregated portfolio results.

The remaining part of Table 6 gives the results that we would obtain by stop-
ping the portfolio approach after each stage. It confirms that LP-free methods
alone are able to find a feasible solution in 898 cases, and do so quite quickly: for
reference, the average time for just MIP presolving the problem (something that
all of our methods do, and that is accounted for in the timings) is 0.62s. Each
additional stage gives a smaller (but non-negligible) contribution, at the expense
of increased running times. We note that just preprocessing and solving the first
LP relaxation with a concurrent solver would take, on our machines, 1.04s: so
our overall portfolio approach is just a little more expensive, on average, than
solving the initial LP. On the other hand, it is worth noting that the current
tuning is geared for a standalone usage of the method: if implemented inside a
MIP solver to complement regular branch-and-cut, we would probably go for a
different setting, where LP-free methods are executed concurrently to the first

17

LP, while the other methods are only executed after the root relaxation is solved
(as, at that point, we would have LP information for free).

5.2 Impact of repair search

Finally, we can evaluate the effectiveness of the repair search described in Sec-
tion 4.1 against the simpler walk-based approach. In Table 7, we report average
figures for our portfolio approach using repair search (our default) and using
repair walk (repair-walk). Using the more sophisticated repair scheme gives a
higher success rate (969 solutions founds vs. 945), which in turn gives a slightly
better average primal gap. At the same time, it is also marginally more expensive
(1.24s vs 1.09s).

method #found pgap time (s)
repair-search 969 0.66 1.24
repair-walk 945 0.67 1.09

Table 7: Repair search vs. repair walk in portfolio approach.

In Table 8, we report a standard contingency table to evaluate the effec-
tiveness in finding feasible solutions between the two methods: repair-search
can find a feasible solution on 42 instance-seed pairs where repair-walk cannot,
while the opposite happens only in 18 cases. According to a standard McNemar’s
test, the difference is statistically significant.

repair-search
success not found

success 927 18

repair-walk not found 42 208

Table 8: Repair search vs. repair walk contingency table.

Aggregating success rate results by instance over the set of 5 seeds, we have
that repair-search is a consistent win, i.e., the difference between the number
of feasible solutions it can find and those found by repair-walk is at least 3 on
8 instances, while the opposite happens only on 3 instances.

18

6

Conclusions and future research

We devised a hybrid diving strategy that alternates between constraint prop-
agation and solution repair. While similar to some previous heuristics in the
literature, like shift-and-propagate and WalkSAT, the proposed combination is
novel and seems to be quite effective in finding feasible solutions on a heteroge-
neous testset like the MIPLIB 2017 benchmark set, and a preliminary version of
the approach ranked second in the MIP 2022 Computational Competition. The
framework itself is very generic and there are many ideas still left to be tried
and evaluated, in particular as far as variable-value strategies are concerned.

References

10.
11.

12.

13.

14.

. Achterberg, T.: Constraint Integer Programming. Ph.D. thesis, Technische Uni-

versitat Berlin (2007)
Berthold, T.: Primal Heuristics for Mixed Integer Programs. Master’s thesis, Tech-
nische Universitat Berlin (2006)

. Berthold, T., Hendel, G.: Shift-and-propagate. Journal of Heuristics 21(1), 73-106

(2015)

Danna, E.: Performance variability in mixed integer programming. MIP 2008 work-
shop in New York City. http://coral.ie.lehigh.edu/~jeff/mip-2008/program.
pdf (2008)

Danna, E., Rothberg, E., Pape, C.L.: Exploring relaxation induced neighborhoods
to improve MIP solutions. Mathematical Programming 102(1), 71-90 (2005)
Fischetti, M., Lodi, A.: Local branching. Mathematical Programming 98(1-3), 23—
47 (2003)

. Gleixner, A., Hendel, G., Gamrath, G., Achterberg, T., Bastubbe, M., Berthold,

T., Christophel, P., Jarck, K., Koch, T., Linderoth, J., Liibbecke, M., Mittelmann,
H.D., Ozyurt, D., Ralphs, T., Salvagnin, D., Shinano, Y.: Miplib 2017: Data-driven
compilation of the 6th mixed-integer programming library. Mathematical Program-
ming Computation 13, 443-490 (2021)

Hendel, G.: Adaptive large neighborhood search for mixed integer programming.
Mathematical Programming Computation 14(1), 185-221 (2022)

Hoos, H.H., Stiitzle, T.: Local search algorithms for SAT: An empirical evaluation.
Journal of Automated Reasoning 24(4), 421-481 (2000)

IBM: ILOG CPLEX 12.10 User’s Manual (2020)

Savelsbergh, M.W.P.: Preprocessing and probing for mixed integer programming
problems. ORSA Journal on Computing 6, 445-454 (1994)

Schoning, U.: A probabilistic algorithm for k-SAT and constraint satisfaction prob-
lems. In: FOCS. pp. 410-414. IEEE Press (1999)

Seitz, S., Alava, M., Orponen, P.: Focused local search for random 3-satisfiability.
CoRR (2005)

Selman, B., Kautz, H.A., Cohen, B.: Noise strategies for improving local search.
In: AAAL pp. 337-343 (1994)

19

http://coral.ie.lehigh.edu/~jeff/mip-2008/program.pdf
http://coral.ie.lehigh.edu/~jeff/mip-2008/program.pdf

	A fix-propagate-repair heuristic for Mixed Integer Programming
	Introduction
	Fix-propagate-repair framework
	Strategies
	Solution Repair
	Repair search

	Computational results
	Portfolio approach
	Impact of repair search

	Conclusions and future research

