
A MIP Approach to the Minimal Seed Set
Problem

Alberto Basaglia1 and Domenico Salvagnin1[0000−0002−0232−2244]

Department of Information Engineering, University of Padova, Via Gradenigo 6/B,
35131 Padova, Italy

{basagliaal,salvagni}@dei.unipd.it

Abstract. The minimal seed set problem is a combinatorial problem,
originating in systems biology, defined as follows: given a set of metabolic
reactions of an organism, find the smallest set of nutrients that, after
applying all possible reactions, can be expanded to the full set of all
nutrients that the organism could possibly synthesize. The problem can
naturally be casted as a classical planning problem, yet current opti-
mal planners are not able to solve it, unless domain-specific algorithmic
improvements are implemented. While it is mentioned in the literature
that mixed-integer programming (MIP) approaches do not scale up, no
actual MIP formulation is explicitly reported. In this paper we present
two MIP formulations for the minimal seed set problem, one based on
big-M constraints and the other on a time-indexed expansion. We eval-
uate the two formulations computationally and show that, while one of
the two is indeed performing quite poorly, the other can solve instances
of reasonable size in a few seconds on average with an off-the-shelf MIP
solver.

Keywords: minimal seed problem · mixed integer programming

1 Introduction

The minimal seed set problem originates in the field of system biology. For
the purposes of this problem, an organism is represented by a set of metabolic
reactions, each requiring one or more compounds (or nutrients), and producing
in turn one or more compounds. More formally, let C be the set of all the
compounds associated with an organism. A reaction r is an ordered pair of sets:
r = (X,Y). X ⊆ C, the first element of the pair, is called the substrate of the
reaction and is the set of elements that are required to complete it. The second
element of the pair, Y ⊆ C, is called the product of the reaction, and it gives
the set of compounds that are produced by the reaction after it is completed. If
a reaction is bidirectional (as many are in practice), we model it as two separate
reactions, (X,Y) and (Y,X). Note that, at this level of description, we do not
deal with the proportions of compounds needed/produced by a reaction (its
stoichiometry), but rather assume that, if a compound is present, there is always
enough of it that a reaction depending on it can be completed. In other words,

2 Basaglia et al.

reactions do not consume substrate nutrients, but only add product nutrients.
The set of all metabolic reactions of an organism will be denoted by R. A set
T ⊆ C of compounds is said to be reachable from a subset S ⊆ T if S can be
expanded to a set containing T by applying applicable reactions, where a reaction
r = (X,Y) is applicable to a given set P ⊆ C if its substrate is available, i.e.,
X ⊆ P . A subset S ⊆ C is said to be a seed set if the full set C is reachable
from S using the reactions in R. The minimal seed set consists in finding a seed
set of minimum cardinality.

The problem was first introduced in [4], where it is also shown that the
problem is NP-hard, via a reduction from the set covering problem. In the same
paper, the authors also argue that a MIP approach, while natural, does not
scale up to organisms of the size of interest, but unfortunately do not report on
the MIP formulations used. They also report that another classical approach,
namely the reduction to SAT, is able to solve only the smallest instances, and
thus eventually resort to a problem specific heuristic, based on the identification
of the strongly connected components on a flattened directed graph obtained
from the metabolic network of the organism.

The minimal seed set problem was picked up again a few years later in [8],
where it was studied under the lens of classical AI planning. Viewing the minimal
seed set problem as a planning problem is indeed quite natural: each chemical
reaction can be interpreted as an action, where the substrate plays the role of
the preconditions, and the product plays the role of the effects. In details, follow-
ing [8], we can encode the minimal seed set problem as the following planning
problem. The set of facts corresponds to the set of compounds C, so we have
a state s for each subset of C. For each reaction r = (X,Y) in R we intro-
duce a zero-cost operator or, with preconditions pre(or) = X and add-effects
add(or) = Y . The operator or is applicable in state s if pre(or) ⊆ s, and the new
state after applying or is s′ = s∪ add(or). Then we have a unit-cost operator ic
for each nutrient c ∈ C, that has no preconditions and c as the only add effect.
The initial state is the empty set, while the goal state is set full set C. The set of
nutrients added by the “insert” operators ic in a cost optimal plan thus encode
a minimal seed set of minimum cardinality.

As already noted in [8], while very natural, the corresponding planning task
is quite atypical: many operators have zero cost, the task is delete-free as there
are no delete effects, and all propositions must be achieved (so landmarks are
not very informative). In addition, as in practice reactions only involve a small
subset of compounds, there exist many legal permutations of optimal plans.
Because of the properties above, the problem is very challenging for state of the
art optimal planners: landmark-based heuristics perform poorly, the branching
factor is quite large, and A∗ is forced to explore all the permutations of minimal
partial plans. In the end, no instance could be solved, back then, by optimal
planners, and even satisficing ones (like LAMA [14]) only returned uninformative
solutions consisting of insert operators only. In order to overcome those issues,
the authors in [8] eventually proposed a modified A∗ variant that exploits the
specific structure of the problem. With this variant they can solve all organisms

A MIP Approach to the Minimal Seed Set Problem 3

in the KEGG database [12], with a running time in the order of 2-3 minutes on
standard hardware.

In this paper we want to investigate whether a MIP approach is still per-
forming unsatisfactorily on this problem. Given that no actual formulation is
reported in the literature, there is a possibility that the models tested back then
were not the best possible ones. In addition, we can also leverage on the steady
improvements in MIP solver performance over time, see for example [3]. The
paper is organized as follows. In Section 2 we present some problem-specific pre-
processing reductions aimed at reducing the size of the instances and making
their structure more amenable to the subsequent MIP solving process. In Sec-
tion 3 we present two MIP formulations for the problem, one based on big-M
constraints, and the other based on a time-indexed expansion. In Section 4, we
computationally evaluate the two formulations and the impact of the proposed
preprocessing reductions, and compare against a more recent optimal planner.
Some conclusions are finally drawn in Section 5.

2 Presolve

In the context of MIP solving, a presolve reduction is defined as a change to
the input problem that preserves at least one optimal solution but that yields
a supposedly “simpler” problem to be solved by branch-and-cut. While MIP
solvers implement a vast array of (sophisticated) presolve reductions [2], some
kind of reductions, usually based on domain knowledge, are beyond the scope of
what can be derived automatically by the MIP presolver. In this section we will
present a few domain specific presolve reductions for the minimal seed problem.

The first (obvious) observation is that if a compound is not produced by any
reaction, then it must necessarily be part of the seed set. This was already noted
in [8]. This can easily be done once and for all at the beginning, so in the rest
of the paper we will assume that all compounds can be produced by at least
one reaction. Then, we consider four reductions that reduce the set of reactions,
while preserving the reachability of compounds. The reductions are as follows:

– Duplicates. Two reactions are duplicate if they have the same substrate and
product. Clearly, we can remove one of the two.

– Product-domination. A reaction product-dominates another reaction if they
have the same substrate but the product of the first contains the product
of the second. Any product-dominated reaction can be removed from the
problem.

– Substrate-domination. A reaction substrate-dominates another reaction if
they have the same product but the substrate of the first is contained in
the substrate of the second. Any substrate-dominated reaction can be re-
moved from the problem.

– Merging. Two reactions with the same substrate can be merged into a new
reaction that has the same substrate and as product the union of the prod-
ucts. Notice that the merged reaction will by construction product-dominate
the reactions it was created from.

4 Basaglia et al.

We implemented these reductions in our code, and we always run them all,
in the order in which they were presented, until a fix-point is reached.

3 MIP Models

Let us consider a minimal seed set problem defined by a set C of compounds
and a set R of reactions. Given a reaction r ∈ R, we will denote with Xr ⊆ C its
substrate and with Yr ⊆ C its product. The basic encoding of the minimal seed
set is the same in all the formulations that we are going to present: in particular,
we will use a set of binary variables xc to encode whether the compound c is part
of the seed set or not. A MIP formulation of the problem also needs to consider
the order in which reactions are applied, as we can have circular dependencies
between the substrates and products of different reactions. Consider for example
a simple organism with two compounds, A and B, and two reactions, r1 : A ↔ B
and r2 : B ↔ A: if we didn’t consider the reaction order into account, we might
conclude that both A and B can be obtained as products and add neither of
them to the minimal seed set, while clearly we need at least one of them. We
will thus assume a discretized time horizon |T |, and the set of time instants
T = {0, . . . , |T |}. While in general the planning horizon for a planning problem
is not polynomially bounded, being the minimal seed set problem a delete-free
planning task we always get a polynomial upper bound: in particular, a simple
argument shows that a time horizon of |T | = min{|C|, |R|} is always sufficient
to apply all the reactions needed by the seed set, as at any time instant before
reaching the full set C, we will apply at least one reaction adding at least one
compound to the set of available compounds.

3.1 Big-M formulation

The first formulation assigns to each compound c ∈ C an integer variable tc ∈ T ,
encoding the earliest time instant at which the compound becomes available. In
addition, we keep track of which reaction is responsible for producing a given
compound, if any: this is encoded by a set of binary variables urc, for each r ∈ R
and for each c ∈ Yr. The resulting MIP model reads:

min

C∑
c

xc (1)

xc +
∑

r:c∈Yr

urc ≥ 1 ∀c ∈ C (2)

td ≥ tc + 1− (|T |+ 1)[xd + (1− urd)] ∀r ∈ R,∀d ∈ Yr,∀c ∈ Xr (3)

0 ≤ tc ≤ |T | ∀c ∈ C (4)

xc ∈ {0, 1} ∀c ∈ C (5)

urc ∈ {0, 1} ∀r ∈ R,∀c ∈ Yr (6)

tc ∈ Z+ ∀c ∈ C (7)

A MIP Approach to the Minimal Seed Set Problem 5

The objective (1) enforces the minimal cardinality of the seed set. Constraints
(2) make sure that a compound is either added to the seed set or produced by
a reaction that has it in its product. Constraints (3) enforce that a compound
d produced by a reaction r becomes available after the compounds c ∈ Xr. The
constant |T | + 1 plays the role of a big-M coefficient in this formulation: the
constraint gets deactivated if the compound d is part of the seed set or if the
reaction r is not used to produce d. Finally, constraints (4) enforce the time
instants to be within the time horizon.

3.2 Time-Indexed Formulation

A big-M formulation usually gives a poor linear programming relaxation, and
thus an inefficient solving process. A possible way to get rid of the big-M con-
straints is to perform a so-called time-indexed expansion, a standard modeling
tool in many scheduling/planning domains. This is exactly what we propose for
our second formulation. We still use the binary variables xc to encode the seed
set, but, instead of the variables urc and tc, we introduce two sets of time-indexed
binary variables. The variables in the first set, dc,t, encode whether a compound
c is available at time t, while the variables in the second set, ar,t, encode whether
a reaction r is applicable at time t. The MIP models becomes:

min

C∑
c

xc (8)

dc,t ≤ dc,t−1 +
∑

r:c∈Yr

ar,t−1 ∀c ∈ C, ∀t ∈ T \ {0} (9)

ar,t ≤ dc,t ∀r ∈ R,∀c ∈ Xr,∀t ∈ T (10)

dc,0 = xc ∀c ∈ C (11)

dc,|T | = 1 ∀c ∈ C (12)

xc ∈ {0, 1} ∀c ∈ C (13)

dc,t ∈ {0, 1} ∀c ∈ C,∀t ∈ T (14)

ar,t ∈ {0, 1} ∀r ∈ R,∀t ∈ T (15)

Constraints (9) encode the fact that a given compound c is available at time
t only if it already available at time t−1 or is produced by some reaction at time
t− 1. Constraints (10) enforce that a reaction is applied at time t only if all the
compounds in its substrate are available. Finally, constraints (11) enforce the
availability of a compound in the seed set directly at time 0, while constraints
(12) make sure that all compounds are available at the end.

4 Computational Results

We evaluated our approach on the same set of instances used by Gefen and
Brafman in [8], and that are publicly available in the GitHub repository [7],

6 Basaglia et al.

in the form of PDDL files. All instances are taken from the KEGG pathways
database [12]. The size of the instances, as number of nutritients/reactions, is
reported in [8], and is in the order of 2000−−4000.

The PDDL files, describing a classical AI planning encoding of the problem,
were fed directly to the state of the art planner FastDownward [9], using A∗

search and the LMcut heuristic [10]. As for the MIP models, we wrote a Rust [15]
program that reads in input a PDDL file and generates as output a MIP model
in LP format, using a dedicated package (crate) [6]. The resulting instances are
then solved using a black box MIP solver, namely IBM ILOG CPLEX 22.1.0 [11].

All solvers were run on a cluster of 24 identical machines, each equipped with
an Intel Xeon CPU E3-1220 V2 CPU running at 3.10 GHz, and 16 GB of RAM.
Each method was run on each instance with a time limit of 1 hour. For MIP
solvers, in order to mitigate the effect of performance variability [5, 13], we run
each instance 5 times with 5 different random seeds. Except for the random seed
and time limit, the MIP solver was run with default settings1

4.1 Classical Planning Approach

In our first set of experiments we tested a state of art AI planner, namely Fast-
Downward, to check whether the out of the box performance of the planning
approach had improved in the last decade. Unfortunately, we can confirm that,
without the dedicated algorithmic changes described in [8], this domain is still
very challenging for classical planning: FastDownward could not solve any of the
22 instances within the 1 hour time limit.

4.2 MIP Approach

In a second set of experiments, we tested our two MIP formulations, namely the
big-M formulation and the time-indexed formulation, on the original models,
without any of the preprocessing reductions described in the previous section.
In the following, we will count each organism-seed pair as one instance.

Aggregated results are given in Table 1. The format of this table, and subse-
quent ones, is as follows. For each method under comparison, we report number
of solved instances, running time and nodes. For the reference method we give
absolute numbers for all measures, while for the other one we report the ratios of
runtime and nodes (the number of solved instances is still reported in absolute
terms), and the number of consistent wins/losses w.r.t. the reference method.
An instance is counted as a consistent win (resp. loss) if it is faster than the
reference by at least 10% and for at least 3 random seeds out of 5. Each row
of the table corresponds to a (sub)set of the models in a given class. The first
row (all) shows the results for the entire testbed, while the other rows report

1 We note that while FastDownward is a sequential solver, the MIP solver runs deter-
ministic parallel branch-and-cut by default. On our hardware, forcing a sequential
MIP solve incurs a slowdown, on average, of a factor of 2: we will see that this doesn’t
change the relative comparison between two methods.

A MIP Approach to the Minimal Seed Set Problem 7

results for the instances in bracketed subsets. Each bracketed subset is of the
form [t, 3600}, and contains all instances that could be solved by at least one
formulation, and where the slowest formulation took at least t seconds to solve
the model or timed out. The number of instances in each class is reported in the
column N. The bracketing convention is used to show how the speed of differ-
ent formulation as the difficulty of the models increase. Time and node results
use a shifted geometric mean [1] with shift values of 10 seconds and 100 nodes,
respectively.

Big-M Time-Indexed

Class N Solved Time Nodes Solved Time Nodes W/L

all 107 107 13.02 9404 5 217.83 6.23 0/21
[0, 3600} 107 107 13.02 9404 5 217.83 6.23 0/21
[10, 3600} 106 106 13.20 9651 4 225.43 6.30 0/21
[100, 3600} 102 102 13.96 10630 0 257.89 6.58 0/20

Table 1. Computational results of the two MIP formulations without preprocessing.

According to Table 1, the big-M formulation clearly outperforms the time-
indexed formulation: after removing 3 instances where the latter ran out of
memory, we see that the big-M formulation could solve all the remaining 107
instances, while the other formulation only 5. In addition, it is two-orders of
magnitude faster as far as running time is concerned. The consistent wins/losses
count is, unsurprisingly, also strongly favourable to the big-M formulation. More
importantly, the big-M formulation also performs very well in absolute terms:
the average run time is in the order of 13 seconds, and compares very favourably
to the domain-specific approach in [8], where the average runtime was in the
order of 2-3 minutes (albeit on a different, and somewhat older, hardware).

A more detailed analysis of the MIP runs also provides the following insights
on the different behaviour of the two formulations. For the bigM formulation,
the average primal gap at the end of the root node is approximately 18.5%,
while the average dual gap is 1.3%: so the dual bound is quite strong, while
the primal one is weak but is closed relatively quickly by enumeration. Also, we
notice that root cutting is quite effective in improving the dual bound. As for
the time-indexed formulation, the average primal gap at the end of the root is
19% (thus, not so different) but the average dual gap is a much weaker 11.4%.
Also, even after a significant (and very expensive, with an average runtime of
more than 10 minutes) MIP presolve, the resulting formulation is two orders
of magnitude larger on average, with approximately 700.000 nonzeros vs 6.000
nonzeros. The weaker dual bound, combined with a significantly smaller node
throughput because of sheer model size, explains the inefficacy of the time-
indexed formulation on this problem class.

8 Basaglia et al.

4.3 Effect of Preprocessing

Finally we tested the effect of the domain-specific preprocessing reductions de-
scribed in the previous section, again on the two formulations. First of all we
notice that the effect on the number of reactions is significant, with an average
reduction of 43%. As far as the performance of resulting formulations, aggregated
results are given in Table 2.

Big-M Time-Indexed

Class N Solved Time Nodes Solved Time Nodes W/L

all 110 110 8.97 5830 3 348.62 15.28 0/22
[0, 3600} 110 110 8.97 5830 3 348.62 15.28 0/22
[10, 3600} 108 108 9.19 6111 1 374.45 15.77 0/21
[100, 3600} 107 107 9.30 6277 0 386.94 15.98 0/21

Table 2. Computational results of the two MIP formulations with preprocessing.

According to Table 2, it is clear that preprocessing does not change the
relative ranking of the two formulations, with the big-M formulation significantly
outperforming the time-indexed one. The effect is still beneficial overall, with
the first formulation being faster, and the second one no longer running out of
memory on 3 instances (the number of solved instances drops to 3, though).

Without Preprocessing With Preprocessing

Class N Solved Time Nodes Solved Time Nodes W/L

all 110 110 14.16 10301 110 0.63 0.57 11/0
[0, 3600} 110 110 14.16 10301 110 0.63 0.57 11/0
[1, 3600} 95 95 17.70 20585 95 0.62 0.55 11/0
[10, 3600} 62 62 28.16 41248 62 0.57 0.47 8/0
[100, 3600} 7 7 261.42 544869 7 0.42 0.40 0/0
[1000, 3600} 2 2 1727.69 4881056 2 0.07 0.06 0/0

Table 3. Effect of preprocessing on the big-M formulation.

The overall effect of the preprocessing reductions is more clear when com-
paring its effect directly on the best formulation, the big-M one, as presented in
Table 3. According to the table, preprocessing reduces the average runtime by
37% overall, and almost halves the number of nodes enumerated. It also yields
a consistent win on 11 out of 22 organisms, with no consistent loss. The positive
effect seems to increase as the instances become more challenging, but the testset
is quite small, and does not allow to draw statistically significant conclusions on
that regard.

A MIP Approach to the Minimal Seed Set Problem 9

Finally, we note that our domain-specific reductions are not entirely within
the scope of the generic MIP presolver. While CPLEX is able to significantly
reduce the size of the models even after our problem-specific reductions (approx-
imately by a factor of 2), it cannot fully compensate for them: after CPLEX’s
presolve, the presolve model is on average 10% smaller (on all counts: rows, cols,
nonzeros) when our reductions are applied w.r.t. when they are not.

5 Conclusion

The contribution of the paper is twofold: we introduced two MIP formulations for
the minimal seed set problem and we described several preprocessing reductions
to reduce the size of the problem while maintaining the same set of optimal
solutions.

Of the two formulations, the big-M one proved to perform very well on a
testset from the literature, being able to consistently solve all instances with an
average running time of less than 15 seconds, on a standard machine and with
an off-the-shelf MIP solver. The proposed presolve reductions further improve
the picture, reducing the number of reactions by more than 40% and the overall
runtime by almost as much.

Overall, we can conclude that, with the right formulation, the minimal seed
set problem can be solved satisfactorily with current MIP technology.

10 Basaglia et al.

References

1. Achterberg, T.: Constraint Integer Programming. Ph.D. thesis, Technische Uni-
versität Berlin (2007)

2. Achterberg, T., Bixby, R.E., Gu, Z., Rothberg, E., Weninger, D.: Presolve re-
ductions in mixed integer programming. INFORMS Journal on Computing 32,
473–506 (2016)

3. Achterberg, T., Wunderling, R.: Mixed integer programming: Analyzing 12 years
of progress. Facets of Combinatorial Optimization: Festschrift for Martin Grötschel
pp. 449–481 (2013)

4. Borenstein, E., Kupiec, M., Feldman, M., Ruppin, E.: Large-scale reconstruction
and phylogenetic analysis of metabolic environments. Proceedings of the National
Academy of Sciences of the United States of America 105, 14482–7 (10 2008).
https://doi.org/10.1073/pnas.0806162105

5. Danna, E.: Performance variability in mixed integer programming.
Presentation slides from MIP 2008 workshop in New York City.
http://coral.ie.lehigh.edu/ jeff/mip-2008/program.pdf (2008)

6. Developers, T.R.O.: Rust Linear Programming Modeler. https://github.com/rust-
or/rust-lp-modeler (2023), accessed: April 3, 2023

7. Gefen, A.: Minimal seed set. https://github.com/gefena/minimal seed set (2023),
accessed: April 3, 2023

8. Gefen, A., Brafman, R.: The minimal seed set problem. Proceedings
of the International Conference on Automated Planning and Schedul-
ing 21(1), 319–322 (Mar 2011). https://doi.org/10.1609/icaps.v21i1.13485,
https://ojs.aaai.org/index.php/ICAPS/article/view/13485

9. Helmert, M.: The fast downward planning system. Journal of Artificial Intelligence
Research 26, 191–246 (2006)

10. Helmert, M., Domshlak, C.: Landmarks, critical paths and abstractions: What’s
the difference anyway? In: Gerevini, A., Howe, A.E., Cesta, A., Refanidis, I. (eds.)
ICAPS. AAAI (2009)

11. IBM Corporation: IBM ILOG CPLEX Optimization Studio Doc-
umentation. IBM Corporation, Armonk, NY, 22.1.0 edn. (2023),
https://www.ibm.com/docs/en/icos/22.1.0

12. Kyoto Encyclopedia of Genes and Genomes (KEGG): Kegg pathway.
https://www.kegg.jp/ (2023), accessed: April 3, 2023

13. Lodi, A., Tramontani, A.: Performance variability in mixed-integer programming.
In: Theory driven by influential applications, pp. 1–12. INFORMS (2013)

14. Richter, S., Westphal, M.: The LAMA planner: Guiding cost-based anytime plan-
ning with landmarks. Journal of Artificial Intelligence Research 39, 127–177 (2010)

15. The Rust Project Developers: The rust programming language. https://www.rust-
lang.org (2023), accessed: April 3, 2023

