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Abstract

We present a method, based on formulation symmetry, for generating Mixed-
Integer Linear Programming (MILP) relaxations with fewer variables than the
original symmetric MILP. Our technique also extends to convex MINLP, and
some nonconvex MINLP with a special structure. We consider an appropriate
subgroup of the formulation group, and replace each orbit with a single variable.
By means of the orbit barycenter, we are able to prove that the new MILP for-
mulation is a relaxation of the original one. We showcase the effectiveness of our
relaxation both on a library of symmetric MILP, and as part of a decomposition
method applied to two important applications (multi-activity shift scheduling
and multiple knapsack problem), showing that it can improve CPU times by
several orders of magnitude compared to pure MIP or CP approaches.

Keywords: Mathematical programming, constraint programming, discrete
optimization, symmetry, relaxation, MINLP

1. Introduction

Branch-and-Bound (BB) type methods often become very slow when the
solution set is symmetric Gent et al. (2006); Margot (2010), due to the explo-
rations of many symmetric subtrees. Given a Mathematical Programming (MP)
formulation, we distinguish the automorphism group of its solution set (called
the solution group) and the group of variable symmetries fixing the formulation
(called the formulation group). The latter is usually defined as the group of
variable index permutations which keep the objective function invariant, the
right-hand-side constraint vector invariant, and permutes the order of the con-
straints Cohen et al. (2005); Margot (2002). It is very easy to show that the
formulation group is a subgroup of the solution group.
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Finding a universal technique for determining the solution group automat-
ically would imply knowing the solution set a priori, which would make the
optimization problem moot. On the other hand, various techniques for find-
ing the formulation group of a Constraint Satisfaction Program (CSP) and of
a MP have been proposed in the literature (see e.g. Bödi et al. (2013); Liberti
(2008, 2012); Puget (2005)). The most efficient methods reduce to the graph
isomorphism problem, which can be solved in practice using tools such as nauty
McKay (2007).

Once some symmetries are known, they can be exploited in a variety of ways.
In Constraint Programming (CP) and Mixed-Integer Programming (MIP), a
common technique consists in trying to make some of the symmetric solutions
infeasible by:

• adjoining Symmetry-Breaking Constraints (SBC) to the original formula-
tion Liberti (2012); Liberti and Ostrowski (accepted); Smith (2010);

• using a clever branching strategy in constraint propagation Gent and
Smith (2000) or in BB (e.g. isomorphism pruning Margot (2002, 2003)
or orbital branching Ostrowski et al. (2008, 2011)).

In Semidefinite Programming (SDP), due to the fact that decision variables are
matrices, symmetry can be exploited very naturally through group representa-
tion theory. This yields formulations with fewer variables (in fact, the variable
matrix becomes block-diagonal) but having the same optimum Gatermann and
Parrilo (2004).

A different approach is proposed in Bödi et al. (2013), where solving an Inte-
ger Linear Program (ILP) with a highly transitive solution group is essentially
reduced to a line search in a lattice. The proposed method is very innovative,
but most practically occurring ILPs have groups that are very far from being
transitive. A generalization of this approach which aims to relax the require-
ment for high transitivity is given in Herr et al. (2013). Although applicability
remains limited, this technique was used in solving the instance toll-like in
the MIPLIB2010 library Koch et al. (2011), which was previously unsolved.

We propose another approach, called Orbital Shrinking (OS), for exploiting
symmetry in MILP and certain subclasses of Mixed-Integer Nonlinear Program-
ming (MINLP). Orbital shrinking is a relaxation technique: given a MIP P and
a subgroup G of its formulation (or solution) group, it replaces each orbit of
variables by a single variable. Therefore, OS produces compact MIP relaxations.
If G is transitive, and hence has only one orbit, the resulting MIP is trivial, be-
cause it has only one variable. At the other extreme, if G is the trivial group,
then there are as many orbits as there are variables, and the relaxation is the
same as the original MIP.

To solve problems exactly, we employ the OS relaxation (OSR) in a general
purpose decomposition framework, which we apply to two real-life applications:
multi-activity shift scheduling and multiple knapsack problems. OS decompo-
sition naturally provides a new way for designing hybrid MIP/CP decomposi-
tions: our computational results show that the resulting method can be orders
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of magnitude faster than pure MIP or CP approaches.
The outline of the paper is as follows. In Section 1.1, we review some main

results on symmetry groups in the context of optimization problems. Then, in
Section 2, we present orbital shrinking, and show that it yields a relaxation of
the original problem. In Section 3 we define the OSR hierarchy. In Section 4 we
analyze differences and similarities between OS and orbital branching, symmet-
ric SDP block-diagonal reformulations, and core point algorithms. In Section 5
we discuss some features that help mining the best formulation subgroup to ap-
ply orbital shrinking with, and show their effect on a set of symmetric MILPs.
In Section 6 we describe a general decomposition framework based on orbital
shrinking, while in Sections 7 and 8 we specialize the general framework to
multi-activity shift scheduling and multiple knapsack problems, also reporting
computational results. Conclusions are finally drawn in Section 9.

We assume the reader is familiar with mixed-integer programming, con-
straint programming and basic group theory. The present paper extends and
is based on the preliminary results presented in Fischetti and Liberti (2012);
Salvagnin (2013); Salvagnin and Walsh (2012), by the same authors.

1.1. Some notation and terminology

Let P be an arbitrary MINLP of the form

min f(x) (1)

∀i ∈ C gi(x) ≤ 0 (2)

∀j ∈ J xj ∈ Z (3)

where J ⊆ [n] = {1, . . . , n} is the subset of integer variables. Without loss of
generality, the objective function f(x) is assumed to be convex.

We consider the formulation group GP of P , containing the set of permuta-
tions π ∈ Sn that leave the formulation of P unchanged, except for a possible
reordering of the constraints. The practical applicability of this definition ex-
tends to Linear Programs (LP) and MILPs. With MINLPs, we restrict our
attention to functional forms which are closed with respect to the usual oper-
ators (+,−,×,÷, (·)a) and unary functions (log, exp). These expressions are
easily represented by trees, and whole MINLP formulations can be represented
by suitable Directed Acyclic Graphs (DAG) (see e.g. Belotti et al. (2009)). GP
is then obtained as a restriction of the automorphism group of this DAG to
the set of variable indices of P (see e.g. Liberti (2012)). GP can be computed
by means of any graph isomorphism package such as Nauty McKay (1981) or
Saucy Katebi et al. (2010): these both implement backtracking algorithms which
are expontial-time in the worst case, but which are sufficiently fast in practice
to be of use.

Any subgroup G of GP partitions the set of variables into equivalence classes
called orbits via its natural action: two variable indices i, j are in the same class
if there is g ∈ G such that g(i) = j. We denote by ΩG the orbital partition of
the action of G on [n]. We remark that, by definition, integer and continuous
variables cannot be permuted with each other, so each orbit contains only integer
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or only continuous variables. Constraints of P are themselves partitioned into
equivalence classes, called constraint orbits: in particular, two constraints are in
the same orbit if and only if one is mapped into the other (because of reordering)
when some variable permutation π ∈ G is applied. Finally, given a subset
I ⊆ [n], the point-wise stabilizer G[I] of G with respect to I is the subgroup of
G consisting of permutations π such that π(i) = i for all i ∈ I.

2. Orbital Shrinking Relaxation

The OS relaxation with respect to a subgroup G of its formulation group
could be best described as “formulation modulo G”, as it replaces entire orbits
by single variables. In this section, we will describe how to construct the OSR
of a given optimization problem P , and show that this is indeed a relaxation of
the original problem.

The first step is to classify variables and constraints according to their
incidence and (non)linearity/convexity. Specifically, the subgroup G defining
the OSR will be taken with respect to a certain subgroup of GP rather than
the whole of GP , as defined below. Let us consider a partition (V1, V2) and
(C1, C2, C3) of the variables and constraints of P , respectively, which satisfies
the following conditions:

• all constraints in C1 are convex w.r.t. the variables in V1 (in other words,
once the variables in V2 are fixed);

• all constraints in C2 are functions of sums of variables along the orbits
defined by the group GP [V2], the point-wise stabilizer of GP w.r.t. V2;

• C3 consists of all constraints not in C1 or C2.

The meaning of the constraint partition will become clear in the following; a
remark is given after Corollary 2.6. Also note that, by definition, GP [V2] is a
group of variable permutations acting on V1. Now let G be a subgroup of GP [V2]
and Ω = ΩG be the orbital partition of [n] induced by G.

Given a problem P and such a partition (V1, V2, C1, C2, C3), we define the
orbital shrinking reformulation POSR as the MP formulation obtained by the
following procedure:

• for each ω ∈ Ω, define a variable zω, constrained to be integer if and only
if the orbit ω consists of integer variables; let z = (zω | ω ∈ Ω);

• for each constraint gi(x) ≤ 0 in C1∪C2, define a new constraint ḡi(z) ≤ 0,
obtained from gi(x) ≤ 0 through the formal substitution:

xj →
zω
|ω|

(4)

for all j ∈ ω;

• define the objective function f̄(z) as the result of applying to f(x) the
same formal substitution (4);
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• ignore constraints in C3.

Next, we show that POSR is a relaxation of P .
Lemma 2.1 is a basic generalization of Burnside’s Lemma: we suspect it

exists in the group theory literature, but we were not able to find it. Since the
applicability to any function ψ makes the lemma interesting in its own right,
we decided to provide a proof.

2.1 Lemma
Let ω ∈ Ω and ψ be any function with domψ = [n]. Then∑

π∈G
ψ(π(j)) =

|G|
|ω|
∑
l∈ω

ψ(l) ∀j ∈ ω. (5)

Proof. For any l ∈ ω, let Tjl = {π ∈ G : π(j) = l}. It is easy to show that
|Tjl| = |G[j]| (recall G[j] is the point-wise stabilizer of j) for all l ∈ ω: given
an arbitrary π ∈ Tjl, we can define the map φ : G[j] → Tjl as σ → πσ for any
σ ∈ G[j]. This map is a bijection, with inverse φ−1 : σ → π−1σ, so the two sets
have the same cardinality. Hence∑

π∈G
ψ(π(j)) =

∑
l∈ω

∑
π∈Tjl

ψ(π(j)) =
∑
l∈ω

|Tjl|ψ(l) =
|G|
|ω|
∑
l∈ω

f(l),

where the last equality is justified by the orbit-stabilizer theorem. 2

Lemma 2.2 is an application of Lemma 2.1 to the barycenter Bödi et al.
(2013) of the group action, also called group average Gatermann and Parrilo
(2004) or Reynolds operator Sturmfels (2008).

2.2 Lemma
Let x∗ be an arbitrary feasible solution of P , and consider the convex combina-
tion x̄ defined as

x̄ =
1

|G|
∑
π∈G

π(x∗) (6)

Then, for each ω ∈ Ω and j ∈ ω, we have

x̄j =
1

|ω|
∑
l∈ω

x∗l . (7)

Proof. Define a function X : [n] → R as X(j) = x∗j . Applying Lemma 2.1 we
get:

x̄j =
1

|G|
∑
π∈G

x∗π(j) =
1

|G|
∑
π∈G

X(π(j)) =
1

|ω|
∑
l∈ω

X(l) =
1

|ω|
∑
l∈ω

x∗l .

2

Lemma 2.3 is well known, and basically states that the barycenter is an
invariant of the group action (see Sturmfels (2008)). We provide a proof for
completeness, since it is very short.
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2.3 Lemma
Let x∗ be an arbitrary feasible solution of P . Then, for any π ∈ G and for any
ω ∈ Ω ∑

j∈ω
x∗j =

∑
j∈ω

π(x∗)j =
∑
j∈ω

x̄j .

Proof. By definition, all permutations in G map variables in ω to other variables
in ω, so the sums of the variables in a given orbit is invariant to permutations
in G. This proves the first equality. The second equality follows by definition
of x̄ (see Eq. (6)). 2

Finally, we prove that POSR is a relaxation. We recall that the POSR formulation
involves an objective function f̄(z) and constraints ḡ(z) ≤ 0.

2.4 Theorem
POSR is a relaxation of P .

Proof. Let x∗ be an arbitrary feasible solution of P . We will show that there
always exists a point z∗ feasible for POSR and such that f̄(z∗) ≤ f(x∗), hence the
claim. Given x∗, let us construct the two points x̄ and z∗ as

x̄ =
1

|G|
∑
π∈G

π(x∗) (8)

∀ω ∈ Ω z∗ω =
∑
j∈ω

x∗j . (9)

For each constraint in C1, gi(x̄) ≤ 0 because x̄[V2] = x∗[V2] and gi is convex in
V1. Similarly, for each constraint in C2, we have gi(x̄) = gi(x

∗) ≤ 0 because of
Lemma 2.3. So, all constraint in C1 ∪ C2 are satisfied by x̄.

Now let us consider z∗. The integrality requirements on z are automatically
satisfied, as x∗ is a feasible solution of P , and thus sums of integer values within
an orbit yield an integer result. In addition, for each constraint in C1 ∪ C2, we
have by definition and by Lemma 2.2

ḡi(z
∗) = gi(x̄) ≤ 0

since x∗ itself is feasible for those constraints. Thus, z∗ is feasible for C3, which
implies it is feasible for POSR. As far as the objective function is concerned,
we have f̄(z∗) = f(x̄) ≤ f(x∗) where the equality is by definition of f̄(z) and
Lemma 2.2, while the inequality is by convexity of f(x) and because x̄ is a
convex combination of solutions with the same cost (by symmetry). 2

Corollary 2.5 essentially follows because the barycenter is a group invariant,
and is at the basis of the ideas developed in Bödi et al. (2013); Gatermann and
Parrilo (2004); Herr et al. (2013).

2.5 Corollary
If P is a convex optimization problem, then POSR is an exact reformulation of P .
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Proof. In the convex case, we have J = C2 = C3 = V2 = ∅. Given an optimal
solution z∗ of POSR, we can construct a point x∗ as

x∗j =
z∗ω
|ω|

which, by convexity of constraints, is feasible for P and has the same objective
value as z∗. The result easily follows. 2

Corollary 2.6 shows the easiest case where POSR is an exact reformulation.

2.6 Corollary
If there exists an optimal solution x∗ of P such that |ω| divides

∑
j∈ω x

∗
j for

all orbits ω associated to integer variables, and C3 = ∅, then POSR is an exact
reformulation of P .

Proof. In this case, the point x∗ constructed as in the previous corollary is also
integer, and satisfies all the constraints of P . It is then feasible for P and thus
optimal.

2

2.1. Remarks

• Cor. 2.6 applies, for instance, in case a standard ILP model for the asym-
metric Traveling Salesman Problem (TSP) is solved on symmetric input
arc costs. In this setting, the group action induces an orbit {(i, j), (j, i)}
for each node pair {i, j}, and orbital shrinking automatically produces the
symmetric TSP formulation of the problem — which is of course a much
better way to model it when costs are symmetric. In this context, orbital
shrinking can be seen as an automatic preprocessing step to produce a
more effective model for the actual input data.

• Cor. 2.6 provides a sufficient condition for POSR to be a reformulation,
but this condition is not necessary. In fact, the OS based decomposition
in Section 6 aims to iteratively refine an OSR “master” problem until
it becomes possible to find a feasible solution in the original x variables
which matches the solution in the OSR z variables.

• The set C3 of constraints is provided to give freedom in the choice of
which variables to put into V2. Intuitively, for a non-convex constraint
we have a choice between ignoring it completely in the orbital shrinking
relaxation and stabilizing its variables, which is clearly stronger but may
reduce the shrinking possibilities considerably. In addition, we note that
the partition (C1, C2, C3) is by definition consistent with the constraint
orbits of P and that all constraints in the same orbit will be mapped to
the same constraint in POSR, so in practice POSR has one variable for each
variable orbit and one constraint for each constraint orbit in P associated
with a constraint in C1 ∪ C2.
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• The convexity of the constraints in C1 is crucial for the above arguments.
Indeed, given an arbitrary MINLP, a direct formal substitution according
to (4) does not yield a relaxation in general, as shown in the following
example.

2.7 Example
Let the feasible set of P be defined as

{(x1, x2) | (x1 − x2)(x2 − x1) ≤ −1}

This set is not empty and the two variables are clearly symmetric. How-
ever, with the formal substitution xi → z/2 we obtain the set

{z | 0 ≤ −1}

which is empty.

• The constraints in C2 can be convex or nonconvex, as long as their argu-
ments are sums of original variables over the group orbits: essentially, the
carry over to the OSR unchanged, aside from the replacement of orbital
sums by the corresponding z variable.

3. The OSR hierarchy

As mentioned above, for every subgroup G of GP [V2] there is a different
OSR; when G is transitive and has only one orbit the OSR is trivial, whereas
when G is trivial the OSR is the same as the original formulation. This yields
a hierarchy H of relaxations, one for each element of the subgroup lattice L of
GP [V2]. For any MP formulation P , let v(P ) = vP (x∗) be the objective function
value of a global optimum x∗ of P ; we assume without loss of generality that
the optimization direction is minimization.

3.1 Proposition
Let G ≤ H ≤ GP [V2] and PGOSR, P

H
OSR be the corresponding OSRs. Then v(PGOSR) ≥

v(PHOSR).

Proof. Let k be the number of orbits of the action of G, and h be the number
of orbits of the action of H. Since G ≤ H, we have k ≥ h, and, in particular,
each orbit of H is partitioned into subsets of the orbits of G. If k = h then
PGOSR = PHOSR and the result follows, so assume k > h. Let z∗ be an optimum of
PGOSR, ωi be any orbit of the action of H, and {θip | p ≤ `i} be the set of orbits of
G which partition ωi. We show that there is a feasible solution y∗ of PHOSR with
objective function value vPGOSR

(z∗). We index the components of z∗ as z∗ip, where

i ∈ {1, . . . , h} and p ∈ {1, . . . , `i}, and define y∗i =
∑
p≤`i

z∗ip. Consider any i ≤ h.

Since z∗ip =
∑
j∈θip

x∗j for some feasible solution x∗ of P (by Eq. (9)), we have

y∗i =
∑
p≤`i
j∈θip

x∗j =
∑
j∈ωi

x∗j ,
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where the last equality follows because the θip’s are a partition of ωi. By con-
struction, there is a feasible point y′ of PHOSR such that y′i =

∑
j∈ωi x

∗
j , which

implies that y′i = y∗i for each i ≤ h. Hence y∗ = y′, which means that y∗ is
feasible in PHOSR as claimed. 2

This means that H contains an order-isomorphic copy of L.

3.2 Corollary
The subgroup lattice L of GP [V2] can be order-embedded in the the lattice H
partially ordered by v(PGOSR) ≥ v(PHOSR) for each G ≤ H in L.

Proof. Consider the partial order onH defined by v(PGOSR) ≥ v(PHOSR) and G ≤ H.
2

4. The role of the barycenter

In this section we discuss the relationships between OSR and some other
existing methods for exploiting symmetry in MP, namely orbital branching Os-
trowski et al. (2011), the symmetry-based block-diagonal SDP reformulation
Gatermann and Parrilo (2004) and core point algorithms Bödi et al. (2013); Herr
et al. (2013). All of these methods are based on the concept of the barycenter
of the group action, defined in Eq. (6).

4.1. Orbital branching

Orbital branching Ostrowski et al. (2011) is a particular branching technique
which yields size reductions in BB trees when applied to symmetric MILPs in-
volving binary variables. It is based on the observation that the orbital disjunc-
tion: ∨

j∈ω
xj = 1

 ∨∑
j∈ω

xj = 0

can be reduced to
xh = 1 ∨

∑
j∈ω

xj = 0

for any h ∈ ω. Although the barycenter does not appear explicitly, by Lemma
2.2 we know that orbital sums are actually the barycenter in disguise. Since
orbital branching is a branching technique and orbital shrinking is a reformula-
tion technique, obviously the two are very different. The only similarity is that
every right branch subproblem has a constraint

∑
j∈ω xj = 0, which, in OSR

terms, can be subsumed by fixing zω = 0.
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4.2. Semidefinite programming

Symmetry invariance in SDPs is enforced in Gatermann and Parrilo (2004)
as a constraint X = σX for all σ ∈ GSDP. The action of GSDP on decision
matrices permutes their rows and columns, and is induced by a conjugation
action σX = ρ−1Xρ given by a linear orthogonal representation ρ(σ). By
orthogonality, ρ−1 = ρ>, which implies that X = σX can be written as X =
ρ>Xρ, which in turn yields ρ>X = Xρ. This commutativity of the group action
induces, by Schur’s lemma, a block diagonal form on X, which is the reason why
the SDP can be written in a more compact form, i.e. only using the nonzero
elements on the block-diagonalized decision matrix.

Here are the main differences between Gatermann and Parrilo (2004) and
the OSR:

1. block-diagonalization yields exact reformulations of SDPs, whereas OSR
yields a hierarchy of relaxations of MILPs and certain MINLPs;

2. block-diagonalization is based on the conjugation action of a linear or-
thogonal representation of GSDP, whereas OSR is based on the standard
action of a subgroup of Sn over [n].

The only similarity is that the theories behind the two methods both employ
the barycenter in the proofs. In particular, the barycenter is used in the proof
of (Gatermann and Parrilo, 2004, Thm. 3.3) to show that symmetric SDPs
having a feasible decision matrix X1 also have another feasible Xσ, with the
same objective function value, which is invariant with respect to the SDP group
GSDP. This is the first appearance in the optimization literature of Cor. 2.5.

The following example shows that the effect of block-diagonalization and
OSR are completely different even on a toy example taken from Gatermann
and Parrilo (2004).

4.1 Example
Example 4.3 in Gatermann and Parrilo (2004) considers the SDP min〈C,X〉,

where X = (xij) and C =

(
0 0 0
0 1 0
0 0 1

)
, subject to xij = xji for all i < j ≤ 3,

x12 = x13 and X � 0. The formulation group GSDP is given by simultaneous
permutations of the last two rows and columns of C and X, and is isomorphic
to the cyclic group of order 2. According to Gatermann and Parrilo (2004), The
corresponding block-diagonalization yields the reduced SDP min(〈C1, X1〉+ y),

with C1 =
(

0 0
0 1

)
, X1 =

(
x11

√
2x12√

2x12 x22 + x23

)
, X1 � 0 and y = x22 − x23,

which has 4 variables. By contrast, if we relax X � 0 by X ≥ 0 and write
out the corresponding LP P we get min(x22 + x33) subject to xij = xji for all
i < l ≤ 3 and x12 = x13, which has formulation group GP = 〈(x22, x33)〉, with
a unique nontrivial orbit {x22, x33}. Consequently, the OSR, which in this case
is also an exact reformulation by Cor. (2.5), has 7 variables, underlining the
difference between the two techniques.
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4.3. Core point algorithms

The papers Bödi et al. (2013); Herr et al. (2013) discuss a new approach
to optimize symmetric MILP (or convex MINLP). The first paper Bödi et al.
(2013) requires GP to be at least transitive on [n] (i.e. its action on [n] consists
of a single orbit). This requirement is partly relaxed the second paper Bödi
et al. (2013): GP is only assumed to have a direct product of (possibly trivial)
symmetric groups as a subgroup.1

Let P be the ILP max{c>x | Ax ≤ b ∧ x ∈ Zn}, and let G ≤ GP have
a transitive action on [n]. The papers Bödi et al. (2013); Herr et al. (2013)
consider a decomposition of the feasible region F of P in the fixed subset FG =
{x ∈ F | ∀g ∈ G (gx = x)} (its span is called the fixed subspace) and the affine
subspaces Hk

c = {x ∈ Rn | c>x = k}, where k ∈ Z, which contain the level sets.
Without loss of generality, c is assumed to be a coprime integral vector, i.e. one
whose components have unit greatest common divisor. It is shown in Bödi et al.
(2013) that {Hk

c | k ∈ Z} is a partition of Zn for each coprime c.
In Bödi et al. (2013), G is assumed to be transitive: by definition, this

implies that for each i 6= j ∈ [n] there is π ∈ G mapping ci to cj , yielding c to
be a scaling of the all-one vector 1. Enters the barycenter: since it is invariant
with respect to the action of G, it spans the fixed subspace. By definition, the
barycenter is a scaled sum of all the orbit elements (see Eq. (7)), and hence, by
the same reasoning as the one carried out for c, it is also a scaled version of 1.
In particular, the span of c is equal to the fixed subspace; and, moreover, each
affine subspace Hk

c is orthogonal to the fixed subspace.
The fact that FG aligns precisely with the objective function direction is

obviously as rare as full transitivity of G, but it pays off handsomely: if y is
an optimal solution of the continuous relaxation, then the barycenter ζ1 (where
ζ = 1

n

∑
j yj) is also optimal, so bζc1 is a feasible integer point; hence the ILP

optimal value must be at least as large as that of bζc1, namely bζcn. Trivially,
we also have bζnc as an upper bound. Hence it suffices to find an integer feasible
point in Hk

c for the largest possible k in K = {bζcn, . . . , bζnc}. In Bödi et al.
(2013), Alg. A suggests a direct search for decreasing values of k (an obvious
log(|K|) improvement could be given by using bisection on K).

In general, the subproblem of (Bödi et al., 2013, Alg. A), which consists
of finding an integer feasible point in each Hk

c , is hard. However, if G is µ-
transitive (with µ ≥ bn2 c + 1), then the integer feasible points in Hk

c that are
closest to the fixed subspace, called core points, can be found in polynomial time
(Bödi et al., 2013, Alg. B). Transitivity rarely occurs in practical problems; and
µ-transitivity, requiring the existence of permutations mapping any µ-tuple to
any other, is even rarer.

The paper Herr et al. (2013), subsequent to Bödi et al. (2013), relaxes the
transitivity requirements, generalizes the definition of a core point, and proposes

1We remark that the instance library data given in Liberti (2012) shows that many for-
mulation groups are isomorphic to products of symmetric groups. Further analysis, however,
shows that in most cases formulation groups are not themselves products of symmetric groups.

11



two algorithms for solving symmetric MILPs and convex MINLPs. The first
algorithm is a generalization of the core point algorithm of Bödi et al. (2013):
to address the fact that c = 1 is no longer the unique generator of the fixed
subspace, (Herr et al., 2013, Alg. A) still solves integer feasibility subproblems
on Hk

c but also checks their objective function values. The second algorithm is
based on a smart parametrization of generalized core points, and the fact that it
is sufficient to find an optimal core point. It turns out that this parametrization
results in a reformulation of the original problem. As mentioned above, the
requirement on G for these algorithms to work is that it should be a direct
product of symmetric group Sk1 × · · · × Skd . The reformulation adds new sets
of variables: ti ∈ Z for each i ≤ d, and sij ∈ {0, 1} for each i ≤ d and j < ki;
and new sets of constraints:

∀i ≤ d xij = ti1ki +
∑
j<ki

sijcj

∀i ≤ d
∑
j<ki

sij ≤ 1,

where 1ki is the all-one vector of size ki, cj =
∑
h≤j eh (with eh the h-th unit

vector of the standard basis of Rn) is a representative of the core set of Hj
c , and

the components of x have been appropriately re-indexed using i, j. The original
variables x can then be eliminated using the equivalent expressions in the t and
s variables.

Here are the main differences between OSR and core point algorithms:

• OSR does not make any assumption on the structure of G, other than it
should be nontrivial, whereas core points algorithms make strong assump-
tions on G;

• OSR is a relaxation method, i.e. it acts on the formulation, whereas the
core point algorithms in Bödi et al. (2013) do not;

• the reformulation derived in the second core point algorithm in Herr et al.
(2013) is exact, and, in particular, different from the OS relaxation (see
Example 4.2 below).

The only similarity between the OSR and the results in Bödi et al. (2013) is
the same as for the SDP techniques discussed above: the fixed subspace LP
reformulation (Bödi et al., 2013, Eq. (3)) is the same as the OS relaxation
whenever there are no integer variables (see Cor. 2.5). The only similarity with
Herr et al. (2013) is that the barycenter is the point of departure to derive a
reformulation of the original MIP.

4.2 Example
In this example, we show that the OSR is different from the core point reformu-
lation. Consider the ILP maxx1 + x2 + 2(x3 + x4 + x5) subject to x1 + x2 = 1,
x3 +x4 +x5 = 2 and x ∈ {0, 1}5. We take G = GP = 〈(1, 2), (3, 4, 5)〉 = S2×S3,
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which has the two orbits {1, 2} and {3, 4, 5}. After reindexing the x variables,
the ILP becomes:

max
x∈{0,1}5

x11 + x12 +2x21 + 2x22 + 2x23

x11 + x12 = 1
x21 + x22 + x23 = 2.

Now the core point equations read:(
x11

x12

)
=

(
1
1

)
t1 +

(
1
0

)
s11 +

(
1
1

)
s12 x21

x22

x23

 =

(
1
1

)
t2 +

 1
0
0

 s21 +

 1
1
0

 s22 +

 1
1
1

 s23,

and after replacement, the core point reformulation is:

max 2t1 + s11 + 2s12 + 6t2 + 2s21 + 4s22 + 6s23

2t1 + s11 + 2s12 = 1

3t2 + s21 + 2s22 + 3s23 = 2

s11 + s12 ≤ 1

s21 + s22 + s23 ≤ 1

t1, t2 ∈ Z
s11, s12, s21, s22, s23 ∈ {0, 1},

whereas the OSR is:

max z1 + 2z2

z1 = 1

z2 = 2

z1 ∈ {0, . . . , 2}
z2 ∈ {0, . . . , 3},

marking the difference between the two approaches.

For specific examples, it might happen that OSR and the core point reformu-
lation turn out to be similar: take e.g. Example 4.2, and change the constraint
x3 + x4 + x5 = 2 to x3 + x4 + x5 = 1. Then the assignment constraints make
it possible to immediately infer t = 0 and s12 = s22 = s23 = 0 in the core point
reformulation, yielding max s11 + s21 subject to s11 = 1 and s21 = 1, which
are the same objective function and constraints of the OSR. But whereas s are
binary variables, z are general integer variables: this difference is a token of
the fact that whereas OSR variables encapsulate whole orbits, the core point
reformulation describes a single orbit representative.
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5. Mining for the best subgroup: features and MILP results

In this section we discuss the choice of the formulation subgroup G with
respect to which the OSR is constructed. As remarked previously, if G is the
trivial group, no shrinking at all is performed and the relaxation coincides with
the original problem. As G grows in size, it generates longer orbits and the
relaxation becomes more compact and easier to solve, but the lower bound
quality decreases.

Ideally, we wish the relaxation to be (a) as tight as possible and (b) as
efficient as possible with respect to the CPU time taken to solve it. In this section
we discuss and computationally evaluate some ideas for generating subgroups
G which should intuitively yield “good” relaxations in a MILP context. All
experiments were conducted on a 1.4GHz Intel Core 2 Duo 64bit with 3GB of
RAM. The MILP solver of choice is IBM ILOG CPLEX 12.2.

5.1. Automatic generation of the whole symmetry group

The formulation group is detected automatically using the techniques dis-
cussed in Liberti (2012): the MILP is transformed into a Directed Acyclic Graph
(DAG) encoding the incidence of variables in objective and constraints, and a
graph automorphism software (nauty McKay (1981)) is then called on the DAG.
The orbital-shrinking relaxation is constructed automatically using a mixture
of bash scripting, GAP gap4 (2007), AMPL Fourer and Gay (2002), and ROSE
Liberti et al. (2010).

5.2. The instance set

We considered the following 39 symmetric MILP instances (in their mini-
mization form):

ca36243 ca57245 ca77247 clique9 cod105 cod105r cod83 cod83r cod93

cod93r cov1053 cov1054 cov1075 cov1076 cov1174 cov954 flosn52 flosn60

flosn84 jgt18 jgt30 mered O4 35 oa25332 oa26332 oa36243 oa57245

oa77247 of5 14 7 of7 18 9 ofsub9 pa36243 pa57245 pa77247 sts135 sts27

sts45 sts63 sts81

all taken from F. Margot’s website http://wpweb2.tepper.cmu.edu/fmargot/.

5.3. Generator ranking

The OSR based on G = GP [V2] has the merit of yielding the most compact
relaxation. On our test set, however, this approach yields a relaxation bound
which is not better than the LP bound 31 times out of 39, and for the remaining
8 times it is not better than the root-node CPLEX’s bound (i.e., LP plus root
node cuts) — although this will not necessarily be the case for other symmetric
instances (e.g., for instances with small symmetry groups).

We observe that the OSR only depends on the orbits of G rather than on
G itself. If G is trivial, then there are n orbits of size 1. If G is transitive,
there is only 1 orbit of size n: so, in general, the smaller G is, the more (and/or
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shorter) orbits it yields. We therefore consider the idea of testing subgroups
with orbits of varying size, from small to large. Since testing all subgroups of
GP [V2] is impractical, we look at its generator list Π = (π0, . . . , πk) (including
the identity permutation). For any permutation π we let fix(π) be the subset of
[n] fixed by π, i.e., containing those i such that π(i) = i. We then reorder the
generator list Π so that

|fix(π0)| ≥ · · · ≥ | fix(πk)|

and for all ` ≤ k we define G` as the subgroup of GP [V2] induced by the sublist
(π0, · · · , π`). This leads to a subgroup chain

G0 ≤ G1 ≤ · · · ≤ Gk = GP [V2]

in the subgroup lattice L (see Section 3) with increasing number of generators
and hence larger and larger orbits (G0 being the trivial group induced by the
identity permutation). In our view, the first generators in the list are the most
attractive in terms of bound quality — having a large fix(π) implies that the
generated subgroup is likely to remain valid even when several variables are
fixed by branching.

For each instance in our test set, we generated the relaxations corresponding
to each G` and recorded bound values and CPU times, plotting the results
against `. We set a maximum user CPU time of 1800s, as we deem a relaxation
useless if it takes too long to solve. The typical behavior of the relaxation in
terms of bound value and CPU time was observed to be mostly monotonically
decreasing in function of the number ` of involved generators. Figure 1 shows
an example of these results on the sts81 instance.

5.4. Choosing a good set of generators

The proposed generator ranking provides a “dial” to trade bound quality
versus CPU time. We now consider the question of how to set this dial au-
tomatically, i.e., how to choose a value of ` ∈ [k] leading to a good subgroup
G`.

Out of the 39 instances in our test set, 16 yield the same bound indepen-
dently of `, and were hence discarded from this experiment. The remaining 23
instances:

ca36243 clique9 cod105 cod105r cod83 cod83r cod93 cod93r cov1075

cov1076 cov954 mered O4 35 oa36243 oa77247 of5 14 7 of7 18 9 pa36243

sts135 sts27 sts45 sts63 sts81

yield a nonzero decrease in bound value as ` increases, so they are of interest
for our test.

Having generated and solved relaxations for all ` ≤ k, we hand-picked good
values of ` for each instance, based on these prioritized criteria:

1. bound provided by G` strictly tighter than LP bound;
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sts81

`/k obj CPU

1/14 45 3.60
2/14 45 1.51
3/14 45 1.18
4/14 45 1.13
5/14 33 0.01
6/14 33 0.01
7/14 33 0.02
8/14 33 0.00
9/14 29 0.02
10/14 29 0.00
11/14 29 0.01
12/14 28 0.01
13/14 28 0.00
14/14 27 0.00

 26

 28

 30

 32

 34

 36

 38

 40

 42

 44

 46

 0  2  4  6  8  10  12  14

obj

 0

 0.5

 1

 1.5
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 2.5
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CPU

Figure 1: Bound values and CPU times against the number ` of generators for instance
sts81.

2. minimize CPU time, with strong penalty for choices of ` leading to excess
of 10 seconds;

3. on lack of other priorities, choose ` leading to bounds around midrange in
[bnd(Gk),bnd(G1)], where bnd(G′) denotes the bound value obtained by
solving the OSR based on the subgroup G′.

This choice led to the first three columns of Table 1 (the fourth will be explained
later).

Next we looked for a feature of the solution data over all ` ≤ k and over
all instances, whose average value corresponds to values of ` that are close
to the hand-picked ones in Table 1. Again, intuition led our choice for this
feature. Our reasoning is as follows. We observe that, given any orbit ω, the
OSR relaxation replaces

∑
j∈ω xj with a single variable zω. Suppose now that

a constraint
∑
j∈ω xj ≤ bi happens to exist in the MILP formulation (P ): this

is simply reformulated to a bound constraint zω ≤ bi, thus replacing a |ω|-ary
original relation on the decision variables x with a unary relation on the decision
variables z. Intuitively, this will over-simplify the problem and will likely yield
a poor relaxation. Instead, we would like to deal with orbits that are somehow
“orthogonal” to the problem constraints.

To this aim, consider the i-th (out of, say, r) MILP constraint, namely∑
j∈[n] aijxj ≤ bi, and define the incidence of an orbit ω with respect to the

support of this constraint as |ω ∩ {j ∈ [n] : aij 6= 0}|. Intuitively, the lower
the incidence of an orbit, the farther we are from the situation where problem
constraints become over-simplified range constraints in the relaxation. Lower
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Instance G` LP CPU inc(G`)
inc(GP [V2])

ca36243 49 48 0.07 0.50
clique9 ∞ 36 0.06 0.87
cod105 -16 -18 4.91 0.99
cod105r -13 -15 0.25 0.99
cod83 -26 -28 0.12 0.98
cod83r -22 -25 4.44 0.88
cod93 -48 -51 3.07 0.98
cod93r -46 -47 2.74 0.97
cov1075 19 18 3.03 0.86
cov1076 44 43 185.83 0.73
cov954 28 26 0.45 0.79
mered ∞ 140 0.12 0.92
O4 35 ∞ 70 0.07 0.75
oa36243 ∞ 48 0.75 0.50
oa77247 ∞ 112 0.00 0.98
of5 14 7 ∞ 35 0.13 0.62
of7 18 9 ∞ 63 0.04 0.91
pa36243 -44 -48 1.26 0.50
sts135 60 45 0.05 0.88
sts27 12 9 0.01 0.88
sts45 24 15 0.39 0.66
sts63 27 21 0.00 1.00
sts81 33 27 0.00 0.88

Table 1: Hand-picked choice of the subgroup G`.

incidence orbits should yield tighter relaxations, albeit perhaps harder to solve.
Given a subgroup G′ with orbits Ω′ = {ω′1, · · · , ω′m′}, we then extend the inci-
dence notion to G′

inc(G′, i) :=

∣∣∣∣∣ ⋃
ω′∈Ω′

ω′ ∩ {j ∈ [n] : aij 6= 0}

∣∣∣∣∣ , (10)

and finally to the whole MILP formulation

inc(G′) =
∑
i∈[r]

inc(G′, i). (11)

The rightmost column of Table 1 reports the relative incidence of G`, computed
as inc(G`)/ inc(GP [V2]), for those ` that were hand-chosen to be “best” accord-
ing to the prioritized criteria listed above. Its average is 0.82 with standard
deviation 0.17. This value allows us to generate a relaxation which is hopefully
“good”, by automatically selecting the value of ` such that inc(G`)/ inc(GP [V2])
is as close to 0.82 as possible.
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5.5. Bound strength

The quality of the OSR relaxation we obtain with the method of Section 5.4
is reported in Table 2 whose columns include: the instance name, the automati-
cally determined value of ` and the total number k of generators, the best-known
optimal objective function value for the instance (starred values correspond to
guaranteed optima), the bound given by G1 which provides the tightest non-
trivial OSR bound, the bound given by G` and the associated CPU time, the
CPU time “cpx t” spent by CPLEX 12.2 (default settings) on the original for-
mulation to get the same bound as OSR (only reported when the OSR bound
is strictly better than the LP bound), and the LP bound. Entry limit marks an
exceeded time limit of 1800 sec.s, while boldface highlights the best results for
each instance.

Instance `/k best G1 G` CPU cpx t LP

ca36243 3/6 49∗ 49 48 0.02 48
clique9 5/15 ∞∗ ∞ ∞ 0.06 0.17 36
cod105 3/11 -12∗ limit -14.09† limit -18
cod105r 3/10 -11∗ -11 -11 24.12 28.36 -15
cod83 3/9 -20∗ -21 -24 16.78 9.54 -28
cod83r 3/7 -19∗ -21 -22 4.44 7.85 -25
cod93 3/10 -40 -46.11† limit -51
cod93r 3/8 -38 -39 -44 271.74 446.48 -47
cov1075 3/9 20∗ 20 19 3.03 79.79 18
cov1076 3/9 45 44 43 2.78 43
cov954 3/8 30∗ 28 26 0.11 26
mered 21/31 ∞∗ ∞ ∞ 0.15 3.37 140
O4 35 3/9 ∞∗ ∞ 70 0.00 70
oa36243 3/6 ∞∗ ∞ 48 0.01 48
oa77247 3/7 ∞∗ ∞ ∞ 0.10 265.92 112
of5 14 7 7/9 ∞∗ ∞ 35 0.00 35
of7 18 9 7/16 ∞∗ ∞ ∞ 0.09 0.15 63
pa36243 3/6 -44∗ -44 -48 0.01 -48
sts135 3/8 106 75 60 0.11 109.81 45
sts27 4/8 18∗ 14 12 0.01 1.05 9
sts45 2/5 30∗ 24 15 0.00 15
sts63 4/9 45∗ 36 27 0.02 1.99 21
sts81 5/14 61 45 33 0.01 3.92 27

Table 2: OSR performance (in the G`/CPU columns). Entries marked ∗ denote guar-
anteed optimal values; those marked † denote the best lower bound at the time limit.
In sts27, CPLEX closes the gap at the root node. Values for cpx t are only present
when the OSR bound is integer and better than the LP bound.

The results show that the “fix” and “inc” features we chose are meaningful:
our bound is often stronger than the LP bound, whilst often taking only a
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fraction of a second to solve. The effect of orbital shrinking can be noticed by
looking at the “cpx t” column, where it is evident that the original formulation
takes significantly longer to reach the bound given by our relaxation.

6. Orbital Shrinking decomposition

Let P be a MINLP as in the previous sections and let G be the chosen
formulation subgroup for P . Using G, we can construct the OSR POSR of P ,
which will act as the master problem in our decomposition scheme, much like
in a traditional Benders decomposition scheme. Indeed, the scheme is akin to a
logic-based Benders decomposition Hooker and Ottosson (2003), although the
decomposition is not based on a traditional variable splitting, but on aggrega-
tion, and the OSR master works with the aggregated variables z. A similar
approach, although problem specific, was also used in Linderoth et al. (2009).

6.1. The slave feasibility problem

For each feasible solution z∗ of POSR, we can then define the following (slave)
feasibility check problem R(z∗)

∀i ∈ C gi(x) ≤ 0 (12)

∀ω ∈ Ω
∑
j∈ω

xj = z∗ω (13)

∀j ∈ J xj ∈ Z (14)

If R(z∗) is feasible, then the aggregated solution z∗ can be disaggregated into a
feasible solution x∗ of P , with the same cost. Otherwise, z∗ must be removed
from POSR, in either of the following two ways:

1. Generate a nogood cut that forbids the assignment z∗ to the z variables.
As in logic-based Benders decomposition, an ad-hoc study of the problem
is needed to derive (strong) nogood cuts.

2. Branching. As z∗ is integer, branching on non-fractional z variables is
needed, and z∗ will still be a feasible solution in one of the two child
nodes. However, the method would still converge, because the number of
variables is finite and the search tree has finite depth, assuming that z
variables are bounded. Note that in this case the method may repeatedly
check for feasibility the same aggregated solution z∗: in practice, this can
easily be avoided by keeping a list (cache) of recently checked aggregated
solutions with the corresponding feasibility status.

6.2. Symmetry of the slave problem

It is important to note that, by construction, problem R(z∗) may also have
a nontrivial formulation group, so symmetry may still be an issue while solving
R(z∗).
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6.1 Lemma
The group G used to generate POSR is a subgroup of the formulation group GR
of R(z∗).

Proof. Let P be the MP formulation (1)-(3), and π ∈ G ≤ GP . Then π stabi-
lizes the constraints (2) of P , which appear in R(z∗) as (12). Since constraints
(13) are generated by means of the action of G, π fixes each orbit of this action,
and hence π also stabilizes (13). Thus π ∈ GR as claimed. 2

On the other hand, GR could be a subgroup of GP or vice versa, or be such
that GR = GP , depending on the value of z∗, on the action of G and on the
objective function of P .

6.2 Example
Let P be the problem max{

5∑
i=1

xi |
5∑
i=1

xi ≤ 1 ∧ ∀i ≤ 5 xi ∈ {0, 1}}: we have

GP ∼= S5. Consider the subgroup G = 〈(1, 2), (3, 4), (3, 5)〉 ∼= C2 × S3, having
the two orbits {1, 2} and {3, 4, 5}. Then R(z∗) is:

x1 + x2 + x3 + x4 + x5 ≤ 1

x1 + x2 = z∗1

x3 + x4 + x5 = z∗2 ,

which, for any feasible z∗, has formulation group GR = G, a proper subgroup of
GP . Obviously, by modifying P so that the objective is x1 +x2 +2(x3 +x4 +x5)
we have GP = G and hence GR = GP .

6.3 Example
Let P be the problem

max

∑
i≤3

xi + 2
∑

4≤i≤6

xi |
∑
i≤6

xi ≤ 6 ∧ ∀i ≤ 6 xi ∈ {0, 1}

 ,

and take x∗ = (1, 1, 1, 1, 1, 1) as the optimal solution, with corresponding POSR

solution z∗. We have GP = 〈(1, 2), (1, 3), (4, 5), (4, 6)〉 ∼= S3 × S3. Consider
G = GP , having two orbits {1, 2, 3} and {4, 5, 6}. Then z∗ = (3, 3) and R(z∗)
is:

x1 + x2 + x3 + x4 + x5 + x6 ≤ 6

x1 + x2 + x3 = 3

x4 + x5 + x6 = 3.

The formulation group GR certainly contains all of the permutations of GP = G
(as per Lemma 6.1), and also the permutation (1, 4)(2, 5)(3, 6), which is not in
GP , and makes GR ∼= (S3 × S3) o C2. So in this case GP is a proper subgroup
of GR.
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The issues arising from GR being nontrivial are usually solvable because (i)
linking constraints (13) may make the model much easier to solve, and (ii)
the easier structure of R(z∗) may allow for more effective symmetry breaking
techniques. Note also that R(z∗) is a pure feasibility problem, so a CP solver
may be a better choice than a MINLP solver. In addition, the method intuitively
allows for symmetry to exploited twice: once in the (symmetry-free) master,
where POSR effectively enumerates equivalence classes of solutions of P , and once
in each slave, where more traditional symmetry breaking techniques, such as
orbital branching or isomorphism pruning can be used.

6.3. Dealing with continuous variables

The above decomposition strategy is well suited for pure integer problems,
but is not very convenient when continuous variables are present in the model be-
cause in the mixed-integer case one should enumerate, in the master, all possible
values also for the continuous variables, which makes the method impractical.
However, the method can be modified to deal with continuous variables more
effectively. In particular, we can:

• zero out the objective coefficients of the zω variables in POSR;

• reintroduce the objective coefficients of the continuous variables in R(z∗);

• remove the linking constraints (13) associated to orbits of continuous vari-
ables.

The advantage of the above modification is that only the partial assign-
ments over the aggregated integer variables need to be checked, at the expense
of turning the feasibility check into an optimization problem itself. Such ex-
tended method has been used in Mittelmann and Salvagnin (2013) to solve a
very challenging instance of 3-dimensional quadratic assignment problem. In-
terestingly, the role of MIP and CP was swapped in Mittelmann and Salvagnin
(2013): a CP solver was used to enumerate all feasible solutions of the master
problem, while a MIP solver was used solve the optimization slaves.

7. Application to Shift Scheduling

A shift scheduling problem assigns a feasible working shift to a set of employ-
ees, in order to satisfy the demands for a given set of activities at each period in
a given time horizon. The set of feasible shifts that can be assigned to employ-
ees is often defined by a complex set of work regulation agreements and other
rules. Assigning a shift to an employee means specify an activity for each period,
which may be a working activity or a rest activity (e.g., lunch). The objective
is usually to minimize the cost of the schedule, which is usually a linear combi-
nation of working costs plus some penalties for undercovering/overcovering the
demands of the activities in each time period.

In particular, suppose we are given a planning horizon divided into a set of
periods T , a set of activities A, a subset W ⊂ A of working activities, and a set
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of employees E. For each period t ∈ T and for each working activity a ∈W , we
are given a demand dat, an assignment cost cat, an undercovering cost c−at and an
overcovering cost c+at. Introducing the set of integer variables yat, which count
the number of employees assigned to activity a at period t, and integer variables
s−at, s

+
at that count the appropriate under/over covering, we can formulate the

problem as:

min
∑
a∈W

∑
t∈T

catyat +
∑
a∈W

∑
t∈t

c+ats
+
at +

∑
a∈W

∑
t∈T

c−ats
−
at (15)

∀a ∈W, t ∈ T yat − s+
at + s−at = dat (16)

∀a ∈W, t ∈ T
∑
e∈E

xeat = yat (17)

∀e ∈ E 〈x defines a feasible shift 〉 (18)

∀a ∈W, t ∈ T yat, s
+
at, s

−
at ∈ Z+ (19)

∀e ∈ E, a ∈W, t ∈ T xeat ∈ {0, 1} (20)

where xeat are binary variables, each of which is equal to 1 if employee e is
assigned to activity a in period t. Model (15)-(20) is symmetric because em-
ployees are assumed to be identical, so with |E| employees we have a symmetry
group of order |E|!. As for orbits, each orbit contains all the variables for all
employees associated with a given entity (for example, for each activity a and
time period t we have an orbit containing the variables x∗at).

Depending on how we formulate constraints (18), we may end up with very
different models. A convenient way to define the set of feasible shifts that can be
assigned to a given employee is to use a regular or a context-free language, i.e.,
the set of feasible shifts can be viewed as the words accepted by a finite automa-
ton or, more generally, by a push-down automaton. It has been shown in Côté
et al. (2011a); Pesant et al. (2009) that it is possible to derive a polyhedron that
describes a given regular/context-free language. Such representations are com-
pact (in an appropriate extended space, i.e., introducing additional variables)
and thus lead directly to a MIP formulation of the problem. In particular, the
extended formulation for a regular language is essentially a network flow formu-
lation based on the expanded graph associated with the accepting automaton
(see Côté et al. (2011a); Pesant (2004) for details). The extended formulation for
the context-free language, on the other hand, is based on an and-or graph built
by the standard CYK parser Hopcroft and Ullman (1979) for the corresponding
grammar Pesant et al. (2009); Quimper and Walsh (2007).

Note that it is not necessary to describe completely the set of feasible shifts
by a regular/context-free language. The formal language may capture only some
of the constraints defining a feasible shift, with the remaining ones described as
linear inequalities. This may simplify the corresponding automaton consider-
ably (for example, regular languages are notoriously bad at handling counting
arguments). However, describing the set of feasible shifts with formal languages
alone has some important implications. First of all, it has been proven for both
the regular and context-free languages that the derived polyhedron is integral
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Pesant et al. (2009), and thus, if the are no other constraints, it is possible to
optimize a linear function over the set of feasible shifts by solving just a lin-
ear program. Even more importantly, these results have been extended also
to polyhedra describing sets of feasible shifts Côté et al. (2011b). It is then
possible to consider an aggregated (implicit) model and reconstruct an optimal
solution of the original one with a polynomial post-processing phase. From the
OSR point of view, this means that POSR is in this case an exact reformulation.
Consider for example the regular polytope in its extended form: the optimal
solution is always a flow of integral value, say k, and basic network flow theory
guarantees that it can be decomposed into k paths of unitary flow (and since
each path in the expanded graph corresponds to a word in the language, this
is a feasible solution for the original explicit problem). Similar reasoning ap-
plies to the grammar polytope (although it is not a flow model), as successfully
shown in Côté et al. (2011b). It is interesting to note that this gives the current
state-of-the-art for solving multi-activity shift scheduling problems.

Unfortunately, it is not always reasonable to describe the set of feasible shifts
completely with a formal language. While it is true that formal languages can be
extended without changing the complexity of the corresponding MIP encoding
(this is particularly true for context-free languages Quimper and Walsh (2007)),
still some cardinality constraints may be very awkward to express, see Salvagnin
and Walsh (2012) for examples. As such, we assume in the following that the
formal language captures the constraints that define the set of feasible shifts only
partially, and thus we need to apply the decomposition framework of Section 6
in order to turn OSR into an exact procedure.

7.1. MIP model

The MIP model that we use is a simple modification of the general model
(15)-(20). The main difference is that we partition the set of feasible shifts Ω
into k subsets Ωk, each of which is described by a potentially different determin-
istic finite automaton (DFA) and by cardinality constraints. This partition can
simplify a lot the structure of the DFAs, and in general makes the implicit model
more accurate, since the cardinality constraints are aggregated only within em-
ployees of the same “kind”. This of course increases the size of the model, but
since the corresponding aggregated model is quite compact, this is usually well
worth it.

For each shift type Ωk, the aggregated MIP model, i.e., the orbital shrinking
relaxation that acts as our master problem, decides how many employees are
assigned a shift in Ωk, and then computes an aggregated integer flow of the
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same value. In details:

min
∑
k∈K

∑
a∈W

∑
t∈T

caty
k
at +

∑
a∈W

∑
t∈T

c+ats
+
at +

∑
a∈W

∑
t∈T

c−ats
−
at (21)

∀a ∈W, t ∈ T
∑
k∈K

ykat − s+
at + s−at = dat (22)

∀k ∈ K regular(yk, wk,DFAk) (23)

∀k ∈ K 〈cardinality constraints for yk〉 (24)∑
k∈K

wk ≤ E (25)

∀k ∈ K, a ∈W, t ∈ T wk, ykat, s
+
at, s

−
at ∈ Z+ (26)

Note that we use the notation of constraint (23) to refer to the extended
MIP formulation of the regular constraint involving flow variables. The con-
straint ensures that variables yk can be decomposed into wk words accepted
by the automaton DFAk. Constraints (24) refers to the cardinality constraints
expressed as linear constraints that complete the description of sets Ωk. Finally,
if an upper bound E is given on the number of employees that can be scheduled,
it can be imposed in constraint (25).

7.2. CP checker

The decision to partition the set of feasible shifts into k subsets Ωk has an
important consequence on the structure of the CP checker: the model actually
decomposes into k separate CP models, one for each type of shift. Given an
index k, suppose the master (MIP) model assigns w̄k employees, with their ag-
gregated shifts described by ȳat; then the corresponding CP model can easily
be formulated by using several global constraints Rossi et al. (2006). Global
constraints are used within a CP solver to represent general purpose and com-
mon substructures, for which efficient and effective constraint propagators are
known. In our case, it turned out that, using standard global constraints from
the literature and implementing some specific propagators for the model at
hand (see Salvagnin and Walsh (2012) for details), the CP model was always
extremely fast in proving whether the aggregated solution can be turned into a
solution of the original model.

7.3. Computational Results

We tested our method on the multi-activity instances used in Côté et al.
(2011a,b); Quimper and Rousseau (2010). This testbed is derived from a real-
world store, and contains instances with 1 to 10 working activities (each class
has 10 instances).

We implemented our method in C++, using IBM ILOG CPLEX 12.2 cplex
(2012) as black box MIP solver, and Gecode 3.7.3 Gecode Team (2012) as CP
solver. All tests have been performed on a PC with an Intel Core i5 CPU running
at 2.66GHz, with 8GB of RAM (only one core was used by each process). Every
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method was given a time limit of 1 hour per instance. Concerning the set of
feasible shifts Ω, we simply partitioned it into full-time and part-time shifts.

From the implementation point of view, our hybrid method is made of the
following phases:

• First, the aggregated model is solved with CPLEX, using the default set-
tings. The outcome of this (usually fast) first phase is a dual bound po-
tentially stronger than the LP bound, and the set of aggregated solutions
collected by the MIP solver during the solution process (not necessarily
feasible for the original model).

• We apply an ad-hoc MIP repair/improve heuristic (see Salvagnin and
Walsh (2012) for details) to each aggregated solution which is within 20%
of the aggregated model optimal solution. The outcome of this phase is
always a feasible solution for the original model, thus a primal bound.
Note that if the gap between the two is already below the 1% threshold,
we are done.

• We solve the aggregated model again, this time implementing the hybrid
MIP/CP approach described in Section 6. This means that we disable
dual reductions (otherwise the decomposition would not be correct) and
use CPLEX callbacks framework to implement the decomposition.

Table 3 reports a comparison between the proposed method and others in
the literature, for a number of activities from 1 to 10. cpx-reg refers to the
explicit model based on the regular constraint in Côté et al. (2011a), while
grammar refers to the implicit model based on the grammar constraint in Côté
et al. (2011b). Note that for grammar we are reporting the results from Côté
et al. (2011b), which were obtained on a different machine and, more impor-
tantly, with an older version of CPLEX, so the numbers are meant to give just
a reference. All methods were run to solve the instances to near-optimality,
stopping when the final integrality gap dropped below 1%.

According to Table 3, hybrid outperforms significantly the explicit model
cpx-reg, which scales very poorly because of symmetry issues and slow LPs.
When compared to grammar, hybrid is very competitive only for up to 2 activi-
ties, while after that threshold grammar clearly takes the lead. This is somehow
expected: the set of feasible shifts in these instances can indeed be described
without too much effort with an extended grammar, and it is no surprise that
the pure implicit MIP model outperforms our decomposition approach. How-
ever, hybrid is likely to be the best approach if the extended grammar is not a
viable option.

Finally, Table 4 shows the gap just before the beginning of the last phase
(but after the aggregated model has been solved and its solutions have been used
to feed the MIP repair/improve heuristic). On almost all categories the average
final gap is below 10%, with an average running time of 1 minute. This heuristic
alone significantly outperforms cpx-reg for a number of activities greater than
3. It is also clear from the table that solving the OSR relaxations with a black
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Table 3: Average computing times between the different methods to solve to near-optimality
(gap ≤ 1%) the instances with up to 10 activities.

# solved (10) time(s)
# act. cpx-reg hybrid grammar cpx-reg hybrid grammar

1 10 10 10 41.3 9.1 283.7
2 9 10 9 707.9 194.5 379.9
3 4 5 9 2957.3 1996.4 205.4
4 3 6 10 2970.2 1827.9 300.5
5 0 8 10 3600.0 1438.4 146.2
6 1 4 10 3530.6 2340.6 213.8
7 1 6 10 3438.7 2399.0 230.9
8 0 5 10 3600.0 2201.5 257.1
9 0 4 10 3600.0 2444.0 289.1

10 0 2 10 3600.0 3275.6 516.7

box MIP solver is usually very fast. Interestingly, solving these MIPs turn out
to be often faster than solving the LP relaxations of the original models, while
providing better or equal dual bounds.

Table 4: MIP repair/improve heuristics standalone results.

# act. time(s) gap(%)

1 6.2 1.5
2 46.5 6.5
3 24.7 20.3
4 30.3 7.1
5 34.5 5.9
6 33.5 10.5
7 63.2 7.1
8 69.3 7.7
9 89.8 6.7

10 65.9 8.0

8. Application to the Multiple Knapsack Problem

In the present section, we specialize the general framework of Section 6 to
the multiple knapsack problem (MKP) Pisinger (1999); Scholl et al. (1997).
This a natural generalization of the traditional knapsack problem Martello and
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Toth (1990), where multiple knapsack are available. Given a set of n items with
weights wj and profits pj , and m knapsacks with capacity Ci, MKP reads

max

m∑
i=1

n∑
j=1

pjxij (27)

∀i ∈ {1, . . . ,m}
n∑
j=1

wjxij ≤ Ci (28)

∀j ∈ {1, . . . , n}
m∑
i=1

xij ≤ 1 (29)

x ∈ {0, 1}m×n (30)

where binary variable xij is set to 1 if and only if item j is loaded into knapsack
i. We assume that all m knapsacks are identical and have the same capacity C,
and that also some items are identical.

When applied to problem MKP, the orbital shrinking reformulation Q reads

max

K∑
k=1

pkyk (31)

K∑
k=1

wkyk ≤ mC (32)

∀k ∈ {1, . . . ,K} 0 ≤ yk ≤ |Vk| (33)

y ∈ ZK+ (34)

Intuitively, in Q we have a general integer variable yk for each set of identical
items and a single knapsack with capacity mC. Given a solution y∗, the corre-
sponding R(y∗) is thus a one dimensional bin packing instance, whose task is to
check whether the selected items can indeed be packed into m bins of capacity
C.

To solve the bin-packing problem above, we propose two different approaches.
The first approach is to deploy a standard compact CP model based on the global
binpacking constraint Shaw (2004) and exploiting the CDBF Gent and Walsh
(1997) branching scheme for search and symmetry breaking. Given an aggre-
gated solution y∗, we construct a vector s with the sizes of the items picked by
y∗, and sort it in non-decreasing order. Then we introduce a vector of variables
b, one for each item: the value of bj is the index of the bin where item j is
placed. Finally, we introduce a variable li for each bin, whose value is the load
of bin i. The domain of variables li is {0, . . . , C}. With this choice of variables,
the model reads:

binpacking(b, l, s) (35)

bj−1 ≤ bj if sj−1 = sj (36)

where (36) are symmetry breaking constraints.
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The second approach is to consider an extended model, akin to the well
known Gilmore and Gomory column generation approach for the cutting stock
problem Gilmore and Gomory (1961). Given the objects in y∗, we generate all
feasible packings p of a single bin of capacity C. Let P denote the set of all
feasible packings and, given packing p, let apk denote the number of items of
type k picked. The corresponding model is∑

p∈P
apkxp = y∗k (37)

∑
p∈P

xp = m (38)

xp ∈ Z+ (39)

where integer variables xp count how many bins are filled according to packing p.
In the following, we will denote this model with BPcg. Model BPcg is completely
symmetry free, but it needs an exponential number of columns in the worst case.

8.1. Computational Experiments

We implemented our codes in C++, using IBM ILOG CPLEX 12.4 cplex
(2012) as black box MIP solver and Gecode 3.7.3 Gecode Team (2012) as CP
solver. All tests have been performed on a PC with an Intel Core i5 CPU running
at 2.66GHz, with 8GB of RAM (only one CPU was used by each process). Each
method was given a time limit of 1 hour per instance.

In order to generate hard MKP instances, we followed the systematic study
in Pisinger (2005). More details about our instance generation procedure can be
found in Salvagnin (2013) In order to have a reasonable test set, we considered
instances with a number of items n ∈ {30, 40, 50} and number of knapsacks
m ∈ {3, 4, 5, 6}. For each pair of (n,m) values, we generated 10 random in-
stances following the procedure mentioned above, for a total of 120 instances.
All the instances are available from the authors upon request. For each set of
instances, we report aggregate results comparing the shifted geometric means of
the number of branch-and-cut nodes and the computation times of the different
methods. Note that we did not use specialized solvers, such as ad-hoc codes for
knapsack or bin packing problems, because the overall scheme is very general
and using the same (standard) optimization packages in all the methods allows
for a clearer comparison of the different approaches.

As a first step, we compared 2 different pure MIP formulations. One is the
natural formulation (27)−(30), denoted as cpxorig. The other is obtained by
aggregating the binary variables corresponding to identical items. The model,
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denoted as cpx, reads

max

m∑
i=1

K∑
k=1

pjzik (40)

∀i ∈ {1, . . . ,m}
K∑
k=1

wjzik ≤ C (41)

∀k ∈ {1, . . . ,K}
m∑
i=1

zik ≤ Uk (42)

z ∈ Zm×K+ (43)

where Uk is the number of items of type k. Note that cpx would be obtained
automatically from formulation cpxorig by applying the orbital shrinking pro-
cedure if the capacities of the knapsacks were different. While one could argue
that cpxorig is a modeling mistake, the current state-of-the-art in preprocessing
is not able to derive cpx automatically, while orbital shrinking would. A com-
parison of the two formulations is shown in Table 5. As expected, cpx clearly
outperforms cpxorig, solving 82 instances (out of 120) instead of 65. However,
cpx performance is rapidly dropping as the number of items and knapsacks
increases.

Table 5: Comparison between cpxorig and cpx.

# solved time (s) nodes
n m cpxorig cpx cpxorig cpx cpxorig cpx

30 3 10 10 1.16 0.26 3,857 1,280
30 4 9 10 12.28 3.42 65,374 16,961
30 5 6 8 291.75 79.82 2,765,978 1,045,128
30 6 7 7 108.83 48.05 248,222 164,825

40 3 9 10 19.48 2.72 103,372 9,117
40 4 8 8 351.07 35.56 3,476,180 421,551
40 5 2 3 2,905.70 1,460.95 25,349,383 23,897,899
40 6 3 5 308.29 234.19 626,717 805,007

50 3 6 9 70.73 12.44 259,099 32,310
50 4 2 7 1,574.34 254.58 8,181,128 4,434,707
50 5 0 2 3,600.00 700.69 26,017,660 4,200,977
50 6 3 3 308.29 307.98 586,400 1,025,907

Then, we compared three variants of the hybrid MIP/CP procedure de-
scribed in Section 8, that differs on the models used for the feasibility check. The
first variant, denoted by BPstd, is based on the compact model (35)−(36). The
second and the third variants are both based on the extended model (37)−(39),
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Table 6: Comparison between hybrid methods.

# solved time (s) nodes
n m BPstd BPcgCP BPcgMIP BPstd BPcgCP BPcgMIP BPstd BPcgCP BPcgMIP

30 3 10 10 10 0.07 0.05 0.05 245 270 270
30 4 10 10 10 0.18 0.12 0.08 157 160 160
30 5 10 10 10 1.28 0.26 0.14 90 88 88
30 6 10 10 10 1.24 0.25 0.13 42 40 40

40 3 10 10 10 0.64 0.42 0.17 502 540 540
40 4 10 10 10 0.54 0.20 0.17 225 224 224
40 5 9 10 10 8.63 1.20 0.62 202 225 225
40 6 8 10 10 17.96 1.65 0.46 48 60 60

50 3 10 10 10 1.59 0.93 0.44 837 914 914
50 4 10 10 10 4.06 1.11 0.60 337 335 335
50 5 6 8 10 137.52 23.97 3.58 172 245 335
50 6 7 7 10 17.15 12.73 2.85 17 16 140

but differs on the solver used: a CP solver for BPcgCP and a MIP solver for
BPcgMIP. All variants use model (31)−(34) as a master problem, which is fed to
CPLEX and solved with dual reductions disabled, to ensure correctness of the
method. CPLEX callbacks are used to implement the decomposition. A com-
parison of the three methods is given in Table 6. Note that the number of nodes
reported for hybrid methods refers to the master only — the nodes processed to
solve the feasibility checks are not added to the count, since they are not easily
comparable, in particular when a CP solver is used. Of course the computation
times refer to the whole solving process (slaves included). According to the
table, even the simplest model BPstd clearly outperforms cpx, solving 110 in-
stances (28 more) and with speedups up to two orders of magnitude. However,
as the number of knapsacks increases, symmetry can still be an issue for this
compact model, even though symmetry breaking is enforced by constraints (36)
and by CDBF. Replacing the compact model with the extended model, while
keeping the same solver, shows some definite improvement, increasing the num-
ber of solved instances from 110 to 115 and further reducing the running times.
Note that for the instances in our testbed, the number of feasible packings was
always manageable (at most a few thousands) and could always be generated
by Gecode in a fraction of a second. Still, on some instances, the CP solver
was not very effective in solving the feasibility model. The issue is well known
in the column generation community: branching on variables xp yields highly
unbalanced trees, because fixing a variable xp to a positive integer value trig-
gers a lot of propagations, while fixing it to zero has hardly any effect. In our
particular case, replacing the CP solver with a MIP solver did the trick. Indeed,
just solving the LP relaxation was sufficient in most cases to detect infeasibility.
BPcgMIP is able to solve all 120 instances, in less than four seconds (on average)
in the worst case. The reduction in the number of nodes is particularly signif-
icant: while cpx requires millions of nodes for some classes, BPcgMIP is always
solving the instances in fewer than 1,000 nodes.

Finally, Table 7 shows the average gap closed by the OSR relaxation with
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respect to the initial integrality gap, and the corresponding running times (ob-
tained by solving the orbital shrinking relaxation with a black box MIP solver,
without the machinery developed in this section). According to the table, orbital
shrinking yields a much tighter relaxation than standard linear programming,
while still being very cheap to compute.

Table 7: Average gap closed by orbital shrinking and corresponding time.

n m gap closed time (s)

30 3 45.3% 0.007
30 4 46.6% 0.004
30 5 42.8% 0.004
30 6 54.4% 0.002

40 3 48.4% 0.013
40 4 67.2% 0.007
40 5 55.3% 0.005
40 6 58.6% 0.003

50 3 52.7% 0.031
50 4 64.5% 0.030
50 5 61.1% 0.006
50 6 76.7% 0.003

9. Conclusions

We discussed a new methodology for deriving a relaxation of symmetric
discrete optimization problems, based on variable aggregation within orbits.

The approach, called orbital shrinking, sometimes leads to an exact and
symmetry-free reformulation of a given problem. In other cases, orbital shrink-
ing produces just a relaxation of the original problem, so it needs to be em-
bedded in a more general solution scheme. We have described a master-slave
framework akin to Benders’ decomposition, where orbital shrinking acts as the
master problem and generates a sequence of aggregated solutions to be checked
for feasibility by a suitable slave subproblem — possibly based on Constraint
Programming. Although the framework itself is not new, a novelty of our ap-
proach is that it is driven by the automatically-detected formulation group at
hand. Computational results on two specific applications prove the effectiveness
of the scheme.

Future work should be devoted to the study of sufficient conditions under
which orbital shrinking produces an exact reformulation. Practical applications
of orbital shrinking decomposition to other symmetric problems are also worth
investigating.
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