Noname manuscript No.
(will be inserted by the editor)

A Relax-and-Cut Framework
for Gomory Mixed-Integer Cuts

Matteo Fischetti - Domenico Salvagnin

the date of receipt and acceptance should be inserted later

Abstract Gomory Mixed-Integer Cuts (GMICs) are widely used in modern
branch-and-cut codes for the solution of Mixed-Integer Programs. Typically,
GMICs are iteratively generated from the optimal basis of the current Linear
Programming (LP) relaxation, and immediately added to the LP before the
next round of cuts is generated. Unfortunately, this approach is prone to insta-
bility. In this paper we analyze a different scheme for the generation of rank-1
GMICs read from a basis of the original LP—the one before the addition of
any cut. We adopt a relax-and-cut approach where the generated GMICs are
not added to the current LP, but immediately relaxed in a Lagrangian fashion.
Various elaborations of the basic idea are presented, that lead to very fast—
yet accurate—variants of the basic scheme. Very encouraging computational
results are presented, with a comparison with alternative techniques from the
literature also aimed at improving the GMIC quality. We also show how our
method can be integrated with other cut generators, and successfully used in
a cut-and-branch enumerative framework.

Keywords :
Mixed-Integer Programming, Gomory cuts, Lagrangian relaxation, Relax
and Cut

1 Introduction

Gomory Mixed-Integer Cuts (GMICs) for general MIPs have been introduced
by Ralph Gomory about 50 years ago in his seminal paper [22]. However,

Matteo Fischetti
DEI, University of Padova, Italy,
E-mail: matteo.fischetti@unipd.it

Domenico Salvagnin
DMPA, University of Padova, Italy
E-mail: salvagni@math.unipd.it

these cuts were not used in practice until the seminal work of Balas, Ceria,
Cornuéjols and Natraj [5], who found for the first time an effective way to ex-
ploit them in a branch-and-cut context [14], stressing the importance of their
generation in rounds, i.e., from all the tableau rows with fractional right hand
side. Nowadays GMICs are of fundamental importance for branch-and-cut
Mixed-Integer Program (MIP) solvers, that are however quite conservative in
their use because of known issues due to the iterative accumulation of GMICs
in the optimal Linear Programming (LP) basis, which leads to numerical in-
stability due a typically exponential growth of the determinant of the LP basis.

Recent work on the subject suggests however that stability issues are
largely due to the overall framework where GMICs are used, rather than to
the GMICs themselves. Indeed, the two main cutting plane modules (the LP
solver and the cut generator) form a closed-loop system that is intrinsically
prone to instability—unless a “decoupling filter” is introduced in the loop.
Breaking the feedback is therefore a must if one wants to really exploit the
power of GMICs.

In this paper we propose a new mechanism to break the entanglement
between LP bases and GMICs. More specifically, in our framework the gen-
erated GMICs are not added to the current LP, but immediately relaxed in
a Lagrangian fashion. In this way, GMICs are always generated from a (La-
grangian near-optimal) basis of the original LP, hence their quality is not likely
to deteriorate in the long run as we do not allow GMICs to accumulate in the
LP basis.

The approach of relaxing cuts right after their separation is known in the
literature as Relaz-and-Cut. It was introduced independently by Lucena [26]
and by Escudero, Guignard and Malik [19]—who actually proposed the relax-
and-cut name; see Lucena [27] for a survey of the technique and of its appli-
cations. Very recently, Lucena [28] applied a relax-and-cut approach to the
solution of hard single 0-1 knapsack problems, where fractional Gomory cuts
were used, for the first time, in a Lagrangian framework.

The paper is organized as follows. Section 2 briefly reviews standard GMIC
frameworks from the literature. In Section 3 we introduce our notation and
describe the relax-and-cut framework. Various elaborations of the basic idea
are presented in Section 4, that lead to faster yet accurate variants of the basic
relax-and-cut scheme. Very encouraging computational results are presented
in Section 5, with a comparison with alternative techniques from the litera-
ture also aimed at improving the GMIC quality, namely those proposed very
recently by Balas and Perregaard [7] and by Dash and Goycoolea [17]. In the
same section we also discuss how our method can be integrated with other
cut generators, and successfully used in a cut-and-branch enumerative frame-
work. Some conclusions and possible directions of work are finally addressed
in Section 6.

We assume the reader has some familiarity with MIP cuts; see, e.g., Cornuéjols
[15] for an in-depth treatment of the subject.

—_—>] —>
obj. LP x*
Solver
constr.s
cuts tableau
GMIC
Generator

Fig. 1 Traditional closed-loop scheme for GMICs.

2 Standard frameworks for GMICs

An explanation of GMIC instability in terms of closed-loop dynamic systems
was pointed out by Zanette, Fischetti and Balas [30], who presented compu-
tational experiments showing that reading the LP optimal solution to cut and
the Gomory cuts themselves from the same LP basis almost invariably creates
a dangerous feedback in the long run. Figure 1 gives an illustration of the
closed-loop nature of the standard GMIC framework.

It is worth observing that feedback issues are common to other cutting
plane procedures that derive cuts directly from tableau information of the
enlarged LP that includes previously-generated cuts (e.g., those related to
Gomory’s corner polyhedron, including cyclic-group cuts, intersection cuts,
multi-row cuts, etc.). This is not necessarily the case when using methods
based on an external cut generation LP (e.g., disjunctive methods using dis-
junctions not read from the optimal tableau), or when the derived cuts are
post-processed so as to reduce their correlation with the optimal tableau (e.g.,
through cut strengthening methods [7,17] or by lexicographic search [30]). In
particular, for 0-1 MIPs, Bonami and Minoux [10] successfully generated vio-
lated lift-and-project cuts (i.e., disjunctive cuts from a trivial disjunction) by
first solving a cut generation LP, and then by strengthening them through the
Balas and Jeroslow procedure [6].

A different framework for Gomory cuts was recently proposed by Fischetti
and Lodi in [20]. The aim of their work was actually to compute the best
possible bound obtainable with rank-1 fractional Gomory cuts. The fact of
restricting to rank-1 cuts forced the authors to get rid of the classical sep-
aration scheme, and to model the separation problem through an auxiliary
MIP to be solved by an external module. The surprising outcome was a nu-
merically stable cutting plane method where rank-1 fractional Gomory cuts
alone produced very tight bounds—though the separation overhead was too
large to be practical in most cases. Note that, in that scheme, the separation

procedure did not have access to the optimal LP basis, but only received on
input the point to be separated—hence loosening the optimization and sepa-
ration entanglement. As a consequence, even if the point x* to be separated
possibly did not change significantly at some iterations, it was unlikely that
the separated cuts were as heavily correlated as in the classical scheme—in
this context, the well-known erratic behavior of MIP solvers that often return
quite different solutions for almost identical input, turned out to be beneficial
in that it acted as a diversification in the cut selection policy. These results
were later confirmed for general (i.e., possibly not read from a tableau row)
GMICs by Balas and Saxena [8] and by Dash, Giinliik, and Lodi [18], who
adopted the same scheme but generalized the MIP separation module so as to
deal with GMIC separation.

The above discussion suggests that an improved performance can be at-
tained if one does not insist on reading GMICs from the optimal basis of
the current LP, that includes previously generated GMICs. Progresses in this
direction have been obtained recently by using one of the following two ap-
proaches. Let z* be an optimal vertex of the “large LP” (the one defined by
the original constraints plus the GMICs generated in the previous iterations),
and let B* be an associated optimal basis.

(i) Balas and Perregaard [7] perform a sequence of pivots on the tableau of
the large LP leading to a (possibly non-optimal or even infeasible) basis
of the same large LP that produces a deeper cut with respect to the given
T*.

(ii) Dash and Goycoolea [17] heuristically look for a basis B of the original
LP that is “close enough to B*”, in the hope of cutting the given x* with
rank-1 GMICs associated with B; this is done, e.g., by removing from A
all the columns that are nonbasic with respect to x*, thus restricting B to

be a submatrix of B*.

3 A relax-and-cut framework for GMICs

Consider a generic MIP of the form
min{cz : Ar =b, x > 0, z; integer Vj € J}

where A € Qm*" b € Q™, ¢ € Q", and J C {1,---,n} is the index set of
the integer variables. As customary, let P := {x € R} : Az = b} denote the
LP relaxation polyhedron, that we assume to be bounded and nonempty, so
as to guarantee the existence of an optimal solution for any linear objective
function.

Given a large (possibly exponential) family of linear cuts

o'z >af, i=1,...,M (1)

we aim at computing—possibly in an approximate way—the value

min cx
z1:=x€P (2)
alr>af, i=1,....M

In our basic application, family (1) consists of the GMICs associated with
all possible primal-feasible bases of system Ax = b, i.e., z; is a lower bound
on the first GMIC closure addressed by Balas and Saxena [8] and by Dash,
Giinlik, and Lodi [18]. However, as discussed in the computational section,
family (1) is in principle allowed to contain any kind of linear inequalities,
including problem-specific cuts and/or GMICs of any rank, or even invalid
linear conditions related, e.g., to branching conditions.

A standard solution approach for (2) consists in dualizing cuts (1) in a
Lagrangian fashion, thus obtaining the Lagrangian dual problem

M
max {L(u) := min{cz + Z ui(af —a'z): x € P}} (3)

u>0 .
i=1

whose optimal value is known to coincide with z.

The solution of (3) can be attempted through very simple iterative pro-
cedures known as subgradient methods, or through more sophisticated and
accurate schemes such as the bundle method; see e.g. [24]. All the above solu-
tion schemes generate a sequence of dual points u® > 0 meant to converge to
an optimal dual solution u*. For each u* in the sequence, an optimal solution
x* € P of the inner-minimization in (3) is computed, along with the associated
Lagrangian value

M
L(u*) = ca® + Zuf(ag —a'zh)
i=1

and subgradient s* € RM, whose components are just the cut violations

k._ i ik s
s =ap—a'zt, i=1,...,M

(s¥ > 0 for violated cuts, and s¥ < 0 for slack/tight cuts). In particular,
the ability of computing the subgradient is essential for the convergence of
overall scheme—this is not a trivial task when the cut family is described only
implicitly.

In our context, family (1) is by far too large to be computed explicitly,
so we store only some of its members, using a data structure called cut pool.
Cut duplication in the pool is heuristically avoided by normalizing the cut
right-hand-side and by using a hash function.

The cut pool is initially empty, or it can contain some heuristic collection
of warm-start cuts. The pool is then iteratively extended by means of rank-1
GMICs that are heuristically generated, on the fly, during the process of solving
the Lagrangian dual problem. More specifically, if the Lagrangian subproblem
at a certain u* is solved by the simplex method and an optimal vertex z* of

_] —>
constr.s LP x*
Solver
cX obj.
A
Lagr. tableau
Filter
GMIC
cuts Generator

Fig. 2 Basic relax-and-cut scheme for GMICs.

P with fractional components is found, we can just read a round of rank-1
GMICs from the optimal LP basis and feed the cut pool. Note that these cuts
are always associated with a primal-feasible basis of the original system P, so
they are globally valid for our MIP problem even if the cut pool contains invalid
cuts (e.g., branching conditions or temporary diversification cuts). Also note
that, although violated by x*, some of these cuts can actually belong already
to the current pool—an indication that their Lagrangian multiplier should be
increased in the next iterations.

Our relax-and-cut GMIC framework is depicted in Figure 2, to be compared
with the “traditional one” as in Figure 1. A notable characteristic of this
scheme is that, differently from traditional cutting plane schemes, there is
no natural “fractional point to cut”, and the discovery of new cuts to be
added to the pool is beneficial mainly because new components of the “true”
subgradient s* are computed, thus improving the chances of convergence to
the “true” optimal dual value z; of the overall Lagrangian scheme.

4 Implementations

We next describe three very basic heuristics for the Lagrangian dual problem
(3), that are intended to evaluate the potential of using GMICs in a relax-
and-cut framework. The investigation of more sophisticated schemes such as
the bundle method is left to future investigation.

4.1 Subgradient optimization

The basic algorithm underlying our heuristics is the subgradient method. The
subgradient method is an adaptation of the gradient method to the case of
maximization of nondifferentiable concave functions, such as L(u). It starts

with a tentative point u® > 0 (u° = 0 in our implementation) and then
iteratively constructs a sequence of points u* according to the following rule:

WF L = (uF 4 As®) 4
where s* is a subgradient of L(-) in u*, Ay > 0 is an appropriate parame-
ter called step length, and (-)4 denotes the projection onto the nonnegative
orthant.

The asymptotic convergence of the method is guaranteed by the properties
of the subgradient and by the choice of appropriate step sizes. A step-size rule
often used in practice, usually known as relazation step length or Polyak’s step
length, computes
\o _ #eUB = L)

' [Is*]?

where p is a parameter satisfying 0 < px < 2, and U B is the unknown optimal
dual value z;, typically replaced by an upper bound on z;. In our code, this
upper bound is computed at the very beginning by taking the best integer
solution found by a MIP solver at the root node, or an appropriate multiple of
the LP relaxation if none is found (in particular, the multiplier was set to 2.0 if
the LP relaxation value was positive, and to 0.5 otherwise). Such upper bound
information is however never used to perform reduced-cost fixing of variables.
As to g, it is adjusted dynamically in order to try to speed up convergence,
using quite an elaborate update strategy inspired by the computational studies
reported in [11,23]. In particular, let best L B denote the best Lagrangian lower
bound so far. At the beginning of each Lagrangian iteration, we compute a
“reference” interval A = UB — bestL B, that we use to guide our strategy. If
L(u) < bestLB — A for 10 consecutive iterations, we halve py, and backtrack
to the best u* so far. Otherwise, let avgLB be the average value of L(u) in
the last p = 100 iterations. If best LB has improved by less than 0.01A in the
last p iterations, then we update u as

10py if bestLB — avgLB < 0.001A
pr = 2 if 0.001A < bestLB — avgLB < 0.01A
/2 otherwise

In the following, we will denote by subg our subgradient implementation
with a limit of 10,000 iterations. The starting step size parameter is aggres-
sively set to pug = 10. This is justified by the fact that in our scenario the
convergence of the method is not guaranteed (and is also unlikely in practice),
because we are dealing explicitly only with a small subset of cuts. In particu-
lar, we always deal with truncated subgradients and, even more importantly,
we have no way of generating violated GMICs apart from reading them from
the LP tableau. According to our computational experience, in this scenario a
small initial value for u is quite inappropriate because it causes the method to
saturate far from an optimal Lagrangian dual solution v*, with no possibility
for recovery.

Finally, to avoid overloading the cut pool we read a round of GMICs at
every K-th subgradient iteration, where K = 10 in our implementation. In
addition, we do not add new entries to the Lagrangian vector u* every time
new cuts are added to the pool, but only every 50 subgradient iterations, so
as to let the subgradient method stabilize somehow before dealing with new
Lagrangian components. In this view, our implementation is between the so-
called delayed and non-delayed relax-and-cut methods [27].

4.2 Hybrid LP and subgradient optimization

The basic subgradient method presented in the previous subsection has several
drawbacks when applied to (3). In particular, finding the right combination
of parameters to obtain a satisfactory convergence is definitely tricky. In our
setting, we found beneficial to recompute, from time to time, the optimal La-
grangian multipliers u; for all the cuts in the current pool. This amounts to
solving the large LP defined by the original constraints plus all the cuts in the
pool; the optimal dual values of the cuts then correspond to the optimal La-
grangian multipliers. The solution of the large LP can be done quite efficiently
in practice by means of a dynamic selection policy of the pool cuts based on
the concepts of efficacy and orthogonality, as described in [1,3,5]. Note that
this policy is usually not attractive in a classical setting where the number of
dualized constraints is fixed—solving the large LP would be just as hard as
solving (3). This is however not the case in our context, because the pool is
extended dynamically and stores a (large but) manageable subset of cuts.

In what follows, we will denote by hybr our implementation of a hybrid
subgradient method for solving (3), where we periodically compute the optimal
multipliers of the pool cuts by solving the large LP (note however that we do
not read GMICs from the optimal basis of the large LP). In our code this is
done every 1,000 subgradient iterations. All other parameters are the same as
in subg.

4.3 Fast hybrid framework

Although the hybrid version hybr is definitely an improvement over subg,
both methods are still quite demanding as far as running time is concerned.
The reason is twofold. First, we may spend a lot of time generating GMICs
from useless bases (contrarily to popular belief, reading cuts from the tableau
comes not for free, although it is very cheap compared to other separation
methods). Second, the LPs change significantly from one iteration to the next
one, because of the zig-zagging nature of the dual multipliers induced by the
standard subgradient algorithm, hence the usual warm-start of the simplex
algorithm is less effective—mnote that this drawback may be reduced by using
more stabilized algorithms like the bundle method.

We developed some variants of hybr tweaked for speed, trying to sacrifice
the quality of the computed bound on z; as little as possible. Speed is obtained

by drastically reducing the number of subgradient iterations and by using a
very small step length parameter (p = 0.01 in our code). The small step size
yields more parameterized LPs where warm-start is more effective, and the
reduced number of iterations speeds up the whole approach. In a sense, we are
no longer relying on the step size for the convergence of the method—which
is taken care of by the large LPs used to get the optimal multipliers—and we
use the subgradient method just to sample near-optimal Lagrangian bases of
the original system generating rank-1 GMICs (this will be called the sampling
phase in the sequel). It is worth noting that the small step length parameter
and the reduced number of iterations essentially turn off the step-length update
strategy that we have described in Section 4.1.

We implemented two variants of the above method, namely fast and
faster. In both variants we solve the large LP to compute the Lagrangian
optimal multipliers only 10 times, and we generate GMICs at every subgradi-
ent iteration. The difference is in the number of subgradient iterations in the
sampling phase between two consecutive large-LP resolutions, which is 100 for
fast, and just 50 for faster.

It is worth observing that the methods above can be interpreted as a way
to decompose a la Dantzig- Wolfe the optimal solution x* of the large LP into
a suitable convex combination 3 A\;jzd of vertices 27 of P, and to separate
these 27 in the attempt of finding valid cuts violated by z*. This links those
variants to the work of Ralphs, Kopman, Pulleyblank, and Trotter [29], where
a similar idea was applied to separate capacity cuts for the Capacitated Vehicle
Routing Problem—the fractional CVRP vertex being expressed as the convex
combination of m-TSP integer solutions, each of which is easily evaluated to
find violated capacity cuts.

4.4 The overall scheme

The four variants described in the present section correspond to different pa-
rameter choices of a common scheme, as described in Algorithm 1. According
to the scheme, a first round of GMICs is read from the optimal tableau of
the original relaxation, in order to initialize the pool (lines 1-5). If the prob-
lem is not solved, a main loop of at most L iterations is started at line 6: at
each iteration, I,.x subgradient iterations are performed, starting from the
Lagrangian multiplier vector ug for the cuts in the pool. Note that the subgra-
dient algorithm is considered here as a black-box solver, which is given in input
the original relaxation P, an initial list of cuts (pool) with the corresponding
initial Lagrangian multiplier vector ug, and some parameters (an initial value
po for the Lagrangian step-size parameter p, the maximum number of sub-
gradient iterations Ipax, and the iteration interval K for new cut generation).
The subgradient procedure updates the cut pool on return. Finally, at lines
9-11 the current relaxation is solved to optimality.

10

Algorithm 1: Relax-and-cut for GMICs—the basic scheme.

input : MIP = min{cTz : € P, z; integer Vj € J}, number of main iterations L,
starting value pg for the step-size parameter u, subgradient iteration limit
Imax, separation interval K
output: a polyhedron P’ approximating the first GMIC closure
z* = LPSolve (P)
pool = ReadGMICs (P)
P’ = P n {cuts in pool}
z* = LPSolve (P’)
if x7 is integer Vj € J then return P’
for i=1 to L do
up = optimal LP dual vector for cuts in pool
pool = SubgradientRun (P, pool, ug, to, Imax, K)
P'= P N {cuts in pool}
z* = LPSolve (P’)
if x;‘ is integer Vj € J then return P’

© WO Uk WN

[
=]

end
return P’

e
[V V]

It is easy to easy that the four variants described in the present section
correspond to the four different settings of the parameters of Algorithm 1
presented in Table 1.

Table 1 Different parameter settings for Algorithm 1.

parameters
variant L " Tmax K
subg 1 10 10000 10
hybr 10 10 1000 10
fast 10 0.01 100 1
faster 10 0.01 50 1

5 Computational results

We tested our variants of the relax-and-cut framework for GMICs on the
problem instances in MIPLIB 3.0 [9] and MIPLIB 2003 [2]. Following [17], we
omitted all instances where there is no improvement after one round of GMICs
read from the optimal tableau, or where no integer solution is known. In the
end, we were left with 54 instances from MIPLIB 3.0, and 20 instances from
MIPLIB 2003. To improve readability, we report the outcome of our experi-
ments through average figures only, whereas instance-by-instance information
are given in the appendix.

We implemented our code in C++, using IBM ILOG Cplex 11.2 as black
box LP solver (its primal heuristics were also used to compute the subgradient

11

upper bound U B). All tests have been performed on a PC with an Intel Q6600
CPU running at 2.40GHz, with 4GB of RAM (only one CPU was used by each
process). As far as the GMIC generation is concerned, for a given LP basis we
try to generate a GMIC from every row where the corresponding basic variable
has a fractionality of at least 0.001. The cut is however discarded if its final
dynamism, i.e., the ratio between the greatest and smallest absolute value of
the cut coefficients, is greater than 10'°. All the generated GMICs are stored in
our cut pool, whose maximum size is fixed to 1GB of RAM: whenever this limit
is reached, we perform a purge operation based on cut efficacy (with respect
to the last large LP solution z* available) and cut age. It is worth noting that
some instances in our testbed do not fulfill the boundedness assumption on
P, hence in some (rare) occasions the Lagrangian subproblem turns out to be
unbounded. In this case, we simply interrupt the subgradient loop, and let the
overall method continue.

5.1 Approximating the first GMIC closure

In our first set of experiments we compared the ability (and speed) of the
proposed methods in approximating the first GMIC closure for the problems
in our testbed. The first GMIC closure has received quite a lot of attention
in the last years, and it was computationally proved that it can provide a
tight approximation of the convex hull of the feasible solutions. In addition,
rank-1 GMICs are read from the original tableau, hence they are generally
considered safe from the numerical point of view. Note that our method can
only generate cuts from primal-feasible bases, hence it can produce a weaker
bound than that associated with the first GMIC closure [16].

Table 2 Average gap closed and computing times for rank-1 methods.

MIPLIB 3.0 MIPLIB 2003
method cl.gap time (s) cl.gap time (s)
1gmi 26.4% 0.03 18.3% 0.54
faster 57.1% 1.53 43.3% 33.33
fast 58.9% 2.57 45.5% 58.40
hybr 60.1% 15.78 48.6% 314.73
subg 55.0% 24.97 43.5% 290.82
dgDef 60.8% 23.78 39.7% 853.85

In Table 2 we report the average gap closed by all methods that generate
rank-1 GMICs only, as well as the corresponding computing times (geometric
means). We recall that for a given instance, the gap closed is defined as 100 -
(z — z0)/(opt — zp), where zy is the value of the initial LP relaxation, z is
the value of the final LP relaxation, and opt is the best known solution. For
comparison, we report also the average gap closed by one round of GMIC read

12

from the first optimal tableau (1gmi), as well as the average gap closed with
the default method proposed by Dash and Goycoolea (dgDef), as reported
n [17]. All computing times are given in CPU seconds on our Intel machine
running at 2.4 GHz, except for dgDef where we just report the computing
times given in [17], without any speed conversion—the entry for MIPLIB 3.0
refers to a 1.4 GHz PowerPC machine (about 2 times slower than our PC),
while the entry for MIPLIB 2003 refers to a 4.2 GHz PowerPC machine (about
twice as fast as our PC).

According to the table, the relax-and-cut methods performed surprisingly
well, in particular for the hard MIPLIB 2003 instances where all of them
outperformed dgDef in terms of both quality and speed. As far as the bound
quality is concerned, the best method appears to be hybr, mainly because of
its improved convergence with respect to subg, and of the much larger number
of subgradient iterations (and hence of LP bases) generated with respect to
the two fast versions. As a reference, Balas and Saxena [8] and Dash, Giinliik
and Lodi [18] report a closed gap of 77.9% for the MIPLIB 3.0 testbed when
optimizing over the split closure.

The two fast versions also performed very well, in particular faster that
proved to be really fast (more than 10 times faster than dgDef) and quite
accurate. It is worth observing that about 75% of the computing time for fast
and faster was spent in the sampling phase: 40% for LP reoptimizations, and
35% for actually reading the GMICs from the tableau and projecting slack
variables away. Quite surprisingly, the solution of the large LPs through a
dynamic pricing of the pool cuts required just 15% of the total computing
time.

5.2 Higher rank GMICs

In this subsection we investigate the possibility of generating GMICs of rank
greater than 1. Unfortunately there is no fast way to compute the exact rank of
a cut, hence we use an easy upper bound where the rows of the original system
Az = b are defined to be of rank 0, and the rank of a GMIC is computed as
the maximum rank of the involved rows, plus one. Having computed the above
upper bound for each GMIC, we avoid storing in the pool any GMIC whose
upper bound exceeds an input rank limit k£ (k =2 or 5, in our tests).

Our relax-and-cut framework can be extended in many different ways to
generate higher-rank GMICs. In particular, given a maximum allowed rank k,
it is possible to:

a) Generate k rounds of GMICs in a standard way, use them to initialize
the cut pool, and then apply our method to add rank-1 GMICs on top
of them. This very simple strategy turned out not to work very well in
practice, closing significantly less gap than the rank-1 version.

b) Apply one of the relax-and-cut variants of the previous subsection until a
termination condition is reached. At this point add to the original formula-
tion (some of) the GMICs that are tight at the large-LP optimal solution,

13

and repeat k times. This approach works quite well as far as the final bound
is concerned, but it is computationally expensive because we soon have to
work with bigger (and denser) tableaux.

¢) Stick to rank-1 GMICs in the sampling phase, never enlarging the original
system. However, each time the large LP is solved to recompute the dual
multipliers (this can happen at most k times), add to the pool (but not
to the original formulation) all the GMICs read from the large-LP optimal
basis.

d) As before, stick to rank-1 GMICs in the sampling phase. If however no
cut separating the previous large-LP solution z* is found in the sampling
phase, then add to the pool all GMICs read from the large LP optimal
basis, and continue. This way, the generation of higher-rank cuts acts as a
diversification step, used to escape a local deadlock, after which standard
rank-1 separation is resumed.

According to our preliminary computational experience, the last two schemes
give the best compromise between bound quality and speed. In particular, ¢)
takes almost the same computing time as its rank-1 counterpart in Table 2,
and produces slightly improved bounds. Although slower, option d) closes
significantly more gap than c), hence it is more attractive for a comparison
with rank-1 cuts.

Table 3 Average gap closed and computing times for higher rank methods.

MIPLIB 3.0 MIPLIB 2003
method rank cl.gap time (s) cl.gap time (s)
gmi 1 26.4% 0.03 18.3% 0.54
faster 1 57.1% 1.53 43.3% 33.33
fast 1 58.9% 2.57 45.5% 58.40
gmi 2 35.2% 0.04 24.0% 0.88
faster 2 61.4% 3.19 47.2% 58.37
fast 2 63.7% 5.98 48.5% 106.76
gmi 5 46.6% 0.08 30.3% 2.17
faster 5 65.1% 6.45 49.9% 126.65
fast 5 66.8% 12.03 51.1% 238.33
L&P 10 55.6% 3.75 30.7% 95.23

In Table 3 we report the average gap closed by our fast versions when
higher-rank GMICs are generated according to scheme d) above. Computing
times (geometric means) are also reported. Rank-1 rows are taken from the
previous table.

In the table, row gmi refers to 1, 2 or 5 rounds of GMICs. For the sake of
comparison, we also report the average gap closed by 10 rounds of Lift&Project
cuts (L&P), as described in [4]. To obtain the Lift&Project bounds and run-
ning times we ran the latest version of separator CglLandP [12] contained in

14

the COIN-OR [13] package Cgl 0.55, using Clp 1.11 as black box LP solver
(the separator did not work with Cplex because of the lack of some pivoting
procedures). This separation procedure was run with default settings, apart
from the minimum fractionality of the basic variables used to generate cuts,
which was set to 0.001 as in the other separators. All computing times are
given in seconds on our Intel machine running at 2.4 GHz.

Our fast procedures proved quite effective also in this setting, providing
significantly better bounds than L&P in a comparable or shorter amount of
time, even when restricting to rank-1 GMICs. As expected, increasing the cut
rank improves the quality of the bound by a significant amount, though it is
not clear whether this improvement is worth the time overhead—also taking
into account that GMICs of higher rank tend to be numerically less reliable.
Similarly, it is not clear whether the bound improvement achieved by fast
with respect to faster is worth the increased computing time.

5.3 Pool initialization by pseudo-branching

In order to start our relax-and-cut procedure, the cut pool has to be initialized
with some cuts. In the computational results presented so far, the cut pool was
just fed with the GMICs that could be generated from the optimal tableau of
the very first LP relaxation. More elaborate strategies can however be used.

We next address a very simple mechanism for gathering a significant num-
ber of LP bases “around the root-node LP optimum”. Roughly speaking, we
simulate a simple branching strategy and derive a collection of LP bases whose
associated GMICs are used to initialize our cut pool. A similar idea was ap-
plied already in [17], a main difference being however that we do not pretend
the generated GMICs be violated by the root-node LP optimum, but simply
use them to warm-start our relax-and-cut method.

More specifically, our pseudo-branching scheme implements the following
diving procedure; see Figure 3 for an illustration. Assume the MIP to be solved
involves binary variables, as it is the case in most practical situations. After
solving the LP relaxation, binary variables are ranked in order of decreasing
fractionality (the closer to 0.5 the better) and we randomly choose the branch-
ing variable x; (say) among the first 5 in such a sorted list. Then, we randomly
choose a branching direction and perform a branching step by increasing (in
case of a left-branch) or decreasing (in case of a right-branch) cost ¢, by a
large constant. The procedure is repeated until a depth limit isreached (10 in
our tests). Note that our branching mechanism guarantees the global validity
of the generated GMICs, and could heuristically be applied to general-integer
branching variables as well—as a rough way to generate new LP bases not too
far from the current one.

For each instance in our testbed, we performed 10 dives with the algorithm
just described and collected the GMICs associated with all the generated bases.
Results are shown in Table 4, both for the procedure used as a standalone
tool, namely dive (alone), or used to initialize the fast and faster cut

15

Pseudo
Branching
(0..0,%£,0..0)
cx obj. LP X*
N Solver |
constr.s
tableau
>

Cut |cuts GMIC

Pool Generator |

Fig. 3 Pseudo-branching scheme.

pools (dive+fast and dive+faster, respectively). The format of the table is
the same as in Table 2; rows L&P, dgDef, fast and faster are copied from
previous tables. The results show that dive (alone) is a very fast way to close
a significant portion of the gap, and appears quite competitive with previous
methods such as L&P and dgDef on MIPLIB-2003 instances. It also turns out
to be effective when used together with faster, being able to close essentially
the same gap as fast in a significantly shorter computing time. It usefulness
as warm start of fast is instead less clear (at least in its current tuning), in
that it only allows to close about 1% more gap than fast alone.

Table 4 Effect of pseudo-branching on the average gap closed and computing time.

MIPLIB 3.0 MIPLIB 2003
method cl.gap time (s) cl.gap time (s)
1gmi 26.4% 0.03 18.3% 0.54
dive (alone) 37.8% 0.31 31.5% 7.45
faster 57.1% 1.53 43.3% 33.33
dive+faster 59.2% 1.70 46.4% 40.24
fast 58.9% 2.57 45.5% 58.40
divet+fast 60.6% 2.79 46.5% 69.73
L&P 55.6% 3.75 30.7% 95.23

dgDef 60.8% 23.78 39.7% 853.85

16

5.4 Working on top of other cuts

Our method is meant to add rank-1 GMICs on top of a collection of other cuts
collected in a cut pool. In our previous experiments the cut pool only contained
GMICs collected in the previous iterations. However, it seems reasonable to
allow the pool to contain other classes of (more combinatorial) cuts, e.g., all
those generated at the root node by a modern MIP solver. In this setting,
the preprocessed model and the generated cuts (stored in the cut pool) can
be provided on input to our relax-and-cut scheme, in the attempt of reducing
even further the integrality gap at the root node.

This is indeed the experiment we tried, using IBM ILOG Cplex 11.2 to
perform the root node processing of the testbed problems. After the root node
processing is finished, we reload the preprocessed model, store its additional
cuts into our own cut pool, and launch our fast method to add rank-1 GMICs
on top of the Cplex’s one. Note that Cplex’s cuts are mot incorporated in
the rank-0 model, i.e., the additional GMICs we generate are of rank 1 with
respect to the preprocessed formulation without Cplex’s cuts (this improves
the numerical stability of the overall approach). Note that, in this case, our
cuts are not necessarily of rank 1 for the original formulation.

We considered two Cplex variants to perform the root node processing
before the addition of our cuts: in cpx we used the default setting, while in
cpx2 we increased the cut generation emphasis to 2 (aggressive cut policy).
The results of our experiment are presented in Table 5.

Table 5 GMICs on top of other cuts.

MIPLIB 3.0 MIPLIB 2003
method cl.gap time (s) cl.gap time (s)
cpx 55.5% 0.17 49.0% 6.57
cpx+fast 70.0% 2.14 58.2% 56.03
cpx2 65.3% 0.56 52.9% 22.48
cpx2+fast 72.2% 1.98 59.6% 59.75

According to the table, both cpx and cpx2 are effective in reducing the
integrality gap in a short computing time, which is not surprising because
they exploit a rich arsenal of cut separation procedures that go far beyond
GMICs. The combination cpx+fast reduces significantly more gap than cpx2
(58.2% vs. 52.9% on the hard MIPLIB 2003 testbed), but requires about 3
times more computing time. Interestingly, cpx2+fast is able to close about
15% of the residual gap after cpx2.

17

5.5 Use in a Cut&Branch scheme

The ultimate use of cuts is of course the exact solution of the MIP at hand.
The state-of-the-art approach for exact MIP solvers is Branch&Cut, where
cuts are possibly generated at every branching node. In practice, however,
cuts are extensively used at the root node only, and a very limited effort to
generate them is performed at the other branching nodes. Following other
authors, including [4], we therefore decided to evaluate the potential of our
new cut generation framework by using the so-called Cut&Branch scheme. In
other words, cut generation is only allowed at the root node to improve the
current LP formulation, as we did in the previous subsection, whereas all other
nodes are processed by a black-box MIP solver (Cplex 11.2 in our case) with
cut generation turned off.

In our experiments, we removed from our testbed all the “easy” instances
that can be solved by Cplex 11.2 (default setting) is less than one hour on our
PC. We also removed instance glass4 that created numerical problems for all
the compared methods. The remaining 18 instances have been processed with
a total time limit of 10,000 seconds each. The root node of each instance has
been processed by any of the three codes cpx, cpx2 and cpx+fast described
in the previous subsection.

Cumulative results are presented in Table 6, whereas detailed results are
reported in Table 7. In these tables, the following information is reported:
solved is the number of solved instances within the time limit (out of 18),
time is the total computing time, including the root node processing, in sec-
onds (geometric mean), nodes is the number of nodes enumerated (geometric
mean), and fin.gap is the final gap between the primal and dual bounds at
the end of the computation (arithmetic mean). For the sake of comparison, in
Table 6 we also report the cumulative results for Cplex 11.2 branch-and-cut
with default settings (cpx-def) on the original models.

)

Table 6 Cumulative results in a Cut&Branch context.

method solved time nodes fin.gap
cpx 1 9,780 253,090 21.1%
cpx2 2 9,183 52,605 22.8%
cpx+fast 3 6,723 104,406 16.2%
cpx_def 2 9,278 77,171 15.7%

The experiments show that the cuts generated by our procedure are rather
effective on these hard instances. Indeed, cpx+fast is able to solve to proven
optimality more instances—and to close more average gap—than the other
two methods. Our method turns out to be particularly effective on instances
nsrand-ipx and rol113000, where it is able to prove optimality in 102 and 877
seconds respectively, while cpx did not solve any of them within the 10,000-
second time limit, and cpx2 was only able to solve r0113000 in 4,138 seconds.

18

Table 7 Detailed results in a Cut&Branch context.

cpx cpx2 cpx+fast

problem time nodes fin.gap time nodes fin.gap time nodes fin.gap
alclsl 10,000 1,817,501 7.87% 10,000 113,988 3.54% 10,000 499,301 4.72%
aflow40b 6,706 2,249,450 0.00% 5,212 136,650 0.00% 8,832 1,281,509 0.00%
atlanta-ip 10,000 7,994 9.35% 10,000 2,458 13.06% 10,000 6,312 10.31%
dano3mip 10,000 13,200 21.07% 10,000 5,365 20.29% 10,000 1,627 24.22%
danoint 10,000 1,201,099 1.49% 10,000 117,261 2.69% 10,000 690,565 2.46%
mkc 10,000 7,956,401 0.35% 10,000 736,801 0.15% 10,000 6,997,001 0.16%
momentum1 10,000 81,344 6.14% 10,000 50,100 0.04% 10,000 57,921 6.08%
momentum?2 10,000 11,555 27.43% 10,000 4,121 100.00% 10,000 18,891 13.59%
msc98-ip 10,000 2,552 5.43% 10,000 1,451 12.11% 10,000 4,075 5.43%
net12 10,000 5,419 91.80% 10,000 2,501 43.78% 10,000 5,040 30.44%
nsrand-ipx 10,000 5,820,201 0.69% 10,000 662,731 0.51% 102 8,421 0.00%
protfold 10,000 20,119 36.54% 10,000 12,381 40.30% 10,000 15,942 37.12%
rd-rplusc-21 10,000 335,425 100.00% 10,000 30,651 100.00% 10,000 230,703 100.00%
roll3000 10,000 3,972,801 1.62% 4,138 164,675 0.00% 877 81,552 0.00%
seymour 10,000 159,308 1.65% 10,000 68,374 1.35% 10,000 184,992 1.90%
sp97ar 10,000 390,501 0.76% 10,000 241,501 0.79% 10,000 346,901 0.75%
swath 10,000 2,889,801 21.22% 10,000 1,126,301 13.86% 10,000 3,151,801 16.93%
timtab2 10,000 12,075,901 45.74% 10,000 929,301 57.53% 10,000 5,961,601 37.82%

9,780 253,090 21.06% 9,183 52,605 22.78% 6,723 104,406 16.22%

6 Conclusions and future work

We have considered Gomory Mixed-Integer Cuts (GMICs) read from LP bases,
as it is done customary in branch-and-cut methods, but in a new shell aimed
at overcoming the notoriously bad behavior of these cuts in the long run. The
new shell uses a relax-and-cut approach where the generated GMICs are not
added to the current LP, but are stored in a cut pool and immediately relaxed
in a Lagrangian fashion.

We have presented some variants of our basic method and we have compu-
tationally compared them with other methods from the literature. The results
have shown that even simple implementations of the new idea are quite ef-
fective, and outperform their competitors in terms of both bound quality and
speed. We are confident however that there is still room for improvement of
our basic methods.

Future work should investigate the following research topics:

— The use of a more sophisticated Lagrangian dual optimizer to replace the
simple subgradient procedure we implemented.

— The use of the Lagrangian solutions for primal heuristics. Indeed, during
Lagrangian optimization a large number of (possibly slightly fractional or
even integer) vertices of P are generated, that could be used heuristically
to provide good primal MIP solutions. As a quick shot, we tried to round
each vertex with a single iteration of Feasibility Pump 2.0—see [21] for
details on the rounding algorithm—and compared the results with the ob-
jective Feasibility Pump 2.0 (objFP2) itself. Although, as expected, the
success rate is definitely lower—we found a feasible solution in 40 out of 72
instances, while objFP2 was successful in 69 instances—the quality of the

19

solutions is quite good. In particular, on the 40 instances where both meth-
ods are successful, the geometric mean of the gap of the solutions found
by Lagrangian optimization is 2.54%, while it is 6.73% for the objFP2.

— The incorporation of the pseudo-branching mechanism described in Subsec-
tion 5.3 in a restart scheme akin to one investigated by Karzan, Nemhauser
and Savelsbergh [25] for 0-1 MIPs. There, an incomplete branch-and-bound
tree is run beforehand to gather information to be used, after a restart, to
make more effective branching decisions. With a little overhead, in the
preliminary phase one could also generate and store (without actually us-
ing) a large number of globally-valid rank-1 GMICs read from the optimal
LP bases at the enumeration nodes. This is in fact possible because, for
0-1 MIPs, all branching variables are fixed to their lower or upper bound,
hence one can easily get rid of the GMIC dependency on the branching
constraints; see [5]. After restart, the collected GMICs can therefore be
used, and in Subsection 5.3, to initialize the relax-and-cut pool.

— The possibility of using our relax-and-cut scheme for a more aggressive
generation of rank-1 GMICs at branching nodes different from the root, as
a continuation of the line of research introduced by Balas, Ceria, Cornuéjols
and Natraj [5]. Indeed, we observe that the generation of GMICs during
enumeration inherits from pure cutting plane methods all the issues deriv-
ing from “adding GMICs on top of other GMICs” (the latter generated
in the parent nodes), hence numerical instability is likely to occur if no
“decoupling filter” is introduced. In [5], cut decorrelation is achieved by
a skip policy that avoids invoking GMIC separation for “similar” branch-
ing nodes, and by purging from the LP certain previously-generated cuts
whose slacks are basic. In our relax-and-cut context, a natural strategy
would be the one exploited in our fast variants of Subsection 4.3. Specif-
ically, at certain branching nodes all the cuts added to the original LP
(possibly including branching conditions) are just dualized, with their op-
timal dual multiplier, and the original LP with the Lagrangian costs is
solved to produce a new round of rank-1 GMICs.

Finally, in the process of developing our method we realized that cut-
ting plane schemes miss an overall “meta-scheme” to control cut generation
and to escape “local optima” by means of diversification phases—very well
in the spirit of Tabu or Variable Neighborhood Search meta-schemes for pri-
mal heuristics. The development of sound meta-schemes on top of a basic
separation tool is therefore an interesting topic for future investigations—our
relax-and-cut framework for GMICs can be viewed as a first step in this di-
rection.

Acknowledgements This work was partially supported by the “Progetto di Ateneo” on
“Computational Integer Programming” of the University of Padova; the second author was
also partially supported by the “Progetto di Eccellenza 2008-2009” of the “Fondazione Cassa
di Risparmio di Padova e Rovigo”.

20

References

10.
11.
12.
13.
14.
15.
16.
17.

18.

19.

20.

21.

22.

23.

24.

25.

. Achterberg, T.: Scip: solving constraint integer programs. Mathematical Programming

Computation 1, 1-41 (2009)

Achterberg, T., Koch, T., Martin, A.: MIPLIB 2003. Operations Research Letters 34(4),
1-12 (2006). DOI 10.1016/j.0r1.2005.07.009. URL http://www.zib.de/Publications/
abstracts/ZR-05-28/. See http://miplib.zib.de

Andreello, G., Caprara, A., Fischetti, M.: Embedding cuts in a branch and cut frame-
work: a computational study with {0,1/2}-cuts. INFORMS Journal on Computing (19),
229-238 (2007)

. Balas, E., Bonami, P.: Generating lift-and-project cuts from the LP simplex tableau:

open source implementation and testing of new variants. Mathematical Programming
Computation 1(2-3), 165-199 (2009)

Balas, E., Ceria, S., Cornuéjols, G., Natraj, N.: Gomory cuts revisited. Operations
Research Letters 19, 1-9 (1996)

Balas, E., Jeroslow, R.G.: Strengthening cuts for mixed integer programs. European
Journal of Operational Research 4(4), 224-234 (1980)

Balas, E., Perregaard, M.: A precise correspondence between lift-and-project cuts, sim-
ple disjunctive cuts, and mixed integer Gomory cuts for 0-1 programming. Mathematical
Programming 94(2-3), 221-245 (2003)

Balas, E., Saxena, A.: Optimizing over the split closure. Mathematical Programming
113(2), 219-240 (2008)

Bixby, R.E., Ceria, S., McZeal, C.M., Savelsbergh, M.W.P.: An updated mixed integer
programming library: MIPLIB 3.0. Optima 58, 12-15 (1998). See http://www.caam.
rice.edu/bixby/miplib/miplib.html

Bonami, P., Minoux, M.: Using rank-1 lift-and-project closures to generate cuts for 0-1
MIPs, a computational investigation. Discrete Optimization 2(4), 288-307 (2005)
Caprara, A., Fischetti, M., Toth, P.: A heuristic method for the set covering problem.
Operations Research 47(5), 730-743 (1999)

CglLandP: website. https://projects.coin-or.org/Cgl/wiki/CglLandP

COIN-OR: website. http://www.coin-or.org/

Cornuéjols, G.: Revival of the Gomory cuts in the 1990’s. Annals of Operations Research
149(1), 63-66 (2006)

Cornuéjols, G.: Valid inequalities for mixed integer linear programs. Mathematical
Programming 112(1), 3-44 (2008)

Cornuéjols, G., Li, Y.: Elementary closures for integer programs. Operations Research
Letters 28(1), 1-8 (2001)

Dash, S., Goycoolea, M.: A heuristic to generate rank-1 GMI cuts. Tech. rep., IBM (to
appear in Mathematical Programming Computation) (2009)

Dash, S., Giinliik, O., Lodi, A.: MIR closures of polyhedral sets. Mathematical Pro-
gramming 121(1), 33-60 (2010)

Escudero, L.F., Guignard, M., Malik, K.: A Lagrangian relax-and-cut approach for
the sequential ordering problem with precedence relationships. Annals of Operations
Research 50(1), 219-237 (1994)

Fischetti, M., Lodi, A.: Optimizing over the first Chvatal closure. Mathematical Pro-
gramming 110(1), 3-20 (2007)

Fischetti, M., Salvagnin, D.: Feasibility pump 2.0. Mathematical Programming Com-
putation 1(2-3), 201-222 (2009)

Gomory, R.E.: An algorithm for the mixed integer problem. Technical Report RM-2597,
The RAND Cooperation (1960)

Guta, B.: Subgradient optimization methods in integer programming with an applica-
tion to a radiation therapy problem. Ph.D. thesis, University of Kaiserslautern (2003)
Hiriart-Hurruty, Lemaréchal, C.: Convex Analysis and Minimization Algorithms.
Springer-Verlag (1993)

Karzan, F.K., Nemhauser, G.L., Savelsbergh, M.W.P.: Information-based branching
schemes for binary linear mixed integer problems. Mathematical Programming Com-
putation 1(4), 249-293 (2009)

21

26.

27.

28.

29.

30.

Lucena, A.: Steiner problems in graphs: Lagrangian optimization and cutting planes.
COAL Bulletin (21), 2-8 (1982)

Lucena, A.: Non delayed relax-and-cut algorithms. Annals of Operations Research
140(1), 375-410 (2005)

Lucena, A.: Lagrangian relax-and-cut algorithms. In: Handbook of Optimization in
Telecommunications, pp. 129-145. Springer (2006)

Ralphs, T.K., Kopman, L., Pulleyblank, W.R.., Trotter, L.E.: On the capacitated vehicle
routing problem. Mathematical Programming 94(2-3), 343-359 (2003)

Zanette, A., Fischetti, M., Balas, E.: Lexicography and degeneracy: can a pure cutting
plane algorithm work? Mathematical Programming (2009)

Appendix

Tables 8 to 11 give instance-by-instance results corresponding to the cumula-
tive figures reported in the previous computational sections.

Table 8: Detailed rank-1 methods comparison for MIPLIB 3.0 (cumulative results

in Table 2).
1gmi fast faster hybr subg dgDef
problem cl.gap time cl.gap time cl.gap time cl.gap time cl.gap time cl.gap time
air04 8.1 1.98 22.2 294.28 28.5 230.25 13.1 3,600.00 11.7 3,600.00 19.4 3,600.00
air05 4.7 0.69 10.9 169.31 11.2 122.34 11.4 3,600.00 8.9 3,600.00 12.9 3,600.00
arki001 27.2 0.04 44.5 6.63 44.5 5.08 44.5 22.53 39.6 0.91 35.5 394.84
bell3a 45.1 0.00 64.6 0.16 64.6 0.08 64.6 0.99 64.0 8.53 74.0 0.82
bell5 14.5 0.00 87.4 0.23 86.5 0.12 90.1 1.76 63.3 6.22 23.7 0.32
blend2 16.4 0.00 22.4 0.27 22.0 0.13 25.4 11.43 23.7 16.97 21.4 2.07
cap6000 42.9 0.05 55.2 2.41 55.2 1.51 55.2 71.93 55.2 156.55 62.4 14.65
dano3mip 0.0 174.66 0.3 1,290.87 0.3 1,999.63 0.3 370.35 0.0 144.70 0.3 3,600.00
danoint 0.3 0.07 2.7 16.53 0.9 5.20 0.8 1.67 0.5 0.30 1.7 235.69
dcmulti 47.7 0.01 93.2 3.51 91.1 1.73 92.4 41.05 89.7 124.07 91.4 12.40
egout 51.6 0.00 95.1 0.15 93.7 0.05 97.9 0.63 98.6 4.38 98.7 0.30
fast0507 1.4 10.99 2.4 145.17 3.6 212.65 2.2 3,600.00 1.9 3,600.00 1.7 3,600.00
fiber 70.6 0.01 98.0 1.36 97.1 0.95 98.6 29.01 98.0 77.82 98.1 14.78
fixnet6 10.5 0.01 82.7 1.95 82.5 1.23 86.8 48.11 72.8 60.39 86.6 15.55
flugpl 11.7 0.00 12.2 0.02 11.7 0.01 12.2 0.21 12.2 1.30 11.7 0.01
gen 59.4 0.01 82.9 1.01 78.0 0.68 89.4 17.46 87.8 81.34 91.8 10.50
gesa2 30.9 0.03 62.5 2.71 62.1 1.22 68.5 69.89 59.8 119.87 85.6 45.56
gesa2_o 30.9 0.02 72.7 4.43 69.9 2.23 77.0 98.56 72.1 95.73 58.8 78.47
gesa3 45.8 0.03 93.9 4.45 92.2 2.91 94.7 30.48 94.3 198.03 92.6 119.48
gesa3_o 49.2 0.02 94.7 3.74 64.2 0.81 95.0 53.03 94.6 190.17 93.4 108.54
gt2 91.9 0.00 98.3 0.10 98.2 0.08 95.3 0.86 95.0 0.42 96.6 0.29
harp2 13.6 0.03 41.3 5.75 38.4 2.87 40.6 42.93 42.0 124.80 67.3 240.81
khb05250 74.9 0.01 99.9 0.59 99.9 0.37 100.0 7.24 99.9 21.02 99.5 3.49
1152lav 11.1 0.04 61.2 29.23 55.5 11.10 60.8 218.45 55.6 924.12 48.7 402.71
Iseu 53.4 0.00 89.7 0.19 84.8 0.07 89.0 1.46 88.6 4.40 84.6 0.12
mas74 6.4 0.00 8.8 0.66 8.8 0.34 9.0 2.65 9.0 5.97 8.5 0.63
mas76 6.3 0.00 10.6 0.54 10.2 0.55 10.3 3.97 9.9 5.67 10.3 1.13
misc03 8.6 0.00 26.4 1.48 26.1 0.78 24.1 3.27 25.4 50.21 20.6 6.15
misc06 30.6 0.02 85.1 1.13 88.4 0.83 41.5 0.10 37.1 0.06 86.2 34.46
misc07 0.7 0.01 6.7 3.35 4.4 1.50 7.7 38.12 5.8 89.41 2.1 11.08
mitre 83.8 0.22 100.0 4.88 100.0 3.71 100.0 7.93 100.0 14.03 100.0 84.74
mkc 1.7 0.10 59.8 44.96 47.5 12.36 78.4 717.86 65.1 955.14 49.3 2,058.05
mod008 20.1 0.00 57.3 0.15 66.0 0.10 73.7 0.94 73.2 12.66 62.5 0.62
mod011 17.1 0.17 56.8 386.22 54.0 182.74 75.8 1,060.66 53.4 727.89 32.2 3,600.00
modglob 17.3 0.01 83.6 1.17 81.6 0.71 83.6 18.03 78.8 25.67 75.3 8.59

(44

Table 8: Detailed rank-1 methods comparison for MIPLIB 3.0 (cumulative results

in Table 2).
1gmi fast faster hybr subg dgDef

problem cl.gap time cl.gap time cl.gap time cl.gap time cl.gap time cl.gap time
nw04 66.1 1.06 100.0 73.66 100.0 24.83 100.0 28.83 100.0 29.44 100.0 84.74
p0033 56.8 0.00 76.4 0.09 76.4 0.06 76.7 0.37 76.4 1.65 83.2 0.10
p0201 33.8 0.01 74.3 0.88 73.6 0.46 73.1 6.04 72.9 18.19 61.3 6.66
p0282 3.7 0.01 98.1 0.72 96.4 0.49 98.2 12.14 95.5 18.81 96.9 3.55
p0548 40.7 0.01 92.3 0.91 92.1 0.55 96.6 11.98 75.8 16.79 94.3 2.67
p2756 0.5 0.02 84.0 2.59 74.6 1.11 86.7 49.27 81.7 65.20 96.9 17.05
pp08a 52.1 0.00 71.5 0.04 71.5 0.04 70.2 0.04 61.1 0.01 93.8 3.12
pp08aCUTS 31.5 0.01 50.0 0.09 50.0 0.10 49.3 0.06 39.4 0.02 83.3 21.52
qiu 0.2 0.17 31.3 43.03 30.8 22.36 38.6 407.60 33.7 719.55 25.9 3,600.00
qnetl 12.6 0.06 78.4 14.10 60.3 5.88 81.5 168.77 72.0 340.93 79.3 437.03
qnetl_o 33.4 0.03 86.5 6.24 82.4 3.13 89.8 55.44 87.2 116.30 93.5 196.73
rentacar 5.0 0.30 29.0 17.08 21.7 13.62 7.9 2.13 5.3 0.57 45.0 1,123.07
rgn 5.0 0.00 85.5 0.17 98.8 0.19 100.0 1.76 48.3 0.63 99.6 0.54
rout 1.4 0.03 37.8 7.42 33.6 3.14 44.0 91.50 42.5 316.38 35.5 180.27
setlch 38.1 0.01 39.9 0.81 39.9 0.58 42.4 0.27 38.9 0.03 83.6 30.66
seymour 7.8 1.69 32.2 202.93 34.1 105.80 44.0 2,500.83 25.4 1,357.82 20.8 3,600.00
swath 6.4 0.07 34.9 3.89 34.9 11.36 34.9 186.13 34.9 2,489.35 34.0 64.99
vpml 10.0 0.00 36.9 0.61 36.6 0.46 35.9 7.50 35.0 17.35 89.8 5.10
vpm2 12.0 0.00 58.1 1.36 52.8 0.62 64.0 22.30 56.6 41.62 61.2 8.03

26.4 0.03 58.9 2.57 57.1 1.53 60.1 15.78 55.0 24.97 60.8 23.78

€C

Table 9 Detailed rank-1 methods comparison for MIPLIB 2003 (cumulative results in Table 2).

1gmi fast faster hybr subg dgDef

problem cl.gap time cl.gap time cl.gap time cl.gap time cl.gap time cl.gap time
alclsl 19.2 0.07 57.7 94.60 56.6 41.46 61.2 1,153.60 58.6 1,744.05 54.3 3,578.97
aflow30a 11.9 0.02 40.6 4.60 38.2 1.49 42.2 67.96 39.3 208.81 46.8 98.09
aflow40b 8.0 0.07 27.6 14.35 23.7 6.13 32.3 204.92 27.8 689.47 33.5 1,163.44
atlanta-ip 0.7 40.19 2.6 1,747.60 2.2 1,382.71 1.9 3,600.00 1.9 3,600.00 1.1 3,600.00
glass4 0.0 0.00 0.0 1.06 0.0 0.59 0.0 0.08 0.0 0.01 0.0 1.51
momentum1 32.3 4.40 64.5 208.10 58.6 90.14 64.5 3,600.00 64.5 809.16 41.1 3,600.00
momentum2 39.1 5.05 39.3 357.07 39.3 302.69 41.9 3,600.00 39.4 3,600.00 40.7 3,600.00
msc98-ip 45.1 82.98 54.8 1,795.88 54.2 1,096.94 57.1 3,600.00 54.2 3,600.00 46.8 3,600.00
mzzvl1l 9.8 20.02 82.5 425.20 79.9 308.82 97.9 3,600.00 92.6 3,631.02 24.7 3,600.00
mzzv42z 10.7 36.11 81.3 305.08 73.3 170.97 92.5 1,904.46 80.2 2,424.21 51.8 3,600.00
net12 7.3 5.35 22.7 465.75 21.9 244.98 21.8 3,600.00 20.3 3,600.00 13.6 3,600.00
nsrand-ipx 36.0 0.19 80.7 66.58 80.1 38.76 80.2 362.10 79.0 1,218.06 80.5 1,545.22
opt1217 22.8 0.01 34.7 0.48 34.9 0.76 35.9 4.34 35.9 61.96 32.3 3,600.00
protfold 5.0 6.64 18.2 162.72 22.6 152.63 30.3 3,600.00 27.6 3,600.00 11.7 3,600.00
rd-rplusc-21 0.0 2.50 0.0 896.12 0.0 296.84 0.0 3,600.00 0.0 3,600.00 0.0 1,491.32
roll3000 3.6 0.23 84.0 54.51 75.8 17.15 86.5 740.50 84.6 974.92 51.9 1,880.39
sp97ar 11.9 2.24 45.3 261.01 39.3 180.61 55.0 3,600.00 34.2 1,993.52 28.4 3,600.00
timtabl 23.6 0.00 51.8 1.50 51.8 0.84 51.1 1.21 34.6 0.11 77.8 21.62
timtab2 18.0 0.01 45.4 3.20 42.7 1.80 43.9 3.03 26.3 0.20 69.2 47.65
tr12-30 60.3 0.03 75.8 7.21 70.2 3.82 76.1 89.04 68.6 127.10 87.3 42.15

18.3 0.54 45.5 58.40 43.3 33.33 48.6 314.73 43.5 290.82 39.7 853.85

¥e

25

Table 10: Detailed results for GMICs on top of other cuts, on MIPLIB 3.0 (cumu-
lative results in Table 5).

cpx cpx+fast cpx2 cpx2+fast
problem cl.gap time cl.gap time cl.gap time cl.gap time
air04 17.3 2.27 43.8 195.27 19.8 7.57 42.2 207.39
air05 17.0 2.58 23.7 124.56 20.3 5.98 24.5 197.58
arki001 31.3 1.08 48.6 12.24 40.4 2.74 50.3 13.26
bell3a 69.3 0.01 70.7 0.45 70.7 0.01 70.7 0.24
bell5 92.3 0.01 92.4 0.08 96.7 0.03 97.2 0.31
blend2 19.1 0.10 26.3 0.78 28.6 0.18 30.9 0.82
cap6000 42.9 0.32 55.2 6.39 42.9 0.33 55.2 6.68
dano3mip 1.1 349.16 1.1 1,096.14 1.1 4,314.83 1.1 1,599.57
danoint 2.7 1.18 3.6 37.55 2.9 20.13 3.5 34.10
dcemulti 75.1 0.21 94.6 4.81 90.1 1.32 96.1 3.99
egout 100.0 0.00 100.0 0.00 100.0 0.01 100.0 0.01
fast0507 0.0 21.22 3.5 183.47 1.8 64.51 3.5 250.19
fiber 91.1 0.11 98.7 1.33 92.0 0.19 98.9 1.28
fixnet6 86.9 0.84 95.4 2.07 90.1 1.12 94.9 1.81
flugpl 46.5 0.00 48.5 0.03 54.3 0.01 54.4 0.14
gen 100.0 0.01 100.0 0.01 100.0 0.02 100.0 0.02
gesa2 79.6 0.21 81.7 3.83 98.7 0.59 98.8 3.66
gesa2_o 73.9 0.19 77.1 3.88 93.7 1.01 96.8 4.46
gesa3 71.3 0.33 91.0 5.73 74.6 0.99 86.6 5.75
gesa3_o 70.8 0.26 88.2 5.19 76.0 0.58 97.4 3.50
gt2 100.0 0.01 100.0 0.01 100.0 0.01 100.0 0.01
harp2 33.0 0.15 59.7 4.21 45.2 0.15 60.4 4.72
khb05250 99.9 0.06 100.0 1.08 100.0 0.69 100.0 0.69
1152lav 0.2 0.12 58.5 31.16 15.6 0.60 58.7 22.44
Iseu 68.4 0.02 88.9 0.35 88.4 0.13 91.7 0.33
mas74 3.5 0.03 9.2 0.81 6.4 0.17 9.2 0.93
mas76 3.5 0.03 8.9 0.31 6.3 0.13 11.1 1.35
misc03 21.9 0.11 28.3 1.88 26.3 2.53 28.5 1.79
misc06 27.3 0.06 81.9 1.70 62.2 0.39 87.3 1.91
misc07 3.2 0.17 7.3 3.29 7.0 1.23 9.1 3.80
mitre 100.0 0.45 100.0 0.45 100.0 0.49 100.0 0.49
mkc 43.1 0.44 76.9 18.36 57.1 0.94 83.3 17.53
mod008 22.9 0.02 71.3 0.34 32.8 0.02 78.4 0.38
mod011 98.3 18.01 98.7 127.36 99.1 22.64 99.1 103.06
modglob 91.7 0.07 95.2 0.52 95.1 0.63 97.9 0.73
nw04 8.6 12.13 108.3 12.28 100.0 39.39 100.0 39.39
p0033 88.1 0.01 100.0 0.02 100.0 0.00 100.0 0.00
p0201 33.8 0.07 78.3 1.56 66.7 1.36 80.4 1.41
p0282 97.0 0.06 99.9 0.47 97.1 0.08 99.8 0.39
p0548 99.8 0.03 100.0 0.08 100.0 0.02 100.0 0.02
p2756 98.6 0.20 99.9 2.83 99.2 0.26 99.9 2.09
pp08a 95.7 0.13 96.2 0.71 96.4 0.95 96.8 0.75
pp08aCUTS 82.2 0.18 84.9 1.15 86.7 1.48 87.5 1.03
qiu 0.1 0.69 35.2 46.57 42.8 58.27 46.8 55.42
qnetl 71.6 0.90 91.6 8.45 80.0 1.27 92.8 7.37
qnetl_o 88.8 0.85 92.7 2.89 91.3 0.75 95.7 3.42
rentacar 54.1 0.47 67.6 17.32 62.0 5.27 73.1 18.29
rgn 26.6 0.01 100.0 0.27 93.5 0.08 100.0 0.09
rout 1.9 0.20 40.5 8.66 8.7 0.66 39.9 5.88
setlch 97.8 0.11 97.8 2.15 99.5 0.24 99.5 1.83
seymour 41.0 8.53 44.8 147.86 43.8 102.21 47.1 203.91
swath 34.6 0.45 34.9 6.56 34.9 1.53 34.9 1.55
vpml 100.0 0.01 100.0 0.58 100.0 0.01 100.0 0.01
vpm2 72.9 0.02 78.9 0.72 84.8 0.37 86.1 0.83

55.5 0.17 70.0 2.14 65.3 0.56 72.2 1.98

26

Table 11 Detailed results for GMICs on top of other cuts, on MIPLIB 2003 (cumulative
results in Table 5).

cpx cpx+fast cpx2 cpx2+fast
problem cl.gap time cl.gap time cl.gap time cl.gap time
alclsl 84.0 3.57 88.1 40.01 86.0 476.92 88.9 37.75
aflow30a 57.1 3.03 61.8 4.40 62.4 3.47 65.2 4.33
aflow40b 35.2 7.10 43.3 15.86 45.9 7.76 51.7 18.65
atlanta-ip 1.1 1,394.00 1.4 1,226.27 1.0 1,232.67 1.6 1,187.05
glass4 0.0 0.41 0.0 1.78 0.0 2.59 0.0 1.97
momentum1 64.5 12.05 64.5 241.32 64.6 195.33 64.6 289.34
momentum?2 55.1 67.09 59.6 418.83 68.2 485.27 68.4 422.68
msc98-ip 50.5 164.71 52.5 704.31 57.1 286.25 57.1 547.79
mzzvll 81.6 34.70 98.1 369.08 82.5 37.12 98.4 303.07
mzzv42z 74.9 17.23 97.0 211.82 79.4 28.69 94.6 222.77
net12 30.9 17.88 41.6 511.41 34.3 84.11 42.1 552.30
nsrand-ipx 54.3 2.58 83.0 51.05 65.6 4.80 82.7 50.78
opt1217 100.0 0.11 100.0 1.52 100.0 0.26 100.0 1.53
protfold 8.5 42.36 22.4 193.45 18.9 110.69 24.4 457.71
rd-rplusc-21 0.0 9.23 0.0 175.73 0.0 29.71 0.0 237.48
roll3000 62.0 1.64 85.2 34.29 72.4 5.45 85.3 41.58
sp97ar 114 10.59 41.2 303.05 13.4 20.97 46.8 296.34
timtabl 63.0 0.30 67.2 3.04 58.3 0.98 64.7 291
timtab2 46.0 0.68 57.9 6.42 48.6 2.75 57.2 6.75
tr12-30 99.2 0.90 99.2 10.05 99.2 8.55 99.2 9.25

49.0 6.57 58.2 56.03 52.9 22.48 59.6 59.75

