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Abstract. Restarting a solver gives us the chance to learn from things
that went good or bad in the search until the restart point. The benefits
of restarts are often justified with being able to employ different, better
strategies and explore different, more promising parts of the search space.
In that light, it is an interesting question to evaluate whether carrying
over detected structures and collected statistics across a restart benefits
the subsequent search, or even counteracts the anticipated diversification
from the previous, unsuccessful search.
In this paper, we will discuss four different types of global information
that can potentially be re-used after a restart of a mixed-integer pro-
gramming (MIP) solver, present technical details of how to carry them
through a represolve after a restart, and show how such an information
transfer can help to speed up the state-of-the-art commercial MIP solver
FICO Xpress by 7% on the instances where a restart is performed.
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1 Introduction

Restarts have been used in SAT solvers for over 20 years [21]. It was quickly
picked up by the MIP community in the form of root restarts [2, 3] and in other
areas of optimization, like global optimization [17]. For an overview on restarting
algorithms in the areas of CP, AI, and OR, see [23]. In this paper we consider
the solution of mixed-integer programs (MIPs), which are optimization problems
of the form

x⋆ ∈ argmin{cTx | Ax ≥ b, xj ∈ Z for all j ∈ I},

with A ∈ Rm×n, b ∈ Rm, c ∈ Rn, and I ⊆ {1, . . . , n}.
For some time, restarts for MIP have primarily revolved around the rule of

thumb of restarting the root node processing in the case enough variables have
been globally fixed so that another round of full presolving seems beneficial [2].
More recently, restarts of the tree search have gained attention in the MIP
community, see, e.g., [6], and most MIP solvers employ them nowadays [11, 13,
18]. Unlike root restarts, tree restarts are often based on an extrapolation of the
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remaining time until the tree search is finished [16]. In contrast to SAT solving,
aggressive periodic restarts of the tree search have not proven advantageous for
MIP in the vast majority of cases for a few reasons:

1. Solving the initial root problem of a MIP is often orders of magnitude more
expensive than solving a local node. This makes tree restarts in the early
phase of the search way more expensive than their SAT counterpart.

2. While in SAT the set of learned conflicts completely describes the search
space already explored, at least until conflict purging kicks in, the same does
not apply to the MIP case, where the search strategy is hardly ever a pure
DFS and conflict clauses are not always learnt. Thus, a tree restart inevitably
leads to some redundant work being performed.

3. MIPs are only very rarely feasibility problems, where a tree restart might
just be beneficial because it makes the algorithm find a feasible solution
sooner that it would have done without. The optimality proof requires a
certain amount of search to be performed no matter what, making restarts
in a later phase of the search unattractive, if not harmful.

For those reasons, MIP solvers typically apply very few tree restarts (only
one in most cases) and aim at addressing different types of problems with the
solver behavior before and after said restarts. The solvers use settings aimed
at easy problems in the first phase. Those will typically spare some expensive
subroutines and make those problems solve faster. If a restart is conducted, the
solver is aware that this problem is relatively hard to solve and will require a
certain amount of tree search. Thus, it can adapt and employ more aggressive
settings and expensive additional techniques right from the beginning of the
subsequent searches. Furthermore, a restart might help in mitigating and even
exploiting performance variability effects [19].

Given that one of the primary purposes of tree restarts is to make the search
after the restart different from the one before, it is not obvious to which extent
information from a given tree search should be carried over to be used in the
next search second run, and which type of information is most suitable for such
a transfer. The goal of this paper is to address these questions and evaluate
the impact of global information transfer, taking the solver restart strategy as a
given.

2 Global Information

A main difference between MIP and CP solvers is how constraints interact with
each other. In CP solvers, the variables’ domain is the central communication
object, and each constraint individually contributes to tightening the domain
store and guiding the search by propagation. Hence, information is processed
very locally, on a constraint-by-constraint level. In MIP solvers, the central object
is the LP relaxation, which is solved to optimality, considering all constraints
simultaneously.
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This is our role model for what we would like to call global information. The
data structures that we consider for transfers across restarts have in common that
they can connect pieces of information from multiple constraints into a single
structure, and the information contained therein is globally valid for the problem
at hand. Some of them are gained during the search, like cutting planes [25] and
pseudo-costs [8], and they depend on algorithmic choices of the solver. Hence,
rerunning the search with slightly different start conditions would lead to con-
structing a different object. Others, like the implication graph [24], are detected
in presolving or during root node processing. These structures might only be
partially created for large input problems as the involved detection procedures
use certain work limits. Again, a slight change in start conditions would lead
to a different result, and we cannot simply recollect the exact same information
after a restart.

We will now briefly sketch each type of global information relevant to the
present work. For an introduction to how global structures can be used for
primal heuristics, see [14].

The conflict pool. MIP solvers attempt to create conflicts whenever pruning a
node due to infeasibility or cutoff. They are generated by analyzing the sequence
of branching decisions and propagations that led to the node being pruned, with
the aim of extracting a small subset of those bound changes as an explanation
for the infeasibility. From such a conflict, we can derive a conflict clause which is
typically formulated as a disjunction of bounds [1]. A conflict clause is a globally
valid, not necessarily linear, constraint that states that at least one of the bounds
in the conflict must take a different value than in the infeasible subproblem. Note
that it is equivalent to state the conflict as a conjunction of the bound changes
that led to infeasibility. This is how Xpress stores conflict clauses. MIP solvers
typically collect conflicts in a pool, see, e.g., [29] and only keep them for a certain
number of nodes. The content of this pool highly depends on the search tree,
and how much of it has already been traversed.

Cutting planes Throughout the search, and in particular at the root node, MIP
solvers generate cutting planes to tighten the LP relaxation, improve the dual
bound, and reduce the number of fractional variables. For an overview on cuts
in MIP, see [20, 27, 30]. Globally valid cutting planes, as those separated at the
root, can be either directly added to the current LP relaxation or added to a
so-called cut pool, from which they can be separated again on demand, e.g.,
at subsequent nodes [25]. Transferring globally valid cuts after restarts can be
effective in a twofold way: a) we can warmstart the root cutloop with a set of
cuts which have proven useful at the previous root node and b) if we take them
into account while represolving they can lead to further reductions.

The implication graph. An implication is a relation between two variables that
state that a bound change in one variable leads to a bound change in another
variable. E.g., for y ≤ ax+ b, it holds that a tightened upper bound on x implies
an upper bound on y, which is potentially tighter than the current upper bound.
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The set of all such (known) relations for a MIP can be represented as a directed
graph, where each arc represents an implication and each node represents a
bound change on a variable [24]. Implications might be directly deduced from
single constraints but, much more interestingly, we might find them by probing,
i.e., the process of tentatively changing the bound of a variable and propagating
this bound change. Since probing is relatively expensive, it is typically not done
on all variables but only on a few promising ones under tight working limits.

Pseudo-costs. On MIP problems with a nonzero objective function, branching
decisions that raise the LP objective, and hence the node dual bound in the
created children, are essential to prune subproblems and thus create small search
trees quickly. The pseudo-costs [8] of a variable xj summarize the average change
of the LP objective observed after branching on xj . Prioritizing variables based
on their recorded pseudo-costs is still a state-of-the-art selection strategy because
it provides a good selection quality that is computationally cheap to evaluate.
For a recent overview on branching in MIP, see [12]. The main disadvantage of
pseudo-costs is that they are uninitialized at the beginning of the search, when
the most crucial top-level branching decisions have to be made. The typical
remedy is to perform an explicit look-ahead called strong branching [22] for a
number of times [5, 15], to make an informed branching selection and initialize
the pseudo-costs of the tested candidates. In the context of tree restarts, pseudo-
costs from the first run can be transferred to have branching statistics available
right from the beginning of the subsequent search.

3 Implementation Details

This section highlights the algorithmic choices in FICO Xpress [11] regarding the
transfer of global information across restarts. Trivially, we always transfer the
primal and dual bounds from a previous run. Further, we preserve the incumbent
solution, although it may not remain feasible for the remaining search problem
due to additional presolving, in which variables might be fixed to solution values
that differ from their value in the incumbent solution, e.g., by dual reductions [4]
or even reduced cost fixing.

Mapping between presolve spaces. Whether in the tree or at the root, one ma-
jor effect of a restart is that the problem gets (re)-presolved another time. To
transfer a piece of information across a restart, we need to be able to map a
mathematical object involving variables in the presolve space before the restart
to the corresponding mathematical object (if any) involving variables in the
presolve space after the restart.

We compute a mapping between the two presolve spaces in the following
way. Independent of restarts, the solver maintains a stack with the presolve
reductions applied so far, as this is needed, among other things, to map pre-
solved solutions back to the original space. When represolving, new reductions
are simply appended to the very same stack. To compute a mapping between
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the two spaces, we initialize the mapping to the identity and then process the
new presolve reductions, in the order in which they were added to the stack, and
update the mapping accordingly, depending on the logic of each individual re-
duction. In particular, for each variable in the old presolve space, we distinguish
the following cases:

1. the variable got fixed to some value and hence removed from the problem. In
this case, we mark the variable as fixed in the mapping and store the value
it was fixed to.

2. the variable was carried through unmodified but has potentially a different
index in the new presolved space. We simply store the new index of the
variable.

3. the variable changed meaning (e.g., it changed type) or was eliminated in
such a way that its value can only be computed a-posteriori during the
postsolve phase. In this case, we mark the variable as unmappable. Any
object involving an unmappable variable will become unmappable itself and
thus not transferred across a restart.

Another essential piece of information that we need for a correct transfer is
scaling [26]. However, scaling itself is not considered a presolve reduction in
FICO Xpress, and thus it does not contribute to the stack. Still, we need to
keep track of the scaling factors (w.r.t. the original problem) before and after
represolve to compute the intermediate scaling factors between the two presolve
spaces. Note, however, that integer variables are never scaled.

Pseudo-costs. For each variable that is still mappable after a represolve, we con-
dense the entire pseudo-costs from both strong branches and regular branches
on a variable x from the old run into a single pseudo-cost record, in the spirit
of [9]. As a result, we have initialized pseudo-costs available from the beginning
of the search in the new run. They are not considered reliable [5] yet, such that
also these variables will eventually be subject to further strong branching eval-
uations. When recording new branching information during the new run, the
obtained, more recent pseudo-cost information eventually outweighs the trans-
ferred information.

The transfer of the variable branching history follows the intuition that the
transferred information is still accurate when the problem does not change too
much during a represolve. Following this logic, we keep track of the relative
change in the number of rows, columns, and matrix nonzero elements after the
restart. If one of these numbers changes by more than 10% (5% in the case
of rows), we discard the collected pseudo-costs and start the search with all
pseudo-costs uninitialized.

Conflicts. Conflicts stored in the conflict pool are processed one by one, using
the mapping and scaling factors computed after represolve. Given a conflict in
conjunctive form, each bound change is mapped to the new space individually,
leading to one of the following cases:
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1. the bound change is on an unmappable variable: the conflict will be dropped;
2. the bound change is on a fixed variable: depending on the fixing value, we

can either drop the bound change from the conflict (because it is always
satisfied) or drop the conflict itself (the condition is never satisfied and thus
the conflict would be useless);

3. the bound change is on another variable: simply update to the new index.

If a conflict survives the mapping process, it is finally dealt with as follows:

1. if the conflict is now empty, the problem is infeasible, and we can stop im-
mediately;

2. if the conflict has size one, we turn it into a globally valid bound change;
3. otherwise, the conflict is added to the new conflict pool.

Implication table. Processing of the implication table is by far and large similar
in spirit to the processing of the conflict pool. Each implication in the table is
mapped individually, and the outcome depends on a few cases:

1. if either the implying or the implied variable is unmappable, then the impli-
cation itself is discarded;

2. if either the implying or the implied variable is fixed, then we can turn
the implication into a globally valid bound on the other variable. If both
variables got fixed, the implication either directly proves infeasibility or is
redundant and can be discarded.

3. if both variables survived, we map the implication by updating the indices
of the involved variables and recomputing the coefficients using the interme-
diate scaling factors.

Cuts. While we could implement the mapping of globally valid cutting planes
with the same logic that we used for conflicts and implications, the represolve
of cuts follows a completely different logic for historical and technical reasons.
In particular:

1. first, cuts are temporarily added to the problem before represolve, as if they
were regular constraints in the model;

2. then, we execute the represolve;
3. finally, the (surviving) cuts are removed again from the model and added to

the new global cut pool.

There are advantages and disadvantages to this strategy: on the one hand, the
presence of cutting planes in the model might hinder some reductions, like col-
umn domination; on the other hand, their presence could also lead to a stronger
presolved model, as bound tightening can in principle derive tighter bounds ex-
ploiting the additional constraints for propagation. In general, cutting planes
prevent those reductions that would make the cuts themselves unmappable,
which again can be argued both for and against. We did not experiment with
alternative approaches, as our current strategy works well in practice: however,
that is certainly an interesting direction for future research.
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4 Computational Experiments

In this section, we evaluate the transfer of global information across represolves
computationally. To this end, we perform two runs with the recently released
FICO Xpress 8.13 solver, with the transfer of global information enabled and
disabled, respectively. As benchmark set we use a mix of publicly available and
customer MIP instances that also serves as one of the main test sets in our
daily Xpress MIP development. In order to mitigate the effect of performance
variability, we solve three permutations of each of these 619 MIP instances,
resulting in a testbed of 1857 instances in total: the unpermuted model and two
cyclic permutations [10] characterized by a different initial random seed used for
perturbing the rows, columns, and integer variables of the instance.

Both runs are performed on a cluster of 64 identical machines, each equipped
with 2 Intel(R) Xeon(R) CPUs E5-2640 v4 @ 2.40GHz and 64 GB of memory.
We set a time limit of 4 hours, equaling 14400 seconds, and allow each job to
use 20 parallel threads.

no-transfer transfer relative

Class N Solved Time Nodes Solved Time Nodes Time Nodes

all 1857 1844 72.97 760 1846 71.03 694 0.97 0.91
[10,14400} 1802 1798 108.22 1039 1800 104.97 952 0.97 0.91
[100,14400} 685 681 409.56 4167 683 390.44 3615 0.95 0.87

affected instances

all 670 662 113.77 8781 664 105.97 6841 0.93 0.78
[10,14400} 565 561 165.65 17191 563 153.08 13638 0.92 0.79
[100,14400} 338 334 434.21 44505 336 393.87 33397 0.91 0.75

Table 1. Computational results obtained when enabling or disabling the transfer of
global information across restarts.

We summarize the results of this experiment in Table 1. The table shows
solved instances, time, and nodes for both tested versions for different instance
classes. The top part of the table shows the results for subsets of the entire
instance bed. The bottom part of the table shows the results only for affected
instances, i.e., instances on which the transferred global information affects the
solver behavior after the restart. The instance class all in the first row shows the
results for the entire testbed. For each class, the number of involved instances
is shown in column N. We also present the results for two bracketed subsets
[10,14400} and [100,14400}. A bracketed subset consists of all instances that
could be solved by at least one of the two tested versions, and the slower of
the two solves took at least 10 or 100 seconds or timed out, respectively. The
bracketing convention is helpful to filter instances that are solved fast by both
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versions. Time and node results use a shifted geometric mean [2] with shift values
of 10 seconds and 100 nodes.

The overall results suggest that transferring global information is valuable
for the search procedure across the considered subsets of instances, yielding an
overall time improvement of 3% and node improvement of 9%. The table shows
that the number of affected instances amounts to roughly one-third of the test
set, which is almost all instances for which FICO Xpress actually performs a
restart.

On the affected instances, the performance improvements are naturally more
pronounced. Overall, we see a gain of 7% time and 22% nodes. The observed
improvement amounts to 9% time and 25% nodes on the most challenging
bracket. All time and node improvements are significant according to a Wilcoxon
signed rank test [28] with a confidence level of 95%.

Especially the reduction in the solving nodes is a clear indication that the
transfer of global information helps the search to make better decisions in the
second run. When comparing the relative reduction in time and nodes, we see
that the transferred global information comes at a cost. Especially the transferred
cutting planes increase the size of the matrix, which increases the time to solve
the node LP relaxations in the second run.

When testing the transfer of individual pieces of global information, we found
that transferring cutting planes across represolves leads to the most substantial
improvements. Transferring cutting planes alone causes a change in the solution
path on almost all of the affected instances in Table 1, and is responsible for
a speed up of 3%, across all of the considered brackets. Transferring pseudo-
costs only also gives a significant speedup, albeit a bit smaller than the one from
cutting planes. A reason for this is that fewer instances (194) are affected by the
change: this is partially due to the fact that pseudo-cost transfer will only affect
tree restarts, but not root restarts, and partially due to the employed limits on
the relative change in the represolved problem. However, if we restrict to the set
of instances affected by the change, transferring pseudo-costs is responsible for
a speed up of 5%. As for the two remaining types of global information, namely
conflicts and implications, our experiments show a performance-neutral result
or slightly detrimental performance impact when transferred across restarts.
In particular, transferring the implication graph is performance-neutral to 1%
improvement, depending on the bracket you consider. Our interpretation is that
many of the implications would be rediscovered in presolving and probing in the
second run anyway, so there is not much value. This was also a reason for not
yet trying to transfer the clique table, which is similar in nature. Finally, for
conflicts, we observed slightly detrimental behavior, which surprised us because
conflicts carry global information that cannot be easily, and cheaply, recomputed.
Our explanation for this is that the transfer of old conflicts together with the
strict limits on the overall conflicts pool size prevents fresh conflicts from being
learned. This clearly asks for a more careful re-tuning which is part of future
work.
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5 Conclusion & Outlook

In this paper we showed that transferring some pieces of global information
across a restart can be quite beneficial for the performance of a state of the art
MIP solver, both in terms of average runtime and size of the resulting enumer-
ation tree.

As future work we plan to investigate why transferring some of the global
structures, namely conflicts and implications, did not result in a measurable
performance improvement, and extend the transfer to additional structures, most
notably the cliques in the global clique table [7].
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