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Abstract. We propose a way to derive symmetry breaking inequalities
for a mixed-integer programming (MIP) model from the Schreier-Sims
table of its formulation group. We then show how to consider only the
action of the formulation group onto a subset of the variables. Computa-
tional results show that this can lead to considerable speedups on some
classes of models.

1 Motivation

An optimization problem is symmetric if its variables can be permuted without
changing the structure of the problem. Even for relatively small cases, symmetric
optimization problems can be difficult to solve to proven optimality by tradi-
tional enumerative algorithms, as many subproblems in the enumeration tree
are isomorphic, forcing a wasteful duplication of effort. Symmetry has long been
recognized as a challenge for exact methods in constraint and integer program-
ming, and many different methods have been proposed in the literature, see for
example the surveys in [6,14].

A common source of symmetry in a model is the underlying presence of
identical objects. Let’s consider a MIP model in which a subset of variables,
say 1,...,xy, corresponds to k identical objects, e.g., the k colors in a classical
graph coloring model [8]. A natural way to get rid of the symmetry implied by
those objects, which is well known and widely used by modelers, is to add to the
formulation the following chain of static symmetry breaking inequalities:

$12$22...2$k (1)

The validity of (4) can be easily proved as follows. If the k objects are iden-
tical, then G acts on x1,...,x; as the full symmetric group Si, and thus all
those variables are in the same orbit. As such, we can always permute the vari-
ables such that the first is not less than the others, which means adding the
inequalities x1 > x; for all ¢ > 1. This effectively singles out variable x;. Still,
what is left is the full symmetric group Sx_1 on the k — 1 variables s, ..., xk.
We can apply the very same reasoning and add the inequalities x5 > x; for all
1 > 2. Repeating the same argument till the bitter end we get that we added all
inequalities of the form x; > x; for all ¢ > j, which is equivalent to the chain
above after removing the redundant ones.



The effectiveness of such a simple symmetry handling technique can vary
significantly. In particular, it depends on the distribution of the feasible solutions
of the model: if many symmetric solutions lie on the hyperplanes z; = z;11,
then the method is usually rather ineffective, and not competitive with other
more elaborate symmetry handling techniques, like isomorphism pruning [12,13]
and orbital branching [15]. On the other hand, if there are no solutions with
T; = X;4+1, e.g. because the variables are linked by some all-different constraint,
then (4) is equivalent to a chain of strict inequalities, and all symmetry in the
model is effectively broken [17].

FExample 1. Let’s consider a simple 2D packing model', in which we have k
squares of size 10 x 10 and a container of size 10(k — 1) + 1 x 11. As no two
squares can fit vertically in the container, clearly only k — 1 squares can be put
into the container. A typical MIP model for this problem has a pair of continuous
variables (x;,y;) for each square, encoding the coordinates of, say, the lower-left
corner of the squares, plus ©(k?) binary variables to encode the non-overlapping
constraints among squares. Now, because of the shape of the container, we can
assume that w.l.o.g. y; = 0 for all squares in any feasible solution, while clearly
x; # x; for any two squares in any feasible solution. So adding the symmetry
breaking inequalities ©1 > x5 > ... > x effectively removes all the symmetries
from the formulation—and indeed works very well in practice with most solvers—
while adding the chain y; > yo > ... > y; is totally ineffective, and actually
harms the solution process as it still destroys the symmetry in the formulation,
preventing other symmetry handling methods to kick in. O

The example above confirms that inequalities (4) might or might not be an
effective way to deal with symmetry in MIP. Still, there are cases in which they
outperform all other symmetry handling techniques, so the question is: can we
derive those static symmetry breaking inequalities from the model automati-
cally? The answer is positive, as it turns out that inequalities (4) are a special
case of a wider class of symmetry breaking inequalities that can be derived from
the so-called Schreier-Sims table [19], a basic tool in computational group theory.

The outline of the paper is as follows. In Section 2 we review the basic
concepts of group theory needed for our discussion, and define the Schreier-
Sims representation of a group. In Section 3 we show how to use the Schreier-
Sims table to derive symmetry breaking inequalities, and present some exten-
sions/improvements over the basic method in Section 4. In Section 5 we outline
an algorithm to actually compute the table. Computational results are given in
Section 6, with conclusions and future directions of research drawn in Section 7.

2 The Schreier-Sims table

We follow the description of the Schreier-Sims [19,18] representation given in [12].
Let G be a permutation group on the ground set N = {1,...,n}. A permutation

! This is a much simplified version of the pigeon models [2] in MIPLIB 2010 [9].



g € G is represented by an n-vector, with g[i] being the image of i under g.
Consider the following chain of (nested) subgroups of G:

Go=G
G1={g€Golyg[l] =1}
Go ={g € G1| g[2] =2}

Gn =1{9 € Gnlgln] = n} (2)

In other words, G; is the stabilizer of i in G;_1. Note that no such subgroup
is empty, as the identity permutation is always contained in all G;. For each
i=1,...,n, let orb(i,Gi—1) = {j1,-..,Jp} be the orbit of i under G;_q, i.e.,
the set of elements onto which ¢ can be mapped according to G;_1. Note that
the orbit is never empty, as it always contains at least ¢. By definition, for each
element jj of the orbit there exists a permutation in G;_; mapping i to ji, and
let h; j, be any such permutation. Let U; = {hi,,...,hij,} be the set of these
permutations, called coset representatives. Again, U; is never empty. We can
arrange the permutations in the sets U; in an n x n table T', with:

EJ _ {hi,j lfj S orb(z, Gifl) (3)
) otherwise
The table T is called the Schreier-Sims representation of GG. The most basic
property of the table is that the set of permutations stored in the table form a
set of strong generators for the group G, i.e., any permutation of ¢ € G can be
expressed as a product of at most n permutations in the set. It is also worth
noting that the Schreier-Sims table not only provides a set of strong generators
for G but also for all the nested subgroups G;: indeed, a set of strong generators
for GG; is obtained by taking all permutations in the table with row index k& > 1.

Ezxample 2. Let’s consider the simple permutation group G of the symmetries of
the 2 x 2 square, with cells numbered top to bottom and left to right. G contains
8 permutations. The corresponding Schreier-Sims table is depicted below, where
each permutation is written in cycle notation, and 7 is the identity. Note that
G is not equal to Sy because, e.g., no permutation exists maps cell 2 to cell 4
without affecting cell 1 as well.

| 1 2 3 4
i (12)34) (13)24) (1432
i (23)

7
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O

Note that the Schreier-Sims table is always upper triangular, and it is fully
dense iff G = S,,, so constructing the table is sufficient to detect whether a group



G is the full symmetric group S,,. Given an arbitrary set of generators for G,
the Schreier-Sims table can be constructed in polynomial time (more details are
given in Section 5).

3 Deriving symmetry breaking inequalities

Consider a MIP model P with n variables and let G = (g1,...,gr) be its for-
mulation symmetry group, i.e., the group of permutations of the variables that
lead to an equivalent formulation, see [12,11] for a formal definition. Let T be
the Schreier-Sims representation of G. Then it follows that:

Theorem 1. The set of symmetry breaking inequalities x; > z; for all T;; # 0
18 valid for P.

Proof. The proof is a simple generalization of the argument used to prove the
validity of chain (4). Let us consider the orbit O; of variable z; according to G.
By definition we can always permute the variables such that x; takes a value
which is no less than the values taken by the other variables in the orbit, so the
set of inequalities corresponding to the first row of T', namely 1 > z; Vz; € O
is valid for P. Now, let’s add those inequalities to the model. The formulation
group of the resulting model contains Gy, i.e., the stabilizer of z; in G, so we
can proceed to the second row of the table, which gives exactly the orbit of x5 in
(1. Thus we can reiterate the argument and conclude that the set of inequalities
corresponding to the second row of T is valid for P. By induction we can continue
until the very last row of T, which proves the theorem. a

It is worth noting that the addition of symmetry breaking inequalities can in
principle result in new symmetries in the formulation, as shown by the following
example:

Ezxzample 8. Consider the LP:
min{z + xo + 23 + x4 : x3 — 24 > 0} (4)

The corresponding formulation group has only one symmetry, namely (z; x2).
However, adding z7 — x2 > 0 we get the additional symmetry (1 x3)(z2 x4),
while the stabilizer of 7 according to G would contain the identity permutation
only. a

Note that Theorem 1 only proves that we can derive a valid set of symmetry
breaking inequalities from the Schreier-Sims table T', but not that the inequalities
above are in general sufficient to break all the symmetries in the model. Indeed,
the latter statement would be false in general. What we can state however is that
(i) adding those inequalities breaks all symmetries in the original formulation,
and (ii) all solution symmetries of the original formulation are broken if the
variables of the model are linked by an all-different constraint, a result already
proved in [17]. The fact that in any case formulation symmetries are broken is



a double-edged sword: if solution symmetries are also broken then everything is
fine, otherwise the addition of those inequalities is not only ineffective but also
prevents other methods from being applied, as they would find no (or very little,
see Example 3) symmetries to exploit, as shown in Example 1.

4 Improvements

Suppose we are interested in how the formulation group G acts on a subset T
of variables of the model. For example, we might want to check whether G acts
as S7| on T', despite G possibly not being S,,. This can easily be achieved by a
small extension of the Schreier-Sims construction, in which we do not consider
the variables in order from z; to x,, when constructing the table, but in a different
order, say (3, such that the variables in T are considered first. Such order 3 is
called the base of the table, and the construction can easily be extended to deal
with an arbitrary base. Once the table is constructed, then we can conclude
that G acts as S on T iff the upper left |T'| x |T'| submatrix of 7" is (upper
triangular) fully dense.

Constructing the complete Schreier-Sims table of order n when we are ac-
tually interested only in its upper left corner of size |T| x |T| can potentially
be a big waste of computing resources. For example, in Example 1, the model
has size ©(k?), while the continuous variables that encode the placing of each
object are only O(k). In general the full computation is needed if the set T' has
no structure. However, if we assume that 7" is an orbit according to the original
group G, then we have a much better alternative: intuitively, we can project the
generators of G and work with a new group G whose ground set is just 7". Then
we can construct the Schreier-Sims table of Gy which is exactly of size |T'| x |T|.
Let us formalize this argument.

Any generator g of G (as any permutation for that matter), can be written in
cycle notation. Because of our choice of T, by construction all cycles in g either
move only variables in T" or only variables in N \ 7', as there is no permutation
in G moving an element from 7" into N \ T, otherwise T would not be an orbit.

Define the operator ¢ : S, <> S| as the operator that drops from a per-
mutation written in cycle notation all the cycles not in 7. For example, if
g = (13)(25)(789) and T' = {1, 2,3,4, 5}, then ¢(g) = (13)(25).

Let tq,...,t, be the permutations obtained by applying ¢ to the generators of
G and let G = (t1,...,t,). It is not difficult to prove that ¢ is a homomorphism
from G to Gr:let a =1 - y01...0p and b =01 -+ oywi . . . wg, where we used
~v and o to indicate the cycles moving variables in 7" and ¢ and w to indicate
the cycles moving variables in N \ T' (and we can always write a and b into this
form as the cycles can be written down in any order). Then:



p(ab) = p(y1 -+ k01 ... 0po1 - - OQw1 . .. Wy) (5)
= o(v1 - YRo1 0101 . Opwr - .. W) (6)
=y OO (7)
= p(a)p(b) (8)

where the first rearrangement of the cycles is allowed because they are dis-
joint.

In addition, as a homomorphism from G to G, ¢ is surjective. Indeed, let 7
be a permutation in Gr. By definition it can be obtained by the generators of
Gr and their inverses. But for each generator ¢; of Gy we know a permutation
h of G such that p(h) = t;, namely h = g; and the same is true for the inverses,
because ¢(g; ) = t; . Thus we can always construct a permutation g € G such
that ¢(g) = . For example, let m = t1t5 t5. Then g = g195 g5.

Thus, by working directly with the group G we are not introducing (nor
removing) any symmetry among the variables in T that was not already in G,
hence we can use G to study how G acts on T. The results still holds if T is
not just a single orbit but a union of orbits of G.

5 Constructing the Schreier-Sims table

A recursive algorithm to compute the Schreier-Sims table is described in [10],
and used in [12,13]. However, in our computational experience, we found a dif-
ferent iterative algorithm to perform better in practice. The iterative algorithm
constructs the Schreier-Sims table one row at the time, and works as follows. At
any given iteration i, the algorithm assumes that a set of generators for G;_; is
readily available (this condition is trivially satisfied for the first row, where we
can just use the generators of G). Then, it computes the orbit O; and the set of
coset representatives U; for element ¢. This is a basic algorithm in computational
group theory, called Schreier vector construction [3]. Note that this is enough to
fill row 7 of the table. Then we need to compute the generators for GG;, in order
to be ready for the next iteration. This is achieved in two steps:

1. Compute a set of generators for G; applying the Schreier’s lemma. In details,
given G;_1 = (g1, ..., gr) and the coset representatives U; = {r1,...,7}, we
can obtain a set of generators for G; as (r;tgr), with g € G, r € U;, and ry
chosen such that (r;tgr)[i] = i.

2. Reduce the set of generators for G; applying the Sims’ filter. This leaves at
most O(n?) generators for G;. This is needed in order to obtain a polynomial
algorithm for the Schreier-Sims table construction. Note that other filters
are known, such as for example Jerrum’s filter [4]. However, those are more
complicated to implement.

The overall complexity of the construction is O(n%). As noted already in [12],
an algorithm with a worst-case complexity of O(n°®) might seem impractical even



for reasonable values of n. However, we confirm that those bounds are very pes-
simistic and that the actual runtime of the algorithm was always negligible w.r.t.
to the overall solution process. Still, care must be taken in the implementation,
allowing the construction to be interrupted in case it becomes too time consum-
ing.

6 Computational results

We implemented the separation of the static symmetry breaking inequalities de-
scribed in Theorem 1 during the development cycle between IBM ILOG CPLEX
12.7.0 and 12.7.1 [7]. In particular, at the end of presolve, we use the genera-
tors of the formulation group, freshly computed with AUTOM [16], to construct
the Schreier-Sims table on the orbit of continuous variables with largest domain.
While the approach can in principle be applied to binary and general integer vari-
ables as well, we decided to apply the method very conservatively. The choice of
continuous variables with large domains is intuitively justified by the fact that it
is “less likely” to have solutions lying on the x; = x;41 in this case. If the table
is sufficiently dense, we add the symmetry breaking inequalities and erase the
generators (they are no longer valid), otherwise we forget about the table and
continue.

We tested the method on the CPLEX internal testbed, which consists of
approximately 3270 models, coming from a mix of publicly available and com-
mercial sources. Tests were executed on a cluster of identical machines, each
equipped with two Intel Xeon E5-2667v4 CPUs (for a total of 16 cores) run-
ning at 3.2GHz, and 64GB of RAM. Each run was given a time limit of 10.000
seconds. To limit the effect of performance variability [5,9], we compared the
two methods, namely CPLEX defaults with (symbreak) and without (cpx) the
addition of the symmetry breaking inequalities derived from the Schreier-Sims
table, with 5 different random seeds. Aggregated results over the 5 seeds are
given in Table 1.

The structure of the table is as follows. Instances are divided in different
subsets, based on the difficulty of the models. To avoid any bias in the analysis,
the level of difficulty is defined by taking into account both methods under
comparison. The subclasses “[n, 10k}’ (n = 1,10, 100, 1k), contain the subset of
models for which at least one of the methods took at least n seconds to solve
and that were solved to optimality within the time limit by at least one of the
methods. Finally, the subclasses “[n, 10k)” (n = 1,10, 100, 1k) contain all models
in “[n, 10k}” but considering only the models that were solved to optimality
by both methods. The first column of the table identifies the class of models.
Then the first group of 5 columns, under the heading “all models”, reports
results on all instances in the class, while the second group of columns, under
the heading “affected”, repeats the same information for the subset of models
in each class where the two methods took a different solution path. Within each
group, column “# models” reports the number of models in the class, columns
“#t]1” the number of time limits for each method, and columns “time” and



“nodes” report the shifted geometric means [1] of the ratios of solution times
and number of branch-and-bound nodes, respectively. Ratios ¢ < 1 indicate a
speedup factor of 1/¢.

all models affected

cpx symbreak cpx symbreak
class # models # tl # tl time nodes # models time nodes
[0,10K} 16185 127 111 0.99 0.98 317 0.52 0.32
[1,10K} 9475 82 66 0.98 0.96 303 0.50 0.30
[100, 10K’} 2645 79 63 0.93 0.87 159 0.27 0.10
[0,1) 6665 0 0 1.00 1.00 14 1.36 1.94
[1,10) 3905 0 0 1.00 1.00 48 0.97 1.00
[10, 100) 2920 0 0 1.00 1.00 96 1.05 1.09
[100,1K) 1765 0 0 0.99 0.97 86 0.73 0.51
[1K,10K) 680 0 0094 0.89 40 0.35 0.14

Table 1: Aggregated results.

According to Table 1, the symmetry breaking inequalities affect only around
2% of the models, which is not unexpected given the conservative criteria that
trigger their generation. Still, they are so effective that they produce a non
negligible speedup also on the whole testbed, with speedups ranging from 1%
to 7% (for the subset of hard models in the “[100, 10k)” bracket). Also the
number of time limits is significantly reduced. Aggregated results seed by seed
(not reported) also confirm that the improvement is consistent across seeds.

7 Conclusions

In this paper we investigated computationally the effectiveness of generating
static symmetry breaking inequalities from the Schreier-Sims table of the for-
mulation symmetry group. Computational results show that the approach can be
extremely effective on some models. The technique is implemented and activated
by default in the release 12.7.1 of the commercial solver IBM ILOG CPLEX. Fu-
ture direction of research include extending the classes of models on which the
method is tried, e.g., on pure binary models.
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