
Some experiments with submodular function
maximization via integer programming

Domenico Salvagnin

Department of Information Engineering (DEI), University of Padova
domenico.salvagnin@unipd.it

Abstract. Submodular function maximization is a classic problem in
optimization, with many real world applications, like sensor coverage,
location problems and feature selection, among others. Back in the 80’s,
Nemhauser and Wolsey proposed an integer programming formulation
for the general submodular function maximization. Being the number
of constraints in the formulation exponential in the size of the ground
set, a constraint generation technique was proposed. Since then, the
method was not developed further. Given the renewed interest in recent
years in submodular function maximization, the constraint generation
method has been used as reference to evaluate both exact and heuris-
tic approaches. However, the outcome of those experiments was that the
method is utterly slow in practice, even for small instances. In this paper
we propose several algorithmic enhancements to the constraint genera-
tion method. Preliminary computational results show that a proper im-
plementation, while still not scalable to big instances, can be significantly
faster than the obvious implementation by the book. A comparison with
direct mixed integer linear programming formulations on some classes of
models that admit one also show that the submodular framework, in its
generality, is clearly slower than dedicated formulations, so it should be
used only when those approaches are not viable.

1 Introduction

Let N be a finite set of n elements, called the ground set. A set function f :
2N → R is called submodular if it satisfies the following property:

f(S) + f(T ) ≥ f(S ∪ T ) + f(S ∩ T ) ∀S, T ⊆ N (1)

Equivalently [17], a set function f is submodular if and only of it satisfies the
diminishing returns property:

f(S ∪ j) ≥ f(T ∪ j) ∀S ⊆ T ⊆ N, j ∈ N − T (2)

In other words, the later we add an element j to a set, the smaller its effect is on
the objective. Many real-world optimization problems give rise to submodular
functions like, e.g., location problems and sensor coverage [14]. In addition, many



problems in computer science and machine learning, such as exemplar cluster-
ing [8], influence spread [13], image denoising [5], and feature selection [11], can
be formulated as submodular maximization problems.

A submodular function is nondecreasing (or monotone) if f(S) ≤ f(T ) ∀S ⊆
T ⊆ N , and f(∅) = 0. Clearly, maximizing a nondecreasing submodular function
is trivial in the absence of further constraints. In this paper we will consider the
cardinality constrained version:

max f(S)

S ⊆ N
|S| ≤ k

for a given 0 < k < n. We further assume the standard value oracle model,
i.e., the submodular function f is known only through a black box oracle that
is able to compute the value f(S) for an arbitrary S ⊆ N . It is well-known
that the simple greedy algorithm [18], which adds at each iteration the element
j with the largest marginal benefit w.r.t. the current set until its cardinality
is k, achieves an approximation ratio of (1 − 1/e). The greedy algorithm uses
O(nk) functions evaluations in the worst case, although this can be improved in
practice exploiting definition (2), i.e., the fact that as we add elements to the set,
the marginal benefits of the remaining elements to consider can only decrease,
see [16]. We will see in the following that the role of the greedy algorithm is
quite prominent even in exact methods.

The structure of the paper is as follows. In Section 2 we will describe the
MIP model of Nemhauser and Wolsey, which is the basis of all our MIP methods
for general submodular function maximization. Then in Section 3 we describe
a modern implementation of the basic constraint generation model based on
such model, and introduce some algorithmic enhancements to the method, in
terms of primal heuristics and cut separation. Computational results are given
in Section 4. Finally, conclusions and future directions of research are drawn in
Section 5.

2 The general IP model

In [17], Nemhauser and Wolsey introduced a mixed-integer-programming for-
mulation for the general submodular function maximization problem. Let us
denote with ∆j(S) the marginal value of adding an element j to S, i.e. ∆j(S) =
f(S ∪ j) − f(S). The formulation is based on the following general property of
submodular functions:

f(T ) ≤ f(S) +
∑

j∈T−S
∆j(S)−

∑
j∈S−T

∆j(S ∪ T − j) ∀S, T ⊆ N (3)

If f is monotone, (3) can be further simplified to

f(T ) ≤ f(S) +
∑

j∈T−S
∆j(S) ∀S, T ⊆ N (4)



which immediately suggests the MIP formulation:

P = max z (5)

z ≤ f(S) +
∑
j 6∈S

∆j(S)xj ∀S ⊆ N (6)

∑
j∈N

xj ≤ k (7)

xj ∈ {0, 1} ∀j ∈ N (8)

where variables xj basically encode the indicator function 1(S), i.e., xj = 1 iff
j ∈ S, and constraints (6) encode (4) as linear inequalities. Note that the model
does not exploit any knowledge that cannot be obtained under the value oracle
model. Model P has an exponential number of constraints (one for each subset
of N , plus the cardinality constraint): thus a constraint generation approach was
proposed in [17], where constraints (6) are added iteratively.

Given a solution (x∗, z∗) with x∗ integer, it is trivial to solve the separation
problem over the family of constraints (6): x∗ uniquely defines a subset S∗ and
we just need to evaluate f(S∗). If z∗ ≤ f(S∗), then (x∗, z∗) cannot be cut.
Otherwise, we just need to construct the cut corresponding to S∗ at the cost of
additional n − k function evaluations, and this is guaranteed to be violated by
(x∗, z∗) by the amount z∗ − f(S∗).

It is important to emphasize that formulation P does not give the convex hull
of the points (1(S), f(S)), so even if we would add all constraints (6), we would
not be able to solve the model as a linear program. Surprisingly, constraints (6)
can be strengthened by ignoring the fact that the function is nondecreasing, and
reverting to the general expression (3). Given that we do not know T in advance,
we relax the coefficients ∆j(S∪T ∪−j) to ∆j(N− j), and obtain the inequality:

z ≤ [f(S)−
∑
j∈S

∆j(N − j)] +
∑
j∈S

∆j(N − j)xj +
∑
j 6∈S

∆j(S)xj ∀S ⊆ N (9)

It is easy to show that (9) dominates (6): if T ⊇ S the two expressions coincide,
otherwise the right hand side expression of (9) is strictly better. Note that cuts
(9) are a little denser than their (6) counterparts. On the other hand, they are
not more expensive to compute, as the coefficients ∆j(N − j) do not depend on
S and can thus be computed once and for all at the beginning. Unfortunately,
these cuts are still not enough to obtain a convex hull formulation, as can be
easily proven by constructing small counterexamples. Still, we will use cuts (9)
in place of (6) in the rest of the paper, as preliminary computational results
showed that the resulting formulation gives a stronger dual bound.

3 A modern implementation

The constraint generation method based on model P is somehow reminiscent
of Benders decomposition [4]. The model P that is solved iteratively acts a a



Benders master, while constraints (6)—or (9)—are the analogous of Benders
optimality cuts. While the analogy is only superficial—in the submodular case
there is no variable splitting and there is no (LP) duality theory to exploit
to derive a cut—some of the algorithmic improvements proposed for Benders
decomposition over the years easily carry over. In particular, we do not need
to solve to proven optimality a MIP at each iteration, but we can separate
constraints (9) on the fly each time an integer solution is found by the branch-
and-cut, exploiting modern MIP solvers support for so-called lazy constraints.
In other words, only a single enumeration tree is needed.

Then, we can improve the overall method in at least two directions: (i) use
a more sophisticated primal heuristic to find a tighter primal bound at the
beginning and (ii) separate constraints (9) not only at integer solutions, but also
at fractional ones, in order to improve the dual bound more quickly.

3.1 GRASP heuristic

The simple greedy algorithm is known to perform very well in practice, a be-
haviour that was confirmed in our computational evaluation. Still, it yields the
true optimal solution only on the smaller models. A first improvement can be
obtained by adding a local search phase at the end of the greedy phase. In order
to do so, we need to define a neighborhood structure on the solutions. In the
following, we assume to have at hand a subset S of cardinality k. The easiest
choice is to consider an exchange neighborhood, i.e., consider the set of subsets
T that can be obtained by dropping an element from S and adding an element
not in S. More formally:

N (S) = {T ⊆ N : T = S ∪ i− j,∀i ∈ S, ∀j 6∈ S}

Each such neighborhood can be explored at the cost of additional O(nk) eval-
uations. Then the local search phase consists in iteratively exploring the neigh-
borhood of the current set S, and updating it until it is locally optimal.

We can extend the greedy plus local search combination into the full-blown
meta-heuristic scheme called GRASP[9]. The main idea is to introduce a ran-
domized component into the greedy procedure, where at each step, instead of
picking the element with the largest marginal gain, we pick randomly among
the best C (say) candidates, the so-called restricted candidate list. Then, each
solution found this way is improved by local search, and the process is repeated
until some iteration/resource limit is reached.

Interestingly, in our setting we can derive an additional benefit from this
most sophisticated heuristic than just an hopefully better primal bound. For
each locally optimal solution found by GRASP, we can construct a cut (9), so
that we can warm-start the MIP P with an initial pool of cuts.

3.2 Separating fractional solutions

While separating integer solution is trivial, separating fractional solutions is far
more challenging, as we cannot directly map the point to cut to a subset of N .



Ideally, we would like to solve, for a given (x∗, z∗), the separation problem:

max z∗ − [f(S)−
∑
j∈S

∆j(N − j)]−
∑
j∈S

∆j(N − j)x∗j −
∑
j 6∈S

∆j(S)x∗j

S ⊆ N
|S| ≤ k

but this is basically as hard as the original problem. As such, we resort to heuris-
tic separation algorithms. In the following, we will describe two such procedures,
one based on the greedy algorithm and one based on the Lovász extension of f .

Let F1 (resp. F0) be the set of variables fixed to 1 (resp. 0) at the current
node of the branch-and-cut tree. In the following, we will denote a node by
the pair (F1, F0). Clearly, we can modify the greedy algorithm to take those
local domains into account. Let S′ be the greedy set computed in this way, i.e.,
T = F1 ∪ {xj1 , . . . , xjp} for some p, with the variables added by the greedy
algorithm exactly in this order. Then for each 0 ≤ q ≤ p we can consider the
set Tq = F1 ∪ {xj1 , . . . , xjq} (the current set after q greedy steps), construct
the corresponding cut and check whether it is violated by the current fractional
solution. So we test each Tq in sequence, and keep adding elements as long as
the violation increases.

There is a nice connection between the cuts that can be obtained this way and
the modular heuristic hmod used in A∗ search approaches for submodular func-
tion maximization. We recall that A∗ search picks the next node to explore as the
one maximizing f(F1)+h(F1, F0), where h(·) is a so-called (admissible) heuristic
function that bounds the objective value of any node in the current subtree—in
the mathematical programming terminology, any such function would yield a
valid dual bound. The admissible heuristic hmod, proposed in [6], is computed
as:

hmod(F1, F0) =
∑

j∈T−F1

∆F1
(j)

where T is the greedy solution computed at node (F1, F0). It is easy to see that
any fractional solution with z∗ > f(F1) + hmod(F1, F0) would be violated by a
cut computed by the procedure above. Indeed, the fractional solution is already
violated by the cut computed from F1, and we enlarge the set only if it gives an
improvement w.r.t. violation. As a corollary, if the separation procedure above is
applied at all nodes of the branch-and-bound tree, we have that the LP relaxation
computed at node (F1, F0) cannot be worst than f(F1)+hmod(F1, F0), and thus
the LP bound dominates the hmod bound, albeit at the cost of solving LPs.

The greedy solution T computed at node (F1, F0) is completely oblivious to
the fractional solution (x∗, z∗), a fact that can make the discovery of violated
inequalities quite rare. A different approach consists in using the so-called Lovász
extension f̂ of f , i.e., the extension of function f to the unit cube [0, 1]n [15]. The
extension is defined as follows. Let x∗ ∈ Rn

+ be an arbitrary fractional vector
in the unit cube. Then we can express x∗ as a convex combination of n + 1



vertices x0, x1, . . . , xn of the unit cube, with the additional property that those
vertices form a nested sequence, i.e., xi ⊆ xi+1 (with a small abuse of notation,
we identify the integer vertices with the subsets of N of which they are the
indicator vectors). Given the coefficients λ0, . . . , λn of the convex combination,

we can then define f̂(x∗) as

f̂(x∗) =

n∑
i=0

λif(Si)

where Si is the set associated to vertex xi. Instrumentally, an efficient procedure
is known to compute, given an arbitrary point x∗, both the sequence S0, . . . , Sn,
and the corresponding multipliers. Intuitively, the sequence is obtained by start-
ing from the empty set, and adding elements according to a permutation of the
indices that sorts the values x∗j in non-increasing order, while the multipliers
are obtained as differences of pairs of consecutive coefficients in the sorted se-
quence, see [15] for more details about the procedure. Once we have computed
the sequence (and the corresponding multipliers), we can easily perform two
operations:

1. compute f̂(x∗). If z∗ ≤ f̂(x∗), then we have a proof that no violated cut
of the form (9) exists, as (x∗, z∗) belongs to the convex hull of the feasible
solutions of P .

2. We can construct a cut for each set Si in the sequence, and check whether
it is violated.

Unfortunately, even this machinery does not give an exact separation procedure,
as it can happen that z∗ > f̂(x∗), but no cut obtained from the sets in the se-
quence is violated, and this does not rule out the existence of violated inequalities
associated with other subsets of N . The reason is that, intuitively, the Lovász
construction gives only one among many possible ways of constructing x∗ as a
convex combination of vertices of the unit cube.

4 Computational results

We implemented all the methods under comparison in C++, using IBM ILOG
CPLEX 12.8 [10] as MIP solver. In the following, we will denote by base the
basic implementation of the constraint generation method, by bc its counterpart
where constraints (9) are separated on the fly as lazy constraints, and by bc+ the
improved version that also uses GRASP and separation of fractional solutions in
the tree. All codes were run on a cluster of 24 identical machines, each equipped
with an Intel Xeon CPU E3-1220 V2 CPU running at 3.10 GHz, and 16 GB of
RAM. All codes take full advantage of multi-threading. Each method was run
on each instance with a time limit of 1 hour. The parameters used by our code
are as follows:

– the GRASP heuristic is run with a limit of 100 iterations. Its restricted
candidate list has size max(5, n/4).



– CPLEX is called with defaults parameters for base, as we use it as a pure
black box there. On the other hand, for methods bc and bc+ we disable
dual and nonlinear reductions, as needed to guarantee correctness because of
lazy constraints, and we set the variable selection strategy to strong branch-
ing [2,3], as this resulted in an improved performance in preliminary tests.

– We separate fractional solutions at the root and at all nodes whose relaxation
is within 1% of the best bound node. In addition, the generated cuts are
added to the current node only if their violation is at least 0.1% of the
best bound. The rationale is that in our case violation is a measure of how
much z∗ is currently overestimated, hence we can directly compare this value
against the objective value. Finally, all separated cuts are added as local
cuts—although they would legitimately be globally valid—to ensure a more
aggressive purging.

4.1 Benchmark sets

We considered three classes of problems that give rise to submodular functions,
namely location, weighted coverage and bipartite inference. We will now briefly
describe each of them.
Location [12,19] We are given a ground set of N locations, a set M of clients,
and a non-negative profit gij if client i is served by location j, for all possible
pairs. Each client gets the profit from the best opened location, and we want to
maximize the overall profit. This corresponds to the submodular function:

f(S) =
∑
i∈M

max
j∈S

gij

Weighted Coverage [14,19] We are given a ground set of N sensors, and a set
M of possible targets. Each target i has an associated non-negative weight of
wi ≥ 0. Each sensor j covers the subset of targets Mj ⊆M . We want to maximize
the total weight of the covered targets. This corresponds to the submodular
function:

f(S) =
∑

i∈
⋃

j∈S Mj

wi

Bipartite Inference[19] We are given a ground set of N items, and a set M
of targets. We are also given a bipartite graph G = (N,M,A), where the set of
arcs A encodes which targets can be influenced by which items. Finally, we get
an activation probability pj for each item j. Given a subset S ⊆ N , the graph
structure and the activation probabilities pj , we can compute the activation
probability pS(i) of each target i ∈M as:

pS(i) = 1−
∏

j∈S:(j,i)∈A

(1− pj)

We want to maximize the submodular function f(S) =
∑

i∈M pS(i).
We generated random instances for all the classes above, using the following

rules:



– n ∈ {20, 50, 100, 200}
– m = µn with µ ∈ {2, 5, 10}

– k ∈


{5, 10} if n = 20

{10, 20} if n ∈ {50, 100}
{20, 50} if n = 200

where n = |N | and m = |M |. For each combination (n,m.k) we generated 5
random models, obtaining in total 360 instances. For location instances, gij are
randomly picked in the interval [0, 1]. For weighted coverage instances, wi are
randomly picked in the interval [0, 1], and a target is covered by a sensor with
probability 0.07. Finally, for bipartite inference instances, pj are again randomly
picked in the interval [0, 1], while each arc in the bipartite graph exists with
probability 0.07.

4.2 Results

We first compared the three methods base, bc and bc+ on the whole testbed
of 360 models. Aggregated results are reported in Table 1. The structure of
the table is as follows. Instances are divided in different subsets, based on the
difficulty of the models. To avoid any bias in the analysis, the level of difficulty
is defined by taking into account all methods under comparison. The subclasses
“[l, 3600}” (l = 0, 1, 10, 100), contain the subset of models for which at least one
of the methods took at least l seconds to solve and that were solved to optimality
within the time limit by at least one of the methods. The subset “all” contains
all models. For each subset of models, we report three performance indicators
for each of the compared methods: #S reports the number of instances solved
to optimality, #T the number of instances for which the method hit the time
limit, and the shifted geometric mean [1] of the solution time, with a shift of
one second. Note that for all methods except the reference method (base in our
case), we report the ratio w.r.t. to the reference of the runtime (columns “tQ”)
rather than the value itself. Ratios t < 1 indicate a speedup factor of 1/t.

According to the table, bc+ is significantly better than bc, both in terms of
number of instances solved and average runtime, and bc is in turn significantly
better than the baseline method base, again according to both criteria. If we
compare bc+ to base directly, we see that bc+ can solve 62 more models and is
on average 4× faster. If we restrict to the set of models that at least one method
can solve (193 models), then the speedup is even more impressive, up to 20×.
In addition, the speedup further increases as we consider harder models.

More detailed results are given in Table 2, where we aggregate only over the
5 different models generated for each parameter combination. For each problem
class, and for each combination of (n,m, k), we report, for all methods under
comparison, the number of instances solved (out of 5), the shifted geometric
mean of runtime, and the final relative gap at the end of the solve—the latter
being a significant measure for the case in which we frequently hit the time
limit. Note that we also report intermediate aggregate results by problem class.



base bc bc+

instances #S #T time (s) #S #T tQ #S #T tQ

all 121 239 349.42 153 207 0.42 193 167 0.24
[0, 3600} 121 72 45.67 153 40 0.19 193 0 0.05
[1, 3600} 39 72 739.86 71 40 0.07 111 0 0.01

[10, 3600} 24 72 1703.62 56 40 0.05 96 0 0.01
[100, 3600} 17 72 2340.09 49 40 0.05 89 0 0.00

Table 1: Aggregated results over whole testbed.
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Fig. 1: Performance profile over whole testbed.



According to the table, most parameter combinations either end up being in the
easy or unsolvable class, with only a few combinations in between. Still, the more
sophisticated methods—and bc+ in particular—do not exhibit any slowdown on
the easy models, while being up to two orders of magnitude faster on the medium
models, most of which the base cannot even solve. As for the subsets on which
all methods hit the time limit, the average final gap is reduced by approximately
a factor of 2, which is significant.

In Figure 1 we report the performance profile [7] of the three methods on the
whole testbed, which largely confirms the finding of Table 1.

4.3 Comparison with a direct MIP model

Both location and weighted coverage problems can be formulated directly as
MIP models. For the location case, the model reads:

max
∑
i∈M

∑
j∈N

wijyij∑
j∈N

yij ≤ 1 ∀i ∈M

yij ≤ xj ∀i ∈M, j ∈ N∑
j∈N

xj ≤ k

xj ∈ {0, 1} ∀j ∈ N
yij ∈ {0, 1} ∀i ∈M, j ∈ N

Binary variables xj encode which locations are open—as in the Nemhauser and
Wolsey model—while binary variables yij encode which location is serving a
given client. Note that variables yij could be relaxed to continuous without
affecting the model, as for x fixed the resulting matrix is totally unimodular.

Similarly, for weighted coverage models, the model reads:

max
∑
i∈M

wiyi∑
j:i∈Mj

xj ≥ yi ∀i ∈M∑
j∈N

xj ≤ k

xj ∈ {0, 1} ∀j ∈ N
yi ∈ {0, 1} ∀i ∈M

Here, binary variables xj encode which sensors are deployed, while binary vari-
ables yi encode which targets are covered. Again, variables yij could be relaxed
to continuous without affecting the model.



#solved time(s) gap

class n m k base bc bc+ base bc bc+ base bc bc+

loc 20 40 5 5 5 5 1.08 0.05 0.03 0.00% 0.00% 0.00%
10 5 5 5 0.03 0.01 0.02 0.00% 0.00% 0.00%

100 5 5 5 5 75.03 0.62 0.17 0.00% 0.01% 0.00%
10 5 5 5 0.66 0.03 0.06 0.00% 0.01% 0.01%

200 5 5 5 5 346.59 1.21 0.33 0.00% 0.01% 0.00%
10 5 5 5 26.36 0.51 0.31 0.00% 0.01% 0.00%

50 100 10 0 0 5 t.l. t.l. 21.22 0.76% 0.34% 0.01%
20 5 5 5 61.56 2.78 1.20 0.00% 0.01% 0.01%

250 10 0 0 2 t.l. t.l. 3077.35 2.19% 1.93% 0.47%
20 0 0 3 t.l. t.l. 1137.97 0.44% 0.33% 0.05%

500 10 0 0 0 t.l. t.l. t.l. 2.82% 2.74% 1.88%
20 0 0 0 t.l. t.l. t.l. 0.86% 0.73% 0.41%

100 200 10 0 0 0 t.l. t.l. t.l. 3.02% 2.46% 1.56%
20 0 0 0 t.l. t.l. t.l. 1.18% 0.81% 0.49%

500 10 0 0 0 t.l. t.l. t.l. 4.06% 3.92% 3.17%
20 0 0 0 t.l. t.l. t.l. 1.79% 1.58% 1.24%

1000 10 0 0 0 t.l. t.l. t.l. 4.74% 4.74% 4.04%
20 0 0 0 t.l. t.l. t.l. 2.31% 2.10% 1.77%

200 400 20 0 0 0 t.l. t.l. t.l. 2.11% 1.79% 1.41%
50 0 0 0 t.l. t.l. t.l. 0.39% 0.37% 0.23%

1000 20 0 0 0 t.l. t.l. t.l. 2.71% 2.50% 2.09%
50 0 0 0 t.l. t.l. t.l. 0.65% 0.64% 0.48%

2000 20 0 0 0 t.l. t.l. t.l. 3.10% 2.96% 2.61%
50 0 0 0 t.l. t.l. t.l. 0.83% 0.84% 0.69%

35 35 45 725.32 375.15 269.63 1.42% 1.28% 0.94%

wcov 20 40 5 5 5 5 0.02 0.01 0.01 0.00% 0.00% 0.00%
10 5 5 5 0.01 0.00 0.01 0.00% 0.00% 0.00%

100 5 5 5 5 0.47 0.02 0.02 0.00% 0.00% 0.00%
10 5 5 5 0.05 0.01 0.01 0.00% 0.00% 0.00%

200 5 5 5 5 3.05 0.06 0.03 0.00% 0.00% 0.00%
10 5 5 5 0.10 0.01 0.02 0.00% 0.00% 0.00%

50 100 10 3 5 5 1442.22 27.44 0.67 0.56% 0.01% 0.01%
20 5 5 5 0.87 0.23 0.07 0.00% 0.01% 0.00%

250 10 0 0 5 t.l. t.l. 36.44 6.06% 3.48% 0.01%
20 3 5 5 837.59 39.35 1.88 0.31% 0.01% 0.00%

500 10 0 0 1 t.l. t.l. 2787.92 13.20% 11.08% 3.13%
20 0 0 3 t.l. t.l. 1503.03 4.48% 2.94% 0.65%

100 200 10 0 0 0 t.l. t.l. t.l. 13.26% 10.25% 4.83%
20 0 0 5 t.l. t.l. 937.31 4.89% 1.51% 0.01%

500 10 0 0 0 t.l. t.l. t.l. 20.36% 17.70% 10.03%
20 0 0 0 t.l. t.l. t.l. 11.72% 9.64% 6.69%

1000 10 0 0 0 t.l. t.l. t.l. 26.59% 23.34% 13.37%
20 0 0 0 t.l. t.l. t.l. 17.37% 14.85% 11.97%

200 400 20 0 0 0 t.l. t.l. t.l. 11.01% 8.80% 5.16%
50 5 5 5 0.04 0.01 0.16 0.00% 0.00% 0.00%

1000 20 0 0 0 t.l. t.l. t.l. 18.75% 16.66% 13.39%
50 5 5 5 0.10 0.02 0.39 0.00% 0.00% 0.00%

2000 20 0 0 0 t.l. t.l. t.l. 24.00% 21.96% 19.53%
50 2 3 5 145.45 26.04 2.06 0.05% 0.05% 0.00%

53 58 74 147.31 92.69 50.40 7.19% 5.93% 3.70%

binf 20 40 5 5 5 5 0.01 0.01 0.01 0.00% 0.00% 0.00%
10 5 5 5 0.01 0.00 0.01 0.00% 0.00% 0.00%

100 5 5 5 5 0.02 0.01 0.01 0.00% 0.00% 0.00%
10 5 5 5 0.00 0.00 0.01 0.00% 0.00% 0.00%

200 5 4 5 5 4.47 0.01 0.01 0.00% 0.00% 0.00%
10 5 5 5 0.01 0.00 0.01 0.00% 0.00% 0.00%

50 100 10 2 5 5 318.98 0.27 0.05 2.21% 0.01% 0.00%
20 1 5 5 753.23 0.08 0.06 0.32% 0.01% 0.00%

250 10 0 5 5 t.l. 17.41 0.23 1.35% 0.01% 0.01%
20 0 5 5 t.l. 1.91 0.21 5.41% 0.01% 0.00%

500 10 0 5 5 t.l. 88.92 0.82 2.59% 0.01% 0.01%
20 1 5 5 886.66 7.15 0.69 0.33% 0.01% 0.00%

100 200 10 0 0 5 t.l. t.l. 14.12 8.62% 5.26% 0.01%
20 0 0 2 t.l. t.l. 2546.50 6.00% 4.15% 1.15%

500 10 0 0 3 t.l. t.l. 517.44 16.68% 11.26% 1.41%
20 0 0 0 t.l. t.l. t.l. 11.52% 8.76% 6.25%

1000 10 0 0 4 t.l. t.l. 837.36 16.31% 11.51% 0.92%
20 0 0 0 t.l. t.l. t.l. 12.41% 9.25% 7.01%

200 400 20 0 0 0 t.l. t.l. t.l. 16.78% 12.95% 10.87%
50 0 0 0 t.l. t.l. t.l. 2.84% 2.65% 2.20%

1000 20 0 0 0 t.l. t.l. t.l. 21.51% 17.90% 15.67%
50 0 0 0 t.l. t.l. t.l. 3.93% 3.81% 3.26%

2000 20 0 0 0 t.l. t.l. t.l. 23.63% 20.07% 17.75%
50 0 0 0 t.l. t.l. t.l. 4.76% 4.63% 4.16%

33 60 74 398.46 93.58 42.83 6.55% 4.68% 2.94%

all 121 153 193 349.42 148.37 83.79 5.05% 3.96% 2.53%

Table 2: Detailed results over all subsets of models.



It is thus interesting to compare our specialized methods against a direct
application of a black box MIP solver, which of course requires much less effort.
We present the comparison for the subset of locations models—similar results
can be obtained for the class of weighted coverage models—and we compare the
best of our specialized methods, bc+, against CPLEX defaults (CPLEX) and the
automatic Benders decomposition of CPLEX (Benders)—Benders being a viable
option assuming variables yij are relaxed to continuous. Aggregated results are
given in Table 3, whose structure is identical to Table 1, and the corresponding
performance profile is given in Figure 2. The comparison allows us to put the
performance of bc+ into perspective: while significantly faster than what we
started from (base), it is still no match for a black box MIP solver like CPLEX,
which is able to solve 50% more models, and is overall twice as fast (and up to
10× faster as the models get harder). The automatic Benders decomposition is
even faster, solving additional models and being quite faster than CPLEX.

In hindsight, this is not unexpected: being able to express the full model as
a mixed integer program allows for a lot of sophisticated techniques to be em-
ployed that can take advantage of a global view on the problem. Unsurprisingly,
encoding the strcuture of f directly into the model results in being a better
option than writing a model that can access f only through a black box oracle.
On the other hand, a direct MIP formulation is not always a viable option, e.g.
in the bipartite inference case, and this justifies the effort to make the general
submodular framework more efficient. In addition, there is clearly still room for
further research and improvements.

5 Conclusions and future research

In the present paper, we presented a modern implementation of the MIP model
of Nemhauser and Wolsey for submodular function maximization, based on
lazy constraint generation. We also developed some algorithmic improvements,
namely a GRASP heuristic and two (heuristic) procedures for separating sub-
modular cuts from fractional solutions. A computational evaluation on three
classes of submodular functions showed that the developed methods significantly
improve over the basic constraint generation model by the book. A comparison
with a direct MIP formulation for one class of models also showed that, when
available, this is usually a preferable option, being not only far easier to imple-
ment but also quite faster than the MIP-based framework based on the general
model. Still, the general framework is in its computational infancy, and further
research is needed in many areas. Among others, more effective (and possibly ex-
act) separation procedures over the family of cuts (9)—or even (6)—and custom
branching rules based on f could make the method more efficient in practice.
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