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Synchronous rewriting grammars have been successfully exploited as translation models in ma-

chine translation applications. In this article we consider the problem of the design of translation

algorithms based on synchronous context-free grammars. We revisit a methodology for the design

of parsing algorithms based on the idea of language intersection, that has fully been developed in

the parsing community, and show how to apply it in the design of translation algorithms.

We argue that the intersection methodology above can also be viewed as a framework for

the comparison of translation algorithms and for the formal analysis of their properties. On this

line, we observe how superficially different translation algorithms that have been proposed in the

literature can be viewed as special cases of application of the intersection methodology. We also

use our framework to reformulate and improve some results already presented in the literature.

1. Introduction

State of the art machine translation architectures are all based on mathematical models

called translation models. Generally speaking, a translation model accounts for all of

the elementary operations that rule the process of translation between the different

word orderings of the source and target languages. Translation models are usually

enriched with statistical parameters, to help driving the search in the space of all valid

transformations of the source sentence into the target sentence. Specialized algorithms

are also provided for the automatic estimation of these parameters from corpora of

translation pairs. Besides the task of natural language translation, translation models are

also exploited in other applications, such as word and phrase alignments, multilingual

document retrieval, automatic dictionary construction and several others.
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The most successful translation models that are found in the literature exploit finite-

state machinery. The approach started with the so-called IBM models (Brown et al.

1993), implementing a set of elementary operations, such as movement, duplication

and translation, that independently act on individual words in the source sentence.

These word-to-word models have been later enriched with the introduction of larger

units such as phrases; see for instance work by Och, Tillmann, and Ney (1999), Och and

Ney (2002) and Koehn, Och, and Marcu (2003). Still, the generative capacity of these

models lies within the realm of finite-state machinery (Kumar and Byrne 2003), so they

are unable to handle nested structures and do not provide the expressivity required to

process language pairs with very different word orderings.

Rather independently of the above developments in statistical machine translation,

the computational linguistics community also investigated the translation problem un-

der a syntactic perspective, adopting formal approaches that extended the generative

capacity of the finite-state paradigm by introducing hierarchical language descriptions.

Borrowing from the theory of formal language and compilers, many of these approaches

made use of synchronous rewriting; see for instance work by Shieber and Schabes

(1990), Shieber (1994) and Dras (1999). In synchronous rewriting two formal grammars

are exploited, one describing the source language and the other describing the target

language. The productions of the two grammars are paired and, in the rewriting pro-

cess, such pairs are always applied synchronously.

Very recently, there has been some sort of convergence between the lines of inves-

tigation presented above, and more sophisticated statistical translation models have

been adopted by the machine translation community, in the attempt to give more

structured accounts of the human language translation process and to improve state

of the art translation accuracy. Formalisms based on hierarchical language descriptions
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and synchronous rewriting have been adopted and empowered with the use of sta-

tistical parameters, and specialized estimation and translation (decoding) algorithms

were newly developed for these formalisms. Among the several formalisms that have

been proposed in the literature, we mention here the inversion transduction grammar

of Wu (1997), the recursive system based on head transducers proposed by Alshawi,

Bangalore, and Douglas (2000), the tree-editing system developed by Yamada and

Knight (2001), the multitext grammars of Melamed (2003), the synchronous tree sub-

stitution grammar of Eisner (2003), and the synchronous context-free grammars with

a single nonterminal proposed by Chiang (2005). Besides synchronous rewriting, other

paradigms have been exploited in the development of hierarchical translation models.

See for instance work by Galley et al. (2004) and May and Knight (2006), using tree

transducer models (Knight and Graehl 2005), and work by Poutsma (2000) and Way

(2003), inspired by the data-oriented parsing paradigm (Bod, Scha, and Sima’an 2003).

In this article we investigate the synchronous rewriting paradigm introduced above,

and focus on the development of algorithms for the associated translation problem and

other related problems as well, such as the problem of synchronous parsing and the

tree translation problem. In the translation problem one is given as input a sentence

in some source language, and must construct a suitable representation of all possible

translations of that sentence in some target language. The theory and the algorithms

presented in this article are intended as an abstract framework that serves two main

goals:

r provide a general methodology that can be used to develop new

algorithms for the translation problem and to investigate their formal

properties;
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r propose a unified treatment of superficially different algorithms that, in an

application oriented setting, have been recently presented in the literature

for the translation problem.

The framework we propose is naturally derived from a construction that has

been originally developed in the theory of formal languages, the so-called Bar-Hillel

construction (Bar-Hillel, Perles, and Shamir 1964). Later, such a construction has been

largely adopted in natural language parsing applications; see for instance work by Lang

(1991), Nederhof and Satta (2003) and references therein. In a practical perspective, what

this means is that we will develop translation algorithms by entirely using well known,

off-the-shelf parsing tools.

The present proposal deals with synchronous rewriting formalisms based on

context-free grammars. This is motivated by the fact that, among all the approaches

that adopt the synchronous rewriting paradigm, the choice of synchronous context-

free rewriting is the most common in statistical machine translation applications. Al-

though it is beyond the scope of this article to provide a detailed overview of all the

synchronous formalisms cited above, we discuss some examples showing how the

results presented in this article can be extended to those formalisms. Furthermore, the

methodology we develop here can easily be extended to generatively more powerful

synchronous systems, as for instance the synchronous tree adjoining grammars of

Shieber (1994) and the generalized multitext grammars proposed by Melamed, Satta,

and Wellington (2004b).

We are aware of few other attempts to provide a framework for the unified spec-

ification of translation algorithms based on models beyond the finite-state paradigm.

Bertsch and Nederhof (2001) have adapted the range concatenation grammars of Boul-

lier (2004) to generate languages of string pairs, thus implementing language transla-
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tion, and have outlined a translation algorithm based on the same idea of language

intersection considered in the present article. Since range concatenation grammars are

generatively more powerful than the kind of synchronous grammars that are used in

practical applications, their proposal could be used to provide translation algorithms

for those formalisms. However, this idea is not pursued by the authors in their work. A

second framework for the specification of translation algorithms has been presented in

(Melamed 2004; Melamed and Wang 2005), based on the already mentioned multitext

grammars, which are a variant of the synchronous context-free grammars presented

in this article. Rather than focusing on the specification of a modular architecture for

the development of translation algorithms, as we do in this article, the cited authors

focus on the problem of grammar specification, showing how to transform multitext

grammars in order to exploit standard deductive parsing techniques to obtain trans-

lation algorithms. Finally, in work by May and Knight (2006) several algorithms are

specified for the combination of tree transducers. This can be viewed as a modular

architecture for the development of translation algorithms. Since tree transducers are

considerably different from the synchronous context-free grammars of this article, the

two approaches involve quite different techniques and should be considered indepen-

dent one of the other. On a perspective different from the algorithmic one developed

in this article, a very interesting generative characterization of synchronous rewriting

using tree transducers has been proposed in (Shieber 2004, 2006).

We conclude with a summary of the content of the sections to follow. In section 2 we

introduce synchronous context-free grammars and some related definitions. Following

a modular approach in the specification of computer algorithms, in sections 3 and 4

we present some basic constructions and representations, which we borrow from the

literature on parsing and adapt to our synchronous context-free grammars. These tools
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are then used in section 5 to specify several algorithms for the translation and related

problems. We close with some discussion in section 6.

2. Synchronous context-free grammars

In this section we introduce synchronous context-free grammars, which is the central

formalism in this article. Several translation models based on synchronous context-free

grammars have been proposed in the literature, but most often these models have been

introduced rather informally, and no precise definition of the underlying formalism and

of the associated derive relation has been provided. What we propose here is based

on the definition of syntax-directed transduction grammars (Lewis and Stearns 1968),

successively called syntax-directed translation schemata (SDTS); see Aho and Ullman

(1972) and references therein.

In a SDTS, the productions of two context-free grammars are paired in such a way

that the occurrences of the nonterminal symbols in the right-hand side of a production

in a pair are a permutation of the occurrences of the nonterminal symbols in the right-

hand side of the other production. Thus, paired nonterminals are always equal. There

is no restriction on the terminal symbols of the productions in a pair. SDTS are also

associated with a rewriting relation imposing that paired nonterminals are rewritten

synchronously, that is, at the same time, by means of some production pair. Overall,

in a SDTS two paired context-free productions specify, through a permutation, how a

particular sequence of phrases in the source string should be reordered in the target

string. These permutations are then combined hierarchically, through the usual process

of context-free rewriting. As a result, a SDTS assigns to a pair of strings two context-free

parse trees that have the same skeleton but differ by a reordering of the children of each

internal node and by the translation, insertion and deletion of the leaf nodes.
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We generalize SDTS by allowing pairing of nonterminals that are not equal.1 Al-

though this generalization does not add to the weak generative power of the model,

that is, the string mappings defined by the two models are the same, it does increase its

strong generative capacity, that is, the parse tree mappings defined by SDTS are a proper

subset of the parse tree mappings defined by synchronous context-free grammars. As a

consequence of this fact, when the definitions of the two models are enriched with prob-

abilities, synchronous context-free grammars can define certain parse tree distributions

that cannot be captured by SDTS, as shown by Satta and Peserico (2005). The above

generalization has been adopted in several translation models for natural language.

This is for instance the case of the already mentioned multitext grammars and syn-

chronous tree-substitution grammars. Authors that do not adopt such a generalization

and follow the SDTS model, have also argued that imposing the above restriction may

sacrifice the freedom of encoding meaningful syntactic information on the symbols of

the grammar; see for instance (Wu 1997, pg. 381). More discussion motivating the choice

of synchronous context-free grammars in place of SDTS is reported in section 6.

Before presenting the definition of synchronous context-free grammars we briefly

introduce the notation we adopt in this article for context-free grammars, along with

some ancillary notation. A context-free grammar (CFG) is a tuple G = (VN , VT , P, S),

where VN is a finite set of nonterminals, VT is a finite set of terminals with VT ∩ VN = ∅,

S ∈ VN is a special symbol called the start symbol, and P is a finite set of productions

having the form A → γ, with A ∈ VN and γ ∈ (VT ∪ VN )∗. In this article we adopt the

following conventions: symbols A, B, . . . belong to VN , symbols a, b, . . . belong to VT ,

1 The definition we propose here is taken from (Satta and Peserico 2005). In (Chiang 2005) the term
synchronous context-free grammar is instead used to denote SDTS with the restriction that there can be
only one nonterminal symbol besides the start symbol.
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and symbols u, v, w belong to V ∗
T . The size of a CFG is defined as

|G| =
∑

(A→γ)∈P

|Aγ| . (1)

We assume the reader is already familiar with the notion of derivation associated

with a CFG, based on the definition of the derive relation, written ⇒G; see for instance

(Harrison 1978). The language (set of strings) derived in G from the start symbol S is

denoted L(G). Grammar G is reduced if it does not contain any symbol or production

that cannot be used in a derivation of a sting in L(G). If we ignore the order of

application of productions, derivations can be represented by means of parse trees, that

is, ordered and node-labeled standard tree structures. We say that two parse trees t1

and t2 are isomorphic, written t1 ∼= t2, if t1 and t2 have identical structures up to some

relabeling of the internal nodes. Note that under this definition, t1 ∼= t2 implies that t1

and t2 generate the same string.

In this article we call parse forest an arbitrary set of one or more parse trees that

can be generated by some CFG. Parse forests are useful in representing alternative

derivations for a set of one or more sentences, and are central in this article since they

are the output of our translation algorithms. Despite the fact that in a CFG a single

sentence of length n can have a number of derivations that is an exponential function of

n, several compact representations for parse forests have been proposed in the literature

that take space polynomial in n. This is for instance the case of the and-or graphs and

the hypergraphs. In this article parse forests are conveniently represented by means of

CFGs. All of the mentioned representations are syntactic variations one of the other,

as briefly discussed in section 6. We find it more convenient to use CFGs here for a

reason of uniformity: since we already deal with translation models based on CFGs, the
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choice of CFGs for the representation of parse forests does not force us to introduce any

additional machinery.

In what follows we need to represent bijections between all the occurrences of

nonterminals in two strings over VN ∪ VT . This can be done by using an infinite set of

indices and by annotating corresponding nonterminals with the same index. We draw

indices from the set of natural numbers N. We define

I(VN ) = {A(t) | A ∈ VN , t ∈ N}, (2)

and call indexed symbol each symbols in I(VN ). We let VI = I(VN ) ∪ VT . As a conven-

tion, symbols α, β, . . . are used to denote strings in V ∗
I . For γ ∈ V ∗

I , we write index(γ) to

denote the set of all indices that appear in symbols in γ; more formally,

index(γ) = {t | γ = γ ′A(t)γ ′′, γ ′, γ ′′ ∈ V ∗
I , A(t) ∈ I(VN )}. (3)

Sometimes we need to strip off indices from the symbols of a string γ ∈ V ∗
I . To this

end we define deindex(A(t)) = A for A(t) ∈ I(VN ) and deindex(a) = a for a ∈ VT . We

then extend this notation to strings in V ∗
I by letting deindex(ε) = ε and deindex(X · γ) =

deindex(X) · deindex(γ), for X ∈ VI and γ ∈ V ∗
I .

Definition 1

Two strings γ1, γ2 ∈ V ∗
I are synchronous if each index in index(γ1) occurs only once in

γ1, each index in index(γ2) occurs only once in γ2, and index(γ1) = index(γ2).

From the definition above, it follows that two synchronous strings must have the same

number of occurrences of symbols from I(VN ) and must have the form

γ1 = u10A
(t1)
11 u11A

(t2)
12 u12 · · ·u1n−1A

(tn)
1n u1n,
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γ2 = u20A
(tπ(1))
21 u21A

(tπ(2))
22 u22 · · ·u2n−1A

(tπ(n))
2n u2n,

where n ≥ 0, u1i, u2i ∈ V ∗
T , A

(ti)
1i , A

(tπ(i))

2i ∈ I(VN ), ti 6= tj for i 6= j and π is a permutation

defined on the set {1, . . . , n}. Observe that the above notation implies that the π(i)-th

nonterminal in γ1 (from left to right) has the same index as the i-th nonterminal in γ2.

Equivalently, the i-th nonterminal in γ1 has the same index as the π−1(i)-th nonterminal

in γ2. This observation will be implicitly used in several places in this article. More in

general, when representing synchronous strings, in this article we make use of functions

π that implement permutations on any finite set of integers of size n ≥ 1 (not necessarily

the set {1, . . . , n}).

We can now define synchronous context-free grammars.

Definition 2

A synchronous context-free grammar (SCFG) is a tuple G = (VN , VT , P, S1, S2), where

VN , VT are finite, disjoint sets of nonterminal and terminal symbols, respectively,

S1, S2 ∈ VN are start symbols and P is a finite set of synchronous productions. Each

synchronous production has the form

[A1 → α1, A2 → α2],

where A1, A2 ∈ VN and where α1, α2 ∈ V ∗
I are synchronous strings.

10



Satta Translation as Intersection

Example 1

Let VT = {a1, b1, a2, b2} and VN = {S, A1, B1, C1, A2, B2, C2}. A sample SCFG G =

(VN , VT , P, S, S) is defined by letting P contain the following synchronous productions:

s1 : [S → A
(1)
1 C

(2)
1 , S → A

(1)
2 C

(2)
2 ],

s2 : [C1 → B
(1)
1 S(2), C2 → B

(1)
2 S(2)],

s3 : [C1 → B
(1)
1 S(2), C2 → S(2)B

(1)
2 ],

s4 : [C1 → B
(1)
1 , C2 → B

(1)
2 ],

s5 : [A1 → a1, A2 → a2],
s6 : [A1 → a1, A2 → ε],
s7 : [B1 → b1, B2 → b2].

Note that in G the nonterminal B2, which is translated from B1, can be optionally

inverted with S when it is rewritten from C2. Also, the terminal symbol a2, which is

translated from a1, can be optionally deleted.

For a synchronous production s : [A1 → α1, A2 → α2], we call each of A1 → α1 and

A2 → α2 a production component of s. The rank of s is defined as |index(α1)| (which

is the same as |index(α2)|). The rank of G is the maximum among all ranks of the

synchronous productions in P . The size of a SCFG G is defined as

|G| =
∑

[A1→α1, A2→α2]∈P

|A1α1A2α2| . (4)

Similarly to the context-free case, in (4) we take the uniform-cost assumption that each

symbol in VI can be represented by means of a constant amount of space. A more realis-

tic assumption, in which each grammar symbol is represented by some integer, would

add to (4) a logarithmic factor in the size of VI . Since in this article we only distinguish

between polynomial and exponential time algorithms, such a factor is irrelevant to our

discussion.

In a SCFG, the derive relation is defined on synchronous strings in terms of simul-

taneous rewriting of two nonterminals with the same index by means of correspond-

ing production components of a synchronous production. Some additional notation
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will help us defining this relation precisely. A reindexing is a one-to-one function

on N. We extend a reindexing f to VI by letting f(A(t)) = A(f(t)) for A(t) ∈ I(VN )

and f(a) = a for a ∈ VT . We also extend f to strings in V ∗
I by letting f(ε) = ε and

f(Xγ) = f(X)f(γ), for each X ∈ VI and γ ∈ V ∗
I . We say that strings γ1, γ2 ∈ V ∗

I are

independent if index(γ1) ∩ index(γ2) = ∅.

Definition 3

Let G = (VN , VT , P, S1, S2) be a SCFG and let γ1, γ2 be synchronous strings in V ∗
I . The

derive relation

[γ1, γ2] ⇒G [δ1, δ2] (5)

holds whenever there exist an index t in index(γ1), a synchronous production [A1 →

α1, A2 → α2] in P and some reindexing f such that

1. f(α1α2) and γ1γ2 are independent; and

2. for i = 1, 2

γi = γ ′
iA

(t)
i γ ′′

i ,

δi = γ ′
if(αi)γ

′′
i .

We also write [γ1, γ2] ⇒s
G [δ1, δ2] to explicitly indicate that the derive relation holds

through the synchronous production s ∈ P .

It is not difficult to see that δ1, δ2 in (5) are synchronous strings. Thus, we can

combine instances of the derive relation above in order to represent derivations in G,

in the following way. Assume that, for integers i and n with 1 ≤ i ≤ n and n ≥ 1, we
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have relations

[γ1i−1, γ2i−1] ⇒
si

G [γ1i, γ2i].

Then we say that σ = s1s2 · · · sn denotes a synchronous derivation and we write

[γ10, γ20] ⇒σ
G [γ1n, γ2n]. String σ = ε is also a synchronous derivation, rewriting a pair

of synchronous strings into itself. As usual, we also denote generic synchronous deriva-

tions through the reflexive and transitive closure of ⇒G, written ⇒∗
G.

A synchronous derivation can be associated with a pair of context-free derivations

producing the strings that are generated on each of the two dimensions. In order to

do this, we make use of certain functions that are technically called homomorphisms.

An homomorphism is a total function mapping some source finite alphabet into a

set of strings defined over some target finite alphabet. An homomorphism h is usu-

ally extended to strings over the source alphabet by defining h(ε) = ε and h(a · x) =

h(a) · h(x), where a is a symbol in the source alphabet and x is a string over the

source alphabet. The homomorphisms we use in this article are defined over sets of

productions of certain grammars, which we view as finite alphabets of atomic symbols.

In addition, our homomorphisms always map a source symbol into strings of length

one, that is, a single symbol in the target alphabet. Thus these homomorphisms simply

act as symbol relabelings.

We associate with SCFG G two homomorphisms h1 and h2, defined over the set

P of G’s synchronous productions. For a synchronous production s ∈ P of the form

[A1 → α1, A2 → α2], we let h1(s) = A1 → α1 and h2(s) = A2 → α2.

Observe that, for each synchronous derivation in G of the form [S
(1)
1 , S

(1)
2 ] ⇒σ

G

[w1, w2], we have that h1(σ) and h2(σ) are derivations in certain context-free grammars.

(We will look more closely at these context-free grammars in the next section.) Therefore
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S(1)

A(2)

a

C(3)

B(4)

b

S(5)

A(6)

a

C(7)

B(8)

b

S(1)

A(2)

a

C(3)

S(5)

A(6)

ε

C(7)

B(8)

b

B(4)

b

Figure 1
Parse tree components associated with derivation (6). Index annotation is added here to
represent paired nonterminals, and is not part of the parse trees.

σ can be associated in a natural way with a pair of context-free parse trees, encoding the

derivations h1(σ) and h2(σ), respectively. These will be called the parse tree compo-

nents of σ. Each parse tree component describes the way production components of G

have been used in deriving the relevant string, in each dimension.

Example 2

Consider again the SCFG G from Example 1. The string pair [a1b1a1b1, a2b2b2] can be

derived in G through the following steps:

[S(1), S(1)] ⇒s1

G [A
(2)
1 C

(3)
1 , A

(2)
2 C

(3)
2 ]

⇒s3

G [A
(2)
1 B

(4)
1 S(5), A

(2)
2 S(5)B

(4)
2 ]

⇒s1

G [A
(2)
1 B

(4)
1 A

(6)
1 C

(7)
1 , A

(2)
2 A

(6)
2 C

(7)
2 B

(4)
2 ]

⇒s4

G [A
(2)
1 B

(4)
1 A

(6)
1 B

(8)
1 , A

(2)
2 A

(6)
2 B

(8)
2 B

(4)
2 ]

⇒s5

G [a1B
(4)
1 A

(6)
1 B

(8)
1 , a2A

(6)
2 B

(8)
2 B

(4)
2 ]

⇒s7

G [a1b1A
(6)
1 B

(8)
1 , a2A

(6)
2 B

(8)
2 b2]

⇒s6

G [a1b1a1B
(8)
1 , a2B

(8)
2 b2]
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⇒s7

G [a1b1a1b1, a2b2b2]. (6)

In Figure 1 the parse tree components associated with the derivation in (6) are depicted.

In G we can also derive the string pair [a1b1a1b1, a2a2b2b2] with a derivation very

similar to (6), but avoiding the deletion of a2 when rewriting the indexed nonterminal

A
(6)
2 . Furthermore, we can derive the pair [a1b1a1b1, a2b2a2b2] using the latter derivation

but avoiding the inversion of the indexed nonterminals B
(4)
2 and S(5) when rewriting

C
(3)
2 . Note that all these string pairs, and some more that can still be derived in G, share

the first string component.

The translation generated by a SCFG G is a binary relation over V ∗
T defined as

T (G) = {[w1, w2] | [S
(1)
1 , S

(1)
2 ] ⇒∗

G [w1, w2], w1, w2 ∈ V ∗
T }. (7)

In most applications, SCFGs are used to translate from some source language to some

target language. For this reason we introduce special notation to express the set of

strings that are translations of a given input string w1

T (G, w1) = {w2 | [w1, w2] ∈ T (G)}. (8)

We say that a SCFG G is reduced if every production of G is used in some derivation

[S
(1)
1 , S

(1)
2 ] ⇒∗

G [w1, w2], [w1, w2] ∈ T (G). Any SCFG can always be transformed into a

reduced SCFG generating the same translation. This process takes a linear amount of

time in the size of the SCFG, if techniques similar to those used for the reduction of

CFGs are exploited; see for instance (Harrison 1978).

To simplify some technical presentations in this article we sometimes use a specific

normal form for SCFGs, defined in what follows. A translation generated by a SCFG

can always be generated by some SCFG with all of its synchronous productions in the
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form [A1 → α1, A2 → α2], with either α1, α2 ∈ (I(VN ))+ or else α1, α2 ∈ V ∗
T . To see this,

assume a synchronous production s of the form [A1 → α1, A2 → α2], where

α1 = u10A
(t1)
11 u11 · · ·u1r−1A

(tr)
1r u1r,

α2 = u20A
(tπs(1))
21 u21 · · ·u2r−1A

(tπs(r))
2r u2r.

We introduce fresh nonterminal symbols B1i, B2i and fresh indices t′i, 0 ≤ i ≤ r. We then

replace s with a new synchronous production [A1 → α′
1, A2 → α′

2], where

α′
1 = B

(t′0)
10 A

(t1)
11 B

(t′1)
11 · · ·B

(t′r−1)
1r−1 A

(tr)
1r B

(t′r)
1r ,

α′
2 = B

(t′0)
20 A

(tπs(1))
21 B

(t′1)
21 · · ·B

(t′r−1)
2r−1 A

(tπs(r))
2r B

(t′r)
2r .

Furthermore, for 0 ≤ i ≤ r, we add to the grammar the new synchronous productions

[B1i → u1i, B2i → u2i].

Note that the size of the SCFG obtained with the above construction is bounded by a

linear function in the size of the source SCFG. Furthermore, for each derivation in the

new SCFG, we can easily obtain the corresponding derivation in the source SCFG by

means of only linear processing.

We close this section with the definition of link, a notion that plays an important

role in the following sections. Let s : [A1 → α1, A2 → α2] be a synchronous production

of a SCFG G, and let

α1 = u10A
(t1)
11 u11 · · ·u1r−1A

(tr)
1r u1r,

α2 = u20A
(tπs(1))
21 u21 · · ·u2r−1A

(tπs(r))
2r u2r,
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for some permutation πs. If for some i and j with 1 ≤ i, j ≤ r, nonterminals A1i and A2j

above share a common index, we say that the pair [A1i, A2j ] is a link of G. We also say

that the nonterminals A1i and A2j are linked in some synchronous production. The set

of all links of G is denoted by L(G). In our notation, pair [A1i, A2j ] is a link if and only

if ti = tπs(j), that is, if and only if i = πs(j) or, equivalently, j = π−1
s (i). Thus, a link can

always be expressed in the form [A1i, A2π−1
s (i)] = [A1πs(j), A2j ]. Furthermore, if a SCFG

is reduced we have

L(G) = {[A1, A2] | [A1 → α1, A2 → α2] ∈ P}. (9)

In words, when G is reduced, every link [A1, A2] can be formed by taking the non-

terminals in the left-hand side of the production components of some synchronous

production.

The above definition of link implements for SCFGs a more general notion that, un-

der the same name, has become central in the literature on synchronous parsing, starting

from early work in (Shieber 1994). As discussed in (Melamed, Satta, and Wellington

2004a), a link can be thought of as a generalization of the notion of nonterminal in a

traditional (non-synchronous) grammar. When one looks at SDTS, the notion of link is

not apparent, since that formalism forces the nonterminal symbols in each link to be

always the same.

3. Auto-projection of a SCFG

As seen in the last section, a SCFG generates a set that is composed by string pairs. In

this section we deal with the problem of extracting from a SCFG a standard grammar,

that is, a grammar that generates a string language. This construction is called auto-

projection here, and is used later in the development of our translation algorithms.

17
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We start by observing that a SCFG implements a sort of parallel rewriting system,

where two CFGs simultaneously rewrite pairs of strings constrained by some relation

that is implemented through the indices. From a slightly different perspective, we can

also view a SCFG as a so-called controlled rewriting system, where the rewriting of one

CFG is “controlled”, that is, restricted, by the other. (See (Dassow and Păun 1989) for

a general presentation of the paradigm of controlled rewriting.) However, in the case

of a SCFG, rather than a one-way control of one grammar on the other, we could say

that there is a mutual interaction between the rewriting processes of the two CFGs. The

above observations can be made more precise with the help of some additional notation.

For i ∈ {1, 2}, the i-th projection grammar of G, written proj(G, i), is the CFG

(VN , VT , Pi, S), where

Pi = {Ai → deindex(αi) | [A1 → α1, A2 → α2] ∈ P}.

In words, proj(G, i) is the CFG obtained from G by collecting all of the i-th production

components of the synchronous productions in P , and by stripping off the indices from

the right-hand sides. Furthermore, for i ∈ {1, 2} we define the i-th projection language

of T (G) as

proj(T (G), i) = {wi | [w1, w2] ∈ T (G)}.

In words, proj(T (G), i) is the language obtained from T (G) by collecting all of the i-th

components of the string pairs in T (G).

Recall from section 2 that each synchronous derivation is associated with two

context-free derivations through the homomorphisms h1 and h2. We now see that, for

each synchronous derivation σ in G and for i ∈ {1, 2}, hi(σ) is a context-free derivation

in proj(G, i). This means that the relation proj(T (G), i) ⊆ L(proj(G, i)) always holds. In
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the general case, we may have that proj(T (G), i) 6= L(proj(G, i)). This is because of the

already mentioned fact that the projection grammars proj(G, i) interact with each other

in the rewriting process of G.

Example 3

Consider the SCFG G = ({S, A}, {a, b}, P, S, S), where P consists of the following three

synchronous productions:

[S → ε, S → ε],

[S → aA(1), S → bS(1)],

[A → S(1)b, S → S(1)a].

The generated translation is

T (G) = {[anbn, bnan] | n ≥ 0},

and therefore proj(L(G), 2) = {bnan | n ≥ 0}. On the other hand, proj(G, 2) is the CFG

with productions

S → ε,

S → bS,

S → Sa,

and therefore L(proj(G, 2)) = {bnam | n, m ≥ 0} 6= proj(L(G), 2).

In view of machine translation applications, one might wonder whether the above

property isn’t something that should be avoided. In fact, from a translation model

between two languages one would expect that projection on a single dimension de-

livers a grammar that is able to generate all and only the sentences of one of the two

languages, rather than a grammar that overgenerates. In other words, it would be odd

to have a model where the grammaticality of a sentence in one language is controlled

by derivations of the other language, as we observe in Example 3. This observation

is certainly reasonable, and such effects should never been observed in a translation
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model for natural language. However, in later sections we will deal with SCFGs that

are defined by subsets of the productions of a translation model. For instance, we will

define new SCFGs by forcing a translation model to derive only one string on one of

the two dimensions. For such kind of “artificial” SCFGs, we will observe the effects of

controlled rewriting shown in Example 3.

The main problem we deal with in this section is the specification of a construction

that, given a SCFG G and an index i ∈ {1, 2}, provides a new grammar Gi satisfying

L(Gi) = proj(T (G), i). As we will see, proj(T (G), i) is always a context-free language, so

Gi does not need to be more expressive than a CFG. We will return to this last remark

later.

In the following discussion we fix some SCFG G = (VN , VT , P, S1, S2). We use

two homomorphisms (see section 2) to map synchronous productions of P to specific

context-free productions defined over the set L(G) (the set of links of G), taken as the

set of nonterminal symbols, and the set of terminal symbols VT . As already done in

section 2, we view productions as atomic symbols belonging to some finite alphabet.

Let s : [A10 → α1, A20 → α2] be a synchronous production in P , and let

α1 = u10A
(t1)
11 u11 · · ·u1r−1A

(tr)
1r u1r,

α2 = u20A
(tπs(1))
21 u21 · · ·u2r−1A

(tπs(r))
2r u2r,

for some permutation πs. Recall from section 2 that, with the above notation, a link can

always be expressed in the form [A1i, A2π−1
s (i)] or [A1πs(j), A2j ]. We let

ha,1(s) =

[A10, A20] → u10[A11, A2π−1
s (1)]u11 · · ·u1r−1[A1r, A2π−1

s (r)]u1r (10)
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and

ha,2(s) =

[A10, A20] → u20[A1πs(1), A21]u21 · · ·u2r−1[A1πs(r), A2r]u2r. (11)

We introduce next the notion of auto-projection grammar of a SCFG.

Definition 4

Let G = (VN , VT , P, S1, S2) be a SCFG. For i ∈ {1, 2} the i-th auto-projection of G is the

CFG

auto-proj(G, i) = (L(G), VT , Pi, [S1, S2])

where Pi = {ha,i(s) | s ∈ P}.

Some simple examples of application of the above construction are reported in

section 5. In what follows, we state and prove some properties of the auto-projection

construction that will be used later in this article. The next lemma shows the rather

intuitive property that a synchronous derivation can be “split” into two CFG derivations

in the associated projection grammars. The proof is technically simple: we report it here

since it helps understanding a more complex proof that needs to be developed later

for 2.

Lemma 1

Let G be a SCFG and let Gi = auto-proj(G, i), i ∈ {1, 2}. For each synchronous deriva-

tion σ in G of the form

[S
(1)
1 , S

(1)
2 ] ⇒σ

G

[u10A
(t1)
11 u11 · · ·u1n−1A

(tn)
1n u1n, u20A

(tπ(1))
21 u21 · · ·u2n−1A

(tπ(n))
2n u2n]

21



Computational Linguistics Volume vv, Number nn

there exist context-free derivations in G1 and G2 of the form

[S1, S2] ⇒
ha,1(σ)
G1

u10[A11, A2π−1(1)]u11 · · ·u1n−1[A1n, A2π−1(n)]u1n,

[S1, S2] ⇒
ha,2(σ)
G2

u20[A1π(1), A21]u21 · · ·u2n−1[A1π(n), A2n]u2n.

Proof

We prove the part of the lemma involving G1 and ha,1; the other part can be shown with

a symmetrical argument.

Let G = (VN , VT , P, S1, S2) and let G1 = (L(G), VT , P1, [S1, S2]). We proceed by in-

duction on the length of σ. If |σ| = 0, we have σ = ε and [S
(1)
1 , S

(1)
2 ] ⇒ε

G [S
(1)
1 , S

(1)
2 ].

Since ha,1(ε) = ε, from the statement of the lemma we obtain the context-free derivation

[S,1 S2] ⇒ε
G1

[S1, S2], which trivially holds.

Assume now that σ = σ′s, with |σ′| ≥ 0 and s a synchronous production in P .

Assume also that s has rank r ≥ 1. (Recall that the rank of s is the number of nonter-

minals in the right-hand side of one of the production components of s.) There must be

integers i1 and j1, with 1 ≤ i1 ≤ j1 ≤ n and j1 − i1 + 1 = r, such that the nonterminals

A1i1 , . . . , A1j1 in the left string derived by σ have been introduced by the indicated

application of s. Correspondingly, there must be integers i2 and j2, with 1 ≤ i2 ≤ j2 ≤ n

and j2 − i2 + 1 = r, such that the nonterminals A2i2 , . . . , A2j2 in the right string derived

by σ have been introduced by the same application of s. Note also that, in the derived

string, the nonterminals A2i2 , . . . , A2j2 must have the same set of indices as the non-

terminals A1i1 , . . . , A1j1 . From the above observations it follows that the synchronous

production s has the form

[B1 → v11A
(ts,1)
1i1

u1i1 · · ·u1j1−1A
(ts,r)
1j1

v12,

B2 → v21A
(ts,πs(1))

2i2
u2i2 · · ·u2j2−1A

(ts,πs(r))

2j2
v22],
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for some permutation πs defined on the set {1, . . . , r}. There must then be some index t

such that the synchronous derivation σ can be written in the form

[S
(1)
1 , S

(1)
2 ]

⇒σ′

G [u10A
(t1)
11 u11 · · ·u

′
1i1−1B

(t)
1 u′

1j1
· · ·u1n−1A

(tn)
1n u1n,

u20A
(tπ(1))

21 u21 · · ·u
′
2i2−1B

(t)
2 u′

2j2
· · ·u2n−1A

(tπ(n))

2n u2n]

⇒s
G [u10A

(t1)
11 u11 · · ·u

′
1i1−1 ·

v11A
(ti1

)

1i1
u1i1 · · ·u1j1−1A

(tj1
)

1j1
v12 ·

u′
1j1

· · ·u1n−1A
(tn)
1n u1n,

u20A
(tπ(1))
21 u21 · · ·u

′
2i2−1 ·

v21A
(tπ(i2))

2i2
u2i2 · · ·u2j2−1A

(tπ(j2))

2j2
v22 ·

u′
2j2

· · ·u2n−1A
(tπ(n))
2n u2n].

According to (10) we have

ha,1(s) = [B1, B2] → v11[A1i1 , A2π−1
s (1)]u1i1 · · ·u1j1−1[A1j1 , A2π−1

s (r)]v12.

We apply the inductive hypothesis to derivation σ′ above and conclude with the desired

context-free derivation

[S1, S2]

⇒
ha,1(σ′)
G1

u10[A11, A2π−1(1)]u11 · · ·u
′
1i1−1[B1, B2]u

′
1j1

· · ·

· · ·u1n−1[A1n, A2π−1(n)]u1n

⇒
ha,1(s)
G1

u10[A11, A2π−1(1)]u11 · · ·u
′
1i1−1 ·
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v11[A1i1 , A2π−1
s (1)]u1i1 · · ·u1j1−1[A1j1 , A2π−1

s (r)]v12 ·

u′
1j1

· · ·u1n−1[A1n, A2π−1(n)]u1n.

The left out case in which s has rank 0 can be treated with a very similar argument. �

We state the following theorem for the left dimension of a SCFG; a symmetrical

statement holds for the right dimension.

Theorem 1

Let [S
(1)
1 , S

(1)
2 ] ⇒σ

G [w1, w2] be a synchronous derivation for SCFG G, and let t1 be its

left parse tree component. Let also ta,1 be the parse tree representing the CFG derivation

ha,1(σ) in auto-proj(G, 1). Then t1 ∼= ta,1.

Proof

Let G1 = proj(G, 1). Then we have S1 ⇒
h1(σ)
G1

w1. Let also Ga,1 = auto-proj(G, 1). From

Lemma 1 we have S1 ⇒
ha,1(σ)
Ga,1

w1. The statement then follows from the definition of

homomorphisms h1 and ha,1. �

For an homomorphism h and a string y over the target alphabet of h, we define

h−1(y) = {x | h(x) = y}. From the construction of P1 in Definition 4, we have that

h−1
a,1(p) is non-empty for every production p ∈ P1. It follows that, for every context-free

derivation ρ ∈ P ∗
1 , the set of synchronous derivation h−1

a,1(ρ) is always non-empty. The

same observation also holds for ha,2. The next result shows the inverse of Lemma 1,

stating that auto-projection grammars do not overgenerate with respect to the source

SCFG.
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Lemma 2

Let G be a SCFG and let Gi = auto-proj(G, i), i ∈ {1, 2}. For each context-free derivation

ρ in G1 of the form

[S1, S2] ⇒
ρ
G1

u10[A11, A′
21]u11 · · ·u1n−1[A1n, A′

2n]u1n,

every σ ∈ h−1
a,1(ρ) is a synchronous derivation in G of the form

[S
(1)
1 , S

(1)
2 ] ⇒σ

G

[u10A
(t1)
11 u11 · · ·u1n−1A

(tn)
1n u1n, u20A

(tπσ(1))
21 u21 · · ·u2n−1A

(tπσ(n))
2n u2n],

where u2i, 0 ≤ i ≤ n, are strings in V ∗
T and A2π−1

σ (i) = A′
2i, 1 ≤ i ≤ n (that is, nontermi-

nals in each pair [A1i, A′
2i] are coindexed in σ).

For each context-free derivation ρ in G2 of the form

[S1, S2] ⇒
ρ
G2

u20[A
′
11, A21]u21 · · ·u2n−1[A

′
1n, A2n]u2n,

every σ ∈ h−1
a,2(ρ) is a synchronous derivation in G of the form

[S
(1)
1 , S

(1)
2 ] ⇒σ

G

[u10A
(t1)
11 u11 · · ·u1n−1A

(tn)
1n u1n, u20A

(tπσ(1))
21 u21 · · ·u2n−1A

(tπσ(n))
2n u2n],

where u1i, 0 ≤ i ≤ n, are strings in V ∗
T and A1πσ(i) = A′

1i, 1 ≤ i ≤ n (that is, nonterminals

in each pair [A′
1i, A2i] are coindexed in σ).

Proof

We prove the part of the lemma involving G1 and ha,1; the other part can be shown by

a symmetrical argument.
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Let G = (VN , VT , P, S1, S2) and let G1 = (L(G), VT , P1, [S1, S2]). We proceed by in-

duction on the length of ρ ∈ P ∗
1 . If |ρ| = 0, we have ρ = ε and [S1, S2] ⇒ε

G1
[S1, S2]. We

then obtain h−1
a,1(ε) = {ε} and the synchronous derivation [S

(1)
1 , S

(1)
2 ] ⇒ε

G [S
(1)
1 , S

(1)
2 ]

trivially holds. It is easy to see that such a derivation satisfies the statement of the

lemma.

Assume now that ρ = ρ′p, with |ρ′| ≥ 0 and with p a context-free production in P1.

We have h−1
a,1(ρ) = h−1

a,1(ρ
′p) = h−1

a,1(ρ
′) · h−1

a,1(p). Hence each σ ∈ h−1
a,1(ρ) can be written in

the form σ′ · s with σ′ ∈ h−1
a,1(ρ

′) and s ∈ h−1
a,1(p).

If production p contains r ≥ 1 nonterminals in its right-hand side, then

there must be some integer i1 with 1 ≤ i1 ≤ n − r such that the nonterminals

[A1i1+1, A′
2i1+1], . . . , [A1i1+r, A′

2i1+r] in the string derived by ρ have been introduced

by the indicated application of p. Then p must have the form

[B1, B2] → v1i1 [A1i1+1, A′
2i1+1]u1i1+1 · · ·u1i1+r−1[A1i1+r, A′

2i1+r]v1i1+r,

for some strings v1i1 , v1i1+r with u′
1i1

· v1i1 = u1i1 and v1i1+r · u′
1i1+r = u1i1+r. The

derivation ρ can then be rewritten as

[S1, S1]

⇒ρ′

G1
u10[A11, A′

21]u11 · · ·u
′
1i1

[B1, B2]u
′
1i1+r · · ·u1n−1[A1n, A′

2n]u1n

⇒p
G1

u10[A11, A′
21]u11 · · ·u

′
1i1

·

v1i1 [A1i1+1, A′
2i1+1]u1i1+1 · · ·u1i1+r−1[A1i1+r, A′

2i1+r]v1i1+r ·

u′
1i1+r · · ·u1n−1[A1n, A′

2n]u1n.
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Applying the inductive hypothesis to ρ′ we obtain that every σ′ ∈ h−1
a,1(ρ

′) is a syn-

chronous derivation of the form

[S
(1)
1 , S

(1)
2 ]

⇒σ′

G [u10A
(t1)
11 u11 · · ·u

′
1i1

B
(t)
1 u′

1i1+r · · ·u1n−1A
(tn)
1n u1n,

u20A
(tπ

σ′ (1))

21 u21 · · ·u
′
2i2

B
(t)
2 u′

2i2+r · · ·u2n−1A
(tπ

σ′ (n))

2n u2n], (12)

for some integer i2 with 1 ≤ i2 ≤ n − r, and for some choice of strings u2,0, . . . , u2,i2−1,

strings u′
2i2

, u′
2i2+r, and strings u2,i2+r+1, . . . , u2n in V ∗

T . From the inductive hypothesis

we also obtain that, for each i with 1 ≤ i ≤ n and i 6∈ {i1 + 1, . . . , i1 + r}, the nontermi-

nals in [A1i, A′
2i] are coindexed in σ′, that is, we have

A2π−1
σ′ (i)

= A′
2i. (13)

Let us consider the definition of homomorphism ha,1 in (10). Observe that each

s ∈ h−1
a,1(p) must have the form

s : [B1 → v1i1A
(t1)
1i1+1u1i1+1 · · ·u1i1+r−1A

(tr)
1i1+rv1i1+r,

B2 → v2i2A
(tπs(1))

2i2+1 u2i2+1 · · ·u2i2+r−1C
(tπs(r))

2i2+r v2i2+r], (14)

for some choice of strings v2i2 , v2i2+r and strings u2i2+1, . . . , u2i2+r−1 in V ∗
T . Further-

more, we have that for each k with 1 ≤ k ≤ r the nonterminal symbols A1i1+k and

A′
2i1+k are coindexed. This means that, for each k with 1 ≤ k ≤ r, we have

A2i2+π−1
s (k) = A′

2i1+k. (15)
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We can now combine (12) and (14) and conclude that every σ ∈ h−1
a,1(ρ) is a syn-

chronous derivation of the form

[S
(1)
1 , S

(1)
2 ]

⇒σ
G [u10A

(t1)
11 u11 · · ·u

′
1i1

·

v1i1A
(t′1)
1i1+1u1i1+1 · · ·u1i1+r−1A

(t′r)
1i1+rv1i1+r ·

u′
1i1+r · · ·u1n−1A

(tn)
1n u1n,

u20A
(tπ

σ′ (1))

21 u21 · · ·u
′
2i2

·

v2i2A
(t′

πs(1)
)

2i2+1 u2i2+1 · · ·u2i2+r−1A
(t′

πs(r)
)

2i2+r v2i2+r ·

u′
2i2+r · · ·u2n−1A

(tπ
σ′ (n))

2n u2n].

Furthermore, we can combine (13) and (15) above to show that, for each i with 1 ≤ i ≤ n,

we have A2π−1(i) = A′
2i for some permutation π defined over {1, . . . , n}.

The left out case in which p has rank 0 can be treated with a special case of the

argument above. �

Note that Lemma 2 establish a one-to-many correspondence from derivations in an

auto-projection grammar and derivations in a source SCFG. This is so because in a SCFG

there may be several parse tree components on one dimension that are associated with

the same parse tree component on the other dimension. We can now establish the main

result of this section.

Theorem 2

Let G be a SCFG. For i ∈ {1, 2} we have

L(auto-proj(G, i)) = proj(T (G), i).
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Proof

Directly from Lemmas 1 and 2, by considering context-free derivations ending with

strings in V ∗
T , and by considering synchronous derivations ending with pairs of strings

in V ∗
T . �

We discuss here an important consequence of Theorem 2. For i ∈ {1, 2}, the theorem

shows that the i-th projection language of G is always a context-free language. We

have already remarked that a SCFG can be viewed as a controlled rewriting system,

with some mutual interaction between the rewriting processes of two CFGs. Theorem 2

entails that, when we consider the languages obtained by projection of the transla-

tion generated by a SCFG, we do not observe any increase in the generative capacity

with respect to the generative capacity of the class of the grammars involved in the

synchronous system, taken individually. In the literature, this general property has

been called the “weak language preservation property”, and is one of the defining

requirements of synchronous rewriting systems (Rambow and Satta 1996).

We conclude this section with some remarks on the computational complexity of

the auto-projection construction. Observe that, given an input SCFG G and an integer

i ∈ {1, 2}, the output CFG auto-proj(G, i) contains the same number of productions as G.

Furthermore, when translating a synchronous production s of G into the corresponding

production p of auto-proj(G, i), we simply “unfold” all of the indices in the right-hand

side of the i-th production component of s, using the associated links. Thus, the length

of p is bounded by the length of s. We then conclude that |auto-proj(G, i)| = O(|G|).

Finally, it is not difficult to see that the whole construction of auto-proj(G, i) can be

carried out in an amount of time proportional to the output, which is O(G). To do

this, each synchronous production s can be preprocessed in such a way that an array
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is constructed, where each nonterminal occurrence in s can be accessed starting from its

own index.

4. Intersection for SCFGs

We introduce here some “intersection constructions” for SCFGs that will be exploited

in the next sections, in the development of our translation algorithms. These construc-

tions generalize a well-known technique, originally proposed by Bar-Hillel, Perles, and

Shamir (1964), for the specification of a CFG generating the intersection of the languages

generated by a source CFG and a source finite automaton. As already discussed in

the introduction, such a technique is at the basis of several standard algorithms for

CFG parsing, but has never been exploited before for SCFGs. Throughout this section,

we let G = (VN , VT , P, S1, S2) be a SCFG in the normal form discussed in section 2,

requiring that for each [A1 → α1, A2 → α2] in P we have either α1, α2 ∈ (I(VN ))+ or

else α1, α2 ∈ V ∗
T . We denote by rG the rank of G.

To be used below, we briefly recall here the notion of finite automaton. A finite

automaton (FA) is a tuple M = (Q, VT , δ, qin , F ), where Q is a finite set of states, VT is a

finite set of terminal symbols with VT ∩ Q = ∅, qin ∈ Q is the initial state, F ⊆ Q is the

set of final states, and δ is a finite set of transitions, each of the form (q1, a, q2), with a ∈

VT and q1, q2 ∈ Q. As a convention, symbols q, q0, q1, . . . denote elements of Q. Let w =

a1a2 · · · an with n ≥ 1 and ai ∈ VT , 1 ≤ i ≤ n. With some abuse of notation, if we have

(qi−1, ai, qi) ∈ δ for each i with 1 ≤ i ≤ n, then we write (q0, w, qn) ∈ δ∗. Furthermore,

for each q ∈ Q we write (q, ε, q) ∈ δ∗. This is used to denote a computation of M on w,

starting in state q0 and ending in state qn.

A FA M is deterministic if, for every state q1 and alphabet symbol a we have at

most one state q2 such that (q1, a, q2) ∈ δ. When M is deterministic, there is at most

one computation of M on w starting in state q1 and ending in state q2, for any choice
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of w, q1 and q2. To simplify the presentation below, we assume that all of our FAs

are deterministic and have a single final state. All of the translation applications we

investigate in this article can be modeled using such assumption. Our results can be

transfered to the case of general FAs with some additional refinement in the notation

adopted here.

We start by considering the intersection on the left dimension between the transla-

tion generated by a SCFG and some regular language. More precisely, let L1 × L2 denote

the Cartesian product of languages L1 and L2, that is,

L1 × L2 = {[w1, w2] | w1 ∈ L1, w2 ∈ L2}.

Given our SCFG G and a FA M , we provide a new SCFG G∩ such that

T (G∩) = T (G) ∩ (L(M1) × V ∗
T ). (16)

Let M = (Q, VT , δ, qin , {qfin}). We define G∩ = (V∩, VT , P∩, (qin , S1, qfin), S2), where

V∩ = VN ∪ {(q1, A, q2) | q1, q2 ∈ Q, A ∈ VN}.

The set of synchronous productions P∩ is constructed as follows.

r For each synchronous production in P of the form

[A1 → A
(t1)
11 · · ·A

(tr)
1r , A2 → A

(tπ(1))
21 · · ·A

(tπ(r))
2r ],

with r ≥ 1 and A1i, A2i ∈ VN , and for each sequence q0, . . . , qr of states in

Q, we add to P∩ the synchronous production

[(q0, A1, qr) → (q0, A11, q1)
(t1) · · · (qr−1, A1r, qr)

(tr),

A2 → A
(tπ(1))
21 · · ·A

(tπ(r))
2r ]. (17)
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r For each synchronous production in P of the form [A1 → x1, A2 → x2],

with x1, x2 ∈ V ∗
T , and for each pair q1, q2 ∈ Q such that (q1, x1, q2) ∈ δ∗, we

add to P∩ the synchronous production

[(q1, A1, q2) → x1, A2 → x2]. (18)

Grammar G∩ may contain several useless synchronous productions. These can be

removed in linear time, as already remarked in section 2. Some simple examples of

application of the above construction are reported in section 5.

The intersection on the right dimension with a regular language can be symmet-

rically defined, and in the next section we will apply the left and right intersection

constructions in cascades. Note also that in the above construction we take advantage

of the definition of SCFG, allowing different nonterminals to be indexed. Had we dealt

with the already discussed SDTS formalism, we would have to spread states from M

on the right dimension, making our construction less intuitive and, as will be apparent

from the next section, also less modular. More discussion on this is provided in section 6.

Let us define homomorphism h∩ such that h∩(s) = s′ if and only if synchronous

production s ∈ P∩ has been obtained from synchronous production s′ ∈ P . We omit here

the proof of the next theorem, since it does not add anything technically new to existing

proofs of the corresponding CFG case; see for instance (Nederhof and Satta 2003).

Theorem 3

Let G, M and G∩ be specified as above.

1. Homomorphism h∩ establishes a bijection between the set of all

synchronous derivations in G∩ and the set of synchronous derivations in

G of string pairs in L(M1) × V ∗
T .
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2. Let t1 and t2 be parse tree components on the same dimension, associated

with synchronous derivations σ∩ and σ, respectively, that are related

through h∩. Then t1 ∼= t2.

Theorem 3 implies (16), and states that the intersection construction “preserves” parse

tree components on both dimensions, modulo some node relabeling.

Let us consider now the computational complexity of the construction presented

above. All synchronous productions in (18) can be constructed in time (and space)

O(|G| · |Q|). This is so because M is deterministic, and state q2 can be uniquely iden-

tified from q1 and x1 in time proportional to |x1|. Construction of the synchronous

productions in (17) is more demanding. It is not difficult to see that, in the worst case,

processing of such productions can take an amount of time Θ(|G| · |Q|rG+1), with rG the

rank of the source SCFG G. We thus conclude that O(|G| · |Q|rG+1) is the time and space

bound for our intersection construction.

When the SCFG G is considered as part of the input, the above upper bound

means that we observe an exponential space and time behavior. One might wonder

whether some preliminary processing could be used to cast SCFG G into an equivalent

form, where r is bounded by some constant independent of G. That would result in a

polynomial time algorithm for the intersection construction for SCFGs. Unfortunately,

this is not possible in general. Such a negative result follows from a similar property of

SDTS proved in (Aho and Ullman 1969). As a consequence, some of the algorithms we

are going to develop in the next section, based on the intersection construction, have an

exponential worst case behavior. The natural question to ask is then: how much better

than this can we do, both under a theoretical and a practical perspective? We will come

back to this issue in the next section as well.
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As a final remark, if in the above construction we ignore the right productions

components of all the synchronous productions, we obtain the already mentioned

intersection construction proposed by Bar-Hillel, Perles, and Shamir (1964) for CFGs.

As it is well known (Harrison 1978), we can cast a CFG in binary form, that is, a form

with productions having no more than two nonterminals in their right-hand side. Then

from our upper bound above we obtain that the CFG intersection construction runs in

time O(|G| · |Q|3). This construction will also be used in the next section.

We now present a second intersection construction for SCFGs. In this case, we

restrict the parse tree components generated in one dimension to be members of a

parse forest given as input. We need to introduce some additional notation. Let Gf =

(VN,f , VT , Pf , ηS) be a CFG whose generated trees represent the parse forest of interest.

Each nonterminal η ∈ VN,f denotes a node that is shared by some of the trees in the

parse forest. We write label(η) = A, A ∈ VN , if A is the label of node η.

Let G and Gf be as above. We define the SCFG G∩,f = (V∩,f , VT , P∩,f , ηS , S2), where

V∩,f = VN,f ∪ VN . The set of synchronous productions P∩,f is constructed as follows.

r For each CFG production in Pf of the form η0 → η1 · · · ηr with r ≥ 1 and

for each synchronous production in P of the form

[A1 → A
(t1)
11 · · ·A

(tr)
1r , A2 → A

(tπ(1))
21 · · ·A

(tπ(r))
2r ],

with A1i, A2i ∈ VN , such that label(η0) = A1 and label(ηi) = A1i for each i

with 1 ≤ i ≤ r, we add to P∩,f the production

[η0 → η
(t1)
1 · · · η(tr)

r , A2 → A
(tπ(1))

21 · · ·A
(tπ(r))

2r ]. (19)

r For each CFG production in Pf of the form η → x1, and for each

synchronous production in P of the form [A1 → x1, A2 → x2] such that
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label(η) = A1, we add to P∩,f the synchronous production

[η → x1, A2 → x2]. (20)

Again, the SCFG G∩,f will have several useless symbols and needs to be reduced.

It is not difficult to show that a property similar to Theorem 3 holds for the

construction above, so that each synchronous derivation σ in G∩,f derives a pair

[w1, w2] ∈ L(Gf ) × V ∗
T , with the restriction that the left parse tree component of σ is

a tree generated by Gf . With such a restriction, and modulo some relabeling of the

internal nodes, the construction also preserves the parse tree component of the source

SCFG G. Again, the proof of these two properties is rather straightforward and is

omitted here.

As a final note, on the complexity of the construction of G∩,f , observe that for

each synchronous production s ∈ P we can add to P∩,f a number of new productions

bounded by O(|Pf |). Since each such a new production has size proportional to the size

of s, the overall time bound for the complexity of the construction of G∩,f is O(|G| · |Pf |).

Note that in this case we have a polynomial upper bound in the size of the input.

5. Translation algorithm

In this section we put together the machinery introduced in sections 3 and 4 and

develop, in a modular way, algorithms for the translation problem and the related

problems of synchronous recognition, synchronous parsing and tree translation, de-

fined below. Throughout this section we consider a SCFG G = (VN , VT , P, S1, S2) in the

normal form of section 2, and with rank rG.

The translation problem for SCFGs is defined as follows: given an input SCFG

G and an input string w, construct a CFG parse forest for all of the right parse tree
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components of the synchronous derivations of [w, u] under G, where u ∈ T (G, w). (The

term decoding is also used with a related meaning, in case of statistical translation

models embedded within a noisy channel architecture.) In what follows we assume

w = a1a2 · · ·an, with n ≥ 0 and ai ∈ VT for each i, 1 ≤ i ≤ n.

We define a FA M such that L(M) = {w}. To do this, let Q = {qi | 0 ≤ i ≤ n},

and let M = (Q, VT , δ, q0, {qn}), where δ = {(qi−1, ai, qi) | 1 ≤ i ≤ n}. Note that M is

deterministic. Our translation algorithm is defined by the following two steps.

Step 1: Apply to G and M the left intersection construction with a regular language

from section 4, resulting in a new SCFG G∩,w such that (Theorem 3)

T (G∩,w) = T (G) ∩ (L(M) × V ∗
T ) = {[w, u] | [w, u] ∈ T (G)}.

Step 2: Apply to G∩,w the auto-projection construction from section 3, and produce a

CFG auto-proj(G∩,w, 2) that generates the language (Theorem 2)

L(auto-proj(G∩,w, 2)) = proj(T (G∩,w), 2)

= {u | [w, u] ∈ T (G)} = T (G, w).

This CFG is the output of the algorithm.

When we apply the appropriate node relabeling to the parse trees generated by

CFG auto-proj(G∩,w, 2), we obtain all and only the right parse tree components that are

assigned to strings u ∈ T (G∩,w) by the input SCFG G when deriving [w, u]. This follows

from Theorem 3 and (the symmetrical statement of) Theorem 1. We can then conclude

that CFG auto-proj(G∩,w, 2) is the desired parse forest and the translation algorithm

above is correct.
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Example 4

Let us consider again the SCFG G from Example 1, whose synchronous productions are

reported below for convenience:

s1 : [S → A
(1)
1 C

(2)
1 , S → A

(1)
2 C

(2)
2 ],

s2 : [C1 → B
(1)
1 S(2), C2 → B

(1)
2 S(2)],

s3 : [C1 → B
(1)
1 S(2), C2 → S(2)B

(1)
2 ],

s4 : [C1 → B
(1)
1 , C2 → B

(1)
2 ],

s5 : [A1 → a1, A2 → a2],
s6 : [A1 → a1, A2 → ε],
s7 : [B1 → b1, B2 → b2].

Assume the input string w = a1b1a1b1. There are five different strings that can be

obtained as a translation of w through G, and we have

T (G, w) = {a2b2a2b2, a2b2b2, b2a2b2, b2b2, a2a2b2b2}.

More precisely, when translating w, G can optionally erase each occurrence of a2 and

can optionally invert the nonterminals B2 and S that are rewritten out of C2. This would

yield eight possible translations, but strings a2b2b2 and b2b2 are ambiguous, the former

has three parse trees and the latter has two.

We now construct FA M = ({q0, q1, q2, q3, q4}, {a1, a2, b1, b2}, δ, q0, {q4}), with δ =

{(q0, a1, q1), (q1, b1, q2), (q2, a1, q3), (q3, b1, q4)}. In Step 1 of the algorithm above, and

after the removal of useless symbols, we obtain SCFG G∩,w with the synchronous
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productions:

s′1 : [(q0, S, q4) → (q0, A1, q1)
(1)(q1, C1, q4)

(2), S → A
(1)
2 C

(2)
2 ],

s′2 : [(q1, C1, q4) → (q1, B1, q2)
(1)(q2, S, q4)

(2), C2 → B
(1)
2 S(2)],

s′3 : [(q1, C1, q4) → (q1, B1, q2)
(1)(q2, S, q4)

(2), C2 → S(2)B
(1)
2 ],

s′4 : [(q2, S, q4) → (q2, A1, q3)
(1)(q3, C1, q4)

(2), S → A
(1)
2 C

(2)
2 ],

s′5 : [(q3, C1, q4) → (q3, B1, q4)
(1), C2 → B

(1)
2 ],

s′6 : [(q0, A1, q1) → a1, A2 → a2],
s′7 : [(q0, A1, q1) → a1, A2 → ε],
s′8 : [(q1, B1, q2) → b1, B2 → b2],
s′9 : [(q2, A1, q3) → a1, A2 → a2],
s′10 : [(q2, A1, q3) → a1, A2 → ε],
s′11 : [(q3, B1, q4) → b1, B2 → b2].

We now move to Step 2 of the algorithm. We observe that the set L(G∩,w) con-

tains elements of the form [(qi, A, qj), A
′], A, A′ ∈ VN . We construct the output CFG

auto-proj(G∩,w, 2) with nonterminals L(G∩,w) and productions:

p1 : [(q0, S, q4), S] → [(q0, A1, q1), A2][(q1, C1, q4), C2],
p2 : [(q1, C1, q4), C2] → [(q1, B1, q2), B2][(q2, S, q4), S],
p3 : [(q1, C1, q4), C2] → [(q2, S, q4), S][(q1, B1, q2), B2],
p4 : [(q2, S, q4), S] → [(q2, A1, q3), A2][(q3, C1, q4), C2],
p5 : [(q3, C1, q4), C2] → [(q3, B1, q4), B2],
p6 : [(q0, A1, q1), A2] → a2,

p7 : [(q0, A1, q1), A2] → ε,

p8 : [(q1, B1, q2), B2] → b2,

p9 : [(q2, A1, q3), A2] → a2,

p10 : [(q2, A1, q3), A2] → ε,

p11 : [(q3, B1, q4), B2] → b2.

It is not difficult to see that CFG auto-proj(G∩,w, 2) generates all and only the strings in

T (G, w). Moreover, each such a string is generated through exactly the same component

parse trees that are used by G when translating from w, modulo a straightforward

node relabeling. Let us go through the three leftmost derivations of string a2b2b2 under

auto-proj(G∩,w, 2). We write ⇒p to denote the derive relation in such a CFG by means of

production p. Without using inversion of B2, S (that is, using production p2 rather than

production p3) and erasing the second occurrence of a2, we get the derivation

[(q0, S, q4), S] ⇒p1 [(q0, A1, q1), A2][(q1, C1, q4), C2]
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⇒p6 a2[(q1, C1, q4), C2]

⇒p2 a2[(q1, B1, q2), B2][(q2, S, q4), S]

⇒p8 a2b2[(q2, A1, q3), A2][(q3, C1, q4), C2]

⇒p10 a2b2[(q3, C1, q4), C2]

⇒p5 a2b2[(q3, B1, q4), B2]

⇒p11 a2b2b2.

If instead we use inversion of B2, S, we get the two occurrences of a2 at adjacent

positions in the string, and we can either erase the first or the second occurrence in

order to derive a2b2b2, as reported in what follows:

[(q0, S, q4), S] ⇒p1 [(q0, A1, q1), A2][(q1, C1, q4), C2]

⇒p7 [(q1, C1, q4), C2]

⇒p3 [(q2, S, q4), S][(q1, B1, q2), B2]

⇒p4 [(q2, A1, q3), A2][(q3, C1, q4), C2][(q1, B1, q2), B2]

⇒p9 a2[(q3, C1, q4), C2][(q1, B1, q2), B2]

⇒p5 a2[(q3, B1, q4), B2][(q1, B1, q2), B2]

⇒p11 a2b2[(q1, B1, q2), B2]

⇒p8 a2b2b2,

[(q0, S, q4), S] ⇒p1 [(q0, A1, q1), A2][(q1, C1, q4), C2]

⇒p6 a2[(q1, C1, q4), C2]
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⇒p3 a2[(q2, S, q4), S][(q1, B1, q2), B2]

⇒p4 a2[(q2, A1, q3), A2][(q3, C1, q4), C2][(q1, B1, q2), B2]

⇒p10 a2[(q3, C1, q4), C2][(q1, B1, q2), B2]

⇒p5 a2[(q3, B1, q4), B2][(q1, B1, q2), B2]

⇒p11 a2b2[(q1, B1, q2), B2]

⇒p8 a2b2b2.

We now switch to the problem of synchronous parsing for SCFGs, defined as

follows: given an input SCFG G and an input string pair [w1, w2], construct a SCFG

parse forest for all the synchronous derivations of [w1, w2] under G. Note that here

we are viewing SCFGs as convenient representations of forests of aligned parse trees.

The problem of synchronous parsing has applications in word and phrase alignments

for multilingual corpora, automatic dictionary construction, and is also at the basis of

training algorithms for translation models.

Let SCFG G be defined as above, and let w1 = a1a2 · · · an and w2 = b1b2 · · · bm, with

n, m ≥ 0 and ai, bj ∈ VT for each i and j, 1 ≤ i ≤ n, 1 ≤ i ≤ m. Similarly to what we

have done above, we define deterministic FAs M1 = (Q1, VT , δ1, q10, {q1n}) such that

L(M1) = {w1}, and M2 = (Q2, VT , δ2, q20, {q2m}) such that L(M2) = {w2}. An algorithm

for the problem of synchronous parsing can be defined by the following three steps.

Step 1: Apply to G and M1 the left intersection construction with a regular language

from section 4, resulting in a new SCFG G∩,w1
such that

T (G∩,w1
) = T (G) ∩ (L(M1) × V ∗

T ).
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Step 2: Apply to G∩,w1
and M2 the right intersection construction with a regular lan-

guage, resulting in a new SCFG G∩,w1,w2
such that

T (G∩,w1,w2
) = T (G∩,w1

) ∩ (V ∗
T × L(M2))

= T (G) ∩ (L(M1) × L(M2)) = {[w1, w2]}.

Step 3: Output the SCFG G∩,w1,w2
.

From Theorem 3, and modulo some node relabeling, the SCFG G∩,w1,w2
is a repre-

sentation of the desired parse forest of all aligned parse trees generating pair [w1, w2]

under G. From the above algorithm, it is also apparent that there is a strong similarity

between the problem of synchronous parsing and the translation problem for SCFGs, as

both can be reduced to an intersection problem with regular languages. Such a similarity

has often been informally observed in the literature, but never formally proved in some

framework.

The problem of synchronous parsing for SCFGs can be associated with a corre-

sponding decision problem, called the problem of synchronous recognition for SCFGs,

defined as follows: given an input SCFG G and an input string pair [w1, w2], decide

whether [w1, w2] ∈ T (G). The problem of synchronous recognition for SCFGs can be

solved by running on G and [w1, w2] the algorithm for the problem of synchronous

parsing presented above. We then answer yes if and only if the output SCFG G∩,w1,w2

generates a non-empty translation. Translation non-emptiness for SCFGs can in turn be

tested by reducing the SCFG and checking whether the resulting set of synchronous

productions is non-empty.

We now switch to the discussion of the computational complexity of the algorithms

presented above and, more in general, of the considered computational problems. In

41



Computational Linguistics Volume vv, Number nn

the intersection steps of both our algorithms we apply the intersection construction,

which in the worst case requires an exponential time computation, as already observed

in section 4. We thus conclude that our algorithms show exponential time behavior,

when the SCFG is considered as part of the input. But on a theoretical perspective, such

an exponential time behavior seems unavoidable, as discussed below.

It has been shown by Satta and Peserico (2005) that the problem of synchronous

recognition for SCFGs is NP-hard. Such a problem seems to be the least complex

one among the three problems considered so far, assuming polynomial time Turning

reductions. In fact, we can reduce from the problem of synchronous recognition to the

problem of synchronous parsing by testing the non-emptiness of the translation gener-

ated by a SCFG, as pointed out above. Such a test can be easily carried out in polynomial

time by adapting standard techniques for the reduction of CFGs, as already observed in

section 2. Similarly, we can reduce from the problem of synchronous recognition to the

translation problem as follows. Given a SCFG G and a string pair [w1, w2], we first run

the translation algorithm on G and w1. This results in a CFG G′ representing the desired

parse forest. We can then test whether w2 ∈ L(G′). Such a membership problem can be

computed in polynomial time in the size of G′, as it is well known from the parsing

literature; see for instance (Hopcroft and Ullman 1979). We thus conclude that both the

translation problem and the problem of synchronous parsing for SCFGs are NP-hard,

under a polynomial time Turing reduction.

Notice that the above discussion assumes definitions of the translation problem and

of the problem of synchronous parsing for SCFGs in which the output parse forests are

represented by means of SCFGs and CFGs, respectively. But the argument holds also

for other representations of parse forests, as those discussed in section 6, which can be

mapped to the CFG representation by means of linear time computations. In conclusion,
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under the assumption that the classes P and NP are separable, for the solution of the

problems discussed in this section one cannot hope to do a much better job than the

algorithms we have presented.

Turning to an application oriented perspective, things look rather differently. The

exponential time analysis for the intersection construction in section 4 holds under the

assumption that the rank of the input SCFGs is unbounded. However, it might be the

case that the synchronous productions we deal with do not implement the specific worst

case permutations investigated in (Aho and Ullman 1969). This would in turn allow us

to “factor” each synchronous production into a set of equivalent synchronous produc-

tions with rank bounded by some constant. In this case the intersection construction

can be carried out in polynomial time (with degree of the polynomial depending on

the above constant) and this is also the time upper bound for the algorithms described

in this section, since all other steps use polynomial time procedures, as discussed in

section 3. The above hypothesis about the type of permutations we deal with in natural

language translation needs to be experimentally evaluated for individual language

pairs. To date the issue still appears to be controversial; see for instance work by

Fox (2002), Zhang et al. (2006) and Wellington, Waxmonsky, and Melamed (2006). We

remark here that, in line with the above hypothesis, very efficient algorithms for the

factorization of synchronous productions have been developed by Zhang et al. (2006)

and Gildea, Satta, and Zhang (2006). These algorithms work in linear time and reduce

as much as possible the rank of each synchronous production in a SCFG.

We now switch to the discussion of some applications of the framework we have

developed so far. Observe that in the algorithm for the translation problem above we

have not set any restriction on the right dimension of the source SCFG. However, one

common application in statistical machine translation is to intersect the output of the
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algorithm with a probabilistic regular language implementing a language model for

the target language. Combining probabilities of the translation model with probabilities

from an independent language model has proved very effective for the overall transla-

tion quality; see for instance work by Chiang (2005). Using our abstract framework, we

provide in the next example a real case analysis of this technique.

Example 5

We show how to apply the developed framework to reformulate translation algo-

rithms that have already been presented in the literature. We consider here the al-

ready mentioned Inversion Transduction Grammars (ITGs) originally proposed by Wu

(1997) along with their probabilistic version, called Stochastic ITG (SITG). ITGs are a

restricted form of SDTS, and thus of SCFGs, where synchronous productions display

nonterminals in the right-hand side of the right production component in the same or

in the reverse order as they appear in the right-hand side of left production component.

Without sacrificing too much of the expressivity of the formalism, in the perspective

of natural language translation, this simple restriction results in some very interesting

properties, including the existence of canonical forms of rank two for ITGs which, as

already discussed, does not hold for SDTS and SCFGs (Aho and Ullman 1969).

Wu and Wong (1998) report an algorithm for the translation problem based on

SITGs. As far as we know, this is the first example of a dynamic programming method

for the translation problem exploiting a hierarchical synchronous rewriting formalism.

The algorithm takes as input a string w in the source language, a SITG G as a translation

model and a 2-gram language model for the target language. The language model is

used to filter the output of the translation model, and proves very effective in the

perspective of the resulting accuracy of the system. The algorithm constructs from w

an indexed structure, which is implemented through a chart data structure (Jurafsky
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and Martin 2000), representing all parse trees for strings in the target language that are

translations of w and that comply with the target language model. These parse trees are

also assigned a probability that is a combination of probabilities computed through the

translation model and the language model. A standard Viterbi method is then used to

extract the parse tree(s) with highest probability and the associated generated string.

Assuming that each word in the source language can be mapped into a set of words in

the target language of size bounded by some constant, which is independent of G, the

proposed algorithm works in time O(|G| · |w|7). An improved version of this algorithm

has later been presented by Huang, Zhang, and Gildea (2005), where advanced dynamic

programming techniques are exploited resulting in a time upper bound of O(|G| · |w|6).

We show here how the improved upper bound above can be obtained in a simple

way using the framework we have presented. We focus on the algorithmic specification

of the method and ignore probability assignments for the productions and transitions

of the models. We can encode w into a FA M1 with set of states Q1 of size n + 1. We

particularize the 2-gram language model for the target language to the set of strings that

use the only words that are translations of words occurring in w. We can implement this

model as a FA M2, where each state encodes the last word read and conditions the next

word to be read through its outgoing transitions. Using the above assumption that each

word occurring in w can be translated into at most a constant number of words in the

target language, M2 uses a set of states Q2 of size O(|w|), and a number of transitions

O(|w|2). Finally, remember that for the SITG model our SCFG G has rank rG = 2. We can

then apply twice the regular language intersection, on the two dimensions. Intersection

on the left dimension of G and M1 produces a SCFG G′ of size O(|G| · |Q1|
rG+1). When

we further intersect G′ on the right dimension with M2, and use the above parameters,

45



Computational Linguistics Volume vv, Number nn

we derive

O(|G′| · |Q2|
rG+1) =

= O(|G| · |Q1|
rG+1 · |Q2|

rG+1)

= O(|G| · |w|3 · |w|3) = O(|G| · |w|6),

which is the improved upper bound provided by Huang, Zhang, and Gildea (2005).

This simple analysis shows the convenience of working with the abstract framework

we have developed in this article.

We now discuss a variant of the translation problem, in which the input is a parse

tree, or a parse forest, rather than a sentence. This problem has several applications in

case a statistical parser for the source language is available, and can thus be exploited

to restrict the translation process to a list of N ≥ 1 most likely parse trees for the source

sentence. The tree translation problem for SCFGs is defined as follows: given an input

SCFG G and an input CFG Gf representing a parse forest, construct an output CFG

representing the parse forest of all the right parse tree components that translate under

G the trees generated by Gf .

Assume G as above and let Gf = (VN,f , VT , Pf , ηS1
) be a CFG as in section 4. Our

translation algorithm is defined by the following two steps.

Step 1: Apply to G and Gf the left intersection construction with a parse forest from

section 4, resulting in a new SCFG G∩,f such that

T (G∩,f ) = T (G) ∩ (L(Gf ) × V ∗
T ).

Step 2: Apply the auto-projection construction from section 3, and output CFG

auto-proj(G∩,f , 2).
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When we apply node relabeling to the parse trees generated by auto-proj(G∩,f , 2),

we obtain all and only the right parse tree components that are translations under G

of the parse trees generated by the input Gf . Step 1 of the algorithm runs in time

O(|Pf | · |G|), as discussed in section 4. This is also a space bound on the size of the

produced grammar. Therefore, the linear time auto-projection construction in Step 2 also

runs time O(|Pf | · |G|). We conclude that the above algorithm solves the tree translation

problem with a polynomial time upper bound of O(|Gf | · |G|).

Once more, we propose an example with an analysis of an algorithm already

presented in the literature, demonstrating the convenience of using our abstract frame-

work.

Example 6

A statistical translation model has been presented by Yamada and Knight (2001),

translating English parse trees into Japanese sentences. In this model a source proba-

bilistic CFG is explicitly defined, while a target CFG is only implicitly provided through

some elementary tree-editing operations associated with the productions of the source

grammar, such as children reordering, and translation and insertion of leaf words. The

authors provide an unsupervised maximum-likelihood estimation algorithm based on

the expectation maximization method

The translation model can be viewed as a synchronous rewriting system, where

synchronous productions implement the children reordering and the word translation

operations. An insertion operation of say a word b as rightmost child of a node C2, in

the context of a production A2 → B2C2, can be implemented through the synchronous
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productions

[A1 → C
(1)
1A1

B
(2)
1A1

, A2 → B
(2)
2A2

C
(1)
2A2

],

[C1A1
→ C

(1)
1 X(2), C2A2

→ C
(1)
2 X(2)],

[X → ε, X → b].

The intermediate nonterminals above of the form C2A2
are used to record information

about the parent node. In this way, the construction preserves the statistical parameters

of the original model.

The estimation algorithm in (Yamada and Knight 2001) takes as input a corpus of

pairs [t, w], where t is a parse tree and w is a sentence translation of the yield of t. It

then constructs an and-or graph representing all possible combinations of elementary

operations of the model that translate t into w. This structure is used to estimate the

parameter models through an iterative procedure counting the occurrences of each

elementary operation. Let G be a SCFG implementing the translation model as above

(again we ignore the attached probabilities here). We first intersect G on the left with

a parse forest representing t, and then intersect the resulting SCFG on the right with

a FA representing w. The new SCFG that we obtain represents the parse forest of all

synchronous derivations in G with left parse tree component t and right string w. This

representation is a syntactic variant of the and-or graph above, and it has the advantage

over the graph representation that it does not require additional definitions.

Our construction of the parse forest can be carried out in time O(|G| · |t| · |w|d) with

d = min{rt, rG}. Here rt is the maximum number of children for a node of t, and rG

is the rank of G. Thus in the worst case the algorithm runs in exponential time. This

is the same time complexity reported by Yamada and Knight (2001). It is possible to

improve upon this result, as discussed in what follows. As before, we intersect G on the

left with a parse forest representing t, resulting in a SCFG Gt. We then apply the auto-

projection and construct a CFG G′
t = auto-proj(Gt, 2). We can now use standard linear
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time algorithms to cast G′
t in some form with at most two nonterminals in the right-hand

side of its productions. Let G′′
t be such a grammar. Finally, we apply the standard CFG

intersection construction discussed in section 4 to G′′
t and an FA encoding w, resulting

in a new CFG Gt,w. The relevant nonterminals of Gt,w have the form (η, qi, A1, A2, qj)

and represent all possible alignments of a node η of t labeled by nonterminal A1, and

a substring ai+1ai+2 · · · aj of w which can be derived from nonterminal A2. (Some

other nonterminals are present in Gt,w as a byproduct of the binarization algorithm,

and can be ignored.) From such a parse forest we can retrieve all the information that

is needed by the iterative procedure for the estimation of the model parameters. The

construction of Gt,w above requires an overall amount of time O(|G| · |t| · |w|2), which

is now polynomial in the size of the input.

We close with some practical remarks. The intersection construction with regular

languages exploited by our algorithms has been presented in section 4 in its simplest

form. This is in line with the goal of this article to establish a mathematical framework

for the design of translation algorithms and the investigation of their theoretical proper-

ties. However, in the implementation of applications working with large size translation

models, much more efficient methods can be devised for the computation of the inter-

section construction, avoiding the generation of huge numbers of useless nonterminals.

Top-down and bottom-up strategies can be implemented, as is standard practice in the

design of (string) parsing algorithms, resulting in a more selective search in the space

of all candidate synchronous productions for the target grammar. In addition, when

these models are enriched with probabilities, several heuristic strategies can also be

implemented to filter the search space.
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6. Discussion and future work

In this article we have borrowed from the parsing literature a well-established frame-

work based on the idea of language intersections. We have adapted this methodology to

the development of translation and related algorithms for SCFGs. The framework has

also been used to establish formal properties of translation algorithms and to compare

existing algorithms under a mathematical basis.

As already discussed, our choice of considering SCFGs rather than the SDTS of Aho

and Ullman (1972) is motivated by the need of decoupling the two left-hand side sym-

bols in a synchronous productions, which gives us more flexibility and more modularity

in defining intersections on a single dimension of the grammar, leaving untouched the

symbols in the other dimension. One might argue that the use of SDTS would spare the

need for the auto-projection construction of section 3, using the already known result

presented by Aho and Ullman (1972, Exercise 3.1.7, p. 235), stating that SDTS can be

directly projected on both dimensions. But this advantage is only apparent, because in

case one uses SDTS, the definition of the intersection on one dimension would have

to embed the auto-projection construction, in order to satisfy the requirement that

indexed nonterminals must be equal. This results in a lack of modularity. Our approach

is logically cleaner, allowing us to keep the two constructions independent. Also, the

added expressivity of SCFGs is particularly convenient when proving formal properties

of the model.

In this article we have adopted the CFG representation for parse forests, which

does not require any additional machinery since our translation models are based on

CFG productions. CFG representations of parse forests are widely used in the parsing

literature; see for instance work by Billot and Lang (1989), Lang (1991), Vijay-Shanker

and Weir (1993), Lang (1994) and Nederhof (2005). Representations of parse forests
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superficially different from CFGs are found in the literature, as for instance the and-or

graphs used by Yamada and Knight (2001). An and-or graph is a graph whose vertices

are of two special kinds, called and-vertices and or-vertices, and are usually alternated.

These graphs are then visited by following all the outgoing edges at the and-vertices and

by following only one outgoing edge at the or-vertices. As pointed out by Lang (1991),

and-or graphs can also be viewed as CFGs, and the two representations can be related

by a linear time computation. A second representation for parsing forests proposed

by Klein and Manning (2004) is based on hypergraphs. In an hypergraph each edge,

called hyperedge, may have more than one source or target vertex. The specific kind of

hyperedges that are used to represent parse forests have a single target vertex, encoding

an internal node ν in some parse tree, and several source vertices, encoding the children

of ν. Again, this notation is a syntactic variant of a CFG, as observed in (Nederhof 2005),

and the two representations can be related by means of a linear time computation.

In order to keep the presentation at a simple level, in this article we have worked

with a synchronous formalism that only allows the generation of parse tree pairs that

have the same structure, modulo some relabeling of the nodes and some reordering

of their children. More expressive formalisms than our SCFGs have been presented

in the literature, that can generate parse trees with different structures. See for in-

stance the already cited multitext grammars of Melamed (2003), which use the so-

called independent rewriting, and the synchronous tree substitution grammar of Eisner

(2003). Furthermore, synchronous systems beyond the generative power of context-free

rewriting, involving so-called discontinuous constituents, are also used as translation

models. See for instance the synchronous tree adjoining grammars of Shieber (1994)

and the generalized multitext grammars proposed by Melamed, Satta, and Wellington
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(2004b). It is not difficult to extend the intersection framework of this article to these

formalisms.

A second important extension of the framework proposed here involves the use

of probabilities, which are adopted in most real world machine translation applications.

One can extend SCFGs by associating probabilities to each synchronous production, in a

way similar to the stochastic extension of SDTS proposed by Maryanski and Thomason

(1979). By slightly complicating the notation of section 4 we can extend our intersection

algorithms to probabilistic formalisms. In the case of probabilistic FAs, this can be done

by taking into account the transitions of the automaton and their probabilities into the

synchronous productions of the intersection grammar, following the lines developed

by Nederhof and Satta (2003) for the case of probabilistic CFGs. Things are however

more complicated for the auto-projection construction of section 3. Our construction

results in a many-to-one mapping from synchronous derivations to context-free parse

tree components. Unfortunately, it is not possible to assign probabilities to the obtained

context-free productions in such a way that the probability of a parse tree component

is the sum of the probabilities of the source synchronous derivations. This fact follows

from a result showing that probabilistic nondeterministic FAs cannot be converted into

equivalent probabilistic deterministic FAs, in the general case (Vidal et al. 2005). One

must therefore refine the auto-projection construction in such a way that a bijection is

obtained from synchronous derivations to parse tree components. This requires a more

complex notation than the one provided in this article, and is left for future work.
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